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Abstract
Let n > 2 and Q@ C R"*! be a Lipschitz wedge- like domain (see figure 1). We construct
positive weak solutions of the problem

Au+u?P =0 in Q,

which vanish in a suitable trace sense on 9f2, but which are singular at prescribed “edge” of §2
if p is equal or slightly above a certain exponent py > 1 which depends on (2. Moreover, in the
case which  is unbounded, the solutions have fast decay at infinity.

AMS Subject Classification: 35J60; 35D05; 35J25; 35J67.
Keywords: Prescribed boundary singularities; Very weak solution; Critical exponents; Wedge-
like domains.

1 Introduction

Let © be a bounded domain in R”, n > 2 with smooth boundary 92. A model of nonlinear elliptic
boundary value problem is the classical Lane-Emden-Fowler equation,

—Au = |ulP in Q,
> 0 in Q, (1.1)
=0 in 01,

where p > 1. Following Brezis and Turner [3] and Quittner and Souplet [13], we will say that a

positive function u is a very weak solution of problem (1.1), if u and dist(z,9Q)u? € L'(£), and
/ uAv + |ufPvdx = 0, Vv € C%(Q), with v = 0 on 9.
Q

From the results in [3, 13], it follows that if p satisfies the constraint

n+1

l1<p< ,
p n—1

(1.2)

then u € C%(Q), i.e. u is a classical solution of problem (1.1).

It is well known that, if 1 < p < Z—fg, one can use Sobolev’s embedding and standard variational
techniques to prove the existence of a positive very weak solution of problem (1.1). However, if
Z—ﬂ <p< Z—fg, this very weak solution may not be bounded. A result in the understanding of

very weak solutions was achieved by Souplet [14]. He constructed an example of a positive function
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a € L>®() such that problem (1.1), with u? replaced by a(z)uf for p > Z—ﬂ, has a very weak
solution which is unbounded, developing a point singularity on the boundary. This shows that
the exponent p = Z—ﬂ is truly a critical exponent. Let us mention that the study of the behavior
near an isolated boundary singularity of any positive solution of (1.1) when the exponent p > Z—ﬂ
was achieved by Bidaut-Véron-Ponce-Véron in [2]. Finally, del Pino-Musso-Pacard [5] showed the

existence of € > 0 such that for any p € [Z—ﬂ, Z—ﬂ + ¢) an unbounded, positive, very weak solution
of (1.1) exists which blows up at a prescribed point of 9. For the respective problem with interior
singularity see for example [4, 6, 11, 12].

Let us give some definitions for convenience to the reader. Let n > 2 and (r,0) € [0,00) x S*~!
be the spherical-coordinates of x € R™ abbreviated by x = (r,6). Given an open Lipschitz spherical
cap w € S"7! let

Co={x=(r0): r>0, 0cw},

be the corresponding infinite cone. The set
CE = C,NnBg(0) cR"

is called a conical piece with spherical cap w and radius R.

A bounded Lipschitz domain € C C,, is called a domain with a conical boundary piece if there
exists a conical piece CZ such that QN Bgr(0) = CL.

We denote by A and ¢1(0) to be respectively the first eigenvalue and the corresponding eigen-
function of the problem

—Agn-1u = Au inw (1.3)
u =0 on Jw,
with [ ¢3dS, = 1.
Finally, we define the exponent
n 4+ . 2—n n—2\2
P =20 (252 (1.4

and note that p* depends on w.

In the same spirit as above, McKennab-W. Reichel [9] generalized the results of Souplet [14]
to domain with conical boundary piece, and they showed that the exponent p* is a truly critical
exponent, in the sense that, if 1 < p < p*, then every very weak solution of problem (1.1) is bounded
(see also [1]). Finally, Hordk-McKennab-Reichel [8] considered a bounded Lipschitz domain €2 with
a conical boundary piece of spherical cap w C S"~!, at 0 € 99, and they proved the existence of
e > 0 such that for any p € (p*,p* + ) an unbounded, positive, very weak solution of (1.1) exists
which blows up at 0 € 9.

Let us consider the following problem

Azu+uP =0, in C,
u > 0, in C, (1.5)
u =0, on 9C,, \ {0}.

The authors in [8] proved that problem (1.5) admits a positive solution of the form w(f) =

|x|_%¢p(9), where ¢, solves the problem

2 2
Agn1¢—<—+n—2)qﬁ+q§p:0, nw
p—1 p—1

¢ =0, on Ow, (1.6)


https://www.researchgate.net/publication/265444009_Superlinear_indefinite_elliptic_problems_and_nonlinear_Liouville_theorems?el=1_x_8&enrichId=rgreq-1fb4de6b-87c8-4e7e-b3c7-aa1fdc2e61f8&enrichSource=Y292ZXJQYWdlOzI2NjU1ODM0OTtBUzoxNDk3MjE4Njc4ODY1OTNAMTQxMjcwNzg4MzMyNQ==
https://www.researchgate.net/publication/29635574_Boundary_singularities_of_positive_solutions_of_some_nonlinear_elliptic_equations?el=1_x_8&enrichId=rgreq-1fb4de6b-87c8-4e7e-b3c7-aa1fdc2e61f8&enrichSource=Y292ZXJQYWdlOzI2NjU1ODM0OTtBUzoxNDk3MjE4Njc4ODY1OTNAMTQxMjcwNzg4MzMyNQ==
https://www.researchgate.net/publication/222647045_Boundary_singularities_for_weak_solutions_of_semilinear_elliptic_problems?el=1_x_8&enrichId=rgreq-1fb4de6b-87c8-4e7e-b3c7-aa1fdc2e61f8&enrichSource=Y292ZXJQYWdlOzI2NjU1ODM0OTtBUzoxNDk3MjE4Njc4ODY1OTNAMTQxMjcwNzg4MzMyNQ==
https://www.researchgate.net/publication/228001595_Spruck_J._Global_and_local_behavior_of_positive_solutions_of_nonlinear_elliptic_equations._Commun._Pure_Appl._Math._35_525-598?el=1_x_8&enrichId=rgreq-1fb4de6b-87c8-4e7e-b3c7-aa1fdc2e61f8&enrichSource=Y292ZXJQYWdlOzI2NjU1ODM0OTtBUzoxNDk3MjE4Njc4ODY1OTNAMTQxMjcwNzg4MzMyNQ==
https://www.researchgate.net/publication/222544991_Very_weak_solutions_with_boundary_singularities_for_semilinear_elliptic_Dirichlet_problems_in_domains_with_conical_corners?el=1_x_8&enrichId=rgreq-1fb4de6b-87c8-4e7e-b3c7-aa1fdc2e61f8&enrichSource=Y292ZXJQYWdlOzI2NjU1ODM0OTtBUzoxNDk3MjE4Njc4ODY1OTNAMTQxMjcwNzg4MzMyNQ==
https://www.researchgate.net/publication/222544991_Very_weak_solutions_with_boundary_singularities_for_semilinear_elliptic_Dirichlet_problems_in_domains_with_conical_corners?el=1_x_8&enrichId=rgreq-1fb4de6b-87c8-4e7e-b3c7-aa1fdc2e61f8&enrichSource=Y292ZXJQYWdlOzI2NjU1ODM0OTtBUzoxNDk3MjE4Njc4ODY1OTNAMTQxMjcwNzg4MzMyNQ==
https://www.researchgate.net/publication/1961592_A_construction_of_singular_solutions_for_a_semilinear_elliptic_equation_using_asymptotic_analysis?el=1_x_8&enrichId=rgreq-1fb4de6b-87c8-4e7e-b3c7-aa1fdc2e61f8&enrichSource=Y292ZXJQYWdlOzI2NjU1ODM0OTtBUzoxNDk3MjE4Njc4ODY1OTNAMTQxMjcwNzg4MzMyNQ==
https://www.researchgate.net/publication/38337523_Optimal_regularity_conditions_for_elliptic_problems_via_L__p-spaces?el=1_x_8&enrichId=rgreq-1fb4de6b-87c8-4e7e-b3c7-aa1fdc2e61f8&enrichSource=Y292ZXJQYWdlOzI2NjU1ODM0OTtBUzoxNDk3MjE4Njc4ODY1OTNAMTQxMjcwNzg4MzMyNQ==

