
µ-Limit Sets of Cellular Automata from a
Computational Complexity Perspective

Laurent Boyer,Martin Delacourt,Victor Poupet,Mathieu Sablik,
Guillaume Theyssier

Abstract

This paper concerns µ-limit sets of cellular automata: sets of configu-
rations made of words whose probability to appear does not vanish with
time, starting from an initial µ-random configuration. More precisely,
we investigate the computational complexity of these sets and of related
decision problems. Main results: first, µ-limit sets can have a Σ0

3-hard
language, second, they can contain only α-complex configurations, third,
any non-trivial property concerning them is at least Π0

3-hard. We prove
complexity upper bounds, study restrictions of these questions to particu-
lar classes of CA, and different types of (non-)convergence of the measure
of a word during the evolution.

1 Introduction
A cellular automaton (CA) is a complex system defined by a local rule which acts
synchronously and uniformly on the configuration space. These simple models
have a wide variety of different dynamical behaviors, in particular interesting
asymptotic behaviors.

In the dynamical systems context, it is natural to study the limit set of a
cellular automaton: it is defined as the set of configurations that can appear
arbitrarily far in time. This set captures the longterm behavior of the CA and
has been widely studied since the end of the 1980s. Given a cellular automaton,
it is difficult to determine its limit set. Indeed it is undecidable to know if
it contains only one configuration [Kar92] and more generally, any nontrivial
property of limit sets is undecidable [Kar94]. Another problem is to characterize
which subshift can be obtained as limit set of a cellular automaton. This was
first studied in detail by Lyman Hurd [Hur87], and significant progress have been
made since [Maa95, FK07] but there is still no characterization. The notion of
limit set can be refined if we consider the notion of attractor [Hur90a, Kůr03].

Research partially supported by the FONDECYT Postdoctorado Proyecto 3130496 and
by grant ’Agence Nationale de la Recherche ANR-09-BLAN-0164’

1

ar
X

iv
:1

30
9.

67
30

v2
 [

cs
.D

M
]

 2
2

Ju
n

20
15

However, these topological notions do not correspond to the empirical point
of view where the initial configuration is chosen randomly, that is to say chosen
according a measure µ. That’s why the notion of µ-attractor is introduced
by [Hur90b]. Like it is discussed in [KM00] with a lot of examples, this notion is
not satisfactory empirically and the authors introduce the notion of µ-limit set.
A µ-limit set is a subshift whose forbidden patterns are exactly those, whose
probabilities tend to zero as time tends to infinity. This set corresponds to the
configurations which are observed when a random configuration is iterated.

As for limit sets, it is difficult to determine the µ-limit set of a given cellular
automaton, indeed it is already undecidable to know if it contains only one
configuration [BPT06], and as for limit sets, every nontrivial property of µ-
limit sets is undecidable [Del11]. In [BDS10], it was shown that large classes of
subshifts such as transitive sofic subshifts can be realized as µ-limit sets.

This paper aims at pushing techniques already used in [BDS10, Del11] to
their limits in order to characterize the complexity of µ-limit sets and associ-
ated decision problems. The main contribution is to show that the complexity
of µ-limit sets can be much higher than that of limit sets. This fact may seem
counter-intuitive given that limit sets take into acount worst-case initial con-
ditions whereas µ-limit sets restrict to µ-typical initial configurations, thus ex-
cluding possibly complex behaviors. However our proofs show that: first, some
self-organization can be achieved from random initial configurations in order to
initiate more or less arbitrarily chosen computations; second, the probabilistic
conditions involved in the definition of µ-limit sets allow in fact to encode more
complexity in the decision problem of whether a word is accepted in the µ-limit
language or not.

This article, after a section dedicated to definitions, is organized as follows:

• in Section 3 we give the detail of a generic construction we will use many
times. It is similar to the ones in [BDS10, Del11] but presented here as a
ready-to-use tool (see Theorem 3.1).

