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The purpose of this study is to identify the effect of ordinary and simple multi-Gaussian kriging (oMK, sMK)
estimation methods for the delineation of iron mineralized zones based on subsurface data using Concentration–
Volume (C–V) fractal modeling in the Dardevey iron ore deposit, NE Iran. Spatial data analyses (variograms and
anisotropic ellipsoid) were initially calculated for the Fe distribution. The C–V log–log plots based on the estimation
methods represent the various mineralized zones via threshold values. Additionally, variance in the both methods
was compared. The comparison and interpretation of the mineralized zones based on the C–V fractal modeling
show that the methods are similar, but the enriched and highly zones resulted by the oMK have variances lower
than the sMK method. Furthermore, the weakly and moderately mineralized zones have lower variances based
on the sMK method. According to the comparison and variance, optimum threshold values for enriched, highly,
moderately and weakly iron mineralized zones are 56%, 51%, 41% and 35%, respectively.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Fractal/multifractal modeling established by Mandelbrot (1983) has
been widely applied in different geoscience branches especially in the
spatialmodeling of differentmineralized zones and geochemical anom-
alies (e.g., Afzal et al., 2011, 2012; Agterberg et al., 1993; Carranza, 2008;
Cheng et al., 1994; Cheng, 1999, 2007; Heidari et al., 2013; Li et al., 2002,
2003, 2004; Lima et al., 2003; Ma et al., 2014; Zuo et al., 2009, 2012,
2013; Zuo and Wang, 2015). The Concentration–Volume (C–V) fractal
model proposed by Afzal et al. (2011) can be utilized to distinguish vari-
ousmineralized zoneswith respect to the threshold values (breakpoints).
As a result, the C–V fractal model is considered as a proper method to
describe spatial distributions of different attributes (ore elements in this
scenario) within the various orebodies (Agterberg, 2012; Cheng and
Agterberg, 2009; Sadeghi et al., 2012; Daneshvar et al., 2012; Yasrebi
et al., 2014).

Geostatistical tools have been considered as a powerful technique
for the purpose of uncertainty quantification where the mineral grade
is greater than the specific thresholds as an application to delineate geo-
chemical populations, mining, petroleum engineering and soil contam-
ination (Benndorf and Dimitrakopoulos, 2013; Chilès and Delfiner,
2012; Emery, 2007; Mao and Journel, 1999; Pyrcz and Deutsch, 2014;
Reis et al., 2003; Stegman, 2001; Subbey et al., 2004).

Selection of a proper estimation method is significantly critical for
fractal/multifractal approach especially for the C–V modeling which
behaves towards detection of threshold values for enhanced separation
of geological populations. Linear geostatistics such as conventional
approaches of kriging is unsuitable as a consequence of smoothing
property which suffers from order relation problems and requires the
variogram to be calculated in terms of cut-offs therefore; the results
are unrealistic from the practical point of view (over and under estima-
tion: Chilès andDelfiner, 2012; Cressie and Johannesson, 2001; Deutsch
and Journel, 1998; Costa, 2003). Other alternatives covering non-linear
spatial interpolation as indicators can be named as “disjunctive” and
“multi-Gaussian kriging” which have been widely accepted due to no
order relation problem and smoothing effect. Two forms of multi-
Gaussian kriging called simple and ordinarywere proposed for recover-
able resource assessments and mapping the probabilities. The simple
multi-Gaussian kriging assumes that the mean value is perfectly
known through the region and then restricts its usage (Emery, 2008;
Guibal and Remacre, 1984;Mare'chal, 1984; Schofield, 1988). Converse-
ly, ordinary multi-Gaussian kriging on the basis of unknown mean re-
garding mild assumption for driving an unbiased estimator was first
coined by Emery (2006a,b). This model relies on the “pseudo” con-
ditional distribution instead of “true” distribution which cannot assess
the local uncertainty. In this respect, they don't have the same
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distribution as the true one which is a practical issue in the fractal
modeling. To overcome this impediment, Emery (2008) proposed a
new approach to substitute the unknown mean for random variable
constant through the region and advantageously, the true conditional
distribution could be met. This method is highly recommended in the
case of some domains including trend in the variability of attribute
under study whereas universal kriging is problematic in variogram
analysis (Armstrong, 1984; Cressie, 1987; Matheron, 1971). However,
in practice, the characterization of the attribute distribution influences
results obtained by kriging (Deutsch and Rossi, 2014).

