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Abstract In this article we are interested in the nonlinear Schrödinger equation with non-
local regional difussion

ε2α(−�)αρu + u = f (u) in R
n,

u ∈ Hα(Rn),

where f is a super-linear sub-critical function and (−�)αρ is a variational version of the
regional laplacian, whose range of scope is a ball with radius ρ(x) > 0. We study the
existence of a ground state and we analyze the behavior of semi-classical solutions as ε → 0.

Mathematics Subject Classification 45G05 · 35J60 · 35B25

1 Introduction

The aim of this article is to study the non-linear Schrödinger equation with non-local regional
difussion

ε2α(−�)αρu + u = f (u) in R
n, u ∈ Hα(Rn), (1.1)

where 0 < α < 1, ε > 0, n ≥ 2 and f : R → R is super-linear and has a sub-critical growth.
The operator (−�)αρ is a variational version of the non-local regional laplacian, with range
of scope determined by the positive function ρ ∈ C(Rn, R

+).
Recently, a great attention has been focused on the study of problems involving the frac-

tional Laplacian, from a pure mathematical point of view as well as from concrete appli-

Communicated by P. Rabinowitz.

P. Felmer (B) · C. Torres
Departamento de Ingeniería Matemática and Centro de Modelamiento, Matemático UMR2071
CNRS-UChile, Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile
e-mail: pfelmer@dim.uchile.cl

C. Torres
e-mail: ctorres@dim.uchile.cl

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00526-014-0778-x&domain=pdf


76 P. Felmer, C. Torres

cations, since this operator naturally arises in many different contexts, such as, obstacle
problems, financial mathematics, phase transitions, anomalous diffusions, crystal disloca-
tions, soft thin films, semipermeable membranes, flame propagations, conservation laws,
ultra relativistic limits of quantum mechanics, quasi-geostrophic flows, minimal surfaces,
materials science and water waves. The literature is too wide to attempt a reasonable list of
references here, so we refer the reader to the work by Di Nezza, Patalluci and Valdinoci [4],
where a more extensive bibliography and an introduction to the subject are given.

In the context of fractional quantum mechanics, the non-linear fractional Schrödinger
equation has been proposed by Laskin [13,14] as a result of expanding the Feynman path
integral, from the Brownian-like to the Lévy-like quantum mechanical paths. In the last 10
years, there has been a lot of interest in the study of the fractional Schrödinger equation,
see the works in [2,5,8,11] and [16]. In a recent paper Felmer et al. [8] considered positive
solutions of nonlinear fractional Schrödinger equation

(−�)αu + u = f (x, u) in R
n . (1.2)

They obtained the existence of a ground state by mountain pass argument and a comparison
method devised byRabinowitz [18] forα = 1. They analyzed regularity, decay and symmetry
properties of these solutions. At this point it is worth mentioning that the uniqueness of the
ground state with power non-linearity was proved by Frank and Lenzmann [7] in the one
dimensional case, and advances in the multi-dimensional case were obtained recently by Fall
and Valdinoci [6]. We also mention the work by Cheng [2], where the fractional Schrödinger
equation with unbounded potential

(−�)αu + V (x)u = u p in R
n (1.3)

was studied. The existence of a ground state of (1.3) is obtained by a Lagrange multiplier
method and the Nehari manifold method is used to obtain standing waves with prescribed
frequency.

On the other hand, research has been done in recent years for the regional fractional
laplacian, where the scope of the operator is restricted to a variable region near each point.
We mention the work by Guan [9] and Guan and Ma [10] where they study these operators,
their relation with stochastic processes and they develop an integration by parts formula, and
the work by Ishii and Nakamura [12], where the authors studied the Dirichlet problem for
regional fractional laplacian modeled on the p-laplacian. These regional operators present
various interesting characteristics that make them very attractive from the point of view of
mathematical theory of non-local operators.

In this article we are interested in studying the non-linear Schrödinger equation when
a variational version of the regional fractional laplacian is considered. We are specially
interested in understanding the role of the scope function ρ on the existence of positive
solution and concentration in the semi-classical limit for Eq. (1.1).

Now we make precise assumptions on ρ and f . For the scope function ρ we assume
ρ : R

n → R
+ is continuous and it satisfies the following hypotheses:

(ρ1) There are numbers 0 < ρ0 < ρ∞ ≤ ∞ such that

ρ0 ≤ ρ(x) < ρ∞, ∀x ∈ R
n and lim|x |→∞ ρ(x) = ρ∞.

(ρ2) In case ρ∞ = ∞ we further assume that there exists a ∈ (0, 1) such that

lim sup
|x |→∞

ρ(x)

|x | ≤ a.
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Non-linear Schrödinger equation 77

(ρ3) For any x0 ∈ R
n , the equation

|x | = ρ(x + x0), x ∈ R
n,

defines an (n − 1)-dimensional surface of class C1 in R
n .

Regarding the non-linearity f we assume that f : R → R is a continuous function that
satisfies the following hypotheses:

( f1) f (t) ≥ 0 if t ≥ 0 and f (t) = 0 if t ≤ 0.
( f2) The function t → f (t)

t is increasing for t > 0 and limt→0
f (t)
t = 0.

( f3) ∃ θ > 2 such that ∀t > 0

0 < θF(t) ≤ t f (t), where F(t) =
∫ t

0
f (ξ)dξ.

( f4) ∃ C > 0 such that

| f (t)| ≤ C(1 + |t |p), 1 < p <
n + 2α

n − 2α
.

Before stating our results let us introduce the main ingredients involved in our approach. We
let Hα(Rn) be the usual Sobolev space (see Sect. 2) equipped with the norm

‖u‖2 =
∫
Rn

∫
Rn

|u(x) − u(z)|2
|x − z|n+2α dzdx +

∫
Rn

u(x)2dx . (1.4)

Given a function ρ as above, we define

‖u‖2ρ =
∫
Rn

∫
B(0,ρ(x))

|u(x) − u(z)|2
|x − z|n+2α dzdx +

∫
Rn

u(x)2dx (1.5)

and the space

Hα
ρ (Rn) = {u ∈ L2(Rn) / ‖u‖2ρ < ∞}.

For u ∈ Hα
ρ and f satisfying ( f1)–( f4), as we see in Sect. 2, we may define the functional

Iρ(u) = 1

2
‖u‖2ρ −

∫
Rn

F(u(x))dx, (1.6)

which is of class C1. We say that u ∈ Hα(Rn) is a weak solution of (1.1) if u is a critical
point of Iρ .

Now we are in a position to state our main existence theorem

Theorem 1.1 Assume 0 < α < 1 and n ≥ 2. If f satisfies ( f1)–( f4) and ρ satisfies (ρ1)–(ρ2)
then (1.1) possesses at least one non-trivial weak solution. Moreover this solution satisfies
u(x) ≥ 0 a.e. for all x ∈ R

n .

We prove the existence of a weak solution of (1.1) by applying the mountain pass theorem
[1] to the functional Iρ defined on Hα

ρ (Rn). However, since Palais-Smale sequences lose
compactness in R

n , we need extra arguments based on comparison of the mountain pass
critical value of Iρ with that of the limiting functional Iρ∞ , as devised by Rabinowitz [18].
See the work in [8], where a similar argument is used in the context of the α-Laplacian.

In our second main theorem we are interested in the concentration behavior of ground
states for the equation

ε2α(−�)αρu + u = u p, in R
n, u ∈ Hα(Rn), (1.7)
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when the positive parameter ε approaches zero. The scope function ρ, that describes the size
of the ball of the influential region of the non-local operator, plays a key role in deciding
the concentration point of ground states of the equation. Even though, at a first sight, the
minimum point of ρ seems to be the concentration point, there is a non-local effect that
needs to be taken in account. We define the concentration function

H(x) = −|Sn−1|
2α

(
1

ρ(x)2α
− 1

ρ2α∞

)
+ 1

2

∫
C+(x)

dy

|y|n+2α − 1

2

∫
C−(x)

dy

|y|n+2α ,

where the sets C+(x) and C−(x) are defined as follows

C−(x) = {y ∈ R
n : ρ(x + y) < |y| < ρ(x)}

and

C+(x) = {y ∈ R
n : ρ(x) < |y| < ρ(x + y)}.

