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The thermodynamic cost of 
driving quantum systems by their 
boundaries
Felipe Barra

The laws of thermodynamics put limits to the efficiencies of thermal machines. Analogues of these 
laws are now established for quantum engines weakly and passively coupled to the environment 
providing a framework to find improvements to their performance. Systems whose interaction with 
the environment is actively controlled do not fall in that framework. Here we consider systems 
actively and locally coupled to the environment, evolving with a so-called boundary-driven Lindblad 
equation. Starting from a unitary description of the system plus the environment we simultaneously 
obtain the Lindblad equation and the appropriate expressions for heat, work and entropy-production 
of the system extending the framework for the analysis of new, and some already proposed, 
quantum heat engines. We illustrate our findings in spin 1/2 chains and explain why an XX chain 
coupled in this way to a single heat bath relaxes to thermodynamic-equilibrium while and XY chain 
does not. Additionally, we show that an XX chain coupled to a left and a right heat baths behaves as 
a quantum engine, a heater or refrigerator depending on the parameters, with efficiencies bounded 
by Carnot efficiencies.

Considerable experimental progress in various physical systems has been achieved toward the goal of 
controlling the dynamics of open quantum systems and their interactions with the environment1–3. For 
quantum computations or digital coherent quantum simulations, one may wish to have a system that 
is well isolated from the environment. For dissipative variants of quantum computations4 or creating 
new scenarios for non-equilibrium many-body systems, one would need to engineer the coupling to the 
environment. Recently, a setting in which the quantum system of interest interacts at its boundaries with 
an external quantum probe such that their coupling can be localized and can be switched on and off 
repeatedly with a controlled and well-defined state for the probe prior to the interaction has been exper-
imentally realized5. This repeated interaction scheme has also been theoretically studied6,7. Importantly, 
the dynamics in an appropriate limit is a boundary-driven Lindblad equation. In this article, we explore 
the question of what is the thermodynamic cost of having such operations on an open quantum system 
and what are the thermodynamical quantities, such as heat and work that will determine the efficiency of 
quantum engines operating in this manner. Boundary-driven Lindblad equations have been intensively 
studied theoretically, particularly for one-dimensional quantum chains7–19, and powerful techniques have 
been developed to find their non-equilibrium steady states (NESS)12–19. These equations are also fre-
quently used to describe quantum engines20–23 and other complex open quantum systems coupled to 
one or several environments24–27 because they are easy to implement. Nevertheless, a boundary driven 
Lindblad equation does not correctly describe a quantum system passively and weakly coupled to a 
heat-bath as often occurs in natural systems. It was pointed out recently28 that inconsistencies with the 
second law of thermodynamics may arise in this case and a careful examination of the coupling between 
a quantum refrigerator and the heat-baths29 reveals why boundary driven models are inappropriate for 
these situations. For a system passively and weakly coupled to one or several heat-baths the master 
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equation derived in the Born-Markov-secular approximation30 yields a proper description of the system 
and the correct balance of heat flows and irreversible entropy production.

Thus, for our study, we consider explicitly the active (time-dependent) type of interaction between the 
system and the environment implemented in5 and the model developed in6,7. We apply the results of31,32 
to derive the appropriate thermodynamical quantities and, in particular, we focus in the limit where the 
system is described by a boundary driven Lindblad equation.

Our main result is that driving at the boundaries, even though it looks like a work-free operation, 
actually might bring work to the system. We illustrate our findings on boundary-driven spin 1/2 chains 
coupled to one or two heat baths. We show that an XX spin 1/2 chain coupled in this way to a single 
heat bath relaxes to thermodynamic equilibrium while an XY does not because it is driven out of equi-
librium by the power produced by the coupling to the heat bath. When two baths are connected to the 
chain, we observe that for different parameters, the chain operates as a quantum heat engine, refriger-
ator or heater, and we determine their efficiencies in the simple case of a chain of two sites. The rest of 
the paper is organized as follows. We start by reviewing first the thermodynamics of Markovian open 
quantum systems in the weak coupling limit33–36 and second a formulation31 where the “universe”, system 
plus the environment, evolves unitarily. After that, we consider the repeated interaction scenario for the 
system and the environment from which the boundary-driven Lindblad equation and the appropriate 
thermodynamical quantities for the open system are obtained. Then we illustrate our results in XX and 
XY spin 1/2 chains and offer our conclusions. Finally we have collected in section Methods some details 
of the calculations.

