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Abstract Let (M, g) be a two dimensional compact Riemannian manifold of genus g(M) >

1. Let f be a smooth function on M such that

f ≥ 0, f �≡ 0, min
M

f = 0.

Let p1, . . . , pn be any set of points at which f (pi ) = 0 and D2 f (pi ) is non-singular. We
prove that for all sufficiently small λ > 0 there exists a family of “bubbling” conformal
metrics gλ = euλg such that their Gauss curvature is given by the sign-changing function
Kgλ = − f + λ2. Moreover, the family uλ satisfies

uλ(p j ) = −4 log λ − 2 log

(
1√
2
log

1

λ

)
+ O(1)

and

λ2euλ ⇀ 8π
n∑

i=1

δpi , as λ → 0,

where δp designates Dirac mass at the point p.
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764 M. del Pino, C. Román

1 Introduction

Let (M, g) be a two-dimensional compact Riemannian manifold. We consider in this paper
the classicalprescribedGaussian curvature problem:Given a real-valued, sufficiently smooth
funtion κ(x) defined on M , we want to know if κ can be realized as the Gaussian curvature
Kg1 of M for a metric g1, which is in addition conformal to g, namely g1 = eug for some
scalar function u on M .

It is well known, by the uniformization theorem, that without loss of generality we may
assume that M has constant Gaussian curvature for g, Kg =: −α. Besides, the relation
Kg1 = κ is equivalent to the following nonlinear partial differential equation

�gu + κ eu + α = 0, in M, (1.1)

where �g = divg∇ is the Laplace Beltrami operator on M . There is a considerable literature
on necessary and sufficient conditions on the function κ for the solvability of the PDE (1.1).
We refer the reader in particular to the classical references [3,7,12–14,17] and to [5] for a
recent review of the state of the art for this problem.

Integrating Eq. (1.1), assuming that M has surface area equal to one, and using the Gauss-
Bonet formula we obtain∫

M
κeudμg =

∫
M
Kgdμg = −α = 2πχ(M), (1.2)

where χ(M) is the Euler characteristic of the manifold M .
In what follows we shall assume that the surface M has genus g(M) greater than one, so

that χ(M) = 2(1 − g(M)) < 0 and hence

−Kg = α > 0.

Then (1.2) tells us that a necessary condition for existence is that κ(x) be negative somewhere
on M . More than this, we must have that∫

M
κdμg < 0.

Indeed testing Eq. (1.1) against e−u we get∫
M

κdμg = −
∫
M

(|∇gu|2 + α)e−udμg < 0. (1.3)

Solutions u to Eq. (1.2) correspond to critical points in the Sobolev space H1(M, g) of
the energy functional

Eκ (u) = 1

2

∫
M

|∇gu|2dμg − α

∫
M
udμg −

∫
M

κeudμg.

As observed in [3], since α > 0, we have that if κ ≤ 0 and κ �≡ 0, then this functional
is strictly convex and coercive in H1(M, g). It thus have a unique critical point which is a
global minimizer of Eκ .

A natural question to ask is what happens when κ changes sign. A drastic change in
fact occurs. If supM κ > 0, then the functional Eκ is no longer bounded below, hence a
global minimizer cannot exist. On the other hand, intuition would tell us that if κ is “not too
positive” on a set “not too big”, then the global minimizer should persist in the form of a
local minimizer. This is in fact true, and quantitative forms of this statement can be found in
[1,4].
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Conformal metrics with prescribed Gauss curvature 765

Fig. 1 Bifurcation diagram for
solutions of problem (1.4)
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We shall focus in what follows in a special class of functions κ(x) which change sign
being nearly everywhere negative. Let f be a function of class C3(M) such that

f ≥ 0, f �≡ 0, min
M

f = 0.

For λ > 0 we let

κλ(x) = − f (x) + λ2,

so that our problem now reads

�gu − f eu + λ2eu + α = 0, in M. (1.4)

In [10], Ding and Liu proved that the global minimizer of Eκ0 persists as a local minimizer
uλ of Eκλ for any 0 < λ < λ0. From (1.3) we see that

λ0 <

(∫
M

f

)1/2

.

Moreover, they established the existence of a second, non-minimizing solution uλ in this
range. Uniqueness of the solution u0 for λ = 0, and its minimizing character, tell us that we
must have uλ → u0 as λ → 0 while uλ must become unbounded. The situation is depicted
as a bifurcation diagram in Fig. 1.

The proof in [10] does not provide information on its asymptotic blowing-up behavior or
about the number of such “large” solutions. Borer, Galimberti and Struwe [5] have recently
provided a new construction of the mountain pass solution for small λ, which allowed them
to identify further properties of it under the following generic assumption: points of global
minima of f are non-degenerate. This means that if f (p) = 0 then D2 f (p) is positive def-
inite. In [5] it is established that blowing-up of the family of large solutions uλ occurs only
near zeros of f , and the associated metric exhibits “bubbling behavior”, namely Euclidean
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766 M. del Pino, C. Román

spheres emerge around some of the zero-points of f . In fact, the mountain-pass characteriza-
tion let them estimate the number of bubbling points as no larger than four. More precisely,
they find that along any sequence λ = λk → 0, there exist points pk1, . . . , p

k
n , 1 ≤ n ≤ 4,

converging to p1, . . . , pn points of global minima of f such that one of the following holds

(i) There exist ε1λ, . . . , ε
k
λ, such that εiλ/λ → 0, i = 1, . . . , k, and in local conformal

coordinates around pi there holds

uλ(ε
i
λx) − uλ(0) + log 8 → w(x) := log

8

(1 + |x |2)2 , (1.5)

smoothly locally in R
2. We note that

�w + ew = 0, in R
2.

(ii) In local conformal coordinates around pi , with a constant ci there holds

uλ(λx) + 4 log(λ) + ci → w∞(x),

smoothly locally in R
2, where w∞ satisfies

�w∞ + [1 − (Ax, x)]ew∞ = 0, in R
2.

where A = 1
2D

2 f (pi ).

In this paper we will substantially clarify the structure of the set of large solutions of problem
(1.4) with a method that yields both multiplicity and accurate estimates of their blowing-
up behavior. Roughly speaking we establish that for any given collection of non-degenerate
global minima of f , p1, . . . , pk , there exist a solution uλ blowing-up in the form (1.5) exactly
at those points. Moreover

εiλ ∼ λ

| log λ| , uλ(pi ) = −4 log λ − 2 log

(
1√
2
log

1

λ

)
+ O(1).

In particular if f has exactly m non-degenerate global minimum points, then 2m distinct
large solutions exist for all sufficiently small λ.

In order to state our main result, we consider the singular problem

�gG − f eG + 8π
n∑

i=1

δpi + α = 0, in M, (1.6)

where δpi designates the Dirac mass at the point pi . We have the following result.

Lemma 1.1 Problem (1.6) has a unique solution G which is smooth away from the singu-
larities and in local conformal coordinates around pi it has the form

G(x) = −4 log |x | − 2 log

(
1√
2
log

1

|x |
)

+ H(x), (1.7)

where H(x) ∈ C(M).

Our main result is the following.