The main aim of this paper is to compare the accuracy and variance
of different mineralized zones which were derived by the C–V fractal
model based on ordinary multi-Gaussian (oMK) and simple kriging
(Msk) interpolation methods in the Dardevey iron ore deposit, NE Iran.
2. Methodology

2.1. Multi-Gaussian kriging

Multi-Gaussian models are applicable in the sense of non-linear
estimation and geostatistical simulation (Chilès and Delfiner,
Fig. 1. Location of studied area in structural m
2012; Verly, 1984). The related assumption is with respect to nor-
malization of underlying attribute to Gaussian random field regarding
themean0 andunit variance. Simple kriging typeof this approach implies
that any estimation of a random field is still Gaussian with the mean
and variance identical to the simple kriging spatial prediction.
The related formula is as follows (David, 1970; Rivoirard, 1994;
Verly, 1983):

f Yxð Þ½ �sMK ¼
Z

f yskx þ ∂skx u
� �

g uð Þdu ð1Þ

where:

f(Tx) the function of standard Gaussian variable
[f(Yx)]sMK simple multi-Gaussian kriging
yx
sk simple kriging estimation

∂xsk simple kriging variance
g(u) The standard Gaussian pdf.

With respect to the assumption of constant mean, simple multi-
Gaussian kriging is restricted and is not satisfactory. The crucial draw-
back is impractical evaluation in the case of inaccurate particularization
ap of Iran (Black Square; Stocklin 1977).
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of the mean. A substitution, which is more common in the practical
consideration, is ordinary multi-Gaussian kriging for the sake of over-
coming this condition. Emery (2006a,b,c) proposed the assumption of
ordinary multi-Gaussian kriging to make the estimator more wide
Fig. 2. Geological and structural map of the
spread-used and robust to the non-stationary variability in the domain
by replacing the unknown mean by random variable constant over
the space. Some researchers recommended implementing the ordi-
nary kriging but maintaining the simple kriging variance which is
studied area (Hasanipack et al., 2009).
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comprehensively imprecise (Goovaerts, 1997; Journel, 1980). Emery
(2006c) was warned against this point. Hence, the ordinary multi-
Gaussian kriging can be defined as the follow:

f Yxð Þ½ �oMK ¼
Z

f yð Þgokx yjdatað Þdy ð2Þ

where

gx
ok(y|data) is the Gaussian pdf with mean equal to yx

ok and variance
(∂xok)2 + 2μx

[f(Yx)]oMK Ordinary multi-Gaussian kriging.
(a)

(b)

Fig. 3. 2D (a), 3D drillcore location map (b) and sampling loc
In order to implement the multi-Gaussian kriging, it is suggested to
follow the consecutive procedures:

• Normal score transformation of the raw data
• Variogram analysis over the Gaussian variables
• Estimation of the Gaussian variables (simple or ordinary) and
cross-validation

• Back transformation to the original database

2.2. C–V fractal model

The C–V fractal model proposed by Afzal et al. (2011) is used to
delineate the different mineralized zones in order to characterize the
Fe ≥ 40%

20% ≤ Fe < 40%

Fe < 20%

ation for elevation 1574.11 m (c: Shahbeik et al. 2014).



(c)

Fig. 3 (continued).
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distribution of major, minor or paragenesis elemental concentrations in
relation to different types of deposits such as Cu porphyry, Pb–Zn with
carbonate host rocks, orogenic and epithermal gold, coal seams and
iron ores (e.g., Afzal et al., 2013, 2014; Delavar et al., 2012; Sadeghi
Fig. 4. Fe (%) histogram (a) and Fe trend
et al., 2012; Yasrebi et al., 2013). This model is expressed in the follow-
ing form:

V ρ b υð Þ∝ρ‐a1; V ρ≥υð Þ∝ρ‐a2 ð3Þ
analysis for the north direction (b).
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where, V(ρ b υ) and V(ρ ≥ υ) indicate volumes (V) with concentration
values (ρ) that are, respectively, smaller and greater than contour values
(υ), which define those volumes, and a1 and a2 are exponents. In the
log–log plots, elemental concentration values versus volume, certain
concentration contours (υ) represent threshold values (breakpoints)
which distinguish the mineralized zones in the different types of the
ore deposit according to distinct geochemical processes. Threshold
values recognized by themeans of theC–V fractalmodel are likely to ad-
dress the boundaries between different ore zones (Wang et al., 2013;
Rahmati et al., 2015; Soltani et al., 2014).