 Thermodynamics of open quantum systems
Open system weakly and passively coupled to the environment.  Let us briefly review the usual 
formulation of thermodynamics in open quantum systems33–36. Consider an open system described by a 
master equation in the Lindblad form

∑
ρ

ρ ρ= − ( ), + ( )
( )

D
d
dt

i H t[ ]
1

S
S S

r
r S

where the environment consists of several heat-baths r whose action on the system is represented by the 
dissipator

∑ρ γ ρ ρ( ) = ( − , )
µ

µ µ µ µ µ† †D L L L L2 { }r r r r r r

with ⋅, ⋅[ ] the commutator and ⋅, ⋅{ } the anti-commutator. The operators µLr  are system operators and 
represent the action of the environment over the system. When this equation is obtained from the weak 
coupling limit for a time independent system, one finds global Lindblad operators µLr  that are 
eigen-operator of the Hamiltonian HS

30. For simplicity, we consider that the system can only exchange 
energy and no particles with the environment.

Now consider the internal energy ρ( ) = ( ( ) ( ))U t H t ttr S S  and the entropy ρ( ) = − ( ( )S t k tTr lnB S
ρ ( ))tS . The first law of thermodynamics = +  U W Q splits the rate of change of internal energy in two, 
power ( )W t  and heat flow ( ) = ∑ ( ) Q t Q tr r  with one contribution per heat-bath. For system passively 
and weakly coupled to the heat-baths, these quantities are defined as

ρ ρ( ) = ( ) ( ) , ( ) = ( ) ( ( )) . ( )   DW t H t t Q t H t ttr[ ] tr[ ] 2S S r S r S

In section Methods: Heat from a given reservoir in the weak-coupling limit we justify these definitions. 
Note that if the Hamiltonian of the system is time independent, no work can be performed on the system 
and only heat is exchanged with the baths. In that case the system will typically reach a steady state. 
Consider now this to be the situation. The second law states the positivity of the entropy production 
( / ≥ )d S dt 0i , which is the difference between the time-derivative of the entropy 

ρ ρ( ) = −∑ ( ( ) ( )) DS t k tTr lnr B r S S  and the entropy flow from the environment to the system β∑ Qr r r,

( )( )∑ ∑β ρ ρ ω= − = − ( ) − ( ) .
( )β

  D
d S
dt

S Q k HTr ln ln
3

i

r
r r B

r
r S S Sr

The canonical distribution ω β( ) = (− )/β H H Zexp r rr
 appears in the last equality of Eq. (3) due to the 

definition of heat that we plug in the first equality in Eq. (3). The second law / ≥d S dt 0i  in Eq. (3) holds 
if for every r, ρ ρ ρ= − , + ( ) Di H[ ]S S S r S  relaxes towards the unique equilibrium state ω ( )β H Sr

. This is 
the local-detailed-balance condition37 i.e. if a single heat-bath is in contact with the system detailed 
balance as defined in34,38 holds. This property of the dissipators Dr is satisfied in quantum master equa-
tions obtained in the weak-coupling and with the Born-Markov-secular approximation (global Lindblad 
equation). This framework has been applied successfully to the study of thermodynamic properties and 
efficiencies of engines29,39–41.
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In boundary-driven systems the Lindblad operators µLr  act locally on the boundaries of the system 
and in general the corresponding Lindblad equation does not satisfy local-detailed-balance. We come 
back to this point later. Following recent developments in the physics of non-equilibrium systems that 
have emphasized the importance of time reversal symmetry at the microscopic level of description42, a 
formulation of quantum thermodynamics in which the system plus the environment evolves unitarily 
has been proposed31. We consider this framework to analyze boundary driven systems.

“universe” under unitary evolution.  Let a system and an environment with Hamiltonians ( )H tS  and HE (time 
independent), respectively, coupled by an interaction potential V(t) evolve with total Hamiltonian 
( ) = ( ) + + ( )H t H t H V tS Etot . The environment might consists of several heat baths ρ ω= ⊗ ( )β HE r rr

 
with ω ( ) = /β

β−H e ZH
rr

r  the initial density matrix for the reservoir r. Initially, the system and heat baths are 
uncorrelated ρ ρ ρ( ) = ( ) ⊗0 0S Etot . For arbitrary strength coupling between the system and environment31, 
the internal energy is defined by ρ( ) ≡ ( ( )( ( ) + ( )))E t t H t V tTr Stot , and the first law relates its changes 
to work and heat ∆ ( ) = ( ) + ( )E t W t Q t  with the work ρ ρ( ) ≡ ( ( ) ( ) − ( ) ( ))W t t H t HTr 0 0tot tot tot tot  
performed on the system in the time interval [0, t], which is also given by