for any p € (p*,00) if n =2, 3 and any p € (p*, Z—i‘é) if n > 4. But this solution does not have fast

decay at infinity.

We note here that if w = Si_l, then v = 1, thus the critical exponent p* = Z—ﬂ and C, = R%}.

In [5], del Pino-Musso-Pacard constructed a solution of problem (1.5) in R’} with fast decay. More
precisely they showed that there exists € > 0 such that for any p € (2, 2L 1 ¢) problem (1.5) in

n—1’n—1

R” admits a solution u € C%(R") satisfying

u(@) ~ || 7 16p(0),  as|z| — 0

and
u(z) ~ |z|~ Ve, (), as |z| = oo.

The first result of this work is the construction of a singular solution at 0 with fast decay at
infinity, for problem (1.5). In particular we prove

Theorem 1.1. There exists a number p(n, \) > p*, such that for any
p € (p*,p(n, A)),

there exists a solution ui(x) to problem (1.5) such that
wi(e) = |o| 716,(0)(1+0(1)  asla| =0,
where ¢, solves (1.6), and
ui(z) = |z (0) (1 +0(1))  as fa| = oo,

where v is defined in (1.4). In addition, we have the pointwise estimate

_ 2
i ()] < Cla]” 71| pllc2(w),
for some constant C' > 0 which does not depend on p.

To describe our main result let us introduce some new notations.
Let x € R™ with n > 2. Given 7 € R, we let w(7) € S"~! to be the corresponding Lipschitz
spherical cap. We set

To(r) = ‘l‘ - U(T)‘v

where o : R — R" is a smooth curve such that

3161]% {|o(7’)] + |0’ (7)| + |J"(7’)|} < C < oo.

Now, given 7, we let (ry(;),0) € [0,00) xS" ! to be the spherical-coordinates of € R" centered
at o(7) abbreviated by z = (r,(;), ). We define

Cw(T) ={z= (TU(T)’Q) CTo(r) > 0, 0 €w(r)} CR"

and we set
QO ={(r,x) € (r1,72) xR": z € éw(T)} c R (See figure 1)
Of | =Q, ., 0{(r.2) € (n,7) xR": © € Bp(o(r))} C R™H,
and

Srire = {(7,2) € [11, 2] X R™ To(r) = 0}.
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Figure 1: Qg1

Finally we define \* = ;rel]fR)\(T) and v* = igI{;{fY(T)'

In this work we assume that w(7) depends smoothly on 7, i.e. A(7) is a smooth bounded function
with respect 7 with bounded derivatives. We also assume that imlﬁK A(7) > 0. Finally, we suppose
TE

TER
ui(7,z) of theorem 1.1. That means, osc,erA(7) is small enough.

that there exists € > 0, such that for any p € (supp* (1), supp*(7) + 5> , there exists a solution
TER

Theorem 1.2. Let e > 0 be small enough. Then there exists a number pg > sup p* such that, given

TER
p € (supp*,po), and ]% < —p < n+v*" =2, the following problem
TER
—Au =uP in Q.00
U >0 in Q0,00
u =0 on 006,00 \ S—00,00

possesses very weak solutions u. In addition we have that
x—o(T
u(T,z) ~ uy <T, ()> as To(ry — 0,
€

where uy s in theorem 1.1. And

u(r,z) < Crg(T) as To(r) = O0.

Our third and final result of this paper is the following

Theorem 1.3. Let a > 0 be small enough and Q C R"* be a bounded Lipschitz domain such that

QNOk =QFf c R

T1—0o, T2+ T1—Q, T2+

There exists a number py > sup p* such that, given p € (sup p*, po), there exist very weak solutions
TER TER
u to the problem
—Au =P, in Q,
U >0, in Q
u =0, on O\ St —a,mta-



Moreover, ¥(t,z) € QF

TI—3:T2+ g

as rq(r) — 0.

W)

u(r,z) =~ uy (T, -

The paper is organized as follows. In section 3 we prove theorem 1.1. In subsection 3.1, we
prove some regularity results with respect 7, for the function u; (7, ) in theorem 1.1. Section 4 will
be devoted to the proofs of theorems 1.2 and 1.3.

2 The eigenvalue problem on spherical caps.

Let n >2, 7 € R, and w(7) € S"~! be the corresponding open Lipschitz spherical cap. We denote
by A(7) and ¢1(7,60) to be respectively the first eigenvalue and eigenfunction of the eigenvalue
problem

—Agn—1u = NT)u, in w(r) (2.1)
v =0, on Jw, '

with [,y ¢1dS, = 1.
We assume that w(7) depends smoothly on 7, i.e. A(7) is a smooth bounded function with
respect 7 with bounded derivatives. We also assume that in[f[’{ (1) > 0.
TE

Now note that, without loss of generality, we can set 1 = cost, with 0 < ¢t < §(7), where 3(7)
is a smooth function with bounded derivatives satisfying

0< inﬂgﬁ(T) <sup (1) < 2w for n=2
TE

TER
and
0 < inf B(7) <supfB(1) <= for n>3.
TER TER

Then problem (2.1) is equivalent to the following one
—sin?™" t% (sin”*2 tdc%) =A¢1 in (0,5(7)).
¢1(B(7)) =0 (2.2)

G (0) =0,
with
o)
Cn) / sin™2(¢)|u[2dt / 61 [2dS = 1.
0 w

We note here that, for n = 2 in problem (2.2), we may have ¢1(0) = 0 instead of %(O) =0.
We have the following lemma

Lemma 2.1. Let ¢1(7,0) be the first eigenfunction of the following eigenvalue problem

—Agn-1u = \u, in w(7)
u=0, on dw(T), (2.3)
with fw(T) $3dS = 1. Then there exists a positive constant C' such that
0 0?
sup |||o1] + % + ‘ 8¢21 <C. (2.4)
TeR T T Lo (w(n)

We postpone the proof of this lemma to the appendix.



3 Positive singular solution in the Cone
We keep the assumptions and notations of the previous section, and we consider the cone

Cory =1{(r,0): 7>0, 0 € w(r)},

where r = |z| and 0 = {z7- We define the critical exponent
2
N n+ (1) , 2—n n—2
P = D it () =25 (P57 A

We consider the problem

Ayu+uP =0, in Cyr
u > 0, in Cw(f) (3.1)
u =0, on 9C,, -y \ {0}.