Here we interpret the quotient 1/ρ2α∞ as zero, when ρ∞ = ∞. Now we state our second
theorem

Theorem 1.2 Let 0 < α < 1, n ≥ 2. Suppose that ρ satisfies (ρ1)–(ρ3) and 1 < p < n+2α
n−2α .

Then for each sequence εm → 0, there exists a subsequence such that for every m, there is a
non-negative solution um = uεm of (1.7) that concentrates around a global minimum point
x0 of H, as εm → 0. In more precise terms, for every δ > 0 there exists R > 0 and ε0 > 0
such that if ε < ε0 we have∫

Bc(x0,εm R)

u2m(x)dx ≤ εnmδ, and
∫
B(x0,εm R)

u2m(x)dx ≥ εnmC, ∀εm ≤ ε0,

with C a constant independent of δ and m.

The proof of this theorem again uses a comparison arguments in order to obtain the
concentration, but here the estimates are more delicate, see Theorem 4.1. At this point we
would like to comment that regularity of weak solutions to (1.1) is not considered in this
article. In [8] the authors obtained regularity, up toHölder continuity, by a bootstrap argument
together with localization technique. We think that these arguments could be adapted to this
problem, but that may require a considerable amount of additional work. Regularity of the
solution could, in particular, help to obtain decay estimates for the solutions and then we
could study further concentration properties of Eq. (1.7).

This article is organized as follows. In Sect. 2 we present preliminaries with the main
tools and the functional setting of the problem and we discuss the definition of (−�)αρ and its
regional character. In Sect. 3 we prove Theorem 1.1. In Sect. 4 we provide some properties of
the concentration function H and we compute asymptotic values of the functional. In Sect.
5 we complete the study of the semi-classical limit, proving Theorem 1.2.

2 Preliminaries

In this section we recall some basic facts about the Sobolev space Hα(Rn), its relations
with the space Hα

ρ (Rn), embeddings and compactness properties. We also discuss about the
variational version of the regional fractional laplacian we consider in this paper.

Regarding the space Hα(Rn) we recall the following embedding theorem.
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Non-linear Schrödinger equation 79

Theorem 2.1 [4] Let α ∈ (0, 1), then there exists a positive constant C = C(n, α) such that

‖u‖2
L2∗α (Rn)

≤ C
∫
Rn

∫
Rn

|u(x) − u(y)|2
|x − y|n+2α dydx (2.1)

and then Hα(Rn) ↪→ Lq(Rn) is continuous for all q ∈ [2, 2∗
α].Moreover, Hα(Rn) ↪→ Lq(�)

is compact for any bounded set � ⊂ R
n and for all q ∈ [2, 2∗

α), where 2∗
α = 2n

n−2α is the
critical exponent.

For the spaces Hα(Rn) and Hα
ρ (Rn) defined in the introduction, we consider the norms

‖·‖ and ‖·‖ρ , respectively, as defined in (1.4) and (1.5). The following result is very important
in our study.

Proposition 2.1 If ρ satisfies (ρ1) there exists a constant C = C(n, α, ρ0) > 0 such that

‖u‖ ≤ C‖u‖ρ

Proof From the definition of ‖ · ‖, given u ∈ Hα
ρ (Rn) and for ρ0 > 0, we have

‖u‖2 =
∫
Rn

|u(x)|2dx +
∫
Rn

∫
B(x,ρ0)

|u(x) − u(z)|2
|x − z|n+2α dzdx

+
∫
Rn

∫
Bc(x,ρ0)

|u(x) − u(z)|2
|x − z|n+2α dzdx . (2.2)

Using Fubini’s Theorem, we see that
∫
Rn

∫
Bc(x,ρ0)

|u(x) − u(z)|2
|x − z|n+2α dzdx =

∫
Bc(0,ρ0)

∫
Rn

|u(x + z) − u(x)|2
|z|n+2α dxdz

≤ 2|Sn−1|
αρ2α

0

‖u‖2L2 . (2.3)

Then, from hypothesis (ρ1), (2.2) and (2.3) it follows that

‖u‖2 ≤ C

(∫
Rn

|u(x)|2dx +
∫
Rn

∫
B(0,ρ(x))

|u(x + z) − u(x)|2
|z|n+2α dzdx

)
,

where C = C(n, α, ρ0). This completes the proof. �

Remark 2.1 By Proposition 2.1 we have that Hα

ρ (Rn) ↪→ Hα(Rn) is continuous and then,
by Theorem 2.1, we have that Hα

ρ (Rn) ↪→ Lq(Rn) is continuous for any q ∈ [2, 2∗
α] and

Hα
ρ (Rn) ↪→ Lq

loc(R
n) is compact for any q ∈ [2, 2∗

α).

Remark 2.2 Since ‖u‖ρ ≤ ‖u‖, under the condition (ρ1) Proposition 2.1 implies ‖ · ‖ρ and
‖ · ‖ are equivalent norms in Hα(Rn).

The following lemma is a version of the concentration compactness principle proved by
Coti Zelati and Rabinowitz [3].

Lemma 2.1 Let n ≥ 2. Assume that {uk} is bounded in Hα
ρ (Rn) and it satisfies

lim
k→∞ sup

y∈Rn

∫
B(y,R)

|uk(x)|2dx = 0, (2.4)

where R > 0. Then uk → 0 in Lq(Rn) for 2 < q < 2∗
α .
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Proof Let 2 < q < 2∗
α and consider θ ∈ (0, 1) such that

1

q
= 1 − θ

2
+ θ

2∗
α

.

Then by Hölder inequality and Theorem 2.1, for every k we have

‖uk‖Lq (B(y,R)) ≤ ‖uk‖1−θ

L2(B(y,R))
‖uk‖θ

L2∗α (B(y,R))

≤ Cθ‖uk‖1−θ

L2(B(y,R))
‖uk‖θ

ρ

so ∫
B(y,R)

|uk(x)|qdx ≤ Cθq‖uk‖(1−θ)q
L2(B(y,R))

‖uk‖qθ
ρ .

Taking θ = 2
q and covering R

n with balls of radius R, in such a way that each point of R
n is

contained in at most n + 1 balls, we deduce that
∫
Rn

|uk(x)|qdx ≤ (n + 1)Cqθ sup
y∈Rn

(∫
B(y,R)

|uk(x)|2
) q−2

2 ‖uk‖2ρ.

Then, by hypothesis, uk → 0, in Lq(Rn). �

The spaces Hα(Rn) and Hα

ρ (Rn) are Hilbert spaces endowed with the inner products

〈u, v〉 =
∫
Rn

u(x)v(x)dx +
∫
Rn

∫
Rn

[u(x + z) − u(x)][v(x + z) − v(x)]
|z|n+2α dzdx

and

〈u, v〉ρ =
∫
Rn

u(x)v(x)dx +
∫
Rn

∫
B(0,ρ(x))

[u(x + z) − u(x)][v(x + z) − v(x)]
|z|n+2α dzdx,

respectively. Using the equivalence of the norms ‖ · ‖ and ‖ · ‖ρ proved in Proposition 2.1,
we can use the Lax-Milgram representation theorem to find a unique bijective linear map
Mρ : Hα(Rn) → Hα(Rn) such that

〈u, v〉ρ = 〈Mρu, v〉 for all u, v ∈ Hα(Rn).

On the other hand, using Fourier transform we may consider an alternative way of defining
the Sobolev space Hα(Rn) as

Hα(Rn) = {u ∈ L2(Rn)/ |ξ |α û(ξ) ∈ L2(Rn)}
with inner product and norm given by

〈u, v〉Ĥα =
∫
Rn

(1 + |ξ |2α)̂u(ξ )̂v(ξ)dξ and ‖u‖2
Ĥα =

∫
Rn

(1 + |ξ |2α)|̂u(ξ)|2dξ.