∫ ρ( ) = ′ ( ′)( ( ′) + ( ′))) ( )
 W t dt t H t V tTr[ ] 4

t

S
0 tot

and the total heat flow ( ) = ∑ ( )Q t Q tr r  split in reservoir contributions

ρ ρ( ) = ( ( )) − ( ( )) ( )Q t H H tTr 0 Tr 5r r rtot tot

given by minus the change in energy of the r-reservoir.
Considering ρ ρ( ) = − ( ( ) ( ))S t k t tTr lnB S S S  as the thermodynamic entropy of the system and 

∆ ( ) ≡ ( ) − ( )S t S t S 0 , it is found that ∆ ( ) = ∆ ( ) + ∆ ( )S t S t S te i  with the entropy flow 
β∆ ( ) = ∑ ( )S t Q tr r re  determined by the heat flows in Eq. (5) and the entropy production31

ρ ρ ρ∆ ( ) = ( ( ) ( ) ⊗ ) ≥ , ( )S t D t t 0 6ot S Ei t

with ( ) = ( ) − ( )D a b a a a bTr ln Tr ln . Unitarity, expressed through the invariance of 
ρ ρ( ( ) ( ))t tTr lntot tot  under the time evolution of the full system, plays a crucial role in the splitting of 

entropy change in the entropy flow and a positive entropy production. In the weak-coupling limit →V 0 
and assuming that the open system satisfies a Lindblad equation obtained from the Born-Markov-secular 
approximation30, the rate of entropy production / ≥d S dt 0i  and the above expressions for work and heat 
take the standard form given in Eq. (3) and Eq. (2) respectively. This is shown in section methods by 
considering the method of full-counting statistics43. However, the Lindblad models investigated in7–10,12–

18,28 are not obtained from the weak-coupling limit and do not satisfy local-detailed-balance. Thus to 
obtain the appropriate expressions for the thermodynamical quantities in boundary driven systems we 
apply in the next section the previous formulation, in particular Eqs (4),(5),(6), to a system plus envi-
ronment evolving unitarily in which the reduced density matrix for the system satisfy a boundary driven 
Lindblad equation in an exact limit.

The repeated interaction scheme
Let us consider a finite system with time-independent Hamiltonian HS and left (L) and right (R) reser-
voirs composed of an infinite set of identical non-interacting finite systems with Hamiltonian Hr

n, i.e., 
= ∑H Hr n r

n, where r is L or R. Each Hr
n interacts with the system for a time span τ. This interaction is 

always of the same form, but to emphasize that interactions occur with different copies +H HL
n

R
n in 

different time intervals, we write it as ( ) =V t V n if τ τ∈ ( − ) ,t n n[ 1 ] with = +V V Vn
L
n

R
n. At =t 0, 

the system and reservoirs are decoupled, i.e., ρ ρ ρ= ( ) ⊗0S Etot , with ρ ( )0S  arbitrary and ρ ρ= ⊗E n n, 
where ρ ω ω= ( ) ⊗ ( )β βH Hn L

n
R
n

L R
. At = +t 0 , the system begins to interact with the first copy +H HL R

1 1 , 
and after a lapse of time τ, the state of the total system is ρ τ ρ ρ ρ ρ( ) = ( ) ⊗ ⊗ ⊗ …†U U[ 0 ]Stot 1 1 1 2 3  . 
Then, at t =  τ +  0, the interaction with the first copy is replaced by an interaction with the second copy 
for a time τ and so on. A recursion relation for the state of the system is obtained6,7 by tracing out the 
nth copy of the environment (denoted as Trn)

ρ τ ρ τ ρ( ) = (( − ) ) ⊗ . ( )†n U n UTr [ 1 ] 7S n n S n n

The unitaries are = − ( + + + )τ
ħU en

i H H H VS L
n

R
n n

. This is the repeated interaction scheme. For simplicity we 
considered only two heat-baths but the generalization to several reservoirs is straight forward.

Let us consider the change of thermodynamical quantities in the time intervals of length τ. Crucially, 
due to the resetting of the heat baths, the interaction term is time dependent. According to Eq. (4) for 
time-independent H S, work is performed at the discrete times τn  where the interaction between the 
system and the environment changes because the copy in interaction changes. Performing the integral 
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in Eq. (4) between an initial time τ ε−n  and a final time τ ε+n , we obtain ρ∆ = ( − )τ
+W V VTr [ ]n

n n
tot

1
tot  

in the limit ε → 0. We simplify this expression with the standard30 assumption that ω( ( )) =βV HTr 0r r
n

r
n . 