2
If we set w = |z| P=1¢(0), we arrive at the problem

{Agnlqﬁ—pzl<—pzl+n—2>¢+¢p =0, in w(r) (3.2)

) =0, on Ow(r).

By lemma 9 in [8], problem (3.2) has a positive solution ¢, € Hi(w(r)) N L*®(w(7)) for any
p € (p*,00) if n = 2 or 3 and for any p € (p*(r),25}) if n > 4. Also as p | p*(r) then

' n—3
—2 (<52 +n—2) T A(r) and

A2 (-2 +n-2 o
ép = 3 ) (é1 + o(1)),

Cp

where ¢, = [, ) ot ae.
In addition, for the same range on p, by theorem 10 in [8], the function

wp(T7 L) 9) = Tﬁrzl(bp(Ta 9)
is a positive solution of (3.1).

In the rest of this section, for convenience, we omit dependence on the parameter 7 writing

A= A7), $1(0) = ¢1(7,0) and so on.

Let p € (p*, 2£2), we look for solutions of (3.1) of the form

i (z) = 2| 71 ¢(— log |z, 6), (3.3)

where 6 = ﬁ, so that the equation Au + uP? = 0 reads in terms of the function ¢ defined for ¢ € R
and 0 € w, as

0} + Ady — 6 + (Agn-16 + Ad) + ¢F = 0, (3.4)
where t = —logr, A = — (n—Q;%%) and € = )\4_%(”_ 2727)_
Let = [, ¢?1d6, we define as by

pabst =e.
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We look for a positive function a which is a solution of
a’(t) + Ad'(t) — ea(t) + paP(t) = 0, (3.5)

which converges to 0 as t tends to —oo and converges to aso as t tends to +00. Observe that, when
p € (p*, Z—‘fg), the coefficients A and ¢ are positive and, therefore, in this range, classical ODE
techniques yield the existence of a, a positive heteroclinic solution of (3.5) tending to 0 at —oo and
tending to as at +oc.

Observe that since the equation (3.5) is autonomous, the function a is not unique and a can be
normalized so that a(0) = %aoo. For more informations about the function a, we refer the reader
to lemmas 2.3, 2.4, 2.5 and appendix in [5].

Proposition 3.1. Let 0 < py < oo and € be small enough, then there exists a unique operator
Gpy @ AL (R x w) = a® L (R x w),

such that for any a™P°g € L*°(R x w), the function u = Gy, (g) is the unique solution of
Lyu= (87 + A0 — 2+ (Agr + \) +peb " Ju=g g0 = al(t)61(6),

with zero Dirichlet boundary data.
Furthermore,

C
< =

|47 a ™ (Y]] oo ) < - ™ (0)g]| oo (@) - (3.6)

If in addition g(t,-) is L?—orthogonal to ¢1 for a.e. t, then we have
-1 — —
||d™"a po(fWHLw(Rxw) <Clla po(t)gHLOO(IRXw)
where d : w — (0,00) denotes the distance function to Ow.
Proof. The proof follows the same lines as in lemma 2.6 in [5], so we will only focus on the differences.

We first define ¢, to be the positive solution of o

{Asn1¢*+)\¢*+5(5—n—2'y+2)¢* = 1 inw 57

s = 0 on dw

see the proof of lemma 2.6 in [5] with obvious modifications. Using the function (¢,0) — e~ %¢,(#)
as a barrier, as done in the paper [5], we can show that, given any function g such that a Pog €
L>(R x w) and given t; < —1 < 1 < t9, we can solve the equation

Lyu=g
in (t1,t2) X w with 0 boundary conditions.
To prove the estimate (3.6), we argue by contradiction, assuming that
[la™0ps]|Lee =1

and
lim [la™ fi| =0
1— 00

we get a contradiction using similar argument as in lemma 2.6 in [5]. The rest of the proof is the
same as in lemma 2.6 in [5] with obvious modifications so we omit it here. O
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Proof of theorem 1.1. We look for a solution to problem (3.4) of the form

¢ = a(t)¢1 (9) + w(tv 0)7

and we let G, to be the operator defined in proposition 3.1. To conclude the proof, it is enough to
find a function ¢ solution of the fixed point problem

¥ = —Gp(M(go) + Q¥)),

where
¢o(t,0) = a(t)er(0),
M(do) = aP (¢ — ugr)
QW) = lbo+ 0P —of —pgf .

The rest of the proof is the same as in [5]. We recall here that ) << a¢;. Also in [5], they have
proven that if € is small enough then there exists tg such that for any ¢ < —%0,

%edit S a(t) S 6(57t

i

with 6~ = % (\/ A% + 4e — A) . And the result follows, since

%(m—A)-FL:n—F’Y—Q.

p—1

Remark 3.2.

If 1 < pg < pis close enough to p, we can apply a fix point argument like in the proof of theorem
1.1, for the operator Gy, .

In view of the proof of lemma 2.1, ¢, = ¢.(t, cos(sB(7))).

Thus if the function g in proposition 3.1 is of the form g = g(¢,cos(s3(7))), we have that the
solution u = G,,(g) is of the form u = wu(t,cos(sf(7))). Hence we obtain, that the solution u; in

theorem 1.1 is of the form )

up =1 p=1uy(r,cos(sp(7))).

3.1 Regularity of the solution u; with respect 7

We first recall some definitions and known results, see the book of Gilbarg and Trudinger [7] for
the proofs.
Let
Lu = a™ (2) D; ju + b'(2) Dju + c(x)u = g(z), atl = ¥,

where the coefficients a’/, b’, ¢ and the function g are defined in an open bounded domain £ C R”
and
al &g < plef’s p>0.
We assume that N ‘
la"llcz.a, [[b*]|c2a, [ellcza < A.
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Definition 3.3. We say that a bounded domain Q C R™ and its boundary 02 are of class C*?, 0 <
a <1, if at each point x € ON) there is a ball B.(x) and a one-to-one mapping ¢ from B,(x) onto
D C R" such that:

V(B (x) N Q) CRY, %(Br(x) NONQ) C R, ¢ € C**(B,(x)) and ' € C**(D).

A domain Q will be said to have a boundary portion T C 0Q of class C*2, if at each point x € T
there is a ball B,(z) in which the above conditions are satisfied and such that B,(xz) N oY C T.

Proposition 3.4. (Lemma 6.18 in [7]). Let0 < a < 1 and Q be a domain with a C** boundary
portion T, and let ¢ € C**(Q). Suppose that u is a C*(Q)NCo(Q) function satisfying Lu = g in Q,

u= ¢ on T, where g and the coefficients of the strictly elliptic operator L belong to C*(). Then
u€ C(QuUT).