If we define the fractional laplacian as

̂(−�)αu(ξ) = |ξ |2α û(ξ),

then it can be shown that for 0 < α < 1 there exists a constant C(n, α) such that for all
u, v ∈ Hα(Rn),∫

Rn
(−�)αu(x)v(x)dx =

∫
Rn

|ξ |2α û(ξ )̂v(ξ)dξ

= C(n, α)

∫
Rn

∫
Rn

(u(x) − u(z))(v(x) − v(z))

|x − z|n+2α dzdx .
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Non-linear Schrödinger equation 81

See [4] Proposition 3.3. Then we have that

〈u, v〉ρ = 〈Mρu, v〉 =
∫
Rn

((−�)αMρu + Mρu)(x)v(x)dx

and if we define the operator (−�)αρ : Hα(Rn) → H−α(Rn) by

(−�)αρ = (−�)α ◦ Mρ + Mρ − I, (2.5)

where I is the natural injection from Hα(Rn) to H−α(Rn) and H−α(Rn) denotes the dual
space of Hα(Rn). With these definitions we finally have that for all u, v ∈ Hα(Rn)∫

Rn
(−�)αρuvdx =

∫
Rn

∫
B(0,ρ(x))

[u(x + z) − u(x)][v(x + z) − v(x)]
|z|n+2α dzdx . (2.6)

Proposition 2.2 If ρ satisfies (ρ1) and (ρ2), then the operator (−�)αρ is regional, in the sense
that given u ∈ Hα(Rn) with compact support, there exists R > 0 so that for all ϕ ∈ Hα(Rn)

such that

supp(ϕ) ∩ B(0, R) = φ

then ∫
Rn

(−�)αρu(x)ϕ(x)dx = 0.

Proof We assume that ρ∞ = ∞ in (ρ1) (the other case is similar). By (ρ2) there exists
ā ∈ (0, 1) and R > 0 so that |ρ(x)| ≤ ā|x | for all |x | ≥ R.

If ϕ ∈ Hα(Rn) is such that suppϕ ∩ B(0, R) = ∅ then

∪x∈suppϕB(x, ρ(x)) ⊂ ∪x∈suppϕB(x, ā|x |) ⊂ B(0, (1 − ā)R)c.

On the other hand, given u ∈ Hα(Rn) with compact support, there exists R0 such that

∪x∈suppu B(x, ρ(x)) ⊂ B(0, R0).

Then we make R larger, if necessary, in order to get R0 < (1 − ā)R and thus we have
that for any (x, z) ∈ R

n × B(0, ρ(x)) such that x ∈ suppϕ or x + z ∈ suppϕ we have
|x | ≥ (1 − ā)R > R0 and then u(x) = u(x + z) = 0. Consequently we have that∫

Rn
(−�)αρu(x)v(x)dx

=
∫
Rn

∫
B(0,ρ(x))

[u(x + z) − u(x)][ϕ(x + z) − ϕ(x)]
|z|n+2α dzdx = 0.

�


3 The ground state

In this section, our goal is to prove the existence of a ground state of Eq. (1.1), that is, a
non-negative solution with lowest energy.

We start with a precise definition of the notion of solutions for Eq. (1.1).

Definition 3.1 We say that u ∈ Hα
ρ (Rn) is a weak solution of (1.1) if

〈u, v〉ρ =
∫
Rn

f (x)v(x)dx, for all v ∈ Hα
ρ (Rn).
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82 P. Felmer, C. Torres

We prove the existence of weak solution of (1.1) finding a critical point of the functional Iρ
defined in (1.6). Using the properties of the Nemistky operators and the embeddings given
in Remark 2.1, we can prove that the functional Iρ is of class C1(Hα

ρ (Rn), R) and we have

I ′
ρ(u)v = 〈u, v〉ρ −

∫
Rn

f (u(x))v(x)dx, ∀ v ∈ Hα
ρ (Rn).

We define the Nehari manifold associated to the functional Iρ as

Nρ = {u ∈ Hα
ρ (Rn)\{0} : I ′

ρ(u)u = 0}
and we observe that all non trivial solutions of (1.1) belong to Nρ . Next, from the growth
assumptions ( f2) and ( f4) it is standard to prove that, for any ε > 0, there exists Cε such
that

| f (t)| ≤ ε|t | + Cε |t |p, ∀t ∈ R
n (3.1)

and consequently

|F(t)| ≤ ε

2
|t |2 + Cε |t |p+1, ∀t ∈ R

n, (3.2)

where 1 < p < n+2α
n−2α = 2∗

α − 1. We start our analysis with

Lemma 3.1 Assume the hypotheses (ρ1) and ( f1)–( f4) hold. Then for any u ∈ Hα
ρ (Rn)\{0},

there is a unique tu = t (u) > 0 such that tuu ∈ Nρ and

Iρ(tuu) = max
t≥0

Iρ(tu).

Proof Let u ∈ Hα
ρ (Rn) \ {0} and consider the function ψ : R

+ → R defined as

ψ(t) = Iρ(tu) = t2

2
‖u‖2ρ −

∫
Rn

F(tu)dx .

By (3.2) we have
∫
Rn

F(u)dx ≤ C(ε‖u‖2ρ + Cε‖u‖p+1
ρ ),

then ψ(t) > 0, for t small. On the other hand, by ( f3) exists A > 0 such that F(t) ≥
A|t |θ , ∀t > 0. So

Iρ(tu) ≤ t2

2
‖u‖2ρ − Atθ

∫
Rn

|u|θdx (3.3)

and since θ > 2, we see that ψ(t) < 0 for t large. By ( f2), ψ(0) = 0, therefore there is
tu = t (u) > 0 such that

ψ(tu) = max
t≥0

ψ(t) = max
t≥0

Iρ(tu) = Iρ(tuu).

We see that ψ ′(t) = 0 is equivalent to

‖u‖2ρ =
∫
Rn

f (tu)u

t
dx, (3.4)

from where, using ( f2) we see that tu > 0 such that tuu ∈ Nρ is unique. �
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Non-linear Schrödinger equation 83

Now we define two critical values as follows

c∗
ρ = inf

u∈Nρ

Iρ(u) and cρ = inf
γ∈�ρ

sup
t∈[0,1]

Iρ(γ (t)), (3.5)

where �ρ is given by

�ρ = {γ ∈ C([0, 1], Hα
ρ (Rn))/ γ (0) = 0, Iρ(γ (1)) < 0}.

Under our assumptions, �ρ is not empty and cρ > 0. We have

Lemma 3.2
c∗
ρ = inf

u∈Hα
ρ (Rn)\{0} supt≥0

Iρ(tu) = cρ. (3.6)

Proof We notice that Iρ is bounded below on Nρ , since by ( f3), Iρ(u) > 0, for all u ∈ Nρ ,
so that c∗

ρ is well defined. By Lemma 3.1 for any u ∈ Hα
ρ (Rn) \ {0} there is a unique

tu = t (u) > 0 such that tuu ∈ Nρ, then

c∗
ρ ≤ inf

u∈Hα
ρ (Rn)\{0}max

t≥0
Iρ(tu).

On the other hand, for any u ∈ Nρ , we have

Iρ(u) = max
t≥0

Iρ(tu) ≥ inf
u∈Hα

ρ (Rn)\{0}max
t≥0

Iρ(tu)

so

c∗
ρ = inf

Nρ

Iρ(u) ≥ inf
u∈Hα

ρ (Rn)\{0}max
t≥0

Iρ(tu),

therefore the first equality in (3.2) holds. Next we prove the other equality. We claim that for
every γ ∈ �ρ there exists t0 ∈ [0, 1] such that γ (t0) ∈ Nρ .

In fact, by (3.1) and continuous embeddings we have∫
Rn

f (u)udx ≤ C(ε‖u‖2ρ + Cε‖u‖p+1
ρ ) (3.7)

and then, for γ ∈ �ρ we have

I ′
ρ(γ (t))γ (t) = ‖γ (t)‖2ρ −

∫
Rn

f (γ (t))γ (t)dx

≥ (
1 − C(ε + Cε)‖γ (t)‖p−1

ρ

) ‖γ (t)‖2ρ.