Theorem 1.1 Let p1, . . . , pn be points such that f (pi ) = 0 and D2 f (pi ) is positive definite
for each i . Then, there exists a family of solutions uλ to (1.4) with

λ2euλ ⇀ 8π
n∑

i=1

δpi , as λ → 0,
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Conformal metrics with prescribed Gauss curvature 767

and uλ → G uniformly in compacts subsets of M \ {p1, . . . , pk}. We define

ci = 1

2
eH(pi )/2, δiλ = ci

| log λ| , εiλ = λδiλ

whereH is defined near pi by relation (2.2). In local conformal coordinates around pi , there
holds

uλ(ε
i
λx) + 4 log λ + 2 log δiλ → log

8

(1 + |x |2)2 ,

uniformly on compact sets of R2 as λ → 0.

Our proof consists of the construction of a suitable first approximation of a solution as
required, and then solving by linearization and a suitable Lyapunov-type reduction There is a
large literature in Liouville type equation in two-dimensional domains or compact manifold,
in particular concerning construction and classification of blowing-up families of solutions.
See for instance [6,9,11,15,16,18] and their references.

We shall present the detailed proof of our main result in the case of one bubbling point
n = 1. In the last section we explain the necessary (minor, essentially notational) changes
for general n. Thus, we consider the problem

�gu − f eu + λ2eu + α = 0, in M, (1.8)

under the following hypothesis: there exists a point p ∈ M such that f (p) = 0 and D2 f (p)
is positive definite.

2 A nonlinear Green’s function

We consider the singular problem

�gG − f eG + 8πδp + α = 0, in M, (2.1)

where δp is the Dirac mass supported at p, which is assumed to be a point of global non-
degenerate minimum of f . In this section we will establish the following result, which
corresponds to the case n = 1 in Lemma 1.1.

Lemma 2.1 Problem (2.1) has a unique solution G which is smooth away from the singu-
larities and in local conformal coordinates around p it has the form

G(x) = −4 log |x | − 2 log

(
1√
2
log

1

|x |
)

+ H(x), (2.2)

where H(x) ∈ C(M).

Proof In order to construct a solution to this problem, is important to consider the equation,
in local conformal coordinates around p, for γ � 1

�G − f eG + 8πδ0 = 0, in B(0, γ ). (2.3)

Since

−� log
1

|x |4 = 8πδ0,
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768 M. del Pino, C. Román

if we write G = −4 log |x | + h(x), then h satisfies

�h − f (x)
1

|x |4 e
h = 0, in B(0, γ ). (2.4)

Since p is a non-degenerate point of minimum of f , we may assume that, in local conformal
coordinates around p, there exist positive numbers β1, β2 such that

β1|x |2 ≤ f (x) ≤ β2|x |2, (2.5)

for all x ∈ B(0, γ ), if γ is small enough. Letting r = |x |, it is thus important to consider the
equation

�V − 1

r2
eV = 0, in B(0, γ ). (2.6)

For a radial function V = V (r), this equation becomes

V ′′(r) + 1

r
V ′(r) − 1

r2
eV (r) = 0, 0 < r < γ. (2.7)

We make the change of variables r = et , v(t) = V (r), so that Eq. (2.7) transforms into

d2

dt2
v(t) = ev(t), −∞ < t < log γ.

from where it follows that

d

dt

(
v′(t)2

2
− ev(t)

)
= 0,

or v′(t)2 = 2(ev + C), for some constant C . Choosing C = 0, we have

d

dt

(
e−v(t)/2

)
= − 1√

2
.

Integrating and coming back to the original variable, we deduce that

V (r) = −2 log

(
1√
2
log

1

r

)

is a radial solution of Eq. (2.6). Note that, from condition (2.5) we readily find that h1(x) =
V (|x |) − logβ1 is a supersolution of (2.4), while h2(x) = V (|x |) − logβ2 is a subsolution
of (2.4).

Nowwe deal with existence of a solution of problem (2.1). The previous analysis suggests
that the singular part of the Green’s function, in local conformal coordinates around p, is

(x) := −4 log |x | + V (|x |),
so we look for a solution of (2.1) of the form u = η + H , where η is a smooth cut-off
function such that η ≡ 1 in B(p, γ

2 ) and η ≡ 0 in R
2 \ B(p, γ ). Therefore, H satisfies the

equation

�gH − f eηeH + α = −η f e − 2∇gη∇g − �gη =: �, in M. (2.8)

Observe that f eη ∈ L1(B(p, γ )). Next we find ordered global sub and supersolutions
for (2.8). Let us consider the problem

−�gh0 + f h0 = 1, in M,
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Conformal metrics with prescribed Gauss curvature 769

which has a unique non-negative solution of class C2,σ (M), 0 < σ < 1. Observe that

�gβh0 − f eηeβh0 + α − � = −β + fβh0 − f eηeβh0 + α − �,

so if we choose β = β1 < 0 small enough, then H := β1h0 is a subsolution of (2.8), while
if we choose β = β2 > 0 large enough, then H := β2h0 is a supersolution of (2.8).

We consider the space

X =
{
H ∈ H1(M, g)

∣∣∣∣
∫
M

f eηeH < ∞
}

,

and the energy functional

E(H) = 1

2

∫
M

|∇gH |2 +
∫
M

f eηF(H) +
∫
M

(−α + �)H, (2.9)

where

F(H(x)) =
⎧⎨
⎩
eH(x)(H − H(x)) H < H(x),
eH − eH(x) H ∈ [H(x), H(x)],
eH(x)(H − H(x)) H > H(x).

Observe that since h0 ∈ L∞(M, g) and f eη ∈ L1(B(p, γ )), then H , H ∈ X , which means
that the functional E is well defined in X . Since∫

M
−�g(η) = − lim

a→0

∫
∂B(p,a)

∂

∂r
= 8π,

we conclude that ∫
M

� =
∫
M

(−�g(η) − 8πδp) = 0.

Besides α > 0, so the functional E is coercive in X . We claim that E attains a minimum in
X . In fact, taking Hn ∈ X such that

lim
n→∞ E(Hn) = inf

H∈X E(H) > −∞,

and passing to a subsequence if necessary, we obtain

Hn → H ∈ X (in L2), ∇gHn ⇀ ∇gH (weakly in L2), E(H) = inf
H∈X E(H).

Observe that if we take ϕ ∈ C∞(M) then H + ϕ ∈ X , we can differentiate and obtain

∂

∂t
E(H + tϕ)

∣∣∣∣
t=0

= 0, for all ϕ ∈ C∞(M, g)

or ∫
M

∇gH · ∇gϕ +
∫
M

f eηG(H)ϕ +
∫
M

(−α + �)ϕ = 0, (2.10)

where

G(H) =
⎧⎨
⎩
eH(x) H < H(x),
eH H ∈ [H(x), H(x)],
eH(x) H > H(x).
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770 M. del Pino, C. Román

By suitably approximating H1 = (H − H)+, we can use it as a test function in (2.10) and
obtain ∫

M
∇gH · ∇gH1 +

∫
M

f eηG(H)H1 +
∫
M

(−α + �)H1 = 0.

Since H is a subsolution for Eq. (2.8), we have∫
M

∇gH · ∇gH1 +
∫
M

f eηeH H1 +
∫
M

(−α + �)H1 ≤ 0.

Observe that ∫
M

f eηG(H)H1 =
∫
M

f eηeH H1.