• in Section 4 we give bounds on the complexity of the language of the µ-
limit set, which in general case is Σ3-hard, then we show that this bound
can be reached. We also give a cellular automaton whose µ-limit set
contains only α-complex configurations.

• in Section 5, we deal with properties of µ-limit sets. First we show that
every nontrivial property is at least Π3-hard. Then we investigate the
complexity of µ-nilpotency for different classes of CA.

• in Section 6 we discuss convergence issues. In particular the type of con-
vergence: general limsup, Cesaro mean limit, simple convergence. We also
show evidence of some late (non-recursive) convergence phenomena.

In the recent work [dMS13], similar constructions (with fairly different im-
plementation details) are used, mainly to prove reachability results concerning
limit probability measures obtained by iterating a CA from simple initial mea-
sures. Among other results, the set of measures that can be obtained as a simple

2

limit is completely characterized, and moreover, it is proven that any set of mea-
sures following a necessary computability condition and a natural “topological”
condition can be achieved as a set of limit points of a sequence of measures
obtained by iteration of a CA from a simple initial measure. This gives an in-
teresting complementary point of view to the one adopted in the present paper,
the link being that the µ-limit set is the closure of the union of supports of
limits points of the sequence of measures obtained by iterations. However, the
translation of these results into the setting of µ-limit sets is somewhat artificial,
and, in any case, it does not give the complexity lower bounds established in
this paper.

2 Definitions

2.1 Words and Density
For a finite set Q called an alphabet, denote Q∗ =

⋃
n∈NQ

n the set of all finite
words over Q. The length of u = u0u1 . . . un−1 is |u| = n. We denote QZ the set
of configurations over Q, which are mappings from Z to Q, and for c ∈ QZ, we
denote cz the image of z ∈ Z by c. Denote σ the shift map, i.e. the translation
over the space of configurations: ∀c ∈ QZ,∀z ∈ Z, σ(c)z = cz+1. For u ∈ Q∗
and 0 ≤ i ≤ j < |u|, define the subword u[i,j] = uiui+1 . . . uj ; this definition can
be extended to a configuration c ∈ QZ as c[i,j] = cici+1 . . . cj for i, j ∈ Z with
i ≤ j. The language of a configuration c ∈ QZ is defined by

L(c) = {u ∈ Q∗ : ∃i ∈ Z such that u = c[i,i+|u|−1]}.

This notion extends naturally to any set of configuration S ⊆ QZ by taking the
union. An important category of sets of configurations is that of subshift. A
subshift is a set of configuration which is translation invariant and closed for
the product topology on QZ. Equivalently, they are sets defined by languages;
a set S ⊆ QZ is a subshift if there is a language L of forbidden words defining
S, i.e.

S = {c : L(c) ∩ L = ∅}.
Subshifts are the core objects of symbolic dynamics [LM95]. Among the

different kinds of subshifts, we will consider effective subshifts, i.e. those such
that the forbidden language can be chosen recursively enumerable.

For every u ∈ Q∗ and i ∈ Z, define the cylinder [u]i as the set of config-
urations containing the word u in position i that is to say [u]i = {c ∈ QZ :
c[i,i+|u|−1] = u}. If the cylinder is at the position 0, we just denote it by [u].

For all u, v ∈ Q∗ define |v|u the number of occurences of u in v as:

|v|u = card{i ∈ [0, |v| − |u|] : v[i,i+|u|−1] = u}

(in particular |v|u = 0 as soon as |u| > |v|).

3

For finite words u, v ∈ Q∗, if |u| < |v|, the density of u in v is defined as
dv(u) = |v|u

|v|−|u| . For a configuration c ∈ QZ, the density dc(v) of a finite word v
is:

dc(v) = lim sup
n→+∞

|c[−n,n]|v
2n+ 1− |v| .

These definitions can be generalized for a set of wordsW ⊂ Q∗, we write |u|W
and dc(W). We can give similar definitions for semi-configurations (indexed by
N) too.