If we take r =
(
1−εC
CεC

) 1
p−1

, then we see that

I ′
ρ(γ (t))γ (t) > 0 ∀ t ∈ [0, 1], such that, ‖γ (t)‖ρ < r.

On the other hand, using ( f3) and since Iρ(γ (1)) < 0, we have

‖γ (1)‖2Hα
ρ

<

∫
Rn

2F(γ (t))dx <

∫
Rn

θF(γ (1))dx ≤
∫
Rn

f (γ (1))γ (1)dx,

that implies I ′
ρ(γ (1))γ (1) < 0. Thus, by the Intermediate Value Theorem, there exists

t0 ∈ (t∗, 1) such that I ′
ρ(γ (t0))γ (t0) = 0 and so γ (t0) ∈ Nρ., completing the proof of the

claim. From this result, maxt∈[0,1] Iρ(γ (t)) ≥ Iρ(γ (t0)) ≥ infNρ Iρ and then

cρ ≥ c∗
ρ. (3.8)
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84 P. Felmer, C. Torres

In order to prove the other inequality we see that from (3.3), there exists t∗ large enough
such that Iρ(t∗u) < 0. Now we define the curve γu : [0, 1] → Hα

ρ (Rn) as γu(t) = t (t∗u).
Then γu(0) = 0, Iρ(γ (1)) = Iρ(t∗u) < 0 and γu is continuous, so that γu ∈ �ρ . Now, by
definition of γu ,

max
t≥0

Iρ(tu) ≥ max
ξ∈[0,1] Iρ(γu(ξ)), ∀ Hα

ρ (Rn) \ {0}

then c∗
ρ ≥ cρ , completing the proof. �


Lemma 3.3 Suppose {uk} ⊂ Hα
ρ (Rn) and there exists b > 0 such that

Iρ(uk) ≤ b and I ′
ρ(uk) → 0 as k → ∞. (3.9)

Then either

(i) uk → 0 in Hα
ρ (Rn), or

(ii) there is a sequence (yk) ∈ R
n, and R, β > 0 such that

lim inf
k→∞

∫
B(yk ,R)

|uk(x)|2dx > β.

Proof By (3.9) it is standard to check, for k large enough

b + ‖uk‖ρ ≥ Iρ(uk) − 1

θ
I ′
ρ(uk)uk ≥

(
1

2
− 1

θ

)
‖uk‖2ρ (3.10)

and then {uk} is bounded in Hα
ρ (Rn). Suppose (i i) is not satisfied, then for any R > 0, (2.4)

holds. Consequently by Lemma 2.1

‖uk‖L p+1 → 0. (3.11)

Then, noticing that

I ′
ρ(uk)uk = ‖uk‖2ρ −

∫
Rn

f (uk)ukdx, (3.12)

by (3.1) and the continuous embedding we have∫
Rn

f (uk)ukdx ≤ εC‖uk‖2ρ + Cε‖uk‖p+1
L p+1

where 1 < p < 2∗
α − 1. So

I ′
ρ(uk)uk ≥ (1 − εC)‖uk‖2ρ − Cε‖uk‖p+1

L p+1 . (3.13)

Choosing an appropriate C and using (3.9) and (3.11), we find that uk → 0 in Hα
ρ (Rn),

that is, (i) holds. �

Continuing with our analysis, we consider the functional at infinity. When ρ∞ = ∞ then

the associated limiting functional is defined as

I (u) = 1

2
‖u‖2 −

∫
Rn

F(u(x))dx (3.14)

and its Euler-Lagrange equations is given by

(−�)αu + u = f (u), in R
n . (3.15)

This problem was studied by Felmer et al. [8] and they have proved the following theorem
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Theorem 3.1 [8]Under ( f1)–( f4), the functional I possesses at least one critical point with
critical value c, where c is defined by

c = inf
γ∈�

max
θ∈[0,1] I (γ (θ)) (3.16)

and � is given by

� = {γ ∈ C([0, 1], Hα(Rn))/ γ (0) = 0, I (γ (1)) < 0}.
When ρ∞ < ∞, then we define Iρ∞ as in (1.6) with ρ(x) ≡ ρ∞. Following [8] and since
the functional Iρ∞ is invariant under translation, we can prove that Iρ∞ has a critical point
with critical value c, given by (3.16) with Iρ∞ instead of I . Now we prove the existence of
weak solution of (1.1).

Proof of Theorem 1.1 By Lemma 3.2, for every sequence {εk}, there exists a sequence of
{uk} in Hα

ρ (Rn) such that ‖uk‖Hα
ρ

= 1 and

cρ ≤ max
t≥0

Iρ(tuk) ≤ cρ + εk . (3.17)

As in the proof of Lemma 3.2, associated with each uk , there is a function γk ∈ �ρ such that

max
ξ∈[0,1] Iρ(γk(ξ)) ≤ max

t≥0
Iρ(tuk) ≤ cρ + εk . (3.18)

Now, considering X = Hα
ρ (Rn), K = [0, 1], K0 = {0, 1}, M = �ρ , ϕ = γk and

c1 = max
γk (K0)

Iρ = 0 < cρ,

we can use Theorem 4.3 of [15], to find a sequence {wk} in Hα
ρ (Rn) and {ξk} ⊂ [0, 1] such

that Iρ(wk) ∈ (cρ − εk, cρ + εk),

‖wk − γk(ξk)‖ρ ≤ ε
1/2
k and ‖I ′

ρ(wk)‖(Hα
ρ )′ ≤ ε

1/2
k . (3.19)

Now, since
Iρ(wk) → cρ in R and I ′

ρ(wk) → 0 in (Hα
ρ (Rn))′, (3.20)

as in the proof of the Lemma 3.3, we show that {wk} is bounded in Hα
ρ (Rn). Moreover, up

to a subsequence,

wk ⇀ w in Hα
ρ (Rn) and wk → w in Lq+1

loc (Rn), 1 ≤ q < 2∗
α − 1, (3.21)

where w is weak solution of (1.1). By Lemma 3.3, there is a sequence {yk} ⊂ R
n , β > 0 and

R > 0 such that

lim inf
k→∞

∫
B(yk ,R)

w2
k dx ≥ β. (3.22)

If {yk} contains a bounded subsequence, then (3.22) guarantees that w �= 0 and the results
follows. If {yk} is an unbounded sequence, first we prove that

c > cρ or cρ∞ > cρ, (3.23)

in case ρ∞ = ∞ or ρ∞ < ∞, respectively. When ρ∞ = ∞ we let u be a critical point u
with critical value c and for any y ∈ Rn , we define uy(x) = u(x + y). Then for any t > 0
we have

c = I (uy) ≥ I (tuy) > Iρ(tuy).
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Let t∗ > 0 such that t∗uy ∈ Nρ and

Iρ(t∗uy) = sup
t>0

Iρ(tuy),

consequently c > Iρ(t∗uy) ≥ infNρ Iρ(u) = cρ, proving the first inequality in (3.23). When
ρ∞ < ∞, the other inequality is obtained similarly.