From the above calculations we deduce∫
M

|∇gH1|2 ≤ 0,

hence H1 ≡ C for some constant C . If C > 0, necessarily C ≡ H1 ≡ H − H almost
everywhere. Thus, H = H + C , and (2.10) traduces into∫

M
∇gH · ∇gϕ +

∫
M

f eηeHϕ +
∫
M

(−α + �)ϕ = 0,

for all ϕ ∈ C∞(M), which contradicts the fact that H solves

−�gH + f H = β1,

or in other words, the fact that H is not a solution of problem (2.8). Hence H1 ≡ 0, which
implies H ≤ H. In a similar way, we find H ≤ H and hence

H(x) ≤ H(x) ≤ H(x), a.e. x ∈ M.

Note that ∫
M

∇gH · ∇gϕ +
∫
M

f eηeHϕ +
∫
M

(−α + �)ϕ = 0, (2.11)

for all ϕ ∈ C∞(M, g). Besides, since the functional E is strictly convex and coercive, we
conclude that H is the unique minimizer in X .

So far we have proven that problem (2.1) has a unique solution G which is smooth away
from the singularity point p and in local conformal coordinates around p it has the form

G(x) = η

[
−4 log |x | − 2 log

(
1√
2
log

1

|x |
)]

+ H(x),

where H ∈ X ∩ L∞(M, g), is the unique minimizer of the functional E defined in X by
(2.9).

Next we will further study the form of H near p, which in particular yields its continuity
at p. For this purpose we use local conformal coordinates around p.

Let us consider the problem
{ −�gJ = α in B(0, γ

2 ),

J = H on ∂B(0, γ
2 ).
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Conformal metrics with prescribed Gauss curvature 771

This problem has a unique solution J , which is smooth in B(0, γ
2 ). So we can expand J as

J =
∞∑
k=0

bkr
k = b0 + O(r).

We write H = J + F , therefore F solves⎧⎨
⎩

−�gF + f

r4
2

log2 r
eJ eF − 1

r2
2

log2 r
= 0 in B(0, γ

2 ),

F = 0 on ∂B(0, γ
2 ),

because η ≡  in B(0, γ
2 ). Since F ∈ L2(B(0, γ

2 )) we can expand it as

F(r, θ) =
∞∑
k=0

ak(r)e
ikθ .

Observe that

f (x)

r2
= κ1r2 cos2(θ) + κ2r2 sin2(θ) + κ3r2 sin θ cos θ

r2
+ O(r) = a(θ) + O(r),

for r �= 0. Besides, β1 ≤ a(θ) ≤ β2. Thus

f (x)

r4
2

log2 r
eJ eF − 1

r2
2

log2 r
= 1

r2
2

log2 r

[
(a(θ) + O(r))eJ +F − 1

]
.

Moreover, since H ∈ L∞(B(0, γ
2 )) we have eJ +F ∈ L2(B(0, γ

2 )), so

1

r2
2

log2 r

[
(a(θ) + O(r))eJ +F − 1

] =
∞∑
k=0

mk(r)e
ikθ ,

where

|mk(r)| ≤ C

r2
1

log2 r
, ∀k ≥ 0,

for a constant C independent of k. Now, we study the behavior of the coefficients ak(r). For
this purpose let us remember that

�u(r, θ) = ∂2u

∂r2
+ 1

r

∂u

∂r
+ 1

r2
∂2u

∂θ2
.

For k ≥ 1, we see that ak(r) satisfies the ordinary differential equation

− ∂2ak
∂r2

(r) − 1

r

∂ak
∂r

(r) + k2

r2
ak(r) = mk(r), 0 < r <

γ

2
, (2.12)

under the conditions

ak
(γ

2

)
= 0, ak(r) ∈ L∞

( [
0,

γ

2

])
. (2.13)

We recall that the L∞-condition comes from the fact that F ∈ L∞(B(0, γ
2 )). Let us make

the change of variables r = et , Ak(t) = ak(et ), Mk(t) = mk(et ), so the previous problem
transform into

− d2Ak

dt2
(t) + k2Ak(t) = Mk(t), −∞ < t < log

γ

2
, (2.14)
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772 M. del Pino, C. Román

under the conditions

Ak

(
log

γ

2

)
= 0, Ak ∈ L∞ ((

−∞, log
γ

2

])
. (2.15)

Besides, |Mk(t)| ≤ Ct−2 for all k ≥ 1. All the solutions of the homogeneous equation
are given by linear combinations of ekt and e−kt and a particular solution Apart

k of the non-
homogeneous Eq. (2.14) is given by the variation of parameter formula. We conclude that
this problem has a solution of the form

C1e
kt + C2e

−kt + Apart
k .

By the L∞-condition we conclude thatC2 = 0 and by the boundary condition in (2.15) we
deduce C1 = 0. This implies that the null function is the only solution of the homogeneous
equation under condition (2.15). Hence, this problem has a unique solution Ak(t). We claim
that for a constant C independent of k we have

|Ak(t)| ≤ C
1

k2t2
. (2.16)

The proof of this fact is based onmaximum principle: observe that since k2 > 0, the operator

− d2

dt2
+ k2

satisfies the weak maximum principle on bounded subsets of (−∞, log γ
2 ]. Let us prove that

φ = C1
k2t2

+ ρe−kt is a non-negative supersolution for this problem. Observe first that since
Ak(t) is bounded, there exist τρ such that

Ak(t) ≤ φ(t), for all t ∈ (−∞, τρ].
Besides, (

− d2

dt2
+ k2

)
φ = −6C1

1

k2t4
+ C1

1

t2
≥ Mk(t), ∀t ∈

(
τρ, log

γ

2

)
,

where the last inequality is valid ifwe chooseC1 large enough.Observe also thatφ(t) ≥ Ak(t)
for t = τρ, log γ

2 . Hence, by weak maximum principle we conclude that for all ρ > 0

Ak(t) ≤ C1

k2t2
+ ρe−kt , ∀t ∈

(
−∞, log

γ

2

]
.

Taking the limit ρ → 0 in the last expression, we conclude that Ak(t) ≤ C 1
k2t2

. Analo-

gously, we now prove that ϕ = − C2
k2t2

−ρe−kt is a non-positive subsolution for this problem.
Since Ak(t) is bounded, there exist τρ such that

ϕ(t) ≤ Ak(t), ∀t ∈ (−∞, τρ].
Besides,(

− d2

dt2
+ k2

)
ϕ = 6C2

1

k2t4
− C2

1

k2t2
≤ Mk(t), ∀t ∈

(
τρ, log

γ

2

)
,

where the last inequality is valid ifwe chooseC2 large enough.Observe also thatϕ(t) ≤ Ak(t)
for t = τρ, log γ

2 . Hence, by weak maximum principle we conclude that for all ρ > 0

− C2

k2t2
− ρe−kt ≤ Ak(t), ∀t ∈

(
−∞, log

γ

2

]
.
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Conformal metrics with prescribed Gauss curvature 773

Taking the limit ρ → 0 in the last expression, we conclude (2.16). Finally, coming back
to the variable r we conclude that there exist a unique solution ak(r) of problem (2.12–2.13),
and for a constant C independent of k we have

|ak(r)| ≤ C
1

k2 log2 r
, 0 < r <

γ

2
.