Proposition 3.5. (Corollary 6.7 in [7]). Let0 < a < 1 and Q be a domain with a C*® boundary
portion T, and let ¢ € C**(Q). Suppose that u is a C**(QUT) function satisfying Lu = g in Q,
u=¢ onT. Then, if c € T and B = B,(x) is a ball with radius p < dist(x,0Q — T'), we have

lllezeqprn < Cn A, 90 By(@)) (Ilullogy + 19llza + lgllowe ) -

We first prove the following result

Lemma 3.6. Let 7 € R be fizred, v € R, n > 2, g € C*(C, \ {0}) and u = G,(g) be the operator
in proposition 3.1. Then

‘VIU(T?xH < C(n7p’>‘aow(7-)7g) |‘T|_1
’DJQEU(Tvx” < C(n7p7)\acw('r)7g) ‘x’_z' (38)

Proof. First we note that ||u(7,")||r~(c, ) < Cllg(t,)||L=(c,(r)) and u is a solution of

4 2V, 2 2 oty .
Bt A 4 % (-2 - 2) g %t = s i Cu
(3.9)
u=0 in an(T) \ {0}
Set R = |z|, consider the domain
R
Qr={yeC,: Z<|yl<4R},
and let y = % and define v(y) = u(7, Ry). Then y € ; and v is a solution of
CAvp AwVe 2 (2 o) e e g
Av+ 5 w? Tl (n p—1 2) wP ~ P = Tpee (3.10)
v =20 in T,

where we have set 1
T=0\{yeC,: |y|=ZOT ly| = 4}.

Let 0 < € < 4 be small enough, where p is the defined in proposition 3.5 with Q@ = Q. Let
yo € 0 \{y € C,, : |yl = ¢ or [y| = 3} then by propositions 3.4 and 3.5 we have
) < C(n, o, A, 0 By(yo))ll9ll e @y

HUHCQ(BP(po)ﬂQ%
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where in the last inequality we have used the estimate in proposition 3.1.
We note here that p depends only on €27 and not on yg. Thus if we apply a covering argument
and standard interior Schauder estimates we have

Ivllez,) < C (o p, A, QL p) [[9(2)|] o @)

Nl

Using the facts that x € Qr, Vo(y) = RVu(z), D; jv = R?*D; ju, R = |z| and the above estimate,
2
the result follows at once. O

In the rest of this paper we assume that the Lipschitz spherical cap w(7) has the property:

there exists € > 0, such that for any p € (supp*(7),supp*(7) + €), there exists a solution uy
TER TER
of theorem 1.1. Thus () is a smooth bounded function with bounded derivatives and there exist

€0,€1 > 0 such that eg < (1) < e1, VT € R.

Now, we recall some facts from the proof of theorem 1.1. Let a(7,t) be the solution of the
problem

a4 Adya — e(1)a + p(T)af = 0, (3.11)
where A = — <n - 2;;%}) Le(r) = M)+ 52 (0= 22), () = [y O (7,0)d0 and pu(r)aks ! (r) =
(7). Recall also that we have chosen a(7,t) such that

1 . .
a(r,0) = iaoo(T), tllglo a(7,t) = aso(7), and t—1>1—moo a(t,t) =0.

We next prove the following lemma

Lemma 3.7. Let a be the solution of (3.11), g9 = in]%t‘(T),
TE

—A+ /A2 —4(p - 1)e(T)

~ —A A% + 4
5+ (r) = 5 and 6 (r)= 2V ; +4e(r).
Then there exists t > 0 such that
3a 5_(T)t %V
7(7—7 t) S C(Eo7p7n)‘t‘e ) V(T, t) € R x <_OO7 _7)7
aT €0
@(T H < Cleo,p,n)|t]?e 1 V(7 t) € R x (=00 _iN)
67_2 ) — ) ) ] ) b 60
da g+(7’)t Z
7(7—7 t) é C(eo,p,n)|t|e ) \V/(T,t) €R x (7a 00)7
87— €0
0%a 2 5t (1)t ¢
5(1.t)] < Cleo,p,n)lt|%e ;o Y(1t) ER X (—,00).
87— €0
And
Oa t t
- < .
‘8T(T,t)’ < C(gg,p,n), V(r,t) e R x [ &?0’50]
9%a t t
’87_2(7,16)’ < C(eg,p,n), V(r,t) € R x| 50’50]

10



Proof. By our assumptions and lemma 2.5 in [5] there exists a constant ¢ < 0 (independent on p,
w and 7) such that

2 ~ aso(T) T ’ ~ &’

5~ (r) = —A+ /A% + 4e(T)
5 )

Choose 19 € R and set a(7,t) = aoo(7)(e’ M 4 w(r,t)). Then w is a solution of the fixed point

problem
t
w— _665—(T)t/ o207 ()G AC (/< 5 (T)s+As (65—(7)3 +w)pds> dc

= Tw]. (3.12)

[e=]

~—

where

Indeed, let 1 < py < p and p be sufficiently small such that for any 7 € O, = {r € R: |7 —79| < p}
we have

pd~ (1) 2 pod (10)  and  pd~(70) = pod (7).

Thus, it is easy to find a fixed point in the set of functions defined in (—oo, %) and satisfying

provided |¢| is fixed large enough (independent of p and 7).
Now let

G={g:(~00, ) R: [l Wig|| ;. <)
€0

=)
and define F(7,g) = g—T(g). By (3.12) we can apply the Implicit Function theorem in the domain
O7, X G to obtain that there exists a unique function w such that

F(r,w(r,t)) =0 for any |7 — 79| < po <p

for some py small enough. On the other hand since T'(g) is smooth with respect 7 we have that
w(T,t) is smooth with respect 7.

Notice that 5
0= Fy(rw(n,0) + Fy(r,w(r. 1) 5
thus we have
w 5t
E(Ta t) S 0(507])’ n)|t|6 ) (313)

provided |t| is fixed large enough. Similarly we have

2
Sa 0] < Clen e, (3.14)
-

By (3.12) and the above inequalities we have that the derivatives %, % exist and are bounded.

Since the choice of 7y is abstract, we conclude that the functions a, 0;a € C? with respect T,
for any t < % We also have

a —
‘8(7, t)‘ < Cleo,p,n)|tle® D, V(1) € R x (=00, ——),
or €0
a —
o 2 5 ()t t
75 (7, 1)| < C(eo,p,n)[t|e , V(1,t) € R X (—o0,——). (3.15)
or €0

11



Let ty € <—oo, %) such that a(7,1tg), w € C? with respect 7. Using standard ODE

techniques we can prove that, if |h| is sufficiently small then
la(7,t) — a(T + h,t)| < C(t)h, Vt € R, (3.16)

where C(t) is a positive smooth function such that tlim C(t) = oo.
—00

a(t+h,t)—a(T,t)
h

Choose |h| sufficiently small and set vy, = and a(7) = a(7,t). Then vy, satisfies

O%vy, dvp, aP(t + h) — aP(7)

Y5 A% - _

52 + 5 e(T + h)vp w(T + h) Y

TR =BT gy CENZED oy 1, 00),
a(t+ h,tg) —a(r,t
op(T,t0) = ( 0}1 ( 0), (3.17)
vy, (7, 10) _ 8a(T§Lth’t0) - 6“(55“)
ot h

Using the following expansion

aP(1 + h) = d?(1) + paP~L(7,t) (a(T + h) — a(7))

1 (T7+h) )
+ 3 /( | p(p — DtP™*(a(T + h) — t)dt,

thus by the properties of initial data in (3.17), our assumptions on y, £, (3.16) and above equality,
we can obtain by using standard ODE techniques in (3.17) that

9un
ot

where C(t) is a positive smooth function such that tlim C(t) = oo. Thus by Arzela Ascoli theorem,
—00

|Uh|’ ‘ | < C(t)>

there exist a subsequence {vy, } such that vy, — v locally uniformly and v satisfies