Now we may assume that, for given R > 0,

lim
k→∞

∫
B(0,R)

|uk |2dx = 0, (3.24)

since the contrary implies that w �= 0 and we finish the proof.
We analyze first the case ρ∞ = +∞. For this purpose we write

Iρ(tuk) = I (tuk) − 1

2

∫
Rn

∫
Bc(0,ρ(x))

|tuk(x + z) − tuk(x)|2
|z|n+2α dzdx, (3.25)

for t ≥ 0, and we estimate the second term on the right. First we see that for any ε > 0 and
t̄ > 0, there exists R > 0 such that∫

Bc(0,R)

∫
Bc(0,ρ(x))

|tuk(x + z) − tuk(x)|2
|z|n+2α dzdx ≤ ε, (3.26)

for all t ∈ [0, t̄]. In fact, by our assumption, for any M > 0, exists R > 0 such that, for
|x | > R we have that ρ(x) > M . From here, interchanging the order of integration and using
the continuous embedding, we have

∫
Bc(0,R)

∫
Bc(0,ρ(x))

|tuk(x + z) − tuk(x)|2
|z|n+2α dzdx

≤
∫
Bc(0,M)

∫
Bc(0,R)

|tuk(x + z) − tuk(x)|2
|z|n+2α dxdz

≤
∫
Bc(0,M)

∫
Rn

|tuk(x + z) − tuk(x)|2
|z|n+2α dxdz

≤ 2t̄2|Sn−1|
αM2α ‖uk‖2L2 ≤ 2t̄2C |Sn−1|

αM2α ‖uk‖2ρ, (3.27)

from were we conclude (3.26) choosing R > 0 large enough and recalling that ‖uk‖ρ = 1.
From now on we fix R > 0 so that (3.24) and (3.26) hold. Next we prove that

lim
k→∞

∫
B(0,R)

∫
Bc(0,ρ(x))

|tuk(x + z) − tuk(x)|2
|z|n+2α dzdx = 0, (3.28)

for all t ∈ [0, t̄]. In fact, by (ρ1) there exists ρ0 > 0 such that ρ(x) ≥ ρ0 for all x ∈ R
n , so

that∫
B(0,R)

∫
Bc(0,ρ(x))

|tuk(x + z) − tuk(x)|2
|z|n+2α dzdx

≤
∫
Bc(0,ρ0)

∫
B(0,R)

|tuk(x + z) − tuk(x)|2
|z|n+2α dxdz ≤ 2t̄2|Sn−1|

αρ2α
0

‖uk‖2L2(B(0,R))
(3.29)

and we obtain (3.28) by (3.24). Thus, by 3.25, (3.26) and (3.28) we obtain

Iρ(tuk) ≥ I (tuk) − ε −
∫
B(0,R)

∫
Bc(0,ρ(x))

|tuk(x + z) − tuk(x)|2
|z|n+2α dzdx .
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If we choose t = t∗ such that I (t∗uk) = maxt≥0 I (tuk) then we see that cρ ≥ c − ε, from
were we get a contradiction with (3.23) if we take ε > 0 small enough.

Now we analyze the case ρ∞ < +∞. In this case we compare the functionals Iρ and Iρ∞
writting

Iρ(u) = Iρ∞(u) − 1

2

∫
Rn

∫
B(0,ρ∞)\B(0,ρ(x))

|u(x + z) − u(x)|2
|z|n+2α dzdx . (3.30)

By hypothesis (ρ1), for any ε > 0 there is R > 0 such that

0 < ρ∞ − ρ(x) < ε, whenever |x | > R.

Proceeding as before, for all t ∈ [0, t̄], we obtain the estimate
∫
Rn

∫
B(0,ρ∞)\B(0,ρ(x))

|tuk(x + z) − tuk(x)|2
|z|n+2α dzdx

≤ C(ε)‖uk‖2L2 + C‖uk‖2L2(B(0,R))
, (3.31)

where

C(ε) = 2|Sn−1|t̄2
α

(
1

(ρ∞ − ε)2α
− 1

ρ2α∞

)
and C = 2|Sn−1|t̄2

α

(
1

ρ2α
0

− 1

ρ2α∞

)
.

Thus, we obtain

Iρ(tuk) ≥ Iρ∞(tuk) − C(ε)‖uk‖2L2 + C‖uk‖2L2(B(0,R))
.

Choosing t appropriately and ε small enough we conclude that cρ > cρ∞ , contradicting
(3.23). To complete the proof we only need to prove that u is non-negative. Thanks to
hypothesis ( f1) we see that f (−u−(x)) = 0 for all x ∈ R

n , so that it is enough to prove that

〈u, u−〉ρ ≤ −
∫
Rn

u2−dx . (3.32)

Here we consider u− = max{−u, 0} and u+ = max{u, 0} so that u = u+ − u−. An easy
computation shows that for x, z ∈ R

n we have

(u(x + z) − u(x))(u−(x + z) − u−(x)) = −u+(x + z)u−(x) − u+(x)u−(x + z)

−(u−(x + z) − u−(x))2 ≤ 0,

so that, by definition of the inner product 〈·, ·〉ρ given in Sect. 2, we obtain (3.32) that proves
that u− = 0 a.e. in R

n . �


4 Asymptotic values of the functional when ε → 0

In this section we make a preliminary analysis of the asymptotic behavior of the functional
associated to Eq. (1.7) when ε → 0. In this and next section we consider the power function
f (s) = s p to prove Theorem 1.2. For simplicity, we prefer to treat only the power function,
but all the arguments can be adapted to deal with a general f satisfying the hypotheses
( f1)–( f4). We start with some basic properties of the function H.

Lemma 4.1 Assuming ρ satisfies (ρ1)–(ρ3), the function H is continuous and

lim|x |→∞H(x) = 0. (4.1)
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Moreover, there exists x0 ∈ R
n such that

inf
x∈Rn

H(x) = H(x0) < 0. (4.2)

Proof Hypothesis (ρ3) implies that the function H is continuous in R
n . By definition of the

sets C+(x) and C−(x), when ρ∞ < ∞, we see that

lim|x |→∞meas(C+(x)) = 0 and lim|x |→∞meas(C−(x)) = 0.

In case ρ∞ = ∞, we easily see that, for every M > 0 we have that C+(x) ⊂ Bc(0, M) if
|x | is large enough. For a similar statement with C−(x), we use hypothesis (ρ2) to get that,
for |x | large enough,

|x + y| ≥ 1 − a

2
|x |, for all y ∈ C−(x).

This implies that, for every M > 0 we have that C−(x) ⊂ Bc(0, M) if |x | is large enough.
Thus we conclude that (4.1) holds.

Next we see that

H(x) = −|Sn−1|
2α

(
1

ρ(x)2α
− 1

ρ2α∞

)
+ 1

2

∫
C+(x)

dy

|y|n+2α − 1

2

∫
C−(x)

dy

|y|n+2α

≤ −|Sn−1|
2α

(
1

ρ(x)2α
− 1

ρ2α∞

)
+

∫
C+(x)

dy

|y|n+2α < 0,

where the last inequality follows from the fact that C+(x) ⊂ Bc(0, ρ(x)) and C+(x) is a
bounded set. From here and (4.1) the existence of a global minimum is a consequence of the
continuity of H. �


In this section we will consider a sequence of functions {wm} ⊂ Hα(Rn) such that
‖wm −w‖L2(R2) → 0, where w ∈ Hα(Rn). We will also consider sequences {zm} ⊂ R

n and
{εm} ⊂ R and assume that εm → 0 as m → ∞. We define ρm as

ρm(x) = 1

εm
ρ(εmx + εmzm), (4.3)

and we consider the functional Iρ defined in (1.6), with F(t) = |t |p+1/(p + 1) and for
different scope functions ρ, in particular for ρ∞/εm constant and ρ̄m defined in (4.3). In case
εmzm → x̄ we will also consider the functional with ρ(x̄)/εm . Thus, in this section we will
be considering the functionals

I ρ∞
εm

, I ρ(x̄)
εm

and Iρ̄m .

We will also consider the functional I in R
n (with ρ ≡ ∞) defined in (3.14). The following

theorem is a key to understand the concentration phenomenon for Eq. (1.7).

Theorem 4.1 Under hypotheses (ρ1)–(ρ3), we assume as above that wm, w ∈ Hα(Rn) are
such that ‖wm − w‖L2(R2) → 0 and εm → 0, as m → ∞. Then we have:

(i) If εmzm → x̄ then

lim
m→∞

Iρm (wm) − I ρ∞
εm

(wm)

ε2αm
= ‖w‖2L2H(x) and (4.4)
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(ii) If |εm |zm → ∞ then

lim
m→∞

Iρm (wm) − I ρ∞
εm

(wm)

ε2αm
= 0. (4.5)

In various stages of the proof of this theorem it will be convenient to replace the function wm

by the truncated limit wR(x) = w(x)χB(0,R)(x), where R > 0. We clearly have

Lemma 4.2 For all δ > 0 there exist m(δ) > 0 and R(δ) > 0 such that∫
Rn

|wm(x) − wR(x)|2dx < δ, whenever m > m(δ), R > R(δ).