We will also use the classical notion of density of a subset X ⊆ Z of integers
and denote it simply d:

d(X) = lim sup
n→+∞

|X ∩ {−n, . . . , n}|
2n+ 1

Definition 2.1 (Growing computable sequence). A sequence w = (wi)i∈N of
finite words on the alphabet Q is a growing computable sequence when:

• limi→∞ |wi| =∞;

• there exists a Turing machine that computes wi when given the input i.

Denote W(Q) the set of growing computable sequences on alphabet Q. For any
w ∈W(Q), we define the associated language of persistent words :

Lw = {u ∈ Q∗, dwi(u) 6→i→∞ 0}.

The following lemma shows that we can produce the persistent language
of any given growing computable sequence by another growing computable se-
quence where we have a precise control on time and space resource needed for
the computation of each word of the sequence.

Lemma 2.1. Let T and S be computable functions from N to itself which have
the following properties:

• T (i) >> i and i >> S(i) >> log(i);

• the time complexity of both T and S are o(T);

• the space complexity of T is at most S and that of S is o(S).

Consider any growing computable sequence w = (wi)i∈N. Then there exists
another growing computable sequence w′ = (w′i)i∈N and a Turing machine φ
(with possibly several heads and tapes) such that:

• Lw = Lw′ ;

• φ computes w′i on input i in time at most T (i) and space at most S(i) (for
large enough i).

4

Proof. Let φ0 be a Turing machine producing wj on input j. We can suppose
without loss of generality that the time T0(j) spent by φ0 to produce wj on
input j verifies:

T0(j + 1) ≥ 2 · T0(j)

This can be obtained by artificially slowing φ0 if necessary (on input j, recom-
pute 2 times step j − 1 before doing the real work to produce wj). We now
sketch the behavior of φ on input i:

• φ has an output tape initialized with the empty word;

• it also initializes a space marker at position S(i) and precomputes λ(i−1)
and λ(i) (λ is a function to be precised later, but smaller than T and as
easy to compute);

• it simulates φ0 on each successive entry j ≤ i

• at each step of φ0 it increments some step counter and check that it is less
than λ(i) and that everything still fits within space S(i):

– if not it stops with the current output written on the output tape;

– if it is OK, it goes on;

• when φ0 reaches an halting state on input j, it copies the output produced
by φ0 on the output tape and then check that the step counter is less than
λ(i− 1):

– if it is the case it cleans the working tape of φ0, and start a new
simulation of φ0 on input j + 1;

– if it is not the case it stops and such outputs wj = φ0(j).

Both the counter incrementation routine and the halting state routine above
take time o(i) because it is just a matter of doing a constant number of eras-
ing/copying/comparing/incrementing words of length at most S(i). So if we
take λ(i) smaller than (T (i)− i)/i we are guaranteed that φ halts in time at
most T (i) using space at most S(i) (for i large enough). We also want λ(i) to
grow slowly, precisely such that:

λ(i+ 1) < 2 · λ(i− 1).

Then, by construction, φ always outputs some wi or the empty word. First,
if φ(i) produces wj then by construction φ(i + 1) produces either wj or wj+1.
Indeed if φ produces wj on input i it is because:

• either λ(i− 1) < T0(j) and therefore λ(i+ 1) < 2 · T0(j) ≤ T0(j + 1) so
that φ(i+ 1) also produces wj ;

• or λ(i) < T0(j + 1) and therefore φ(i+ 1) produces either wj (in the case
where λ(i+ 1) < T0(j + 1)) or wj+1 (if λ(i+ 1) ≥ T0(j + 1)).

5

because φ(i) produced wj with step counter at most λ(i), but could not produce
wj+1, so φ(i + 1) either has time to produce wj+1 and outputs that (by the
halting conditions) or is short of time and keeps the previous successfull output
which is wj .

Second, for any j, there must be some large enough i such that φ(i) produces
some wj′ with j′ ≥ j (precisely, if i is large enough so that φ0(j) halts in less
than λ(i) steps). Therefore, the sequence w′ produced by φ is, after some finite
prefix of empty words, of the form:

wj , . . . , wj︸ ︷︷ ︸
finite> 0

, wj+1, . . . , wj+1︸ ︷︷ ︸
finite> 0

, wj+2, . . . , wj+2︸ ︷︷ ︸
finite> 0

, . . .