This condition will be repeatedly used; it allows us to split ∆ = ∆ + ∆τW W Wn L R (we drop the index 
nτ) with

ρ τ ρ∆ = − ( ( − ) ⊗ ). ( )†W V U n UTr [ 1] 8r r
n

n S n n

We use Trr to denote the trace over the r =  L or r =  R system and Tr to denote the full trace.
The heat flow from the bath to the system in the time interval of length τ where the system interacts 

with the nth copy is evaluated from Eq. (5)

ρ ρ∆ = ( − ′ ), ( )Q HTr [ ] 9r r
n

n n

where ρ ρ τ ρ′ = ( ( − ) ⊗ )†U n UTr [ 1]n S n S n n  is the density matrix of the nth copy of the environment at 
the end of the interaction with the system.

The entropy production ∆ Si  in the time lapse τ is obtained from Eq. (6), and after some manipula-
tions31,32, it can be written as the sum

ρ ρ∆ = ( ′ ) + ( ′ ′) ≥S D I S n: 0n ni

where the mutual information ρ τ ρ ρ τ ρ( ′ ′) ≡ ( ( )) + ( ) − ( ( − ) ⊗ )′
†I S n S n S S U n U: [ 1]S n n S n n  quantifies 

the correlations built up between the system and the nth copy after time τ. Note that ρ ρ( ′ ) ≥D 0n n  and 
( ′ ′) ≥I S n: 0 and vanishing entropy production requires ρ ρ=′n n and the absence of correlations 

between the system and the copy ( ′ ′) =I S n: 0. Note that because before the interaction the state of the 
system is arbitrary and uncorrelated with the product of thermal states of the copy, the theory of 31,32 
applies independently of the correlations built between the system and previous copies.

Heat, work and boundary-driven Lindblad equation.  The index n is associated with the copy that 
interacts in the interval of time τ τ( − ) ,n n[ 1 ], but the copies are all identical prior to the interaction 
(a tensor product of two canonical distributions) and the interaction Vr

n is always of the same form. 
Because no confusion will arise, we drop the label n and denote the interaction = ∑V Vr r, the 
Hamiltonian of the bath copy Hr and the state ρ ω ω= ⊗β βn L R

 with ω ω≡ ( )β β H rr r
. It was shown6,7 that 

for Vr that satisfies ω

 =βVTr 0r r r

 and whose strength is scaled with τ as τ= /V vr r , the system evo-
lution Eq. (7) in the limit τ → 0 converges to a Lindblad evolution (see methods)

∑ρ ρ ρ= − , + ( )
( )

 Di H[ ]
10S S S

r
r S

with ρ ρ ω ρ ω( ) = 
 ( ⊗ )  − , ⊗β βD { }v v vTr Trr S r r S r r r S

1
2

2
r r

. This equation applied to particular systems 
provides boundary-driven Lindblad equations.

Consider now τ= ∆ /W Wr r  and τ= ∆ /Q Qr r  with ∆W r in Eq. (8) and ∆Qr in Eq. (9). In the limit 
τ → 0 with τ= /V v , we obtain (see methods)

= ( + ), = − ( ) ( ) W D H H Q D H 11r r S r r r r

where ( )ρ ω( ) = 


− , ( ) ⊗ 
β

D A v Av v A tTr { }r r r r S
1
2

2
r

. Note the first law ∑ ( + ) =  Q W Hr r r S t
, where 

ρ〈 〉 = ( ( )) = ∑ ( ).

H H t D HTrS t S S S r r S  Finally, we express the entropy production rate as the difference 
between the time derivative of the von Neumann entropy and the entropy flow

∑ρ ρ β= − ( ( ( )) ( )) − ≥
( )

D
d S
dt

t t QTr ln 0
12S S S

r
r r

i

where the first term is computed using Eq. (10) with ≡ ∑D Dr r and the second term is computed from 
Eq. (11). Eqs (11),(12) provide appropriate thermodynamic expressions for systems evolving with Eq. 
(10). Now we illustrate our findings in spin 1/2 chains.

Spin models
Consider an XY spin 1/2 chain with Hamiltonian

( )∑ ∑σ σ σ σ σ= − + .
( )= =

−

+ +H h J J1
2 13

S
j

N

j j
z

j

N

x j
x

j
x

y j
y

j
y

1 1

1

1 1

In the repeated interaction scheme we consider the couplings
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σ σ σ σ σ σ σ σ= ( + ), = ( + ) ( )V J V J 14L L L
x x

L
y y

R R R
x

N
x

R
y

N
y

1 1

to a left r =  L and a right r =  R spin 1/2 reservoir copy with Hamiltonians σ= /H h 2r r r
z, and we take 

hL =  h1 and hR =  hN. To obtain the boundary-driven Lindblad model, we scale λ τ= /J r r . The canon-
ical density matrices ωβ r

 are fully characterized by the magnetization ( )σ ω β= = − ( / )βM hTr tanh 2r r
z

r rr
.