0%v ov 1 / ' .
ETl + AE —e(r)v = —p(r)paP~ (1, t)v — ' (17)aP (1) + €'(T)a(r) in (ty, 00)
o ty) = da(T,tp)

or

du(t,ty)  0%a(r,to)
ot oot

By uniqueness of the above problem, we have that Illir% vp = v for all 7 € R and ¢ > 3. And thus
_>

%G(T, t) exists for any (7,t) € R%. Applying the same argument we can obtain also that (.%22@(7', t)
exists for any (7,t) € R?. The only difference is that we should use the fact that a(r,t) > ¢ > 0 for
any (7,t) € R x (tg,00).
Set a = asw then w satisfies
OFw + Adyw — e(T)w + (T)w? = 0. (3.18)

Let us now recall some facts from lemma 2.5 in [5]. Set

—A+ /A2 —4(p - 1)e(7)
2

_ A /A2 —A(p— D)e(r)
— 5 :

§t(r) = and 6 (1)

12



There exists a ¢ > 0 (independent on p and 7) such that , V¢ > t

€

(=)

%eg_(ﬂt <1—w(rt) < 265 (7t
1 ow
1-— < — < 1-— . 1
C(so)w( w) < T C(g0)w(l — w) (3.19)
Notioce that the function ‘?)—f is a solution of
2
gt;} + Ag: —e(T)v —i—pwp_l(T, tyv = &' (r)wP(r) + & (1)w(r), (3.20)

but the function % is one solution of the corresponding homogeneous problem. For the other
solution of the homogeneous problem 1) we can easily prove by using (3.19) that

[ (t,7)] < Cleo)e” .

Thus by the representation formula and the properties of w, we can easily get

0 = t
’aw‘ < Cleo,pyn)|tle® DY, V> —
T €0

Using the estimates (3.19) and the fact that w is a solution of (3.18), we can prove that

et

92 < C(ep, n,p)e‘5~+(7)t.

Setting w = (1 — ST 4 v), then v can be written (see appendix in [5])

~ t ~ o0~ ~
v 666‘(7)1&/ o2 ()G AC (/ S (Ms+As g (_€5+(7)s n U) ds> dc
tp ¢

+ Aped (F, (3.21)

where Q(z) = |1+ z|P — 1 — pz, t, is large enough and A,(7) is a smooth bounded function. Thus
by (3.21) and the definition of v we can prove that there exists a constant C' > 0 such that

éesﬂﬂt < —afw(T,t) < Ceg+(7)t, Yt >t

By the same argument we can prove that

02 ~ 7
0w (T,t)‘ < Cleo.p 2™, wi> L
or €0

This ended the proof. O

Lemma 3.8. Let uy be the solution given by theorem 1.1, then the following estimates hold
2 2
|0-u1 (T, )| < Cle| 71 and |0%uy (1, 2)| < Cla| 71,

where the constant C' does not depend on T and x.
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Proof. In view of the proof of theorem 1.1,

ur = || "7 f(r,0) = [2] 777 (a(7, 1) (7.0) + $(7.6)),
where 1) is a solution of the fixed point problem
= ~Gy(M(do) + Q). (3.22)
where ¢o(7,0) = a(7,t)p1(7,0), M(¢o) = aP (¢§ — 1) and
Q) = |0 + ¥IP — ¢h — pof "¢,

We recall here that [¢(t,0)] << a(7,t)p1(7, 0).

Here we will only treat the case n > 3. For n = 2 the proof is the same.

By uniqueness, our assumptions on w(7), and remark 3.2. ¥ =9 (t,3), 5 € (0,5(7)), 01 = cos5,
where (1) is a positive smooth function such that

0 < inf B(7) <supB(r) < 7.
TER TER

Then 1 satisfies

(97 + A0, — £(7)) v -+ sin® " (3)D5 (sin" 2(3)3528) + (D)0 +pdf v
=~ M(30) ~ Q).

for any (¢,5) € R x (0, 3(7)), and ¥ (t, B(7))

)

=0.
Setting now s = ﬁ, we have that 1(7,t, s) satisfies

T s = (02 + AB, —e(r)) & + 521(7)a§¢
o cos(B(r)s) o
= D5 TS0+ = M)~ Q). (32)

for any (t,s) € R x (0,1), and ¢(7,¢,1) = 0.
Let 1 < po < p such that p — po is small enough and let g : R x (0,1) — R such that
g € C*R x [0,1]) for some 0 < a <1, and

sup sup  |a”P(7,t)g(t, s)| < oo.
TER (t,5)eRx(0,1)

Let u(r,t,s) = —ép(/\/l(gbo) + Q(g)) be the solution of (3.23). This solution exists since problem
(3.23) is equivalent to (3.22). In addition, by proposition 3.1 we have the following estimate

sup  |dla P (nu(r, )| SC sup  |a T (r ) M(60)(r.t,8)]
(t,s)ERX(0,1) (t,s)ERX(0,1)

C
+—  sup [aT(r,6)Q(g)(r.1)], (3.24)
€ (t,5)€Rx(0,1)

for some constant C' > 0 which does not depend on 7.
We can easily prove that

lim sup lu(T + h,t,s) —u(r,t,5)] =0.
h=0(¢,5)eRx(0,1)

Recall the definitions

u(tT + h,t,s) —u(r,t,s)
h Y

uh(Tat?s) = U(T) :u(T,t,s),---
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Clearly uy, satisfies

o
B(r+h)
Ostun(7) + AT + h)up +peg " (7 + h)un(7)

(8,? + Ay —e(T + h)) up (1) +

n (n —2)cos(B(T + h)s)
B(T + h)sin(B(T 4+ h)s)

92up(T)

1 1

- _ B2(r+h) — B*(7) 882u(7_) + 6(7_ + h) — 5(7-) ’LL(T) _ )‘(7— + h) — /\(7-) U(T)
h h h
cos(ﬁ.('r+h)s) . cos(ﬁ(r)s) p—1 _ope1
—(n-2) B(r+h) s1n(,3(f+h)2 B(r) sin(B(7)s) dou(r) — quo (T + h})L o (T)’U,(T)

_ M(@o)(T + 1) = M(¢o)() _ QUg)(T +h) — Qg)(T)

h h

Now notice that u(7,t,s) = w(t,cos(sB(7))) = v(r,z), where x1 = |z|cos(s5(7)). In addition,
v(T, x) satisfies

p=1, .

~Aa g gt (n gt —2) gl o = g OO
v=20 in 0C,(7)\ {0}.

Thus by lemma 3.6 we have

L o
sin sB(7) Os

1
< ———z||vg, | < C.
f 1
inf A7)

Similarly we can obtain ‘g%‘ < C for some constant C' > 0 which does not depend on 7.