We deduce that Lw = Lw′ .

2.2 Cellular Automata
Definition 2.2 (Cellular automaton). A cellular automaton (CA) is a triple
A = (QA, rA, δA) where QA is a finite set called set of states or alphabet, rA ∈ N
is the radius of the automaton, and δA : Q2rA+1

A → QA is the local rule.

The configurations of a cellular automaton are the configurations over QA. A
global behavior is induced and we will denote A(c) the image of a configuration
c given by: ∀z ∈ Z,A(c)z = δA(cz−r, . . . , cz, . . . , cz+r). Studying the dynamic
of A is studying the iterations of a configuration by the map A : QZ

A → QZ
A.

When there is no ambiguity, we will write Q, r and δ for QA, rA, δA.
In this paper, to avoid artificial set-theoretical technicalities, we fix some

countable set Q = {q0, q1, q2, . . .} and adopt the convention that all cellular au-
tomaton alphabets we consider are subsets of Q. This allows us to speak about
the set of all cellular automata, or the set of all sets of configurations.

A state a ∈ QA is said to be permanent for a CA A if for any u, v ∈ QrA,
δ(uav) = a. It is said to be quiescent if δ(a2r+1) = a.

2.3 Measures
We denote byM(QZ) the set of Borel probability measures onQZ. By Carathéodory
extension theorem, Borel probability measures are characterized by their value
on cylinders. A measure is given by a function µ from cylinders to the real
interval [0, 1] such that µ(QZ) = 1 and

∀u ∈ Q∗,∀z ∈ Z, µ([u]z) =
∑
q∈Q

µ([uq]z) =
∑
q∈Q

µ([qu]z−1)

A measure µ is said to be translation invariant or σ-invariant if for any
measurable set E we have µ(E) = µ(σ(E)).

In addition, µ is σ-ergodic if for any σ-invariant measurable set E we have
µ(E) = 0 or µ(E) = 1. Finally, we say µ has full support if µ([u]) > 0 for any
word u.

6

A σ-invariant measure µ is computable if there exists some computable
f : Q∗ ×Q→ Q (where Q is the set of states) with

∀ε > 0,∀u ∈ Q∗,
∣∣µ([u])− f(u, ε)

∣∣ ≤ ε
The simplest and most natural class of computable and σ-invariant measures

is that of Bernoulli measures: they correspond to the case where each cell of a
configuration is chosen independently according to a common fixed probability
law over the alphabet.

Definition 2.3 (Bernoulli measure). For an alphabet Q, a Bernoulli measure
is a measure µ such that:

∀u ∈ Q∗,∀i ∈ Z, µ([u]i) =
∏
q∈Q

µ([q]0)|u|q .

The state probabilities µ([q]0) are called the coefficients of µ. µ has full support
if all coefficients are non-null.

The uniform Bernoulli measure µ0 is the Bernoulli measure whose coeffi-
cients are all equal, equivalentely it is defined by:

∀u ∈ Q∗, i ∈ Z, µ0([u]i) =
1

|Q||u|

For a CA A = (Q, r, δ) and u ∈ Q∗, we denote for all t ∈ N, Atµ([u]) =
µ (A−t([u])).

Definition 2.4 (Generic configuration). A configuration c is said to be weakly
generic for an alphabet Q and a measure µ if there exists a constant M such
that, for any word u ∈ Q∗, 1

M µ([u]) ≤ dc(u) ≤Mµ([u]). If, moreover, any word
has density µ([u]), the configuration is said to be generic.

Remark 2.1. The set of weakly generic configurations has measure 1 in QZ.
Which means that a configuration that is randomly generated according to
measure µ is a generic configuration.

2.4 µ-Limit Sets
A µ-limit set is a subshift associated to a cellular automaton and a probability
measure [KM00]. It is defined by their language as follows.