Evaluating the second term on the right-hand side of Eq. (10) yields the dissipator in the Lindblad 
from ρ γ ρ ρ( ) = ∑ − ,µ

µ µ µ µ µ
∈ +,−

† †D L L L L[2 { }]r r r r r r{ }  with γ λ σ= ( ± ), =± ± ±M L1r r r L 1  and σ=± ±LR N  
where ( )σ σ σ≡ ± /± i 2j j

x
j
y . Note that γ γ/ = β+ − −er r

hr r.
This system does not satisfy local-detailed-balance with respect to the Gibbs state, i.e. ω = /β

β−e ZH
rr

r S  
is not the solution of ρ ρ= − , + ( )Di H0 [ ]S r  with r either R or L because ω( ) ≠βD 0r r

. What can be 
shown is that these dissipators thermalize the single spin in the boundary if we disconnect it from the 
rest of the chain. Indeed let us consider the L dissipator

ρ γ σ ρσ σ σ ρ σ ρσ σ σ ρ( ) = ( − , + − , )β+ + − − + − + + −D e[2 { }] [2 { }]L L
h

1 1 1 1 1 1 1 1
L 1

upon evaluation we see that ( ) =β σ− /D e 0L
h 2L

z
1 1 . This is the generic situation in boundary driven 

Lindblad systems.
The expression for power and heat Eq. (11) can be evaluated using the system hamiltonian Eq. (13), 

the coupling Eq. (14), the bath hamiltonian σ /h 2r r
z  and the corresponding ωβ r

. One obtain (we take 
λ λ λ= = )L R

λ σ ρ= ( − ( ( ))) ( )Q h M t2 Tr 15L L L S
z

S1

and

( )( )λ σ σ σ σ ρ= + ( ) . ( )W J J t2 Tr 16L S x
x x

y
y y

S1 2 1 2

Replacing the indices {L, 1, 2} by , , −R N N{ 1} in Eqs (15),(16) one has the corresponding QR and W R. 
To compute this quantities, we obtain ρ ( )tS  by solving the Lindblad equation44.

Consider the case in which the system interacts with one bath (for instance the left bath, but we drop 
the label L). In general, two situations can occur: the system relaxes to thermodynamic equilibrium in 
which all current vanishes or the system reaches a NESS if it is externally driven.

XX chain coupled to one bath.  An XX spin chain (Jx =  Jy) in a uniform magnetic field hi =  h coupled to 
a single bath relaxes to equilibrium: the entropy production rate, heat flows and power vanish. The equi-
librium density matrix is not generally a canonical distribution but rather, as one can prove, is given by 
a generalized Gibbs state ω ( )β H 0  with σ= ∑ =H h

j
N

j
z

0 2 1 , which is a conserved quantity, i.e., , =H H[ ] 0S 0 . 
This state is a product state of the canonical density matrices ωβ for each spin of the chain and all equal 
to the one of the reservoir copy. Therefore, ( ′ ′) =I S n: 0 and ρ ρ′ =n n, i.e., / =d S dt 0i . Figure 1 illus-
trates the relaxation to this equilibrium state by depicting the decaying power, heat flow and entropy 
production rate.

XY chain coupled to a single bath.  For an XY chain, we found that the system reaches a driven NESS. 
In this NESS, entropy production is strictly positive and constant, and because =H 0S , the first law 

Figure 1.  As a function of time t plots of W  (blue), −Q (black) and diS/dt (red) for an XX (Jx = 1 = Jy) 
and − W  (blue, dashed), +Q (back, dashed) and − diS/dt (red, dashed) for an XY (Jx = 1 = 0.5Jy) chain. In 
both cases, the chain has N = 5 sites with hi = 1, i = 1,5 coupled with λ = 1 to a single left bath of β = 1 
and h = 1.
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gives = − W Q. Furthermore, by combining the first and second laws, we have that β = / >W d S dt 0i  
because in NESS, =S 0. See Fig. 1.