In order to prove Theorem 4.1 we first prove several lemmas under the hypotheses (i),
that is

εmzm → x as m → ∞.

We analyze the cases ρ∞ = +∞ and ρ∞ < +∞ separately. It will be convenient to
decompose the problem considering

Iρm (wm) − I ρ∞
εm

(wm) = Iρm (wm) − I ρ(x)
εm

(wm) −
(
I ρ∞

εm
(wm) − I ρ(x)

εm
(wm)

)
. (4.6)

For the second term of the right hand side we have

Lemma 4.3 Under assumption of Theorem 4.1 and assuming (i)

lim
m→∞

I ρ∞
εm

(wm) − I ρ(x)
εm

(wm)

ε2αm
= |Sn−1|

2α
‖w‖2L2

(
1

ρ(x)2α
− 1

ρ2α∞

)
. (4.7)

In case ρ∞ = +∞, here we write I ρ∞
εm

= I and 1/ρ2α∞ = 0.

Proof We first consider the case ρ∞ = +∞. We have

I (wm) − I ρ(x)
εm

(wm)

= 1

2

∫
Rn

∫
Bc(0, ρ(x)

εm
)

|wm(x + z) − wm(x)|2
|z|n+2α dzdx

= 1

2

∫
Bc(0, ρ(x)

εm
)

∫
Rn

w2
m(x + z) − 2wm(x + z)wm(z) + w2

m(x)

|z|n+2α dxdz

= |Sn−1|
2α

‖wm‖2L2

ε2αm

ρ(x)2α
−

∫
Bc(0, ρ(x)

εm
)

∫
Rn

wm(x + z)wm(x)dx
dz

|z|n+2α .

If we denote by Em the second term above and we consider R > 0, we have

|Em −
∫
Bc(0, ρ(x)

εm
)

∫
Rn

wR(x + z)wR(x)dx
dz

|z|n+2α |

≤ (‖wm‖L2 + ‖wR‖L2)‖wm − wR‖L2

∫
Bc(0, ρ(x)

εm
)

dz

|z|n+2α

= ε2αm

ρ(x̄)2α
(‖wm‖L2 + ‖wR‖L2)‖wm − wR‖L2 .
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From here, using Lemma 4.2 and the fact that wR(·) and wR(· + z) have disjoint supports
if |z| > 2R, we obtain that limm→∞ Em = 0, which implies the result.

In case ρ∞ < +∞ we proceed similarly, noticing that we have to replace the integral

over Bc
(
0, ρ(x)

εm

)
by an integral over B

(
0, ρ∞

εm

)
\ B

(
0, ρ(x)

εm

)
and compute accordingly. �


Now we consider the first term in (4.6), for which it is convenient to write

I = Iρm (wm) − Iρ(x)/εm (wm)

ε2αm

= 1

2ε2αm

∫
Rn

∫
A(

ρ(x)
εm

,ρ̄m (x))

|wm(x + z) − wm(x)|2
|z|n+2α dzdx

− 1

2ε2αm

∫
Rn

∫
A(ρ̄m (x), ρ(x)

εm
)

|wm(x + z) − wm(x)|2
|z|n+2α dzdx

= I1 + I2. (4.8)

Here, and in what follows, we denote by A(a, b) the annulus B(0, b)\ B(0, a) and we notice
that A(a, b) = ∅ when a ≥ b.

We start our analysis with I1 and for this purpose, we first consider the second and third
term in the expansion of the quadratic expression |wm(x + z) − wm(x)|2.
Lemma 4.4 Under assumption of Theorem 4.1 and assuming (i) we have

lim
m→∞

1

ε2αm

∫
Rn

∫
A(

ρ(x)
εm

,ρ̄m (x))

wm(x + z)wm(x)

|z|n+2α dzdx = 0

and

lim
m→∞

1

ε2αm

∫
Rn

∫
A(

ρ(x)
εm

,ρ̄m (x))

w2
m(x)

|z|n+2α dzdx = 0.

Proof The first limit is obtained using the arguments given in the proof of Lemma 4.3. To
study the second limit we see that

1

ε2αm

∫
Rn

∫
A(

ρ(x)
εm

,ρ̄m (x))

w2
m(x)

|z|n+2α dzdx

= |Sn−1|
2α

∫
Rn

w2
m(x)

(
1

ρ(x)2α
− 1

ρ(εmx + εmzm)2α

)
+
dx

≤ |Sn−1|
2α

∫
Rn

w2
R(x)

(
1

ρ(x)2α
− 1

ρ(εmx + εmzm)2α

)
+
dx

+|Sn−1|
2αρ2α

0

(‖wm‖L2 + ‖wR‖L2)‖wm − wR‖L2 ,

where R > 0. By the continuity of ρ and the fact that εmzm → x̄ as m → ∞, we see that

lim
m→∞

(
1

ρ(x)2α
− 1

ρ(εmx + εmzm)2α

)
+

= 0,

uniformly in B(0, R). From here, Lemma 4.2 and the inequality above, the result follows. �

Next we consider the first term in the expansion of |wm(x + z) − wm(x)|2.
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Lemma 4.5 Under assumption of Theorem 4.1 and assuming (i)

lim
m→∞

1

ε2αm

∫
Rn

∫
A(

ρ(x)
εm

,ρ̄m (x))

wm(x + z)2

|z|n+2α dzdx = ‖w‖L2

∫
C+(x̄)

dz

|z|n+2α .

Proof To start we consider

1

ε2αm

∫
Rn

∫
A(

ρ(x)
εm

,ρ̄m (x))

wm(x + z)2

|z|n+2α dzdx = E1
m + E2

m,

where

E1
m = 1

ε2αm

∫
Rn

∫
A(

ρ(x)
εm

,ρ̄m (x))

wR(x + z)2

|z|n+2α dzdx, (4.9)

and E2
m is the error term. For E2

m we have

|E2
m | ≤ 1

ε2αm

∫
Rn

∫
Bc(0, ρ(x

εm
))

|wm(x + z)2 − wR(x + z)2|
|z|n+2α dzdx

= 1

ε2αm

∫
Bc(0,

ρ(x

εm
))

∫
Rn

|wm(x + z)2 − wR(x + z)2|dx dz

|z|n+2α

≤ |Sn−1|
2αρ(x̄)2α

(‖wm‖L2 + ‖wR‖L2)‖wm − wR‖L2 . (4.10)

Next we consider E1
m and we observe that

E1
m = 1

ε2αm

∫
Rn

∫
B(−x,R)∩A(

ρ(x)
εm

,ρ̄m (x))

w(x + z)2

|z|n+2α dzdx

= 1

ε2αm

∫
�+
m

∫
B(−x,R)∩A(

ρ(x)
εm

,ρ̄m (x))

w(x + z)2

|z|n+2α dzdx, (4.11)

where

�+
m =

{
x ∈ R

n : ρ(x)

εm
− R < |x | <

ρ(εmx + εmzm)

εm
+ R

}
. (4.12)

On the other hand we see that for any (x, z) such that |x + z| < R we have

1

(|x | + R)n+2α ≤ 1

|z|n+2α ≤ 1

(|x | − R)n+2α . (4.13)

Therefore

E1
m ≤ 1

ε2αm

∫
�+
m

1

(|x | − R)n+2α

∫
B(−x,R)∩A(

ρ(x)
εm

,ρ̄m (x))
w(x + z)2dzdx

≤ ‖wR‖L2

ε2αm

(∫
Mm

dx

(|x | − R)n+2α +
∫
Nm

dx

(|x | − R)n+2α ,

)
(4.14)

where the sets Mm and Nm are defined as follows

Mm = {x ∈ �+
m : B(−x, R) ⊂ A(

ρ(x)

εm
, ρ̄m(x))}

=
{
x ∈ R

n : ρ(x)

εm
+ R < |x | < ρ̄m(x) − R

}
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and

Nm = {x ∈ �+
m \ Mm : B(−x, R) ∩ A(

ρ(x)

εm
, ρ̄m(x)) �= ∅}

= {x ∈ R
n : ρ(x)

εm
− R < |x | <

ρ(x)

εm
+ R} ∪

{x ∈ R
n : ρ̄m(x) − R < |x | < ρ̄m(x) + R} = N 1

m ∪ N 2
m .