To calculate V(ρ b υ) and V(ρ ≥ υ) enclosed by a concentration con-
tour in a 3Dmodel, e.g., the original drillcore data of the ore element and
corresponding concentrations were interpolated using the oMK and
sMK estimation methods.
3. Geological setting of Dardevey deposit

The world-class Sangan iron skarn deposit is located in the Khaf–
Kashmar–Bardaskan Volcano-Plutonic Metallogenic Belt (NE Iran)
with a proven reserve of N1000Mt iron ore and 53% Fe. Skarnmineraliza-
tion happens at the contact of the 39.1± 0.6Ma to 38.3± 0.5MaMiddle
Eocene syenite to syenogranite porphyry plutonwith Cretaceous carbon-
ate rocks (Malekzadeh Shafaroudi et al., 2013; Golmohammadi et al.,
2015). The Sangan complex consists of several ore bodies such as
Dardevey, Baghak, A, A′, B, C andCNorth. TheDardevey deposit is situated
about 18 km NE of Sangan, as shown in Fig. 1. This area is located in the
Lut structural zone, which is one of the subdivisions of the Iranian central
structural zone at north Darouneh fault, as depicted in Fig. 1. Dardevey
iron ore includes a Fe skarn system and themetallicminerals in Dardevey
Green: Azimuth: -45, Dip: 0, (Horizontal)

Black: Azimuth: 45, Dip: 0,(Horizontal)

Blue: Azimuth: 0, Dip: 90 (Vertical)

Fig. 5. Semi-Variogram analysis; experim
deposit are magnetite, hematite, Goethite, pyrite, martite (Hasanipack
et al., 2009).

The Dardevey deposit is located in the southernmargin of the Upper
Eocene SarNowsar granite (biotite-amphibole granite) and occurs in an
east–west trending sequence of Upper Mesozoic sedimentary rocks.
The Magnetite skarn is formed in the black limestone and dolomite
(Jurassic–Lower Cretaceous). They are considered massive and in
some localities, they are around t 200 m thick. Mineral paragenesis is
magnetite ± hematite ± pyrite and some chalcopyrite ± garnet (an-
dradite) ± actinolite ± chlorite ± phlogopite calcite ± dolomite. The
Dardevey deposit is Mg-skarn and the Mg content of agnetite is around
1.22–1.26%. At least four stages of skarn formation and ore deposition
have been recognized within the area (stages I, II, III and IV a, b).
Based on satellite images and field observation, the Dardevey deposit
was displaced by a strike slip fault more than one Km from the Baghak
deposit (Ghavi and Karimpour, 2010).

Exploration drill cores and surface magnetic surveys in the study
area confirmed this motion and dips of the mineralized zone which
are inclined towards the South (80°–85°). The recognition of a fault sys-
tem and structural features are important because thesemaymaterially
affect the assessment and exploration of other segments of the hidden
ore body. In addition, themain structural features are two fault systems
trending the NW–SE and E–W, as depicted in (Fig. 2: Ghavi and
Karimpour, 2010).
4. Descriptive analysis

The dataset consists of 8456 samples with intervals of 2 m for
each originating from 156 exploration drillholes (Fig. 3) and the Fe
ental along with theoretical model.



Fig. 6. Fe block models based on sMK (a) and oMK (b).

Fig. 7. Scatter plot between the real a predicted model (left: Ordinary and right:

Table 1
Cross-validation parameters.