Definition 2.5 (Persistent set). For a CA A, define the persistent set Lµ(A) ⊆
Q∗ by: ∀u ∈ Q∗:

u /∈ Lµ(A)⇐⇒ lim
t→∞

Atµ([u]0) = 0.

Then the µ-limit set of A is Λµ(A) =
{
c ∈ QZ : L(c) ⊆ Lµ(A)

}
.

Remark 2.2. Two µ-limit sets are therefore equal if and only if their languages
are equal.

7

Definition 2.6 (µ-nilpotency). A CA A is said to be µ-nilpotent if Λµ(A) =
{aZ} for some a ∈ QA or equivalently Lµ(A) = a∗.

The question of the µ-nilpotency of a cellular automaton is proved undecid-
able in [BPT06]. The problem is still undecidable with CA of radius 1 and with
a permanent state.

Definition 2.7 (Set of predecessors). Define the set of predecessors at time t
of a finite word u for a CA A as P tA(u) =

{
v ∈ Q|u|+2rt : At([v]−rt) ⊆ [u]0

}
.

The following lemma translates the belonging to the µ-limit set in terms of
density in images of a weakly generic configuration.

Lemma 2.2. Given a CA A, a σ-invariant measure µ ∈ M(QZ) and a finite
word u, for any weakly generic configuration c:

u /∈ Lµ(A) ⇐⇒ lim
t→+∞

dAt(c)(u) = 0

Proof. Let M be such that, for any word u ∈ Q∗, 1
M µ([u]) ≤ dc(u) ≤Mµ([u]).

dAt(c)(u) = dc(P
t
A(u)) =

∑
v∈P tA(u)

dc(v)

∑
v∈P tA(u)

1

M
µ([v]) ≤ dAt(c)(u) ≤

∑
v∈P tA(u)

Mµ([v])

1

M

∑
v∈P tA(u)

µ([v]) ≤ dAt(c)(u) ≤ M
∑

v∈P tA(u)

µ([v])

1

M
µ(A−t([u])) ≤ dAt(c)(u) ≤ Mµ(A−t([u]))

1

M
Atµ([u]) ≤ dAt(c)(u) ≤ MAtµ([u])

This concludes the proof.

Other definitions could be considered for µ-limit sets, in particular the Cesaro
mean could be used.

Definition 2.8 (Cesaro-persistent set). For a CA A, we define the Cesaro-
persistent set Cµ(A) ⊆ Q∗ by: ∀u ∈ Q∗:

u /∈ Cµ(A)⇐⇒ lim
n→∞

1

n

∑
k≤n

Akµ([u]0) = 0.

Then the µ-Cesaro-limit set of A is ΛCµ(A) =
{
c ∈ QZ : L(c) ⊆ Cµ(A)

}
.

8

We then get a lemma equivalent to Lemma 2.2 but for the Cesaro-persistent
set. Its proof is the same.

Lemma 2.3. Given a CA A, a σ-invariant measure µ ∈ M(QZ) and a finite
word u, for any weakly generic configuration c:

u /∈ Cµ(A) ⇐⇒ lim
t→+∞

1
t

t∑
τ=0

dAτ (c)(u) = 0

Example 2.1. We consider here the “max” automatonAM : the alphabet contains
only two states 0 and 1. The radius is 1 and δAM (x, y, z) = max(x, y, z).

The probability to have a 0 at position 0 time t is the probability to have
02t+1 centered on position 0 in the initial configuration, which tends to 0 when
t → ∞ for the uniform Bernoulli measure, so 0 does not appear in the µ-limit
set. And finally Λµ(AM) = {ω1ω}.

The limit set of a cellular automaton is defined as Λ(A) =
⋂
i∈NAi(QZ), so

Λ(AM) = (ω10∗1ω)∪ (ω0ω)∪ (ω10ω)∪ (ω01ω). Actually, we can prove that this
limit set is an example of limit set that cannot be a µ-limit set [BDS10].