Similarly, from (4.11), (4.12) and (4.13) we find that

E1
m ≥ 1

ε2αm

∫
�+
m

1

(|x | + R)n+2α

∫
B(−x,R)∩A(

ρ(x)
εm

,ρ̄m (x))
w(x + z)2dzdx

≥ ‖wR‖L2

ε2αm

∫
Mm

dx

(|x | + R)n+2α . (4.15)

In order to complete the analysis of E1
m we just need to look at the limit of the integrals. We

recall that, by hypothesis (ρ3), the set defined by the equation

ρ(y + x̄) = |y|,
is an (n − 1)-dimensional surface and that we are assuming that limm→∞ εmzm = x̄ . So we
have

lim
m→∞

1

ε2αm

∫
N1
m

dx

(|x | − R)n+2α

= lim
m→∞

∫
{|ρ(y+εmzm )−|y||<εm R}

dy

(|y| − εm R)n+2α = 0.

Using similar arguments we obtain

lim
m→∞

1

ε2αm

∫
N2
m

dx

(|x | − R)n+2α = 0

and

lim
m→∞

1

ε2αm

∫
Mm

dx

(|x | ± R)n+2α =
∫
C+

dy

(|y|)n+2α ,

completing the proof of the lemma. �

Using Lemmas 4.4 and 4.5 we conclude that

lim
m→0

I1 = lim
m→0

1

2ε2αm

∫
Rn

∫
A(

ρ(x)
εm

,ρ̄m (x))

|wm(x + z) − wm(x)|2
|z|n+2α dzdx

= ‖w‖L2

2

∫
C+(x̄)

dz

|z|n+2α . (4.16)

In a complete analogous way we can prove that

lim
m→0

I2 = lim
m→0

1

2ε2αm

∫
Rn

∫
A(ρ̄m (x), ρ(x)

εm
)

|wm(x + z) − wm(x)|2
|z|n+2α dzdx

= −‖w‖L2

2

∫
C−(x̄)

dz

|z|n+2α . (4.17)
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Proof of Theorem 4.1 The proof of (i) is a consequence of (4.6), (4.8), (4.16), (4.17) and
Lemma 4.3. Now we consider (ii) in case ρ∞ = ∞. We have

|I (wm) − Iρm (wm)|
ε2αm

= 1

2ε2αm

∫
B(−zm , R

εm
)

∫
Bc(0,ρ̄m (x))

|wm(x + z) − wm(x)|2
|z|n+2α dzdx

+ 1

2ε2αm

∫
Bc(−zm , R

εm
)

∫
Bc(0,ρ̄m (x))

|wm(x + z) − wm(x)|2
|z|n+2α dzdx

= E1
m + E2

m,

where R > 0. By hypothesis (ρ1) and since ρ∞ = ∞, we have that for any M > 0 there is
R > 0 and m0 large enough such that

ρ(εmx + εmzm) ≥ ρ0 if |x + zm | ≤ R

εm

and

ρ(εmx + εmzm) ≥ M if |x + zm | >
R

εm
, for all m ≥ m0.

Consequently

E1
m ≤ 1

ε2αm

∫
B(−zm , R

εm
)

∫
Bc(0, ρ0

εm
)

w2
m(x + z) + w2

m(x)

|z|n+2α dzdx

≤ |Sn−1|
αρ2α

0

(‖wm‖L2 + ‖wR‖L2)‖wm − wR‖L2

+ 1

ε2αm

∫
B(−zm , R

εm
)

∫
Bc(0, ρ0

εm
)

w2
R(x + z)

|z|n+2α dzdx

+|Sn−1|
αρ2α

0

‖wR(. − zm)‖2
L2(B(0, R

εm
))
. (4.18)

We observe that if |x + z| < R and |x + zm | < R/εm then |z| > |zm |/2, where we may need
to make m larger. Then we further look at the integral above
∫
B(−zm , R

εm
)

∫
Bc(0, ρ0

εm
)

w2
R(x + z)

|z|n+2α dzdx =
∫
B(−zm , R

εm
)

∫
B(−x,R)

w2(x + z)

|z|n+2α dzdx

≤ ε2αm 2n+2αRn‖w‖2 |Sn−1|
n

1

|εmzm |n+2α . (4.19)

On the other hand

E2
m ≤ 1

2ε2αm

∫
Bc(−zm , R

εm
)

∫
Bc(0, M

εm
)

|wm(x + z) − wm(x)|2
|z|n+2α dzdx

≤ |Sn−1|
2αM2α ‖wm‖2L2(Rn)

. (4.20)

From Lemma 4.2, (4.18)–(4.20) we can argue that (4.4) holds.
In the case ρ∞ < ∞, by hypothesis (ρ1) we have that, for any δ > 0 there is R > 0 and

m large enough such that

ρ(εmx + εmzm) ≥ ρ∞ − δ if |x + zm | >
R

εm
.
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Consequently

|I ρ∞
εm

(wm) − Iρm (wm)|
ε2αm

≤ 1

2ε2αm

∫
B(−zm , R

εm )

∫
Bc(0, ρ0

εm
)

|wm(x + z) − wm(x)|2
|z|n+2α dzdx

+E3
m, (4.21)

where

E3
m = 1

2ε2αm

∫
Bc(−zm , R

εm
)

∫
B(0, ρ∞

εm
)\B(0, ρ∞−δ

εm
)

|wm(x + z) − wm(x)|2
|z|n+2α dzdx

≤ |Sn−1|
2α

‖wm‖2L2(Rn)

(
1

(ρ∞ − δ)2α
− 1

ρ2α∞

)
. (4.22)

The integral in (4.21) is estimated exactly as E1
m . From here and (4.21) we can argue that

(4.4) holds, completing the proof. �

Before leaving this section we prove a lemma that will be useful later. We recall that, by

Lemma3.1, for anywm ∈ Hα
ρm

(Rn), there is a unique tm = t (wm) > 0 such that tmwm ∈ Nρm

and
Iρm (tmwm) = max

t≥0
Iρm (twm). (4.23)

Let N the Nehari manifold associated to the limit problem, that is

N = {u ∈ Hα(Rn) \ {0}/ I ′(u)u = 0}.
Lemma 4.6 Assume wm → w in Hα(Rn) and w ∈ N , then

lim
m→∞ tm = 1.

Proof In fact, by definition of tm we have

t1−p
m ‖um‖2 =

∫
Rn

|um |p+1dx . (4.24)

Since wm → w ∈ N we have that ‖wm‖2 → ‖w‖2, ∫
Rn u

p+1
m dx → ∫

Rn u p+1dx and w is
non-zero. Thus tm converges to t̄ and t̄ = 1. �


5 Concentration behaviour

In this section we complete our study on the concentration behavior for ground states of Eq.
(1.7) and we prove Theorem 1.2. We start rescaling Eq. (1.7), for this purpose we define
ρε(x) = 1

ε
ρ(εx) and (−�)αρε

the operator defined by (2.5) changing ρ by ρε . We then
consider the rescaled equation

(−�)αρε
v(x) + v(x) = v p(x), in R

n (5.1)

and we see that u is a weak solution of (1.7) if and only if vε(x) = u(εx) is a weak solution
of (5.1). In fact, by definition (2.6) and changing variables it is easy to see that for every test
function ϕ ∫

Rn
(−�)αρε

vε(x)ϕ(x)dx = ε2α
∫
Rn

(−�)αρu(εx)ϕ(x)dx .
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In order to study Eqs. (1.7) and (5.1), we consider the functional Iρε on the ε-dependent
Hilbert space Hα

ρε
(Rn) with inner product 〈·, ·〉ρε .