Thus we have

1 %(
sin sf(1) Os
82

u
g(ﬂts)

sup T, t,8) < C

(t,5)ERx (0,1)

sup
(t,5)ER X (0,1)

< C, (3.25)

where the constant C' > 0 does not depend on 7. Now we have

cos(@(T-ﬁ-h)s) . 005(5(7)5)
lim sup B(T+h) sin(B(T+h)s) B(7)sin(B(1)s) asu(T)
h—0 rcR h
B'(r) s8'(7) )
— — t — | 0Os <C,
sup| (g oo~ o ) ot

where in the last inequality we have used the fact that

0 < inf B(7) <supfB(r) <=
TER TER

and (3.25). Using the fact that

aP’(t + h)Pl(r + h) — aP (1) (1)
= (a"(T +h) = d’(1)) ${(T + h) + a" (1) (#](T + h) — ¢} (7)),

15



and
@P(r + h) = a¥(7) + pa? (7) (@ + h) — a¥(7))

Q) par(rh)
Lplp =) / #72(aP(7 + h) — t)dt,
2 Jam

(the same for ¢1), and lemmas 2.1, 3.7, we have that

i 2U@0) (T + h) = M(¢0)(7) | _ ‘8M(¢0) <C
h—0 h or
Similarly we have that
iy 20T+ 1) = Q9)(7) | _ ‘3Q(9)‘ -c
h—0 h or

By proposition 3.1 we have
sup  sup lup| < C
TER (¢t,5)€R%(0,1)
and thus by Arzela Ascoli theorem, there exist a subsequence {uy, } such that u,, — v locally
uniformly and v(7,t, s) satisfies

1 cos(B(T)s)
97 + A9, — 02 ——0
( t + t 5(7'))17‘1‘62(7_) S,U—{_B(T)Sin(ﬁ(T)S) sU
+A(T)u+ peh T (T)v = H(b1,a,9),
with v(,¢,1) = 0. Notice that
sup sup |H(t,s)] <C,
TER (t,5)€Rx(0,1)
thus by proposition 3.1 v is a unique solution. Furthermore,
I ou
imup =v=—
ho or’
and
ou
sup  sup —(7,8,t)| < C, (3.26)
TER (¢,5)eRx(0,1) or
for some constant C' independent on g.
Similarly as (3.25) we can prove,
1 0%u
sup  sup —————(1,t,8)| < C
T€R (t,5)eRx (0,1) | Sin 8B(7) OT0s
Pu
sup  sup — (1, t,8)| < C
TER (t,5)€ERx(0,1) 010s0s
and by the same argument as above
82
sup  sup J(T, t,s)| < C, (3.27)
T€ER (¢t,5)€R%(0,1) oroT

where C' is a constant which depends on g.
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Now we consider the fix point problem (3.23). Let 79 € R and p be small enough such that for
any 7 € O = {7 € R: |7 — 10| < p} we have pd~(7) > ppd~(10), where

5~ (r) = —A+4 /A2 +4e(T)
5 :

We can easily show that a?(7,t) < CaPo(79,t), Y7 € O4,, for some positive constant C' independent
on 7 and t.

Now since 0 < p — pp is small enough, we can use a fix point argument like in [5] (see remark
3.2) in the Banach space

X={geL*Rx(0,1)): sup  |a P (70,t)g(t, s)| < oo}
(t,5)€R X (0,1)

to prove that there exists a unique solution
(7,t,5) = =Gp(M(do) + QU(7,1,5))), VT € O,
Now, let (7,9) € O, x X, we set the bounded operator
T(1,9) = g+ Gy(9),

We can apply the Implicit Function theorem to O, x X to obtain that:
let 0 < pp < p be small enough, then for any 7 € {r € R: |7 — 79| < po} C O, there exists a
function (7, t, s) such that

T(7,9¢(7,t,s)) = 0.

Using (3.26), (3.27) and again the Implicit Function theorem, we can also prove that 0.v, 0%
exist. Furthermore using the fact that

0= TT(T,ﬂ)(T)) + Tg(Ta ¢(T))87¢7

and the estimate (3.26) we have that

0
sup sup —u(T, t,s)| < C.
TE€(T0—po,to+po) (t,5)ERX(0,1) or

Similarly we have

0%u

sup sup —(7,t,5)| < C.
T€(T0—po,to+po) (t,s)ERX(0,1) oToT

And the result follows since 7q is abstract. ]

4 The proof of theorems 1.2 and 1.3
Let z € R", n>2, R >0, Br(0) C R™ and

To(r) = ‘ZL’ - U(T)‘7
where o : R — R" is a smooth curve such that

sup{|a )+ 1o’ (7)] + 0" (7)|} < C < o0.

Define

Z\ i —suplo(r)])?:
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Given 7, let (ry(r),0) € [0,00) x 8" be the spherical-coordinates of # € R" centered at o(7)
abbreviated by x = (r,(;),0). We define the cone

C~'w(7-) = {x = (7“0(.,.),0) D To(r) > 0, 0 ¢ w(T)} C R™

and we denote by B
Qr oy ={(1,2) € (1, 72) xR" 12w € CW(T)} c R

Qi Qn 7 N{(r,2) € (11,72) x R" : & € Br(o(r))} C R+

T1,T2
and
Srire = {(1,2) € [11, 2] X R™ To(r) = 0}.

Let Cs, (QR ) be the set of continuous function f € C (QR ) with norm

T1,72 T1,T2

17l (a5, = _su (X100 )75y L1+ X(1,00) ()7 111

T1,T¢
172 T2)EQE

Let 0 € (—n — v+ 2,7), we define ¢s(7,0) to be the unique positive solution of

Agn-1¢s + Aps + (6(0 +n—2) = X) ¢5 = —1, in w(7)
bs = 0, on Ow(r).

Notice here that A = 7% + y(n — 2), thus §(§ +n —2) — A < 0 if and only if § € (—n — v +2,7). A
direct computation shows that

A, (| g5) = 22

In view of lemma 2.1 we have that ¢5 = ¢s(t) where t € (0, (7)) and it satisfies

{sinQ_”tgt (sin™ 2498 ) 4 Ads + (60 +n = 2) =N g5 =1 in (0,4(r))
¢s(B(7)) = 0
We next set §* = sup 8(7), and \* = inI%A(T), v = inﬂg'y(T) and we let ¢35 be the solution of
T7€ER TE TE
< 2-nd (o.n—2,49%5 * L% _ CONK) A% : *
{sm tdt(sm tdt>+)‘¢6+(5(5+n 2) - XN)¢; =-1 1in(0,5%)
¢s5(57) =0

with v € (—n — " + 2,7%).
Thus ¢5 is the unique solution of the problem

Agn-105 + XN 05+ (0(6 +n —2) = X) @5 = —1, in w*
o = 0, on dw*

where w* = |J, w(7) and by assumptions we have that w* C S*~L.
Proposition 4.1. Assume that 6,p € (—n —~v* +2,0], and

sup { |o(7)| + |0’ (7)| + 0" (T)[} <, (4.1)

TER
where € > 0 is small enough. Then, for all < 70 € R, and R > 0, there exists a unique operator
Gsp,Rrim 0 Csp (QR ) = Csp (QR

71,72 71,72 ) ’

18



such that, for each f € Cs, (QR ) , the function G5, pr(f) is a solution of problem

71,72

A’LL = 7‘271(>f7 n QR

1,727

(4.2)
u = 0, on 8951@ \ St o

Moreover the norm of Gs, R+ 15 bounded by a constant ¢ > 0 which does not depend on R, 1
and To.

Proof. Without loss of generality we can assume that R > 4.
We first solve, for each r € (0, %), the problem

AU = mf, in Qﬁ,’m \92177_2,
u = 0, on o(Qf _\ar ).

T1,T2

(4.3)

T1,T2

and call u, its unique solution.
A straightforward calculations show that

—A(r ) 85) 2 1 3 (L= 181(16] + Do’[) — (810" [r5 .