Example 2.2. Consider any CA A over alphabet Q and add to it a spreading
state s 6∈ Q: if a cell sees s in its neighborhood it becomes s, otherwise it behaves
according to A. By the same reasoning as above, the new CA As obtained this
way has a trivial µ-limit set (as soon as µ gives some weight to s): the singleton
made of configuration ωsω. On the other hand, its limit set is as complex as the
one from A, precisely: its intersection with QZ is exactly the limit set of A.

In [BPT06], it is shown that the µ-limit set of the elementary CA 184 is
exactly the pair of configurations

{ω
(01)ω,ω (10)ω

}
when µ is the uniform mea-

sure. It is interresting to note that, on the contrary, a limit set must be a
singleton when it is finite.

Other examples are studied in detail in [KM00].

3 Construction Toolbox
This section is dedicated to the proof of the following theorem.

Theorem 3.1. Given a finite alphabet Q0:

1. for any growing computable sequence w ∈ W(Q0), there exists a CA A
over alphabet Q ⊇ Q0 such that, for any full-support Bernoulli measure µ
over Q, Lµ(A) = Lw.

2. for any growing computable sequences w,w′ ∈ W(Q0), there exists a CA
A over alphabet Q ⊇ Q0 such that, for any full-support Bernoulli measure

µ over Q,
{
Lµ(A) = Lw ∪ Lw′
Cµ(A) = Lw′

.

9

It will mainly be used as a tool but it has an immediate corollary that gives
an interesting hint on what is the set of all possible µ-limit sets (recall that we
fixed a global set Q from which we take any finite alphabet, hence the set of
cellular automata or the set of µ-limit sets is well-defined).

Corollary 3.2.

{Lµ(A),A is a CA and µ the uniform measure }
= {Cµ(A),A is a CA and µ the uniform measure}
= {Lw, w ∈W(Q) and Q is a finite alphabet}

Proof. Using Theorem 3.1, the only part that remains to be proven is that
any Lµ(A) and any Cµ(A) is of the form Lw for some w. Indeed: consider a
computable generic configuration c and define wt as the word of size t at the
center ofAt(c). The sequence

(
dwt(u)

)
t
converges towards

(
dAt(c)(u)

)
t
therefore

Lemma 2.2 concludes that Lw = Lµ(A) where w = (wt).
Now if we define w′t as the concatenation of the words of size t at the center

of Ai(c) for all 0 ≤ i ≤ t we get that the sequence
(
dw′t(u)

)
t
converges towards

the sequence 1

t

∑
i≤t

dAi(c)(u)

t

Lemma 2.3 concludes that Lw′ = Cµ(A) where w′ = (w′t).

Note that the use of the uniform measure is not essential in the above corol-
lary. The same proof works for any Bernoulli measure with full support and
computable coefficients.

The proof of Theorem 3.1 is constructive and consists in the description of
the CA realizing the desired µ-limit set. This section will successively deal with
the different parts of the construction after a short overview of the ideas we use.

3.1 Overview
We describe a CA A over alphabet Q that contains the alphabet Q0 of the
theorem. This CA has 3 components which work essentially independently but
achieve together the desired behavior. The general idea is that, starting from a
random configuration, A will:

• self-organizes into well-structured computation zones;

• these zones will evolve with time thanks to a merging process that ensures
that they grow in size at a controlled rate;

• inside these well-sized zones a computation process runs permanently and
essentially fills the zone in an appropriate way with the words from the
given growing computable sequences.

10

We will describe A in a incremental way since each stage of the behavior
above makes sense only within some structured zones prepared by the previous
stage. However, all these stages actually run in parallel and at any time there
are zones of the configuration which are completely out of control. The point
is that we will do a reasoning in density starting from a generic configuration,
which justified by lemmas 2.2 and 2.3.

More precisely, the incremental description and analysis of A will be the
following:

• Cleaning out the space (Section 3.2, alphabet Q1): the density of reliable
cells goes to 1.

