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We present an unsupervised method that selects the most relevant features using an
embedded strategy while maintaining the cluster structure found with the initial feature
set. It is based on the idea of simultaneously minimizing the violation of the initial cluster
structure and penalizing the use of features via scaling factors. As the base method we use
Kernel K-means which works similarly to K-means, one of the most popular clustering
algorithms, but it provides more flexibility due to the use of kernel functions for distance
calculation, thus allowing the detection of more complex cluster structures. We present an
algorithm to solve the respective minimization problem iteratively, and perform experi-
ments with several data sets demonstrating the superior performance of the proposed
method compared to alternative approaches.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Clustering aims at discovering the internal organization of a dataset by finding structure within the data in the form of
clusters [31]. In this paper we focus on partitioning as opposed to hierarchical cluster methods. Intuitively, the resulting par-
titions should be characterized by within-cluster similarity and between-cluster dissimilarity.

Assuming that a good partition can be obtained by a particular clustering method (e.g. K-means [22] or Kernel K-means
[11]) using all available variables, we propose to select the most important features by reducing the dimensionality while
maintaining the initial cluster structure.

We use Kernel K-means as clustering technique which allows recognizing more complex cluster shapes than traditional
K-means because of its non-linear distance function based on kernels. The main goal of this work is to reduce the dimension-
ality of the feature space while adjusting the respective kernel shape. In this particular case we use an anisotropic Gaussian
kernel.

We propose a backward elimination procedure based on an iterative algorithm that updates the kernel variables via scal-
ing factors in order to adjust the shape of the kernel. A concave penalty function that approximates the cardinality of the
scaling factors is also included in order to encourage feature selection.

In Section 2 we present the approaches that are necessary to introduce our proposed method, such as feature selection for
clustering, alternative techniques for feature ranking, and Kernel K-means which is the base method we build on. Section 3
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introduces the proposed Kernel-Penalized K-means. Experimental results are provided in Section 4. Finally, Section 5 con-
cludes this paper and indicates possible future developments.
2. Feature selection for clustering

Section 2.1 provides a brief introduction regarding the use of feature selection for clustering. Subsequently, in Sections
2.2, 2.3, and 2.4 we present four approaches for feature selection that will be used in the experimental part of this paper.
Finally, Section 2.5 presents Kernel K-means, the clustering method on which we built our proposed feature selection
approach.

2.1. Introduction to feature selection for clustering

Feature selection is an important data mining topic, especially in high-dimensional applications. It addresses the dimen-
sionality reduction problem by finding a subset of available features with which to build a good predictive model. Feature
selection has several advantages: first, a low-dimensional representation of the data reduces the risk of overfitting caused by
the curse of dimensionality, improving the model’s generalization ability by decreasing its complexity [14,23]. Additionally,
appropriate selection of the most relevant features allows better interpretation of the predictive model. This is particularly
important in application areas such as business analytics and biotechnology since practitioners often consider data mining
methods to be black boxes, and are therefore hesitant to use them [7]. The understanding of the process that generates the
data is also of crucial importance in business analytics, for example, to identify the relevant customer attributes that lead to a
better understanding of their behavior.

Most distance-based clustering techniques assume that all variables are equally important when computing the similar-
ity between data points. This assumption does not necessarily hold true since attributes have a different impact on cluster-
ing: while some of them may be relevant for determining the structure of the problem, others may have no impact on the
clustering process or may adversely affect the model, blurring the clusters [1]. As a consequence, clustering algorithms may
fail at identifying the underlying structure of the data in high-dimensional applications with a great number of irrelevant and
noisy features. In those cases, feature selection could be useful for detecting and removing those attributes, providing a more
efficient clustering process.

Although a plethora of feature selection techniques has been proposed in the literature for supervised learning, only rel-
atively few methods are available for unsupervised learning. One such approach was presented by Dyer et al. [13] who pro-
vide theoretic results for exact feature selection in subspace clustering. Recently, techniques for feature weighting in
unsupervised learning have been proposed [17], but they use the concept of probabilistic clustering. Furthermore,
approaches that attempt to detect irrelevant variables by measuring the correlation between features and class labels, are
not suitable for unsupervised learning since such labels are not available.