The functional Iρε is of class C1 in Hα
ρε

(Rn) and the critical points of Iρε are the weak
solutions of (5.1). We further introduce

Nρε = {v ∈ Hα
ρε

(Rn) \ {0} : I ′
ρε

(v)v = 0},
�ρε = {γ ∈ C([0, 1], Hα

ρε
(Rn)) : γ (0) = 0, Iρε (γ (1)) < 0}

and the mountain pass minimax value

cρε = inf
γ∈�ρε

max
t∈[0,1] Iρε (γ (t)).

From Lemma 3.2 we also have

0 < cρε = inf
v∈Nρε

Iρε (v) = inf
v∈Hα

ρε
(Rn)\{0}max

t≥0
Iρε (tv). (5.2)

For comparison purposes we consider the functional I defined in 3.14, whose critical points
are the solutions of 3.15, where f (u) = u p . We also consider the critical value 3.16 that
satisfies

c = inf
u∈Hα(Rn)\{0}max

t≥0
I (tu).

Now we start the proof of Theorem 1.2 with some preliminary lemmas.

Lemma 5.1 Suppose (ρ1) holds. Then

lim
ε→0+ cρε = c. (5.3)

Proof Since we obviously have
∫
Rn

∫
B(0,ρε(x))

|u(x + z) − u(x)|2
|z|n+2α dzdx ≤

∫
Rn

∫
Rn

|u(x + z) − u(x)|2
|z|n+2α dzdx,

for all u ∈ Hα
ρε

(Rn), then we have Iρε (u) ≤ I (u) and therefore

lim sup
ε→0+

cρε ≤ c. (5.4)

Now consider vε ∈ Hα
ρε

a solution of Eq. (5.1) with critical value cρε , then cρε = Iρε (uε) =
maxt≥0 Iρε (tuε) and I ′

ρε
(vε)vε = 0, so that

∫
Rn

∫
B(0,ρε(x))

|vε(x + z) − vε(x)|2
|z|n+2α dzdx +

∫
Rn

v2εdx =
∫
Rn

v p+1
ε dx (5.5)

and then

cρε = p − 1

2(p + 1)

(∫
Rn

∫
B(0,ρε(x))

|vε(x + z) − vε(x)|2
|z|n+2α dzdx +

∫
Rn

v2εdx

)
. (5.6)

From here and using that cρε by (5.4), we see that ‖vε‖ρε is bounded when ε → 0+. Next
we see that for any t > 0 we have

cρε ≥ I (tvε) − 1

2

∫
Rn

∫
Bc(0,ρε(x))

t2|vε(x + z) − vε(x)|2
|z|n+2α dzdx .
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Using hypothesis (ρ1) and estimating the second term in the right side as in (3.27) and (3.29),
we find

cρε ≥ I (tvε) −
Ct2|Sn−1|‖vε‖2Hα

ρε

αρ2α
0

ε2α.

Now choosing t = t∗ε > 0, such that I (t∗ε vε) = maxt≥0 I (tvε) we find

cρε ≥ c −
C(t∗ε )2|Sn−1|‖vε‖2Hα

ρε

αρ2α
0

ε2α,

from where lim infε→0+ cρε ≥ c. Combining with (5.4) we get (5.3). �

Lemma 5.2 If vε is s family solutions of (5.1) with critical value cρε , then there exists a
family {yε} and positive constants R and β such that

lim inf
ε→0+

∫
B(yε ,R)

v2ε (x)dx ≥ β > 0. (5.7)

If not, there exists a sequence vk = vεk such that

lim
k→∞ sup

y∈Rn

∫
B(y,R)

v2k (x)dx = 0,

the by Lemma 2.1, we have vk → 0 in Lq(Rn) for any 2 < q < 2∗
α. However, this is

impossible because by (5.5), (5.6) and Lemma 5.1

p − 1

2(p + 1)

∫
Rn

v p+1
ε (x)dx = cρε → c, as ε → 0.

�

Now let

wε(x) = vε(x + yε) = uε(εx + εyε), (5.8)

then by (5.10),

lim inf
ε→0+

∫
B(0,R)

w2
ε (x)dx ≥ β > 0. (5.9)

To continue, we consider the rescaled scope function ρε , as defined in (4.3),

ρ̄ε(x) = 1

ε
ρ(εx + εyε)

and then wε satisfies the equation

(−�)αρε
wε(x) + wε(x) = w p

ε (x), in R
n . (5.10)

Now we prove the convergence of wε as ε → 0.

Lemma 5.3 For every sequence {εm} there is a subsequence, which will also be denoted by
{εm}, so that wεm = wm → w in Hα(Rn), when m → ∞, where w is a solution of (3.15).

Proof From (5.6) we see that {wε} is bounded, and then, for every sequence {εm} there is a
subsequence, we keep calling the same, so that wεm = wm ⇀ w, which satisfies Eq. (3.15).
To prove the convergence of this sequence we use its weak convergence together with (5.6)
and Lemma 5.1 to get
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‖w‖ ≤ lim inf
m→∞

(∫
Rn

∫
Rn

|wm(x + z) − wm(x)|2
|z|n+2α dzdx +

∫
Rn

w2
m(x)dx

)

≤ lim sup
m→∞

(∫
Rn

∫
B(0,ρεm (x))

|wm(x + z) − wm(x)|2
|z|n+2α dzdx +

∫
Rn

w2
m(x)dx

)

+ lim sup
m→∞

∫
Rn

∫
Bc(0,ρεm (x))

|wm(x + z) − wm(x)|2
|z|n+2α dzdx

≤ lim sup
m→∞

2(p + 1)

p − 1
cρεm

+ lim sup
m→∞

2K |Sn−1|
αρ2α

0

ε2αm

= 2(p + 1)

p − 1
c = ‖w‖.

Here K is an estimate for ‖wm‖. Thus ‖wm‖2 → ‖w‖2 and hence wm → w in Hα(Rn). �

We are now in a position to complete the proof of our second main theorem.

Proof of Theorem 1.2 We first obtain an upper bound for the critical values cρεm
= cm , for

the sequence {εm} given in Lemma 5.3. Next we consider the scope function

ρ̃m(x) = 1

εm
ρ(εmx + x0),

where x0 is a global minimum point of H, see Lemma 4.1. To continue, we consider the
function wm = wεm as given in (5.8) and let tm > 0 such that tmwm ∈ Nρ̃m . According to
Lemma 5.3, {wm} converges to w ∈ N , then tm → 1 and tmwm → w.

Now we apply Theorem 4.1 to obtain that

cm ≤ Iρ̃m (tmwm) = I ρ∞
εm

(tmwm) + ε2αm
(‖w‖2L2H(x0) + o(1)

)
. (5.11)

We have used part (i) of Theorem 4.1 with zm = x0/εm .
On the other hand, since wm ∈ Hα(Rn) is a critical point of Iρ̄m , we have that

cm = Iρ̄m (wm) ≥ Iρ̄m (tmwm). (5.12)

We write ym = yεm . If εm |ym | → ∞, then we may apply part (ii) of Theorem 4.1 with
zm = ym in 5.12 and obtain that

cm ≥ I ρ∞
εm

(tmwm) + ε2αm o(1),

which contradicts (5.11). We conclude then, that {εm ym} is bounded and that, for a subse-
quence, εm ym → x̄ , for some x̄ ∈ R

n . Now we apply Theorem 4.1 again, but now part (i)
with zm = ym in 5.12, and we obtain that

cm ≥ I ρ∞
εm

(tmwm) + ε2αm
(‖w‖2L2H(x̄) + o(1)

)
. (5.13)

From (5.11) and (5.13) we finally get that

‖w‖2L2H(x) + o(1) ≤ ‖w‖2L2H(x0) + o(1)

and taking the limit as m → ∞, we get

H(x) ≤ H(x0) (5.14)

completing the proof of the theorem. �
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