• Centralization (Section 3.3, alphabet Q2 containing a quiescent state 02):
the density of cells belonging to a well-sized computation zone (size de-
pending on time) goes to 1.

• Computing and writing (Section 3.4, alphabet Q3 containing a quiescent
state 03): within a well-sized computation zone, the content is filled with
copies of wi or w′i (depending on time) up to some set of cells whose
density goes to 0.

The alphabet of A is Q = Q0 t ((Q1 t (Q2 ×Q3))×Q0). This can be
interpreted the following way:

• every cell contains a layer filled with some state in Q0, this is the primary
layer;

• some cells contain additionnally another layer (secondary layer) containing
either a state in Q1 or in Q2 ×Q3.

3.2 Cleaning out the Space
In this section, we describe the initialization of the construction. Only the sec-
ondary layer is concerned and unless stated otherwise, all the states mentionned
are in alphabet Q1. We want to build a “protected” area in a cone of the space-
time diagram (the area between two signals moving in opposite directions) and
make sure that nothing from the outside can affect the inside of the cone.

3.2.1 General Description

The idea is to use a special state * ∈ Q1 that can only appear in the initial
configuration (no transition rule produces this state). This state will produce a
cone in which a construction will take place. On both sides of the cone, there
will be unary counters that count the “age of the cone”.

The counters act as protective walls to prevent the exterior from affecting the
construction. Any information, apart from another counter, is erased. This is a
key point, since we will only be interested in well formed structures, that is two
walls moving away one from the other and delimiting a totally controled space. If

11

two counters collide, they are compared and the youngest has priority (it erases
the older one and what comes next). Because the construction is assumed to be
generated by a state * on the initial configuration, no counter can be younger
since all other counters were already present on the initial configuration.

The only special case is when two counters of the same age collide. In this
case they both disappear and a special delimiter state # is written.

3.2.2 The Younger, the Better

The * state produces 4 distinct signals. Two of them move towards the left at
speed 1/4 and 1/5 respectively. The other two move symmetrically to the right
at speed 1/4 and 1/5.

Each pair of signals (moving in the same direction) can be seen as a unary
counter where the value is mostly encoded in the distance between the two of
them, this will be discussed later. As time goes by the signals move apart.

Note that signals moving in the same direction (a fast one and a slow one)
are not allowed to cross. If such a collision happens, the slower signal is erased.
A collision cannot happen between signals generated from a single * state but
could happen with signals that were already present on the initial configuration.
Collisions between counters moving in opposite directions will be explained later
as their careful handling is the key to our construction.

Because the * state cannot appear elsewhere than on the initial configura-
tion and counter signals can only be generated by the * state (or be already
present on the initial configuration), a counter generated by a * state is at
all times the smallest possible one: no two counter signals can be closer than
those that were generated together. Using this property, we can encapsulate our
construction between the smallest possible counters. We will therefore be able
to protect it from external perturbations: if something that is not encapsulated
between counters collides with a counter, it is erased. And when two counters
collide we will give priority to the youngest one.

3.2.3 Dealing with collisions

Collisions of signals are handled in the following way:

• an outer signal carries a bit: it can be open or closed ;

• nothing other than an outer signal can go through a closed outer signal
(in particular, no “naked information” not contained between counters);

• when two outer signals collide they move through each other, both become
open, and comparison signals are generated as illustrated by Figure 1:

– on each side, a signal S1 moves at maximal speed towards the inner
border of the counter, bounces on it (C and C ′) and goes back as S2
to the point of collision (D);

12

– the first signal S2 to come back is the one from the youngest counter
and it then moves back to the outer side of the oldest counter (E)
and deletes it;

– the comparison signal from the older counter that arrives afterwards
(D′) is deleted and will not delete the younger counter’s outer border;

– all of the comparison signals delete all information that they en-
counter other than the two types of borders of counters.