Now we deal with a0(r). Observe that

eF = ea0(r)
(
1 + O

(
1

log2 r

))
, eJ = eb0(1 + O(r)),

and

a(θ) = α0 +
∞∑
k=1

αke
ikθ , with α0 > 0,

so we conclude that a0(r) satisfies the ordinary differential equation

−∂2a0(r)

∂r2
− 1

r

∂a0(r)

∂r
+ 2

α0eb0ea0(r) − 1

r2 log2 r
= O

(
1

r2 log4 r

)
,

under the following conditions

a0
(γ

2

)
= 0, a0 ∈ L∞ ([

0,
γ

2

])
.

We make the change of variables r = et , ã0(t) = a0(et ), so the previous problem
transform into

− d2ã0
dt2

+ 2
α0eb0eã0 − 1

t2
= O

(
1

t4

)
, (2.17)

under the conditions

ã0
(
log

γ

2

)
= 0, ã0 ∈ L∞ ((

−∞, log
γ

2

])
. (2.18)

The L∞-condition implies that there exist a sequence tn → −∞ such that

ã0(tn) → L , as n → ∞,

where L = − log(α0eb0). If not there exist M < 0 such that

|α0e
b0eã0 − 1| ≥ ε > 0, ∀t < M,

which means that ∣∣∣∣d
2ã0
dt2

∣∣∣∣ ≥ C
ε

t2
, ∀t < M.

Thus

|ã0| ≥ Cε log |t |, ∀t < M,

so ã0 is unbounded, a contradiction.
We claim that the problem (2.17, 2.18) has at most one solution. In fact, let us suppose

by contradiction that u1 and u2 are two diferent solutions. We define u = u1 − u2, which
satisfies the problem

−d2u

dt2
+ 2α0e

b0c(t)u = 0,
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under the conditions,

u
(
log

γ

2

)
= 0, u ∈ L∞ ((

−∞, log
γ

2

])
,

and where

c(t) =
{
0 if u1(t) = u2(t),
1
t2

eu1(t)−u2(t)

u1(t)−u2(t)
if u1(t) �= u2(t).

Observe that c(t) ≥ 0, so we can apply the strongmaximum principle in bounded domains
for this problem. Moreover, from the L∞ condition we deduce that there exists a sequence
tn such that u(tn) → 0 as n → ∞ (the proof of this fact is the same that we gave before).
From this two facts, we deduce easily that u1 ≡ u2.

Let us make the change of variables −t = es , A0(s) = ã0(−es), so the previous problem
transform into

− d2A0

ds2
+ d A0

ds
+ 2(α0e

b0eA0 − 1) = O(e−2s), (2.19)

under the conditions

A0

(
log

(
− log

γ

2

))
= 0, A0 ∈ L∞ ([

log
(
− log

γ

2

)
,∞

))
.

We look for a solution of this problem of the form A0(s) = L + φ(s), so φ solves the
differential equation

−d2φ

ds2
+ dφ

ds
+ 2φ = N (φ) + O(e−2s),

where

N (φ) = −2(eφ − φ − 1).

Observe that φ+ = e2s , φ− = e−s are two linear independent solutions of the homoge-
neous equation.

From the previous analysis, we deduce that there exists a sequence sn → ∞ such that
φ(sn) = δn → 0, as n → ∞. We make the change of variables φ̃n(τn) = φ(s) − δnφ−(τn),
where τn = s − sn , so φ̃n ∈ L∞ solves the problem{−φ̃′′

n + φ̃′
n + 2φ̃n = N (φ̃n + δe−τn ) + e−2sn O(e−2τn ) τn ∈ (0,∞),

φ̃n(0) = 0.
(2.20)

Let us study the linear problem{−ϕ′′ + ϕ′ + 2ϕ = ω in (0,∞),

ϕ(0) = 0, ϕ ∈ L∞(0,∞)

for ω ∈ C([0,∞)) given. This problem has an explicit and unique solution ϕ = T [g], in
fact

ϕ(t) = C1e
λ+t + C2e

λ−t + eλ+t
∫ t

0

eλ−sω(s)

3e2s
ds − eλ−t

∫ t

0

eλ+sω(s)

3e2s
ds

and we deduce that C1 = 0 and C2 = 0 due to the L∞ condition and the value at 0 of ϕ,
respectively. problem (2.20) can be written as

φ̃n = T [N (φ̃n + δe−τn ) + e−2sn O(e−2τn )] := A[φ̃n]. (2.21)

123



Conformal metrics with prescribed Gauss curvature 775

We consider the set

Bε = {ϕ ∈ C([0,∞)) : ‖ϕ‖∞ ≤ ε} .

It is easy to see that if sn is large enough and δn small enough we have

‖A[φ̃1
n ] − A[φ̃2

n ]‖∞ ≤ Cε‖φ̃1
n − φ̃2

n‖,
‖A[φ̃n]‖ ≤ Cε,

and where C is independent of n. It follows that for all sufficiently small ε we get that A is a
contraction mapping of Bε (provided n large enough), and therefore a unique fixed point of
A exists in this region. We deduce that there exists a unique solution A0 of problem (2.19),
and it has the form A0(s) = L+φ(s), where L is a fixed constant, and φ(s) → 0 as s → ∞.
This concludes the proof of Lemma 2.1. ��

3 Construction of a first approximation

In this section we will build a suitable approximation for a solution of problem (1.8) which
is large exactly near the point p. The “basic cells” for the construction of an approximate
solution of problem (1.8) are the radially symmetric solutions of the problem{

�w + λ2ew = 0 in R
2,

w(x) → 0 as |x | → ∞.
(3.1)

which are given by the one-parameter family of functions

wδ(|x |) = log
8δ2

(λ2δ2 + |x |2)2 ,

where δ is any positive number. We define ε = λδ. In order to construct the approximate
solution we consider the equation

�F − δ2

r2
eF = 0, (3.2)

in the variable r = |x |/ε and we look for a radial solution F = F(r), away from r = 0. For
this purpose we solve problem (3.2) under the following initial conditions

F(1/δ) = 0, F ′(1/δ) = 0.

We make the change of variables r = et , V (t) = F(r), so that Eq. (3.2) transforms into

V ′′ − δ2eV = 0.

We consider the transformation V (s) = Ṽ (δs), so Ṽ solves problem

Ṽ ′′ − eṼ = 0, Ṽ (δ| log δ|) = 0, Ṽ ′(δ| log δ|) = 0.

This problem has a unique regular solution, which blows-up at some finite radius γ > 0.
Coming back to the variable r = |x |/ε, we conclude that the solution F(r) is defined for all
1/δ ≤ r ≤ Ce1/δ = C̃/λ, for some constants C, C̃ . Here we have used the definition of δ,
see (3.3). Besides, we extend by 0 the function F for r ∈ [0, 1/δ), which means F(r) = 0,
for all r ∈ [0, 1/δ) and we denote by F̃(|x |) = F(|x |/ε). A first local approximation
of the solution, in local conformal coordinates around p, is given by the radial function
uε(x) = wδ(|x |) + F̃(|x |).
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In order to build a global approximation, let us consider η a smooth radial cutoff function
such that η(r) = 1 if r ≤ C1δ and η(r) = 0 if r ≥ C2δ, for constants 0 < C1 < C2. We
consider as initial approximation Uε = ηuε + (1− η)G, where G is the Green function that
we built in the previous section. In order to have a good approximation around p we have to
adjust the parameter δ. The good choice of this number is

log 8δ2 = −2 log

(
1√
2
log

1

λ

)
+ H(p), (3.3)

whereH is defined in Sect. 2.With this choice of the parameter δ, the function uε is approach-
ing the Green function G around p.