Feature selection algorithms can be categorized into supervised, unsupervised, or semi-supervised algorithms depending
on the utilization of the respective class label information [1]. Furthermore, four main categories of methods for feature
selection for clustering can be identified [1,14]: filter, wrapper, hybrid, and embedded approaches.

Filter methods remove features independently from the clustering algorithm, usually before applying any technique.
Relevance is assessed using a predefined criterion, which could be redundancy [34] or data entropy [9], for instance.

Wrapper methods interact with the respective clustering technique and explore the entire set of variables to identify good
feature subsets according to their influence in the clustering, which is computationally more demanding, but often provides
better results than filter methods [1,10]. A common wrapper strategy is Sequential Backward Elimination (SBE) [19]. SBE
starts with all available variables and tests them one by one, deleting any variable that is not relevant. Wrapper methods
for clustering can consider k-means [18], EM (Expectation–Maximization) [12], and entropy measures [10], among others.

Hybrid approaches combine both filter and wrapper strategies by selecting candidate subsets efficiently via filter methods,
while assessing them according to their cluster quality via wrapper approaches. Using such a procedure alleviates the com-
putational costs incurred by wrapper models, while improving the quality of the clusters by providing knowledge of the clus-
tering method in advance.

Embedded methods select features simultaneously with model construction. Although several of such approaches have
been proposed for supervised learning (see e.g. [23,25,26]), there are very few embedded methods in the clustering litera-
ture. The proposed methodology introduced in Section 3 of this work belongs to this category.

2.2. Feature ranking via PCA and GHA

Extracting principal components from a set of attributes that represent observed instances can be used as a filter tech-
nique for unsupervised feature selection. Various methods have been proposed in the literature to perform such extraction
of principal components, including: Principal Component Analysis (PCA), Kernel PCA, Singular Value Decomposition (SVD),
non-linear PCA, and the Generalized Hebbian Algorithm (GHA); see Lee and Verleysen [20] for an overview on the respective
approaches. The main drawbacks of using the extracted components instead of the original attributes are the difficulty of
understanding the clusters based on the new features, and the fact that all the available information is actually used to
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construct the components [1,10]. These methods can be adapted to rank the original attributes in terms of their influence on
the components. In particular, we use the weights associated with each attribute that construct the first component to rank
the variables in terms of relevance. As a consequence, the focus of these methods is on removing redundancy rather than
detecting those attributes that are important for generating the structure of the data.

In our work we use Principal Component Analysis (PCA) and Generalized Hebbian Algorithm (GHA) for feature ranking.
We do not present a detailed description of PCA here but refer the reader to Lee and Verleysen [20]. GHA offers certain
advantages over PCA since it determines the principal components in an iterative way rather than calculating the covariance
matrix as is the case in PCA. This is particularly appealing in the case of high-dimensional data sets which are of special inter-
est in our study.

GHA was presented in Sanger [29] and generalizes the learning rule proposed in Hebb [16]. Inspired by insights on synap-
tic plasticity in neuroscience, this rule basically says that the weight between two neurons increases if both neurons are
active at the same time. Applying this idea to the extraction of principal components can be formalized as follows:
y ¼
Xm

i¼1

wixi ð1Þ
where xi represents input neuron (attribute) i and wi its weight, i ¼ 1; . . . ;m. y is the single output neuron of a one-layer feed-
forward neural network and represents the first principal component as will be shown below. GHA uses the following iter-
ative updating rule to determine the attribute weights:
wiðnþ 1Þ :¼ wiðnÞ þ ayðnÞ xiðnÞ � yðnÞwiðnÞ½ � ð2Þ
where n is the iteration counter and a is a positive learning rate.
It can be shown that y is the first principal component [28]. By using a single-layer feedforward neural network with k

output neurons the first k principal components are determined in an analogous way.

2.3. Spectral feature selection

Spectral feature selection (SPEC) [34] is a unifying framework for supervised and unsupervised feature selection based on
spectral graph theory [8]. To bridge the gap between both approaches SPEC focuses on the so-called target concept rather
than on specific information based on class labels (in the case of supervised learning) or innate cluster structures (in the case
of unsupervised learning).