MSE MAE ME MEDE STDE

Ordinary 88.65 6.94 0.12 1.70 9.41
Simple 88.73 6.99 0.12 1.76 9.41

MSE: mean square error; MAE: mean absolute error; ME: mean error; MEDE: median
error; STDE: standard deviation of error.
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grade has been assayed over the samples. The empirical histogram
produced by cell de-clustering method to preserve the representa-
tiveness of the distribution to show that two populations are proba-
ble (Goovaerts, 1997: Fig. 3). Bimodality of the histogram analysis is
perfectly undimmed in the distribution. One may be interested to
separate more populations by fractal methodology. To implement
any geostatistical methodology, it is of interest to check the variabil-
ity of the underlying attribute over the region in which the trend ex-
ists. This issue is helpful for the good sense of decision on applying
the simple or ordinary kriging, with the assumption of stationary.
The most common practical technique is to consider the variability
of the attribute versus the principal coordinates. As can be seen
from the Fig. 4, the trend analysis in the north direction presents
two distinct regions. This is consistent with the two populations ob-
tained by the descriptive analysis of the histogram (Fig. 4). In the
first population, the variability of the Fe fluctuates around a constant
mean pretending the stationary while in the second population, the
Fe grade depends on the location and increases with a mild slope, in
which it presents non-stationary assumption. With respect to this
trend analysis, one encourages applying simple and/or ordinary
kriging (the trend in this random direction is presented to save
the space). The goodness of the methodologies of estimation is
discussed hereafter.
5. Spatial data analysis

Gaussian anamorphosis is incorporated for transferring de-
clustered Fe variables to a standard Gaussian random field as the
initial phase of multi-Gaussian kriging includes mean and variance
close to zero and one, respectively. In order to analyze the spatial
variability, the semi-variogram is calculated along the pre-
specified main directions of anisotropy as can be seen in Fig. 5
(Horizontal: −45°, with the practical range of 250 m and 45 or-
thogonal to that direction with the practical range of 20 m and a
vertical direction with the 20 m range). The five nested structures
simple multi-Gaussian kriging) — black line: diagonal; red line: regression.



Fig. 8. C–V log–log plots obtained via the means of Mok (a) and Sok (b) estimation methods.
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of nugget and spherical model (Sph) are fitted to the experimental
semi-variogram. The estimated model of variogram is presented as
follow:

γ hð Þ ¼ 0:31þ 0:25Sph 20; 20; 11ð Þ þ 0:16Sph 20; 20; 70ð Þ
þ 0:17Sph 20; 20; 180ð Þ þ 0:04Sph 250; ∞; 250ð Þ
þ 0:07Sph ∞; ∞; 250ð Þ: ð3Þ

To implement the multi-Gaussian kriging in the case of both simple
and ordinary, a block support of 10 × 10 × 12m3 is definedwith respect
to geometrical shape of deposit and grid drilling dimensions (David,
Table 2
Mineralized zones' thresholds for Fe obtained by the C–V modeling based on the oMK and sMK

Mineralized zone Fe (%) thresholds based on oMK Zone's range for Fe (%:

Barren host rock – b24
Very weak (A) 24 24–34
Weakly (B) 34 34–43
Moderately (C) 43 43–52
Highly (D) 52 52–56
Enriched (E) 56 N56
1970) for the prediction of normalized Fe. Based on the 3D models,
parts with Fe values higher than 50% occur in the NW and SE parts of
the studied area which have been constructed by RockWorks software
package (Fig. 6). The point support is deemed to preserve the primary
variance of Fe. The search radii are set to 800, 800, and 400 in which
two first ones are consistent with the horizontal and the last one with
the vertical directions, respectively. Each block involves the prediction
of mean grade above cut-off 0% to lunch the fractal analysis. This type
of estimation provides the most compatible variability of Fe within the
domains. Hence, these results are an input to the fractal analysis consid-
ering more populations.
estimation data.

oMK) Fe (%) thresholds based on sMK Zone's range for Fe (%: sMK)

– b28
28 28–35
35 35–41
41 41–49
49 49–52
52 N52



Fig. 9. Fe distribution at the level of 1574.11 m based on oMK (a) and sMK (b) and 3D model of C–V fractal modeling for oMK (c) and sMK (d).
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All estimation methodologies require some technique to assess
the underlying quality. Here, leave-one-out cross-validation is per-
formed for the mean grade above 0% (Journel and Huijbregts,
1978). In this approach, each data is removed and re-estimated by
the neighborhood data. Fig. 7 shows that both methods are performing
satisfactory with respect to the statistics on the cross-validation errors
as summarized in Table 1, while the scatter diagrams between true and
estimated Fe grade are shown in Fig. 7. Small mean error and the slope
regression tending to 1 suggest that both methods do not present bias
estimation.
Table 3
Variances of Fe Mineralized zones obtained by the C–V modeling based on the oMK and
sMK estimation data.