XX chain coupled to two baths.  Consider a hot left and a cold right heat baths β β( < )L R  connected by 
an XX spin 1/2 chain with the Hamiltonian in Eq. (13) with Jx =  Jy =  J. The NESS in the special case of 
a uniform magnetic field was analyzed in7. The power and heat from the reservoir to the system are given 
by Eqs (15),(16). In Fig. 2, we plot QL, QR, = +  W W WL R and /d S dti  in the NESS as functions of hL. 
We observe that the heat flows can change sign and that for hR =  hL, they have opposite signs, i.e., 
+ = Q Q 0L R , which means that =W 0. We also observe in Fig. 2 that / ≥d S dt 0i  and vanishes only 

when β β=h hR R L L, that is, the second law holds even when heat flows from cold to hot, as is the case 
for β β> /h hL R R L, a situation that would appear to be a contradiction to the Clausius statement of the 
second law if we do not realize the presence of W .

The previous numerical study of boundary-driven spin chains can be complemented with exact results 
for power and heat in a two-site boundary-driven spin chain obtained from a full analytical solution of 
the NESS (see methods). In the NESS, the expression for power Eq. (16) and heat Eq. (15) can be written 
in terms of the spin current44

λ
λ

=
( − )

( − ) + +
j

J M M
h h J

4
4

16 16s
R L

L R

2

2 2 2

as = −Q h jL L s, =Q h jR R s and = ( − )W h h jL R s. Thus, for =h hL R, there is no power, but as the pre-
vious expression shows, this does not mean that the spin current vanishes. Moreover, the entropy pro-
duction rate in the NESS is

β β= ( − )
d S
dt

h h jL L R R s
i

i.e., the spin current js and the affinity β β( − )h hL L R R  characterize the rate of entropy production in the 
NESS, and because β= − ( / )M htanh 2r r r , the sign of the entropy production rate is given by 
β β β β( − )( ( / ) − ( / )) ≥h h h htanh 2 tanh 2 0L L R R L L R R , where the equality holds only if β β=h hL L R R. 

Let us end this analysis by noting that for β β≤L R, this system behaves as a heat engine for 
β β/ < / <h h 1L R R L  with efficiency η β β η≡ − / = − / ≤ − / ≡ W Q h h1 1L R L L R C, as a refrigerator 
for β β/ < / <h h 1R L L R  with efficiency η β β η≡ / = /( / − ) < /( / − ) ≡ Q W h h1 1 1 1F

R L R L R C
F and 

as a heater for / >h h 1R L . Note that the efficiencies are independent of temperature. These are steady-state 
operating engines analogous to those in45.

Discussion
In conclusion, the repeated interaction scheme provides a physical description of a system interacting 
with an environment that, in an appropriate limit, provides a boundary-driven Lindblad equation for the 
system. The Lindblad operators that appear in this equation are determined by the interaction of the 
system with the environment, the Hamiltonian of the copies that form the bath and, importantly, by the 
fact that it is refreshed constantly. By computing the thermodynamical quantities for the full system plus 
the environment, one can derive the corresponding expressions for the boundary-driven model. One 
important observation is that due to the refreshing of the reservoir, work is done or extracted by the 
external agent in charge of this refreshing. This power drives the system out of equilibrium. Note that 
this power appears even if the system Hamiltonian and Lindblad operators are time independent. We 

Figure 2.  For a N = 5 site XX chain with Jx = Jy = 3, h2 = h3 = h4 = 5, h5 = hR = 2, βL = 0.8, βR = 1.2, and 
λ = 1, we depict , Q QL R

NESS NESS, W
NESS

 and /( )d S dti
NESS as a function of hL = h1. There are two special 

values for hL. At hL =  3, where β β=h hL L R R, all quantities vanish (equilibrium state). At = =h h 2L R , 
= − Q QL R

NESS NESS and thus =W 0NESS  (non-driven steady state).
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applied our results to spin chains. In the single bath case, we found that an XX spin chain with a homo-
geneous magnetic field relaxes to thermal equilibrium, i.e., a state with zero entropy production, while 
an XY spin chain reaches a driven NESS, a state with a non-zero entropy production β/ = > .d S dt W 0i  
In the two heat bath case, the XX chain for different temperatures β β≠R L and a homogeneous mag-
netic field reaches a non-driven =W 0 NESS and an equilibrium state for β β=h hL L R R where the 
entropy production rate, power, heat flows and spin currents vanish. For inhomogeneous magnetic fields, 
the chain reaches a driven ≠W 0 NESS. Jumping to a broader context, this work shows that the knowl-
edge of a Lindblad equation for an open system does not determine the heat flows or other thermody-
namical quantities. These quantities also depend on the properties of the environment and how the 
system is coupled to it. Here, we have obtained appropriate expressions for heat flows and power for 
interactions with an environment of a type recently implemented in a laboratory5. But when the reservoir 
is weakly and passively coupled to the system, i.e. there is no work cost in achieving the coupling, the 
system is appropriately described by a global28 Lindblad equation and the thermodynamical quantities 
by Eq. (2). Finally, this work is also an extension of quantum thermodynamics to a class of open quantum 
systems without local-detailed-balance.