A useful observation is that u satisfies problem (1.8) if and only if

v(y) = u(εy) + 4 log λ + 2 log δ

satisfies

�gv − λ−2 f (εy)ev + ev + ε2α = 0, y ∈ Mε, (3.4)

where Mε = ε−1M .
We denote in what follows p′ = ε−1 p and

Ũε(y) = Uε(εy) + 4 log λ + 2 log δ,

for y ∈ Mε. This means precisely in local conformal coordinates around p that

Ũε(y) =η(ε|y|)
(
log

1

(1 + |y|2)2 + F̃(ε|y|)
)

+ (1 − η(ε|y|)) (G(εy) + 4 log λ + 2 log δ) .

Let us consider a vector k ∈ R
2. We recall that wδ(|x − k|) is also a solution of problem

(3.1). To solve problem (3.4), we need to modify the first approximation of the solution, in
order to have a new parameter related to translations.More precisely, we consider for |k| � 1
the new first approximation of the solution (in the expanded variable)

Vε(y) =η(ε|y|)
(
log

1

(1 + |y − k|2)2 + F̃(ε|y|)
)

+ (1 − η(ε|y|)) (G(εy) + 4 log λ + 2 log δ) .

We will denote by vε the first approximation of the solution in the original variable, which
means

vε(x) = η(|x |)
(
log

8δ2

(ε2 + |x − εk|2)2 + F̃(|x |)
)

+ (1 − η(|x |))G(x).

Hereafter we look for a solution of problem (3.4) of the form v(y) = Vε(y)+φ(y), where
φ represent a lower order correction. In terms of φ, problem (3.4) now reads

L(φ) = N (φ) + E, in Mε, (3.5)

where

L(φ) :=�gφ − λ−2 f (εy)eVεφ + eVεφ,

N (φ) :=λ−2 f (εy)eVε (eφ − 1 − φ) − eVε (eφ − 1 − φ),

E := − (�gVε − λ−2 f (εy)eVε + eVε + ε2α).
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4 The linearized operator around the first approximation

In this section we will develop a solvability theory for the second-order linear operator L
defined in (3.5) under suitable orthogonality conditions. Using local conformal coordinates
around p′, then formally the operator L approaches, as ε, |k| → 0, the operator in R

2

L(φ) = �φ + 8

(1 + |z|2)2 φ,

namely, equation �w + ew = 0 linearized around the radial solution w(z) = log 8
(1+|z|2)2 .

An important fact to develop a satisfactory solvability theory for the operator L is the non-
degeneracy of w modulo the natural invariance of the equation under dilations and transla-
tions. Thus we set

z0(z) = ∂

∂s
[w(sz) + 2 log s]|s=1, (4.1)

zi (z) = ∂

∂ζi
w(z + ζ )|ζ=0, i = 1, 2. (4.2)

It turns out that the only bounded solutions of L(φ) = 0 in R
2 are precisely the linear

combinations of the zi , i = 0, 1, 2, see [2] for a proof. We define for i = 0, 1, 2,

Zi (y) = zi (y − k).

Additionally, let us consider R0 a large but fixed number R0 > 0 and χ a radial and smooth
cut-off function such that χ ≡ 1 in B(k, R0) and χ ≡ 0 in B(k, R0 + 1)c.

Given h of class C0,β(Mε), we consider the linear problem of finding a function φ such
that for certain scalars ci , i = 1, 2, one has

⎧⎨
⎩
L(φ) = h + ∑2

i=1 ciχ Zi in Mε,∫
Mε

χ Ziφ = 0 for i = 1, 2.
(4.3)

We will establish a priori estimates for this problem. To this end we define, given a fixed
number 0 < σ < 1, the norm

‖h‖∗ = ‖h‖∗,p := sup
Mε

(max{ε2, |y|−2−σ })−1|h|. (4.4)

Here the expression max{ε2, |y|−2−σ } is regarded in local conformal coordinates around
p′ = ε−1 p. Since local coordinates are defined up to distance ∼ 1

ε
that expression makes

sense globally in Mε.
Our purpose in this section is to prove the following result.

Proposition 4.1 There exist positive numbers ε0,C such that for any h ∈ C0,β(Mε), with
‖h‖∗ < ∞ and for all k such that |k| ≤ Cλ/δ, there is a unique solution φ = T (h) ∈
C2,β(Mε) of problem (4.3) for all ε < ε0, which defines a linear operator of h. Besides,

‖T (h)‖∞ ≤ C log

(
1

ε

)
‖h‖∗. (4.5)

Observe that the orthogonality conditions in problem (4.3) are only taken respect to the
elements of the approximate kernel due to translations.
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The next Lemma will be used for the proof of Proposition 4.1. We obtain an a priori
estimate for the problem ⎧⎨

⎩
L(φ) = h in Mε,∫
Mε

χ Ziφ = 0 for i = 1, 2. (4.6)

We have the following estimate.

Lemma 4.1 There exist positive constants ε0, C such that for any φ solution of problem
(4.6) with h ∈ C0,β(Mε), ‖h‖∗ < ∞ and any k, |k| ≤ Cλ/δ

‖φ‖∞ ≤ C log

(
1

ε

)
‖h‖∗,

for all ε < ε0.

Proof We carry out the proof by a contradiction argument. If the above fact were false, there
would exist sequences (εn)n∈N, (kn)n∈N such that εn → 0, |kn | → 0 and functions φn , hn
with ‖φn‖∞ = 1,

log(ε−1
n )‖hn‖∗ → 0,

such that {
L(φn) = hn in Mεn ,∫
Mεn

χ Ziφn = 0 for i = 1, 2. (4.7)

A key step in the proof is the fact that the operator L satisfies a weak maximum principle in
regions, in local conformal coordinates around p, of the form Aε = B(p′, ε−1γ /2)\B(p′, R),

with R a large but fixed number. Consider the function z0(r) = r2−1
r2+1

, radial solution in R
2

of

�z0 + 8

(1 + r2)2
z0 = 0.

We define a comparison function

Z(y) = z0(a|y − p′|), y ∈ Mε.

Let us observe that

−�Z(y) = 8a2(a2|y − p′|2 − 1)

(1 + a2|y − p′|2)3 .

So, for 100 a−2 < |y − p′| < ε−1γ /2, we have

−�Z(y) ≥ 2
a2

(1 + a2|y − p′|2)2 ≥ a−2

|y − p′|4 .

On the other hand, in the same region,

eVε(y)Z(y) ≤ C
1

|y − p′|4 .

Hence if a is taken small and fixed, and R > 0 is chosen sufficiently large depending on this
a, then

�Z + eVε Z < 0, in Aε.
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Since Z > 0 in Aε, we have

L(Z) < 0, in Aε.

We conclude that L satisfies weak maximum principle in Aε, namely if L(φ) ≤ 0 in Aε and
φ ≥ 0 on ∂Aε, then φ ≥ 0 in Aε .

We now give the proof of the Lemma in several steps.
STEP 1. We claim that

sup
y∈Mεn \B(p/εn ,ρ/εn)

|φn(y)| = o(1),

where ρ is a fixed number. In fact, coming back to the original variable by the transformation

φ̂n(x) = φn

(
x

εn

)
, x ∈ M.