Since pairwise instance similarity is widely used in both supervised and unsupervised learning to describe the relation-
ships among instances, SPEC starts with a matrix S of pairwise similarities of instances. By using, for example, the Radial
Basis Function as the similarity measure between two instances i and j with their respective feature vectors xi and xj

(i; j 2 f1; . . . ;Ng), we get:
Sij :¼ e�
kxi�xjk

2

2r2 ð3Þ
The main idea behind SPEC is that instances that are close to each other in the feature space (i.e. that are similar to each
other) behave similarly and therefore should belong to the same target concept, here cluster. Spectral graph theory reveals
the structure in the related graph induced by the similarity matrix S and assigns the corresponding weights to each feature
using the Laplacian L and its normalized version L.

Using the similarity matrix S, an undirected graph G ¼ ðV;EÞ is constructed where each vertex v i 2 V represents an
instance i and between any two instances i and j there is an edge eij 2 E with weight wij ¼ Sij. For this graph an adjacency
matrix W and a degree matrix D are computed as follows:
Wij :¼ Sij

Dij :¼ di if i ¼ j and 0 otherwise; with di ¼
XN

k¼1

wik
The Laplacian matrix L and the normalized Laplacian L are calculated as follows:
L ¼ D�W and L ¼ D�
1
2LD�

1
2

Feature weights are determined in SPEC based on the following three functions (see [34]):
u1ðFiÞ ¼ f̂ T
i Lf̂ i ¼

Xn�1

j¼1

a2
j � kj; ð4Þ
where Fi represents feature i; f i 2 Rn is the vector associated with feature Fi; kj is the jth eigenvalue of the Laplacian matrix L,

(kj; nj) is the eigensystem of matrix L, and aj ¼ cos hj with hj the angle between f i and nj. Dividing u1ðFiÞ by
Pn�1

j¼1 a2
j , we obtain

its normalized version as follows:
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u2ðFiÞ ¼
Pn�1

j¼1 a2
j � kjPn�1

j¼1 a2
j

ð5Þ
For situations where the number of clusters K is known, the following function has been proposed:
u3ðFiÞ ¼
XK�1

j¼1

ð2� kjÞ � a2
j ð6Þ
For each one of these functions, extensions for feature ranking have been suggested. The experimental part of the present
paper contains only clustering applications with a few classes, including a case in which the authors of the SPEC method
propose to use the extension of u1ðFiÞ [34].
û1ðFiÞ ¼ f̂ T
i cðLÞf̂ i; i ¼ 1; . . . ;m ð7Þ
These weights are used for feature ranking and feature selection in Section 4.

2.4. Multi-cluster feature selection

Similar to SPEC, as presented in Section 2.3, the method for Multi-Cluster Feature Selection (MCFS) starts with an undi-
rected graph G ¼ ðV;EÞ, for which the Laplacian matrix L is calculated; see [6]. For this calculation, different weighting
schemes Wi;j for nodes i; j 2 V have been proposed. Solving the following generalized eigenproblem:
Ly ¼ kDy ð8Þ
leads to eigenvectors yk that are used in the error minimization problem:
min
ak

kyk � XT akk2 þ bkakk1 ð9Þ
which has the following equivalent formulation:
min
ak

kyk � XT akk2

s:t: kakk1 6 c
ð10Þ
where k � k denotes the Euclidean norm, while k � k1 denotes the Manhattan norm. This optimization problem can be solved
by using the Least Angle Regression (LAR) algorithm, as suggested in Cai et al. [6].

The previously described procedure provides K coefficient vectors ak 2 RM ; k ¼ 1; . . . ;K where K is the number of clusters
and M is the number of feature candidates. For these vectors the MCFS score of feature j is defined as follows:
MCFSðjÞ ¼max
k
jak;jj ð11Þ
Features are now ordered according to their MCFS score and the first d features are selected.