Methods
We provide here some details of the calculations mentioned in the main text.

Work, heat and boundary-driven Lindblad equation from the repeated interaction scheme.  
For completeness we derive Eq. (10) and Eq. (11) of the main text. Consider ρ τ ρ τ τ∆ ( ) ≡ ( + )n nS S  
ρ τ− ( )nS . We have from Eq. (7) of the main text that

ρ τ ρ τ ρ ρ τ ρ∆ ( ) = ( ) ⊗ − ( ) ⊗ ( )†n U n U nTr [ ] 17S E S E S E

where we have dropped the label n from U and ρn in Eq. (7) because the copies are identical and the 
interaction = ∑V Vn

r r
n is always of the same form. The trace Trn over the state ρ ρ ω ω= = ⊗β βn E L R

 
is denoted TrE. The unitary = τ− ( + + + )U e i H H H VS L R  in (17) is expanded for small τ considering the scaling 

τ= /V v  and = + +H H H HS L R0

τ τ τ τ= − −





+




− , + ( ).

( )
U I iv iH v H v

2
1
2

{ }
18

1
2 0

2

0
3
2 2

Now, because ρ =vTr [ ] 0E E  the leading order in the right hand side of (17) is  τ( ). Thus, we divide by 
τ and take the limit τ → 0 and → ∞n  such that τ=t n  and obtain

ρ ρ ρ ρ ρ ρ= − , + ( ⊗ ) − , ⊗ i H v v v[ ] Tr [ ] 1
2

Tr { }S S S E S E E S E
2

where the equality ρ( , ) =HTr [ ] 0E E E  was used.
Now we use Trr to denote the trace over the r =  L or r =  R system and Tr the full trace. Because 
= ∑v vr r and ω =βvTr [ ] 0r r r

, it is possible to split the last two terms in contributions for each reservoir 
giving Eq. (10) in the text:

∑ρ ρ ρ= − , + ( )
( )

 Di H[ ]
19S S S

r
r S

with ρ ρ ω ρ ω( ) = 
 ( ⊗ )  − , ⊗β βD { }v v vTr Trr S r r S r r r S

1
2

2
r r

.
We continue with the derivation of Eq. (11) of the main text. Let us start from ρ ρ∆ = ( − ′ )Q HTr [ ]r r

n
n n , 

i.e. Eq. (9), where ρ ρ τ ρ′ = ( ( − ) ⊗ )†U n UTr [ 1]n S n S n n . Dropping as before the label n, in the limit 
τ→ /V v  and τ → 0 we can replace U by (18). The leading order of ∆Qr is  τ( )

τ ρ τ ρ∆ = −





 − ,



 ( − ) ⊗



Q v H v v H nTr 1

2 { } [ 1]r r r r r r S E
2

or τ( = ∆ / )Q Qr r

ρ ω= −





 − ,



 ( ) ⊗



 ( )β

Q v H v v H tTr 1
2 { } 20r r r r r r S

2
r

Consider Eq. (8) now i.e. ρ τ ρ∆ = − ( ( − ) ⊗ )†W V U n UTr [ 1]r r
n

n S n n . As before we drop the label n. The 
leading order is also  τ( ) but we need U up to  τ( )/3 2  because V is  τ( / )1 , ρ( ) =VTr 0E E  and 

ρ ρ( ( + ), ⊗ ) =H H VTr [ ] 0E S E S E . We obtain
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τ ρ τ ω∆ =





 ( + ) − , +



 ( − ) ⊗



βW v H H v v H H nTr 1

2
{ } [ 1]r r S r r r S r S

2
r

or τ= ∆ /W Wr r

ρ ω=





 ( + ) − , +



 ( ) ⊗



 ( )β

W v H H v v H H tTr 1
2

{ }
21r r S r r r S r S

2
r

Expressions (20) and (21) correspond to those in Eq. (11) from the main text.