We can see that φ̂n satisfies the equation

�gφ̂n − f evεn φ̂n + λ2ne
vεn φ̂n = 1

ε2n
hn

(
x

εn

)
, (4.8)

where

vεn (x) = Vεn

(
x

εn

)
− 4 log λn − 2 log δ,

is the approximation of the solution in the original variable. Taking n → ∞, we can see
that φ̂n converges uniformly over compacts of M \ {p} to a function φ̂ ∈ H1(M) ∩ L∞(M)

solution of the problem

�gφ̂ − f eJ φ̂ = 0, in M \ {p} (4.9)

where J is the limit of vεn . We claim that φ̂ ≡ 0, in fact, we consider the unique solution �

of the problem

�g� − min{ f eJ , 1}� = −δp, in M.

Using local conformal coordinates around p we expand

�(x) = − 1

2π
log(|x |) + H(x)

for H bounded. Since φ̂ ∈ L∞(M), we conclude that for all sufficiently small ε and τ we
have

|φ̂(x)| ≤ ε�(x), x ∈ ∂B(0, τ ).

Multiplying (4.9) by ϕ = (φ̂ − ε�)+, and integrating by parts over Mτ = M \Uτ , whereUτ

is the neighborhood around p under the local conformal coordinates that we used, we have∫
Mτ

|∇gϕ|2 +
∫
Mτ

f eJϕ2 + ε

∫
Mτ

eJϕ� = 0.

Since � ≥ 0, we have ∫
Mτ

|∇gϕ|2 +
∫
Mτ

f eJϕ2 ≤ 0.
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Hence ϕ = (φ̂ − ε�)+ = 0 in Mτ , so φ̂ ≤ ε� in Mτ . Multiplying by ϕ = (φ̂ + ε�)−
and integrating by parts, we have (φ̂ + ε�)− = 0, thus

|φ̂(x)| ≤ ε�(x), x ∈ Mτ .

Taking ε → 0 and τ → 0, we conclude that φ̂ ≡ 0.
STEP 2. Let us consider the transformation

φ̃n(y) = φn(y + p′
n).

Thus φ̃n satisfies the equation

�gφ̃n − λ−2
n f (εn y + pn)e

Vεn (y+p′
n)φ̃n + eVεn (y′+p′

n) = hn(y + p′
n),

in Mεn − {p′
n}. Taking the limit n → ∞ in the last equation [and also in problem (4.7)], we

see that φ̃n converges uniformly over compacts of Mεn −{p′
n} to a bounded solution φ̃ of the

problem

L(φ̃) = 0 in R
2,

∫
R2

χ Zi φ̃ = 0, i = 1, 2.

Hence φ̃(x) = C0Z0(x).
In what follows we assume without loss of generality that C0 ≥ 0. If C0 < 0, we work

with −φn instead of φn and the following analysis is also valid.
STEP 3. In this step we will construct a non-negative supersolution in the region, in local

conformal coordinates around p′
n , Bn = B(kn, ρ) \ B(kn, ε−1

n γ /2), ρ > 0, where the weak
maximum principle is valid. We work first in the case C0 > 0. Let us consider the problem⎧⎨

⎩
−�ψn − eVεψn = 1 in Bn,

ψn(y) = C0 on ∂B(kn, ρ),

ψn(y) = o(1) on ∂B(kn, ε−1
n γ /2).

(4.10)

We define r = |y − kn |. A direct computation shows that

ψn(y) = C0Z0(r) + CεY (r) + W (r),

where

Y (r) = Z0

∫ r

ρ

1

sZ2
0(s)

ds, W (r) = −Z0(r)
∫ r

ρ

sY (s)ds + Y (r)
∫ r

ρ

sZ0(s)ds,

and

Cε = o(1) − C0Z0(ε
−1
n γ /2) − W (ε−1

n γ /2)

Y (ε−1
n γ /2)

.

Wechoose ρ > R, where R is the fixedminimal radio for which theweakmaximumprinciple
is valid in the region Bn . Observe that

L(ψn) = −1 − λ−2 f (εy)eVεψn ≤ hn = L(φn).

Moreover, from steps 1 and 2, we deduce that

ψn ≥ φn, on ∂Bn, (4.11)

which means that ψn is a supersolution for the problem

L(φn) = hn, in Bn .
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Since ρ > R, we can apply the weak maximum principle and we deduce that �n ≥ φn in
Bn . Observe that ∣∣∣∣dψn(ρ)

dr

∣∣∣∣ ≥ ε−1
n . (4.12)

In the other hand

dZ0

dr
= −C

r

(r2 − 1)2
, (4.13)

where C > 0 is a constant independent of n. Since φn converges over compacts of the
expanded variable to the function C0Z0, we deduce from (4.11), (4.12) and (4.13) that the
partial derivative of φn respect to r is discontinuous at |y − kn | = ρ, for large values of n,
which is a contradiction.

In the case C0 = 0, φn converges to 0 over compacts of the expanded variable. Let us
consider the problem⎧⎨

⎩
−�ψn − eVεψn = 1 in Bn,

ψn(y) = 1/2 on ∂B(kn, ρ),

ψn(y) = o(1) on ∂B(kn, ε−1
n γ /2).

It is easy to see that ψn ≤ 1/2 in Bn . Using the previous maximum principle argument we
deduce that φn ≤ ψn ≤ 1/2 Applying the same argument for the problem that −φn satisfies,
we conclude −φn ≤ 1/2. Thus,

‖φn‖∞ ≤ 1/2,

which is a contradiction with the fact ‖φn‖∞ = 1. This finishes the proof of the a priori
estimate. ��

We are now ready to prove the main result of this section.

Proof of Proposition 4.1 We begin by establishing the validity of the a priori estimate (4.5).
The previous lemma yields

‖φ‖∞ ≤ C log

(
1

ε

) [
‖h‖∗ +

2∑
i=1

|ci |
]

, (4.14)

hence it suffices to estimate the values of the constants |ci |, i = 1, 2. We use local conformal
coordinates around p, and we define again r = |y| and we consider a smooth cut-off function
η(r) such that η(r) = 1 for r < 1√

ε
, η(r) = 0 for r > 2√

ε
, |η′(r)| ≤ C

√
ε, |η′′(r)| ≤ Cε.

We test the first equation of problem (4.3) against ηZi , i = 1, 2 to find

〈L(φ), ηZi 〉 = 〈h, ηZi 〉 + ci

∫
Mε

χ |Zi |2. (4.15)

Observe that

〈L(φ), ηZi 〉 = 〈φ, L(ηZi )〉,
and

L(ηZi ) = Zi�η + 2∇η · ∇Zi + η(�Zi + eVε Zi ) − ηλ−2 f (εy)eVε Zi .
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We have

η(�Zi + eVε Zi ) = εO((1 + r)−3).

Observe that

λ−2 f (εy)eVε(y) = λ2δ2 f (x)evε(x), where y = x

ε
, x ∈ M,

thus

ηλ−2 f (εy)eVε Zi = O(ε2).

Since �η = O(ε), ∇η = O(
√

ε), and besides Zi = O(r−1), ∇Zi = O(r−2), we find

Zi�η + 2∇η · ∇Zi = O(ε
√

ε).

From the previous estimates we conclude that

|〈φ, L(ηZi )〉| ≤ C
√

ε‖φ‖∞.