2.5. Kernel K-means

In this subsection we briefly present the method Kernel K-means. For a more detailed presentation, see Dhillon et al. [11].
The Kernel K-means algorithm assigns each training observation i 2 f1; . . . ;Ng to one (and only one) of the K clusters

available. These assignments can be characterized by an encoder C where CðiÞ ¼ k means that the ith instance is assigned
to the kth cluster; k 2 f1; . . . ;Kg [15]. This is performed by minimizing the total within cluster variance (also known as
energy) in a greedy fashion, based on a two-step procedure. For a given encoder C, the total cluster variance is minimized
with respect to a set of decision variables fm1; . . . ;mKg, which are the means of the current clusters (i.e. the cluster cen-
troids). The Kernel K-means algorithm follows:

Algorithm 1. Kernel K-means algorithm

Random initialization of cluster centroids.
repeat
1. Given a current set of centroids fm1; . . . ;mKg, the total cluster variance is minimized by assigning each observation to

the closest (current) cluster mean. That is, the cluster to which a data point i should be assigned is given by:
CðiÞ ¼ argmin16k6K /ðxiÞ �mkk k2 ð12Þ

2. For a given cluster assignment, i.e. for a given encoder C, update the cluster centroids in the same way as in tradi-

tional K-means.
until Convergence is reached (assignments do not change)
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Eq. (12) can be rewritten using Kernel functions:
/ðxiÞ �mkk k2 ¼ /ðxiÞk k2 � 2h/ðxiÞ;mki þ mkk k2 ¼ Kðxi;xiÞ �
2

Nk

X
i0 :Cði0 Þ¼k

Kðxi;xi0 Þ þ
1

N2
k

X
i:CðiÞ¼k

X
i0 :Cði0 Þ¼k

Kðxi;xi0 Þ ð13Þ
where Kðxi;xi0 Þ is the kernel matrix of the training set for two examples i; i0 2 f1; . . . ;Ng. Following the notation used by
Hastie et al. [15], the sum over fi : CðiÞ ¼ kg indicates all the instances i that are assigned to cluster k.

3. Proposed method for Kernel-Penalized feature selection

Kernel-Penalized K-means (KP-Kmeans), an embedded method for feature selection using Kernel K-means, is proposed in
this section. The reasoning behind our approach is that we can construct a partition similar to the one obtained by using all
features but selecting just the most relevant ones by penalizing their use via a concave approximation of the zero norm.
Specifically, this is achieved by modifying the shape of an anisotropic Gaussian kernel used for Kernel K-means.

In this work we use the anisotropic Gaussian Kernel [23,26]:
Kðxi;xi0 ; mÞ ¼ exp � jjm � xi � m � xi0 jj
2

2

 !
ð14Þ
where � denotes the componentwise vector product operator, which is defined as a � b ¼ ða1b1; . . . ; anbnÞ.
The idea is to modify the Gaussian kernel that generates the original structure via scaling factors of an anisotropic

Gaussian kernel. The number of the scaling factors is penalized in the objective function (via a zero norm approximation),
maintaining approximately the original clustering solution (i.e. the solution obtained using all features).

The following feature penalization function is proposed, in which the approximation parameter b is also considered.
f ðmÞ ¼ eTðe� expð�bmÞ ¼
Xn

j¼1

½1� exp �bmj
� �

� ð15Þ
Bradley and Mangasarian suggest setting b ¼ 5 since this value gave useful results in various settings [5]. Assuming that
all elements are already assigned to a cluster k (for instance, using Kernel K-means over all variables), i.e. considering an
encoder C with CðiÞ ¼ k for all observations i 2 f1; . . . ;Ng, the following family of inequalities must hold in order to respect
this structure completely:
/ðxiÞ �mkk k2
6 /ðxiÞ �mk0k k2

; 1 6 i 6 N; 1 6 k0 6 K; k0 – k ð16Þ
which essentially means that the distance of an element i represented by its feature vector xi to its centroid mk should be
smaller than its distance to all other clusters k0 represented by their centroids m0k.