We choose € small enough such that

Let 4 be the solution of
Agn-17) = _CHfHC(;,p(QS?NQ) in w
= 0, on Owx

for some constant C' > 0 and we define the following cut-of function n : R™ — [0,1] by n = 1 in
B%(O) C R™ and n € C§°(B1(0)).
We next set

®(r,z) = C|\f||057P(Q§1772)77(33)7’g(7)¢§ + 9.
If we choose the uniform constant C' > 0, large enough, we have by the maximum principle
[ur(r,2)| < ®(7,2) < ClIfllg,, (z)P5l2l’ +¢
< C\|f|\c&p(m;em)<ZSZ§(9)(!SE|‘S +1),  Y(raz)eQf N\ (4.4)
where in the last inequality we have used the fact that

1/’(9) < CHf”CM(Q%Q)Qb}(e% Vo € w*.

Using (4.4) and again the maximum principle we get

1
|ur(7,2)| < Cl|f||c&p(951’72)¢§(9)|1‘|5, V(7 z) € Q2 \ Q7 1, (4.5)

Set now by = r”¢7, then
ASn—l¢0 — _TFP_Q.

Thus using (4.5) and the maximum principle we obtain,
* 1
ol < Clsup loDlIflly g5 lz=lel”s Vo) > 5. (16)

By standard interior elliptic estimates and Arzela Ascoli theorem, there exists a subsequence
{ur;}, such that r; | 0 and u,, — u locally uniformly. By standard elliptic theory, (4.5) and (4.6),
we have that u € C?(QF _ ) and is unique. O

71,72
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Proof of theorem 1.2. We choose § = —p 7 and we set

ue(z,7) = n(w)e 7 Ty (2

)7

where w; is the function given in theorem 1.1 and 7 : R™ — [0, 1] is a cut-of function such that
n=11in B%(O) C R™ and n € C§°(B1(0)).
By construction of uj(x) and lemma 3.6 we have
Vour(r,2)] < Cln,p, X, Cogry)la| ™
|D3u(r,z)] < Cln,p, A Cur)la] 2. (4.7)

First we assume that
Sup{la )+ 10" (7)| + 0" ()]} <&, (4.8)

where € > 0 is small enough. Then by the above two estimates (4.7), (4.8) and lemma 3.8 we have
) L T
|0Zuc(x, 7)| < Cr r=1(1) + C(n,vy")e ra(’;) + ra(’;) . (4.9)

Now, let R > 4, 71 < 79 € R and define the following problem

—Au = uP, in Qg s
u >0, in QF (4.10)
u =0, on OQE N\ Sr r

We then look for a solution of the form v = u. + v. By virtue of proposition 4.1 we can rewrite
this equation as the fixed point problem

v=—Gsprmm (|2]* (Au: + u: +v|P)) (4.11)

Av = —|us +v|P — Aue.

We assume that € is small enough, then by (4.9) we have for some constant Cy(n,y) > 0,

_9_p=3 »
lluel? + Al y < Co (77275 +% 4 e +2)
<Co(e+e),

we recall here that § = —p21

Then, using theorem 1.1 one can easily see that

2o + ol = foe + 02l lle, @n )

p—1
sclm,v*,p)(suprwpum +a) o =velle o, )

T1,TQ

+ C(n,v*,p)(e + &P |y —vQHCM( \al (4.12)

T T2 1, 7‘2)

for all vy, vy € Cs3 (CH\ {0} x (71,72)) such that
villos 5 (0B \ [0y x (r1,m2)) < 2C0(€ +€).
We recall that all the constants above do not depend on R, %1, to, ¢ and £. To obtain a contrac-

tion mapping is enough to take £, € small enough and p close enough to supp* to ensure that
TER
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sup |[@p (7, )|l Loe (w(r)) 18 as small as we need. The above estimates allow an application of contrac-
TER

tion mapping principle in the ball of radius 2Cy(e +€) in thm to obtain a solution to the problem
(4.11), which we denote by

UR,ri,mp = Ue + VR 7y,

In view of the fix point argument, we have that |vgy, 4,| < % near S, ., thus the solution

UR,, 1, 1S singular along S;, 7, and positive near S;, ,. The maximum principle then implies that

UR 1ty > 0 in QR

T1,72°

Moreover we have that
HUR,TI’T2HC5«B(Q7}%,72) < 200(8 + g)
That is , vr s r, is uniformly bounded by a constant which depend only on n, v*, p. By standard
interior elliptic estimates and Arzela-Ascoli theorem, there exists a subsequence {u Rj,_ijTj}, such
that R; 1 oo, 7; T o0 and ug, —r;, — u locally uniformly. Again standard elliptic theory yields
1€ C*HQno.00)-
For the general case
Sup {lo(n)|+1o"(T)] + 1" (7)|} < C,
TE

set 0 = 7, where k > 0 is large enough such that

sup {[3(7)] + [&(r)| + |5 (r) } < &

As before we can find a solution u(z) of the problem with singularity along {(7,2) € R x R™ :
2

|x — a(7)] = 0}. But the function v(y) = kr—Tu(ky), where y = kx, is a singular solution of the

problem and has singularity along S_ oo, and the result follows. O

Let a > 0, 2 be a bounded Lipschitz domain such that

QONOE =Qf c R*L

T1—o, T2+ T1—o, T2+

Let Cj (QR ) be the set of continuous function f € C (QR ) with norm

T1,T2 T1,T2

oy y= s (7))

(r,2)eQR

T1,7T9

We define C5(€2) to be the space of the continuous function in  with the norm

flles) = [I£1] +IAlL _om :
5(€) Cs (Qfl_a,Tera) Lo (Q\Q?r%ﬁﬁ%)
We consider a smooth, positive bounded function v : Q — (0, 00), which is equal to To(r) D
R
Qfl_%ﬂ L and satisfying
0< sup v<C.
zeQ\QF a
T1—§,7'2+7

We obtain the following proposition

Proposition 4.2. Let 1 < 75 € R and o > 0 be small enough. Assume that 2 is a bounded
Lipschitz domain such that

QONQL =Qf

T1—20, T2 T1—20, T2 +2¢¢

1
c R
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de(—n—~"+2,0] and
Sup{|0' I+ 1" (D] +1e"(T)]} <e, (4.13)

for some € > 0 small enough. Then, there exists a unique operator
G5,T1,72 : Cs (Q) — Cs (Q) )

such that, for each f € C5(Q2), the function G5+, +,(f) is a solution of the problem

(4.14)

Au = V—gf, in Q,
u = 0, on O\ Sr —a,m+a-

Moreover the norm of Gsr, +, is bounded by a constant ¢ > 0 which does not depend on R,
and Ty.