Combining this estimate with (4.14) and (4.15) we obtain

|ci | ≤ C

[
‖h‖∗ + √

ε log
1

ε

]
,

which implies

|ci | ≤ C‖h‖∗ i = 1, 2.

It follows from (4.14) that

‖φ‖∞ ≤ C log

(
1

ε

)
‖h‖∗,

and the a priori estimate (4.5) has been thus proven. It only remains to prove the solvability
assertion. For this purpose let us consider the space

H =
{
φ ∈ H1(Mε) :

∫
Mε

χ Ziφ = 0, i = 1, 2.

}

endowed with the inner product,

〈φ,ψ〉 =
∫
Mε

∇gφ∇gψ +
∫
Mε

λ−2 f (εy)eVεφψ.

Problem (4.3) expressed in weak form is equivalent to that of finding φ ∈ H such that

〈φ,ψ〉 =
∫
Mε

[
eVεφ + h +

2∑
i=1

ciχ Zi

]
ψ, for all ψ ∈ H.

With the aid of Riesz’s representation theorem, this equation gets rewritten in H in the
operator form φ = K (φ) + h̃, for certain h̃ ∈ H , where K is a compact operator in H .
Fredholm’s alternative guarantees unique solvability of this problem for any h provided that
the homogeneous equation φ = K (φ) has only zero as solution in H . This last equation is
equivalent to problem (4.3) with h ≡ 0. Thus, existence of a unique solution follows from
the a priori estimate (4.5). The proof is complete. ��
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5 The nonlinear problem

We recall that our goal is to solve problem (3.5). Rather than doing so directly, we shall solve
first the intermediate problem⎧⎨

⎩
L(φ) = N (φ) + E + ∑2

i=1 ciχ Zi in Mε,∫
Mε

χ Ziφ = 0 for i = 1, 2,
(5.1)

using the theory developed in the previous section. We assume that the conditions in Propo-
sition (4.1) hold. We have the following result

Lemma 5.1 Under the assumptions of Proposition (4.1) there exist positive number C, ε0
such that problem (5.1) has a unique solution φ which satisfies

‖φ‖∞ ≤ Cε log
1

ε
,

for all ε < ε0.

Proof In terms of the operator T defined in Proposition (4.1), problem (5.1) becomes

φ = T (N (φ) + E) =: A(φ). (5.2)

For a given number ϑ > 0, let us consider the space

Hϑ =
{
φ ∈ C(Mε) : ‖φ‖∞ ≤ ϑε log

1

ε

}
.

From Proposition (4.1), we get

‖A(φ)‖∞ ≤ C log

(
1

ε

)
(‖N (φ)‖∗ + ‖E‖∗).

Let us first measure how well Vε solves problem (3.4). Observe that

eVε(y) = λ4δ2evε(x), y = x

ε
, x ∈ M, (5.3)

so

‖eVε(y)‖∗ ≤ Cε.

As a consequence of the construction of the first approximation, the choice of the parameter
δ, the expansion of the Green function G around p, and (5.3), a direct computation yields

‖E‖∗ ≤ Cε.

Now we estimate

N (φ) = λ−2 f (εy)eVε (eφ − 1 − φ) − eVε (eφ − 1 − φ).

In one hand, from (5.3) we deduce

‖eVε (eφ − 1 − φ)‖∗ ≤ Cε‖φ‖2∞.

In the other hand

λ−2 f (εy)eVε(y) = λ2δ2evε(x), y = x

ε
, x ∈ M,
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so

‖λ−2 f (εy)eVε (eφ − 1 − φ)‖∗ ≤ Cε−σ ‖φ‖2∞.

We conclude,

‖N (φ)‖∗ ≤ Cε−σ ‖φ‖2∞.

Observe that for φ1, φ2 ∈ Hϑ ,

‖N (φ1) − N (φ2)‖∗ ≤ Cϑε1−σ log

(
1

ε

)
‖φ1 − φ2‖∞,

where C is independent of ϑ . Hence, we have

‖A(φ)‖∞ ≤ Cε log

(
1

ε

)
[ϑ2ε1−σ log

(
1

ε

)
+ 1],

‖A(φ1) − A(φ2)‖∞ ≤ Cε1−σ log

(
1

ε

)
‖φ1 − φ2‖∞.

It follows that there exist ε0, such that for all ε < ε0 the operator A is a contraction mapping
from Hϑ into itself, and therefore A has a unique fixed point in Hϑ . This concludes the proof.

��
With these ingredients we are now ready for the proof of our main result.

6 Proof of Theorem 1.1 for n = 1

After problem (5.1) has been solved, we find a solution to problem (3.5), and hence to the
original problem, if k = k(ε) is such that

ci (k) = 0, i = 1, 2. (6.1)

Let us consider local conformal coordinates around p and define r = |y|. We consider
a smooth cut-off function η(r) such that η(r) = 1 for r < 1√

ε
, η(r) = 0 for r > 2√

ε
,

|η′(r)| ≤ C
√

ε, |η′′(r)| ≤ Cε. Testing the equation

L(φ) = N (φ) + E +
2∑

i=1

ciχ Zi ,

against ηZi , i = 1, 2, we find

〈L(φ), ηZi 〉 =
∫
Mε

[N (φ) + E]ηZi + ci

∫
Mε

χ Z2
i , i = 1, 2.

Therefore, we have the validity of (6.1) if and only if

〈L(φ), ηZi 〉 −
∫
Mε

[N (φ) + E]ηZi = 0, i = 1, 2.

We recall that in the proof of Proposition (4.1) we obtained

|〈φ, L(ηZi )〉| ≤ C
√

ε‖φ‖∞,
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thus

|〈φ, L(ηZi )〉| ≤ Cε3/2 log
1

ε
.

Observe that

‖N (φ)‖∞ ≤ Cε2‖φ‖2∞,

so ∣∣∣∣
∫
Mε

N (φ)ηZi

∣∣∣∣ ≤ Cε‖φ‖2∞ ≤ Cε3 log2
1

ε

Let us remember that

E = −�Vε + λ−2 f (εy)eVε − eVε − ε2α.

Using (5.3), we have ∫
Mε

eVε ηZi = O(ε4).

We also have, ∫
Mε

ε2αηZi = O(ε).

Observe that

�gVε(y) = ε2�gvε(x), y = x

ε
, x ∈ M,

thus ∫
Mε

�VεηZi = O(ε2).

Also, by change of variables we have∫
Mε

f (εy)eVε ηZi =
∫
M̃ε

f (p + ε(y + k))eVε(y+k+p′)η(|y + k|)Zi (y + k + p′),

where M̃ε = Mε − k + p′. Using the fact that p is a local maximum of f of value 0, we
have

f (p + ε(y + k)) = ε2〈(y + k), D2 f (p)(y + k)〉 + O(ε3),

where we used the fact that f ∈ C3(M). Thus

λ−2
∫
Mε

f (εy)eVε ηZi = Ii + I Ii ,

where

Ii = δ2
∫
M̃ε

〈(y + k), H f (p)(y + k)〉eVε(y+k+p′)η(|y + k|)Zi (y + k + p′)

I Ii =
∫
M̃ε

O(ε)eVε(y+k+p′)η(|y + k|)Zi (y + k + p′).
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Observe that eVε(y+k+p′)η(|y + k|)Zi (y + k + p′) = O((1 + |y|)−4), so

I Ii = O(ε).