Since our goal is to ensure that all elements should be labeled maintaining the original cluster structure (a problem that
could also be computationally prohibitive, and would not allow us to improve the clustering by removing noisy attributes),
we propose the following metric that we want to minimize by introducing scaling factors:
ERðCÞ ¼
XK

k¼1

X
i:CðiÞ¼k

X
k0–k

/ðxiÞ �mkk k2

/ðxiÞ �mk0k k2 ð17Þ
We refer to (17) as energy ratio (ER) for a given encoder C. Minimizing ER is a relaxation of (16) since it allows violations of
some of the respective inequalities but minimizes the sum of their violations.

To incorporate the concept of the anisotropic Gaussian kernel in our proposal, we rewrite measure (17) according to the
derivation presented in Eq. (13):
ERðCÞ ¼
XK

k¼1

X
i:CðiÞ¼k

X
k0–k

Hm;k

Hm;k0
; ð18Þ
where
Hm;k ¼ Kðxi; xi; mÞ �
2

Nk

X
i0 :Cði0Þ¼k

Kðxi;xi0 ; mÞ þ
1

N2
k

X
i:CðiÞ¼k

X
i0 :Cði0 Þ¼k

Kðxi; xi0 ; mÞ: ð19Þ
The minimization problem we propose to solve includes both objectives simultaneously: the minimization of the energy
ratio (to maintain the original cluster structure) and the penalization of feature usage (to select features), as follows:
min
m

Fðm;CÞ ¼
XK

k¼1

X
i:CðiÞ¼k

X
k0–k

Hm;k

Hm;k0
þ kf ðmÞ

mi P 0 8i 2 f1; . . . ;Ng
ð20Þ
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where k is a predefined parameter that controls the tradeoff between the feature penalization given by Eq. (15) and the min-
imization of the energy ratio.

Instead of solving problem (20), we propose the following iterative algorithm, which extends the ideas of KP-SVM pre-
sented in Maldonado et al. [23]. The algorithm updates the kernel width m iteratively via successive gradient descent steps,
eliminating those features that fall below a threshold �, as follows:

Algorithm 2. Kernel width updating and feature elimination

1. Start with m ¼ m0e;
2. repeat
3. C  Kernel k-means clustering
4. repeat
5. m  m � crFðm; CÞ
6. for all(mj < �) do
7. mj ¼ 0;
8. end for
9. until 9j j mj ¼ 0

10. until Convergence is reached

The algorithm initializes with an isotropic kernel width obtained from a predefined value m0, and then performs Kernel
K-means clustering iteratively to obtain the encoder function C and updates the kernel widths until one or more elements of
vector m fall below the threshold �. The algorithm stops when convergence is reached, i. e. when kernel widths do not change
between iterations or no features are eliminated after a predefined number of iterations.

In line 5. the algorithm adjusts the kernel variables by using the gradient descent procedure, incorporating a gradient
parameter c. In this step the algorithm computes the gradient of the objective function in formulation (20) for a given enco-
der C, obtained by training Kernel K-means clustering using Algorithm 1. For feature j, the gradient of Fðm;CÞ is:
rjFðm;CÞ ¼
XK

k¼1

X
i:CðiÞ¼k

X
k0–k

rj
Hm;k

Hm;k0
þ krjf ðmÞ ð21Þ
where
rj
Hm;k

Hm;k0
¼
rjHm;k � Hm;k0 � rjHm;k0 � Hm;k

H2
m;k0

ð22Þ
and
rjHm;k ¼ rjKðxi;xi; mÞ �
2

Nk

X
i0 :Cði0 Þ¼k

rjKðxi;xi0 ; mÞ þ
1

N2
k

X
i:CðiÞ¼k

X
Cði0 Þ¼k

rjKðxi;xi0 ; mÞ ð23Þ
For a Gaussian kernel, we have
rjHm;k ¼ �
2

Nk

X
i0 :Cði0 Þ¼k

ðmjxij � mjxi0jÞ
2Kðxi; xi0 ; mÞ þ

1
N2

k

X
i:CðiÞ¼k

X
i0 :Cði0 Þ¼k

ðmjxij � mjxi0jÞ
2Kðxi; xi0 ; mÞ ð24Þ
Finally, for the penalty function we have
rj f ðmÞ ¼ bexp �bmj
� �

ð25Þ
4. Experimental results

The experiments we report in this section use artificially generated as well as real-world datasets. We first compared dif-
ferent feature selection approaches presented in this work using six artificially generated data sets, available in Zelnik-Manor
and Perona [33]. Subsequently, we performed experiments using eight publicly available benchmark datasets.