Proof. Let o(t) be a bounded smooth curve such that

Sup{la I+ 16" ()] + 13" ()]} < 2e,

Ts(r) = To(1)> V(Tv CL‘) € QR

T—3.m2t g

T3 (r) 2 To(r)s V(Ta .’L‘) €,

and
T5(r) > >0, V(1,7)€ Qn Campta \ OQF S
Given 7, we let &(7) € S"~! be the corresponding Lipschitz spherical cap and (15(r),0) €[0,00) x
S™~1 be the spherical-coordinates of # € R™ centered at 5(7) abbreviated by x = (rz(;), 6).
We set
C@(T) = {(T‘g(ﬂ,@) : ’I/“\(T) >0, 0¢€ LAU(T)},
971,72 = {(T,l‘) € (7’1,7'2> xR":x € C@(T)}
and Qﬁ . Qn,fz N{(r,x) € (m,72) x R*: x € Br(5(7))} C R*"!. We construct &(7) such that
R O2R
QTl —a,ota = QTl —a, Tt
OR _ OR
QT1—Z772+* Qﬁ—%ﬁz-ﬁ—%’

We next define ) be a cut-off function satisfying n = 1 in Qf - and n = 0in Q\QF

11—, o+

We write f = nf and we let u; = Gé,p,R,n,m(f) be the functlon given by proposition 4.1 in
O2R

Qn —a,Tota

Set B
f=f-vA(u),

~ R ~
then f has support in '\ Q> and f € C(). Furthermore we have

(=1 oy
12ty

[1fllos@ < Clifllese)

for some positive constant C' > 0.
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Finally, let ug be a solution of

Ay :V—lzf, in Q,
U = 0, on 09,

which clearly satisfy the bound

[zl =) < Cllflles@) < Clifllese)

The desired result then follows by looking for a solution of (4.14) of the form u = nu; + ua. O
Proof of theorem 1.3. We choose § = —Z% and we set

r — 0

ue(w,7) = (@) T 1u (=),

where u; is the function given by theorem 1.1 and n : R™ — [0, 1] is a cut-of function such that

R
n=1in 97-217%,7-2#2’ andnp=0mn Q\QE_ . .

The rest of the proof is the same as in theorem 1.2, the only difference is that we use proposition
4.2 instead of proposition 4.1. O
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Proof of lemma 2.1 To prove lemma 2.1 we need the following inequality whose the proof can
be found in [10] (theorem 2, page 43).

Lemma .3. Let A(r), B(r) be nonnegative functions such that 1/A(r), B(r) are integrable in
(r,00) and (0,7), respectively, for all positive r < co. Then, for ¢ > 2 the Sobolev inequality

UOSB(t)Iu(t)\th] v < C[/OSA(t)|u’(t)|2dt] v , (.15)

is valid for all u € C*[0, s] such that u(s) = 0 (or vanish near infinity, if s = co), if and only if

- [ [ 0] ]

is finite. The best constant in (.15) satisfies the following inequality

1/2
K< CgK(q) g\/a.
qg—1

Proof of lemma 2.1. Let n > 3, (for n = 2 the proof is easy and we omit it). By our assumptions
on w(7) and without loss of generality, we can set 1 = cost, with 0 < ¢ < (7), where (1) is a
smooth function with bounded derivatives such that

0 < inf B(7) <sup B(7) < 7.
TER TER
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Then problem (2.1) is clearly equivalent to

—sin?™" t% (sim”_2 t%) = \¢1, in (0,5(7)).
$1(8(7)) =0 (.16)
9:91(0) =0.

We denote by H((0,5(7))) the completion of C*°(]0, 5(7)]) under the norm

B(7)

101 3e(0,50r7)) = /O sin~2(1)|9pv|*dt < oo,

and the property v(8(7)) = 0;v(0) = 0.
The space H(w(7)) is a Hilbert space with inner product

B(r)
(u,v) :/ sin™ 2 (t)Oyudyvdt.
0
Indeed, by lemma .3 and our assumptions on [3(7), we can easily obtain that
B(T) B(r)
/ v? sin™ 3 tdt < C(n)/ sin™ 2 (t)|Opv|*dt. (.17)
0 0

By above inequality we can prove that the space H(w(7)) is compactly embedded in

, e
L +((0,8(7))) = {u: (0,6(1)) = R: /0 u” sin”” (t)dt<oo}.

Thus using standard arguments we can prove that the eigenvalue problem

B(T) s n—2 du|?
t) |21 at
0<A(r) = oS0 i :

u€H((0,8(r))) foﬂ(” u? sin™2(t)dt

has a positive minimizer ¢;(7,t) € H(0, 3(7)).
But,

5(r)
Cn) / §in" 2 (£) |9y [2dt / V1 [2dS,
0 w

B(r)
C(n)/o sin"‘Q(t)]uth:/|¢>1|2dS:1, (.18)

thus ¢1 € H}(w(7)) and is a weak solution of the eigenvalue problem (2.1). Hence by standard
elliptic arguments we can prove that ¢; € L (w(7)). In addition by our assumption we have that

sup sup |¢i(7,t)| < C. (.19)
TER t€(0,6(T))

By the ODE equation (.16) and the estimate (.19), we can write

B(r) s
qbl(T,t):)\/t - 1_2 /0 sin" " 2(r) ¢y (7, 7)drds. (.20)

sin™“ s
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Thus we have the following estimates

sup sup

0| < Cswp s (o)

reR te(0,5(r)) | SNt TER t€(0,8(r))
sup  sup }at o1(T, t)‘ <Csup sup |¢i(7,1t)|. (.21)
TER t€(0,8(7)) TER t€(0,8(7))
Setting now s = %), we have that ¢ = ¢1(7, s) satisfies

g5 0261 (1) + LA g 6, () 4 A(T)dn(rs) =0 i (0.1)
H(1)
am( ) =0

It is easy to see that }lLir% G1(T + h,s) = ¢1(7,s) in L®(R x (0,1)). We set
—

¢1(T + h, 3) - ¢1(h7 S)

up(t) = 3 ;o (7)) = du(Tt),
then wu,, satisfies
1 2, (n —2)cos(B(T + h)s)
B0+ 1) D BT Ry (a0 1 hys) () AT Wun(r)
S B
- _ B (T+h)h B2(7) 6§¢1(T) o )‘(T + h],)L )‘(T) (bl('r)
COS(B.(T+h)S) __cos(B(7)s)
B (n B 2) B(T+h) sin(B(T+h)s) B(7)sin(B(T)s) Bs ( ) Fh(T, S), (22)

h
with up(7,1) = dsup(7,0) = 0. On the other hand notice that

cos(ﬁ.(’r-‘,-h)s) . cos(ﬁ(’r)s)
sup | (n — 2) B(r+h)sin(B(r+h)s)  B(r)sin(B(1)s) By 1(7, 5)
TER h
B'(7) sp'(1) >
< —9) (- t Db (T, 23
< s (0 =2) (=G5 eotas) - SH ) 0 () (23)

< C(n,inf 5(7)),
TER
where in the last inequality we have used (.21) and our assumptions on 3. Also using our assumption
on A we have that
sup sup Fp(1,s) < C(n, 1nf B( ))- (.24)
heR T7eR

Finally combining above estimates(.22)-(.24) we have

1
lim Sup/ ui (7, 5)sin" " 2(B(1)s)ds < C' < 0. (.25)
h—0rcR Jo

By (.25) we can prove

sup sup |up| < C
TER 7€W(T)
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and we have the following representation formula

unlrs) 1 ! Esinnf2 T r)up (T, r)dr
ﬁ2(7+h) - )\(T+h)/s Sin”_2(ﬂ(7+h)§)/0 (ﬂ( +h) ) h( ’ )d d§

1 L i n—2 h)r)F drd
/S sin"_2(6(7+h)§)/o sin” " *(B(T + h)r)Fp(7,r)drd§.

The rest of the proof is standard and we omit it. O
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