Finally, let us compute Ii . First, observe that 0 ∈ M̃ε. Let us consider a fixed number A0,
such that B1 = B(0, A0/

√
ε) ⊂ M̃ε ∩ supp(η(· + k)) =: B and η(· + k) = 1 in B1. We have

the decomposition B = B1 ∪ B2, where B2 = �̃ε ∩ supp(η(· + k)) \ B1. Also, observe that

Zi (y + k + p′) = C0
yi

1 + |y| , i = 1, 2,

where C0 is a fixed constant independent of ε. We have the following computation

〈(y + k), D2 f (p)(y + k)〉 = f11(p)(y1 + k1)
2 + 2 f12(p)(y1 + k1)(y2 + k2)

+ f22(p)(y2 + k2)
2,

where f11(p) = ∂2 f
∂y21

(p), f22(p) = ∂2 f
∂y22

(p) and f12(p) = f21(p) = ∂2 f
∂y1∂y2

(p). We recall

that

eVε(y+k+p′) = H0

(1 + |y|2)2 (1 + C
√

ε + O(ε)), (6.2)

in the region �̃ε ∩ supp(η(· + k)).
Let us define ti (y) = eVε(y+k+p′)η(|y + k|)Zi (y + k + p′) and compute I1. We have the

following calculations for i = 1∫
B

f11(p)(y1 + k1)
2t1(y) =

∫
B1

f11(p)(y1 + k1)
2t (y) +

∫
B2

f11(p)(y1 + k1)
2t1(y)

= 2k1 f11(p)
∫

B1

C0
y21

1 + |y|
H0

(1 + |y|2)2 + O(ε).

In order to get the previous result, we used the fact that
∫

B1

y1
1 + |y|

dy

(1 + |y|2)2 =
∫

B1

y31
1 + |y|

dy

(1 + |y|2)2 = 0,

and the expansion (6.2). We also have
∫

B
2 f12(p)(y1 + k1)(y2 + k2)t1(y) = 2k2 f12(p)

∫
B1

C0
y21

1 + |y|
H0

(1 + |y|2)2 + O(ε),

where we used the fact that∫
B1

y1y2
1 + |y|

1

(1 + |y|2)2 =
∫

B1

y21 y2
1 + |y|

1

(1 + |y|2)2 = 0,

and also the expansion (6.2). Finally, we have∫
B

f22(p)(y2 + k2)
2t1(y) = O(ε),

where we used ∫
B1

y1y22
1 + |y|

1

(1 + |y|2)2 = 0,
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and also the expansion (6.2). From the above computations we conclude that

I1 = 2δ2 I k1 f11(p) + 2δ2 I k2 f12(p) + O(ε),

where

I =
∫

B1

C0
y21

1 + |y|
H0

(1 + |y|2)2 > 0.

Similar computations yield

I2 = 2δ2 I k1 f12(p) + 2δ2 I k2 f22(p) + O(ε).

Summarizing, we have the system

δ2D2 f (p)k = εb(k), (6.3)

where b is a continuous function of k of size O(1). Since p is a non-degenerate critical
point of f , we know that D2 f (p) is invertible. A simple degree theoretical argument, yields
that system (6.3) has a solution k = O(λδ−1). We thus obtain c1(k) = c2(k) = 0, and
we have found a solution of the original problem. The proof for the case k = 1 is thus
concluded. ��

7 Proof of Theorem 1.1 for general n

In this section we will detail the main changes in the proof of our main result, in the case of
multiple bubbling.

Let p1, . . . , pn be points such that f (p j ) = 0 and D2 f (p j ) is positive definite for each
j . We consider the singular problem

�gG − f eG + 8π
k∑
j=1

δp j + α = 0, in M, (7.1)

where δp designates the Dirac mass at the point p. A first remark we make is that the proof
of Lemma 2.1 applies with no changes (except some additional notation) to find the result of
Lemma 1.1. Indeed, the core of the proof is the local asymptotic analysis around each point
p j .

We define the first approximation in the original variable as

Uε =
n∑
j=1

η j u
j
ε +

⎛
⎝1 −

n∑
j=1

η j

⎞
⎠G,

where η j is defined around p j as in Sect. 3 and, in local conformal coordinates around p j ,

u j
ε (x) = wδ j (|x − k j |) + F̃j (|x |), for parameters k j ∈ R

2. We make the following choice of
the parameters δ j

log 8δ2i = −2 log

(
1√
2
log

1

λ

)
+ H(pi ).

We also define the first approximation in the expanded variable around each p j by

Vε j (y) = Uε(ε j y) + 4 log λ + 2 log δ j , y ∈ Mε j

where ε j = λδ j and Mε j = ε−1
j M .
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We look for a solution of problem (1.8) of the form u(y) = Uε(x) + φ(x), where φ

represent a lower order correction. By simplicity, we denote also by φ the small correction
in the expanded variable around each p j . In terms of φ, the expanded problem around p j

�gv − λ−2 f (ε j y)e
v + ev + ε2jα = 0, y ∈ Mε j

reads

L j (φ) = N j (φ) + E j , in Mε j ,

where

L j (φ) :=�gφ − λ−2 f (ε j y)e
Vε j φ + eVε j φ,

N j (φ) :=λ−2 f (ε j y)e
Vε j (eφ − 1 − φ) − eVε j (eφ − 1 − φ),

E j := − (�gVε j − λ−2 f (ε j y)e
Vε j + eVε j + ε j

2α).

Next we consider the linearized problem around our first approximation Uε. Given h of
class C0,β(M), which by simplicity we still denote by h in the expanded variable around
each p j , we consider the linear problem of finding a function φ such that for certain scalars

c ji , i = 1, 2; j = 1, . . . , n, one has⎧⎪⎨
⎪⎩
L j (φ) = h + ∑2

i=1
∑n

j=1 c
j
i χ j Zi j in Mε j ,∫

Mε j

χ j Zi jφ = 0 for all i, j. (7.2)

Here the definitions of Zi j and χ j are the same as before for Zi and χ , with the dependence
of the point p j emphasized.

To solve this problem we consider now the norm

‖h‖∗ =
n∑
j=1

‖h‖∗,p j . (7.3)

where ‖h‖∗,p j is defined accordingly with (4.4). With exactly the same proof as in the case
n = 1, we find the unique bounded solvability of problem (7.2) for all small ε = max εi by
φ = T (h), so that

‖T (h)‖∞ ≤ C log

(
1

ε

)
‖h‖∗. (7.4)

Then we argue as in the proof of Lemma 5.1 to obtain existence and uniqueness of a small
solution φ of the projected nonlinear problem⎧⎪⎨

⎪⎩
L j (φ) = N j (φ) + E j + ∑2

i=1
∑n

j=1 c
j
i χ j Zi j in Mε j ,∫

Mε j

χ j Zi jφ = 0 for all i, j.

with

‖φ‖∞ ≤ Cε log
1

ε
.

After this, we proceed as in Sect. 6 to choose the parameters k j in such a way that c
j
i = 0

for all i, j . Summarizing, we have the system

D2 f (p j )k j = εiδ
−2
i b j (k1, . . . , kn), (7.5)
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Conformal metrics with prescribed Gauss curvature 789

which can be solved by the same degree-theoretical argument employed before. The proof
is concluded. ��
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