4.1. Experiments using artificially generated data sets

We used six artificially generated datasets called toy1, . . ., toy6. Each one of these sets contains between 238 and 622
instances, which are described by two variables. Data points are arranged in relatively complex shapes and assigned to
between 3 and 5 clusters. For example, Fig. 1 illustrates the shape of dataset toy3. More details about these datasets can
be found in Zelnik-Manor and Perona [33].
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To make these datasets suitable for feature selection, we generated four sets of irrelevant attributes for each one: 10 inde-
pendently generated attributes, 10 correlated attributes, 100 independently generated attributes, and 100 correlated attri-
butes. All variables were created using a Gaussian distribution with zero mean and unit variance. For correlated variables, we
used a correlation of 0.3 for all pairs of variables. The relevant variables were also scaled to have zero mean and unit variance.

The goal of these experiments is to assess whether the feature selection methods are able to identify the relevant features
used to construct the initial clusters. For the proposed method, we trained the model with the following parameters for all
cases: m0 ¼ 1, which was suggested in Rifkin and Klautau [27] as a good guess for the kernel width with normalized data,
� ¼ 0:0001 and b ¼ 5, as suggested in Bradley and Mangasarian [5]. We set k and c as a function of the energy ratio at each
iteration of the algorithm, to achieve an adequate balance between clustering performance and feature selection, and to
obtain updated steps of proper size. When our method reaches convergence, we identify whether both relevant variables
belong to the subset of selected attributes (denoted by U), or only one relevant variable belongs to the subset of selected
attributes (denoted by r), or all selected variables are irrelevant (denoted by ).

For filter approaches, we use PCA, GHA, MCFS, and SPEC methods to rank all variables, and we identify if both, one or none
of the relevant variables belong to a subset of n ranked features, where n is the number of attributes selected by KP-Kmeans.
Since filter approaches do not provide a criterion for finding an optimal number of ranked features, comparing the perfor-
mance of all methods for a similar number of attributes is a fair strategy for assessing which approaches succeed at detecting
the attributes used to create the underlying structure of the data. The comparisons between all approaches are presented in
Table 1 where each line represents a dataset; for example, ‘‘toy1 10u’’ signifies the dataset based on toy1 but with 10 addi-
tional variables that are uncorrelated.

In Table 1 we observe that KP-Kmeans is able to find those attributes that were used to arrange the shape of the datasets
in all cases. The model also selects between one and three noisy attributes, leading to a total of three to five variables in the
clustering model. Using the number of selected variables as an input for the alternative models makes their performance
completely different: in most cases these methods rank the relevant variables as the most irrelevant ones. For SPEC,
MCFS, and PCA, the two relevant variables were ranked as the least important ones for 10-variable datasets, and among
the 10 least relevant for 100-variable datasets. The GHA method performed slightly better, especially for independently gen-
erated 10-variable datasets.

Notice that the performance of our proposed approach, given its embedded structure, relies heavily on the initial cluster-
ing. Complex data structures may require advanced techniques for model selection, and, in particular, the right choice of the
kernel width r. Automatic techniques for the definition of this parameter, such as the one presented in Zelnik-Manor and
Perona [33], can be very useful in defining the method’s initial kernel width.
4.2. Benchmark datasets

In this section we first briefly describe the datasets used for benchmark. Then we present the results we obtained with
different methods.

We studied four datasets from the UCI Machine Learning Repository [3]: Iris, Wine, Glass, and Waveform; and one dataset
from the Statlog Project Databases, also available from UCI Repository: Segment dataset. Additionally, we studied four
high-dimensional microarray datasets for multiclass classification: SRBCT [21], Lung [4], MLL [2], and Glioma [24]. These four
microarray datasets for cancer diagnosis have been used previously for machine learning purposes as was reported in [32].
All these datasets are used for supervised learning. Here we use the respective class labels exclusively to determine the clus-
ter number. Microarray datasets have also been used for unsupervised learning in Hastie et al. [15].
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Fig. 1. Illustrative example: dataset toy3.