Mineralized
zone

oMK
variance

Zone's range for
Fe (%: oMK)

sMK
variance

Zone's range for
Fe (%: sMK)

Barren host rock (A) 234.84 b24 248.90 b28
Very weak (A) 279.93 24–34 275.34 28–35
Weakly (B) 268.90 34–43 262.70 35–41
Moderately (C) 198.20 43–52 215.21 41–49
Highly (D) 118.40 52–56 121.70 49–52
Enriched (E) 58.85 N56 61.74 N52
6. Fractal modeling

Fe mineralized zones were separated based on the results obtained
by the oMK and sMK using C–V fractal modeling. According to the C–V
log–log plots, six and seven populations for Fe were distinguished
based on the oMK and sMK estimation methods respectively, as
depicted in Fig. 8. The fitted lines (segments) were obtained based
on least-square regression method (Spalla et al., 2010). This regres-
sion was calculated with respect to R2 values which vary between 0
and 1. If R2 values are high and near to 1 so the segment has been
better fitted (Davis, 2002). The barren host rocks have Fe values
lower than 28% and 24% (based on oMK and sMK) obtained via the
C–V log–log plots which occur in the marginal parts of the area
(Table 2 and Fig. 9). Additionally, enriched zones derived via the
sMK and oMK are higher than 52% and 56% which are present in
small parts of the central, SE, W and NW parts of the area, as
depicted in Table 2 and Fig. 9. According to the sMK and oMK inter-
polated results, the highly iron mineralized zones have Fe values
48–52% and 51–56% which occur in the central, SE, W and NW
parts of the studied deposit (Fig. 9).

Consequently, the variances of different Fe populations derived
via fractal modeling show that there is a similarity between trends
of the variances' variations (Table 3 and Fig. 10). Variances derived



Fig. 10. Variances at the separated populations by the C–V fractal modeling (Red: sMK; Black: oMK).
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via the oMK are lower than that for sMK in the moderately (41–
49%), enriched (N56%) and highly (52–56%) Fe mineralized zones
however; the values of variance within other mineralized zones
are lower on the basis of sMK including barren host rocks (b24%),
weakly (35–41%) and very weak (28–35%). As a result, this can be
considered as criteria for optimization of mineralized zones' deter-
mination by the C–V fractal/multifractal modeling.
Fig. 11.Multi-Gaussian kriging; Top: estimation results; B
7. Post processing of the multi-Gaussian kriging

Prior to analysis on the local variability, it is of interest to review the
produced estimated maps of oMK and sMK with their variances
(Fig. 11). Separating the Fe populations by the C–V fractal modeling
can characterize each domain entirely. The proper application of the
multi-Gaussian kriging evaluates the tonnage, metal quantity and
ottom: local variance; Right: ordinary; Left: simple.



Fig. 12. Post processing of the ordinarymulti-Gaussian kriging (oMk) for Fe values higher
than the first threshold (24%).
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mean grade above the specified threshold (e.g., N24% entitled “Com-
mence of Fe mineralization”: Fig. 12). These maps are one of the most
effective mineral inventory information and are advantageous at differ-
ent stages of ore body evaluations. They also provide an intuitive assess-
ment of resources on the basis of exploratory data in the first step of the
general size (tons of ore or quantity of metal) of the estimation within
various cut offs. In this step, the estimates are neither resources nor re-
serves in the strict sense. During planning and production, these maps
can be incorporated to the quantities of tones and metals to be mined
over a specific time interval at the desired level by rapid insight in the
changes of ore recoveries (Sinclair and Blackwell, 2006). As can be
seen from Fig. 12, close to the central part of the deposit (elevation
1574.11 m, X = 267,800, Y = 3,819,200) somehow contain the signifi-
cant tonnage, metal content andmean-grade above the desired cut offs,
which show the commencement of the first population derived from
the oMK.
8. Conclusion

Results obtained by the study show thatmulti-Gaussian kriging esti-
mation methods are proper interpolation methods with several facili-
ties such as assessing the tonnage, metal quantity and mean grade
above the specified threshold, which are used for fractal/multifractal
modeling. Comparison between results obtained by the C–V fractal
modeling based on the oMK and sMK estimated data reveals that the
variances of different mineralized zones are similar however; the ap-
propriate variances belong to enriched and highly iron mineralized
zones. Moreover, the moderately and weakly mineralized zones on
the basis of sMK have variance values lower than that in oMK data.
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