The two spin XX chain with inhomogeneous magnetic field.  Consider a XX two sites spin chain 
and the corresponding Lindblad dynamics Eq. (1) with HS given by Eq. (13) main text (with Jx =  Jy =  J, 
h1 =  hL and h2 =  hR) and the Lindblad dissipator

∑ρ γ ρ ρ( ) = − ,
µ

µ µ µ µ µ

∈ +,−

† †D L L L L[2 { }]r r r r r r
{ }

with γ λ σ= ( ± ), =± ± ±M L1r r r L 1  and σ=± ±LR 2  where ( )σ σ σ≡ ± /± i 2j j
x

j
y . This system is fully char-

acterized by the correlation functions σ z
t1 , σ z

t2 , σ σ σ σ≡ −Y i y x x y
t1 2 1 2  and σ σ σ σ≡ +X x x y y

t1 2 1 2  
where ρ⋅ = (⋅ ( ))tTrt S S . They satisfy a close system of equations:

λ= − − ( − ) ( )
dX
dt

X i h h Y4 22R L

( )
σ

λ σ= − + ( )
d

dt
M iJY4 2 23

z
t

L
z

t
1

1

( )
σ

λ σ= − − ( )
d

dt
M iJY4 2 24

z
t

R
z

t
2

2

( )σ σ λ= ( − ) − − − ( )
dY
dt

i h h X iJ Y4 4 25L R
z

t
z

t2 1

From Eqs (15,16) in the main text we note that λ= = W JX W2L R, while the first term in the right hand 
side of (23) is /Q h2 L L and the corresponding term in (24) is /Q h2 R R. Moreover the spin current44 is 
=j iJYs . In the steady state the left-hand-side of the system (22),(23),(24),(25) vanishes and 
= + = ( − )  W W W h h jL R L R s, = −Q h jL L s and =Q h jR R s. The current given in the main text is 

obtained by solving the full system in the NESS.

Heat from a given reservoir in the weak-coupling limit.  Consider a system coupled to several  
reservoirs as discussed in “universe” under unitary evolution. The heat that comes from one of them,  
for instance the r =  L reservoir is ρ ρ≡ ( ( ) − ( ))Q H tTr[ 0 ]L L tot tot . The methods developed in full counting 
statistics43 gives λ ρ= ∂ ( ) | = − ( ∂ ( ))|λ λ λ λ λ= =

ℒQ i G i t tTrL S0 0
 where ρ ρ ρ= − ( − )λ

λ λ−ℒ i H Htot tot  is a 
modified evolution super-operator with → =λ λ λ− ( / ) ( / )H H e H ei H i H

tot tot
2

tot
2L L. When this modification is 

done for a system in the weak coupling Born-Markov-secular approximation one obtain46,47 
ρ ρ ρ= − , + ∑λ λ,ℒ Di H[ ]S r r  where only the dissipator associated to the r =  L reservoir depends on λ as

∑∑ ω ω= ( )( − , )+ ( ) ( − , ).
( )λ

ω

λω ω ω ω ω λω ω ω ω ω
,

+ − −† † † †D Y h e A YA A A Y h e A YA A A Y2 { } 2 { }
26L

l
l

i
l l l l l

i
l l l l

Here ωAl  are system eigen-operators obtained from the coupling of the system to the left reservoir30,46,47 
and ω ω( ) = ( )β ω+ − −h e hl l

L . A slow time dependence of the system can be included, see46. From Eq. (26) 
we obtain

∑ω ω ω− (∂ ) = ( ( ) − ( ) ).
( )

λ λ λ ω

ω ω ω ω
,

= ,

+ −† †Di Y h A YA h A YA2
27

L
l

l l l l l l0

Thus ρ= − (∂ ) ( ) |λ λ λ, =
 DQ i tTr[ ]L L S 0 where we used that in this limit the dynamics is Markovian. We 

have to compare this with the heat flow defined in section “open system weakly and passively coupled to 
the environment”, ρ ρ( ) = ( ( )) = ( ( ))

†D DQ t H Htr trL S L S S L S , where the dissipator DL in the same weak 
coupling Born-Markov-secular approximation is given by λ, =DL 0, from which we compute
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∑ω ω ω( ) = ( ( ) − ( ) ).
( )ω

ω ω ω ω

,

+ −† † †D H h A A h A A2
28

L S
l

l l l l l l

To obtain this we used 

, 


=ω ω

′
†H A A 0S l l

30. Taking the trace in Eq. (27) and in Eq. (28) the desired 
equality ρ ρ− (∂ ) ( ) | = ( ( ))λ λ λ, =D Di t HTr[ ] trL S S L S0  is found. Now, since the heat flow to a system 
weakly and passively coupled to the L heat-bath is given by ρ( ) = ( ( )) DQ t HtrL S L S , the corresponding 
definition for work follows and the entropy production given in Eq. (3) as well.
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