Table 1
Feature selection performance for all toy data sets.

n KP-Kmeans PCA GHA SPEC MCFS

toy1 10u 4 U r

toy1 10c 4 U U

toy1 100u 3 U

toy1 100c 3 U

toy2 10u 4 U U

toy2 10c 3 U

toy2 100u 4 U

toy2 100c 3 U

toy3 10u 3 U

toy3 10c 3 U

toy3 100u 4 U

toy3 100c 4 U

toy4 10u 4 U U

toy4 10c 3 U

toy4 100u 5 U

toy4 100c 3 U

toy5 10u 4 U U

toy5 10c 4 U

toy5 100u 5 U r

toy5 100c 3 U

toy6 10u 4 U U

toy6 10c 4 U

toy6 100u 4 U

toy6 100c 3 U
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Table 2 summarizes the relevant information for each benchmark dataset.
In order to study the performance of KP-Kmeans we compare the results for a given number of features n (determined by

the stopping criterion of our approach) with different feature selection algorithms for clustering presented in Section 2 of
this paper (PCA, GHA, MCFS, and SPEC). For all the approaches, we define the number of clusters as the number of different
class labels of the respective datasets. For filter methods, a ranking is performed and then Kernel K-means is trained using n
variables with r ¼ 1. The clustering accuracy of all methods is computed as the percentage of correct assignments of all
examples, and reported in Table 3. The best performance among all methods in terms of accuracy is highlighted in bold type.
Notice that the labels are not used for training, only for computing the clustering accuracy.

In Table 3 we observe that the proposed method performs better on six out of nine datasets, and, in particular, on three
out of four high dimensional microarray datasets. The gain is important in most cases, while the dimensionality reduction
achieved with the proposed method (from 47.4% to 99.8%) allows the practitioner to concentrate on those few attributes that
are relevant for generating the structure of the data.

For the next experiment we compared all approaches in terms of accuracy for an increasing number of features. We com-
pute the accuracy at each removal step of the algorithm (steps 6 to 8 of Algorithm 2), while training Kernel K-means for an
increasing number of ranked features using filter methods. As an illustrative example, we report the results for the Lung
dataset (Fig. 2), which is the only high dimensional dataset on which we have been able to reconstruct the whole accuracy
curve, given the small number of attributes selected when the stopping criterion is reached.

In Fig. 2 we observe very stable results for the proposed method along the curve, reaching their peak at 1,000 attributes,
and with only a slight decrease in accuracy until the convergence is finally reached with seven attributes. SPEC behaves sim-
ilarly, with a peak at 2000 features (best overall performance), but with a steeper decrease in accuracy. Both methods out-
performed MCFS, PCA, and GHA on this dataset. These experiments allowed us to determine the right compromise between
performance and dimensionality reduction.
Table 2
Number of examples, number of variables, and number of
classes for all nine data sets.

Dataset #examples #variables #classes

IRIS 150 4 3
WINE 178 13 3
GLASS 214 13 6
WAVEFORM 5000 21 3
SEGMENT 2310 19 7
SRBCT 83 2308 4
LUNG 203 3312 5
GLIOMA 50 4433 4
MLL 72 5848 3



Table 3
Feature selection performance for all benchmark datasets.

n KP-Kmeans PCA GHA SPEC MCFS

Iris 2 94.7 88.0 88.0 66.7 56.0
Wine 2 75.3 48.9 65.7 70.2 72.4
Glass 5 54.7 47.2 50.5 51.4 44.9
Segment 10 53.9 51.1 59.2 53.8 57.2
Waveform 5 51.5 55.8 51.8 53.7 52.0
SRBCT 301 49.4 44.6 47.0 37.3 66.3
Lung 7 65.0 62.1 47.8 60.1 45.8
Glioma 901 76.0 46.0 36.0 54.0 66.0
MLL 108 87.5 70.8 72.2 70.8 84.7
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Fig. 2. Performance versus the number of selected variables for various feature selection approaches. Lung dataset.
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4.3. Influence of the parameters and discussion

One advantage of the proposed approach in terms of computational effort is that it automatically obtains an optimal fea-
ture subset, avoiding a validation step to determine how many ranked features will be used for clustering. However, several
parameters should be tuned in order to obtain the final solution. In this section we study the performance of KP-Kmeans by
varying one parameter at a time, showing its influence on the final solution.

To illustrate the influence of parameters k and c in the clustering model, Table 4 presents the performance in terms of
classification accuracy and number of selected features for the MLL data set. We vary the parameters according to the fol-
lowing values: c; k 2 f2�5;2�4;2�3;2�2;2�1;20;21;22;23;24;25g.
Table 4
Feature selection performance for MLL dataset.

k n c n

2�5 41.7 1774 84.7 911

2�4 81.9 253 84.7 215

2�3 84.7 115 84.7 115

2�2 87.5 108 84.7 115

2�1 87.5 108 84.7 115

20 84.7 115 87.5 108

21 84.7 115 87.5 108

22 48.6 0 87.5 108

23 48.6 0 87.5 108

24 48.6 0 87.5 108

25 48.6 0 87.5 108



S. Maldonado et al. / Information Sciences 322 (2015) 150–160 159
In Table 4 we observe that performance is relatively stable for the different values of k between 2�4 and 21, while for
higher values the proposed method tends to remove all attributes. For parameter c, results remain relatively stable for all
the values studied, using k ¼ 2�1. This experiment demonstrates the method’s stability with respect to these parameters,
although it is still important to calibrate them using clustering-based metrics.

5. Conclusions and future work

Feature selection is an important task for knowledge discovery, especially as more and more data becomes available.
While very many feature selection methods have been developed for supervised learning (classification as well as regres-
sion) this is not the case for unsupervised learning.

In this paper we propose Kernel Penalized K-means (KPKM), an unsupervised learning technique for embedded feature
selection in combination with Kernel K-means. Its main idea is to minimize the violation compared to the initial cluster
structure while simultaneously penalizing the use of features, thus achieving a compromise between a good cluster solution
with few features. Advantages are a better understanding of the analyzed phenomena, better knowledge for the user on
which attributes to concentrate on, and reduced computational complexity for future investigation. We have been able to
show that KPKM outperforms alternative approaches on all the artificially generated datasets we used as well as on most
benchmark datasets in use.

It is important to mention that wrapper or embedded feature selection approaches for clustering are only useful if there is
prior knowledge that using all the candidate attributes leads to adequate clustering, while the feature selection strategy is
used to polish this partition by removing those attributes that are unrelated to the inherent structure of the data. A discus-
sion on this topic can be found in Alelyani et al. [1], in which the authors questioned the usefulness of wrapper or embedded
methods since they depend on clustering inputs, and therefore few benefits can be gained from such processes. We believe
that embedded feature selection can be very useful in domains such as business analytics (e.g. in customer segmentation
tasks), where there are important collection costs linked to each attribute, while the understanding of the underlying behav-
ior of the customers is of primary interest [30]. If no good clustering can be obtained with the candidate variables, a hybrid
two-step clustering strategy is suggested, in which features are first filtered out via approaches such as SPEC until a satis-
factory partition is found, while KPKM can be used to further polish this clustering.

Future work needs to be done along the following lines. The base algorithm, K-means in the case of this paper, could be
replaced by alternative clustering techniques. Support Vector Clustering especially seems to be an interesting avenue for
such research since it incorporates the use of kernels for clustering. Instead of working with a completely unsupervised
approach, it would be interesting to apply semi-supervised clustering to maintain the cluster structure for ‘‘most’’ of the
instances to be clustered. Fuzzy clustering could also be interesting for balancing the goal of maintaining the cluster struc-
ture in a fuzzy rather than a crisp notion. Finally, it could be interesting to observe and detect changing feature importance
over time, thus improving current approaches to dynamic clustering.
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