• nothing else than an outer signal or a S2 can go through an open outer
signal;

• when a signal S2 goes through an open outer signal, this one becomes
closed ;

• nothing else than an inner signal or an outer signal can stop a signal S1;
so an S1 signal, either encounters an inner signal and bounce on it and
becomes S2, or it is destrotyed by another outer signal.

Figure 1: The bouncing signal must arrive (point E) before the older counter
moves through the younger one (point F).

Counter Speeds It is important to ensure that the older counter’s outer
border is deleted before it crosses the younger’s inner border. This depends
on the speeds so and si of the outer and inner borders. It is true whenever
so ≥ 1−si

si+3 . If the maximal speed is 1 (neighborhood of radius 1), it can only be
satisfied if

si <
√

5− 2 ' 0.2360

This means that with a neighborhood of radius 1 the inner border of the counter
cannot move at a speed greater than (

√
5−2). Any rational value lower than this

13

is acceptable. For simplicity reasons we will consider 1/5 (and the corresponding
1/4 for the outer border of the counter). If we use a neighborhood of radius k,
the counter speeds can be increased to k/5 and k/4.

Exact Location Note that a precise comparison of the counters is a bit more
complex than what has just been described. Because we are working on a
discrete space, a signal moving at a non integer speed does not actually move
at each step. In particular, in the case of radius 1, it stays on one cell for a few
steps before advancing, but this requires multiple states.

In such a case, the cell of the signal is not the only significant information.
We also need to consider the current state of the signal: for a signal moving
at speed 1/n, each of the n states represents an advancement of 1/n, meaning
that if a signal is located on a cell i, depending on the current state we would
consider it to be exactly at the position i, or (i+1/n), or (i+2/n), etc. By doing
so we can have signals at rational non-integer positions, and hence consider that
the signal really moves at each step.

When comparing counters, we will therefore have to remember both states of
the faster signals that collide (this information is carried by the vertical signal)
and the exact state in which the slower signal was when the maximal-speed
signal bounced on it. That way we are able to precisely compare two counters:
equality occurs only when both counters are exactly synchronized.

The Almost Impregnable Fortress Let us now consider a cone that was
produced from a * state on the initial configuration. As it was said earlier, no
counter can be younger that the ones on each side of this cone. There might be
other counters of exactly the same age, but then these were also produced from
a * state and we will consider this case later (it is the useful case for the other
parts of the construction).

Nothing can enter this cone if it is not preceded by an outer border of a
counter. If an opposite outer border collides with our considered cone, compar-
ison signals are generated. Because comparison signals erase all information but
the counter borders, we know that the comparison will be performed correctly
and we do not need to worry about interfering states. Since the borders of the
cone are the youngest possible signals, the comparison will make them survive
and the other counter will be deleted.

Note that two consecutive opposite outer borders, without any inner border
in between, are not a problem. The comparison is performed in the same way.
Because the comparison signals cannot distinguish between two collision points
(the vertical signal from O to D in Figure 1) they will bounce on the first they
encounter. This means that if two consecutive outer borders collide with our
cone, the comparisons will be made “incorrectly” but this error will favor the
well formed counter (the one that has an outer and an inner border) so it is
not a problem to us.

14

Evil Twins The last case we have to consider now is that of a collision between
two counters of exactly the same age. Because the only counters that matters to
us are those produced from the * state, the case we have to consider is the one
where two cones produced from a * state on the initial configuration collide.

According to the rules that were descibed earlier, both colliding counters
are deleted. This means that the right side of the leftmost cone and the left
part of the rightmost cone are now “unprotected” and facing each other. A
delimiter state # ∈ Q2 (this is the only state outside of Q1 that we consider
in this section) is then written and remains where the collision happened, as
illustrated in Figure 2.

∗∗∗∗∗∗
#

#

#
#

#

#

Figure 2: Collision of counters of same age.

Definition 3.1. Given any initial configuration c, a cell z at time t is reliable
if it is inside the inner cone of some state * in the initial configuration.

Note that this definition is independent of the parts of the CA which are not
yet described. Therefore we can already prove a density result about reliable
cells.

Lemma 3.3. For any non-trivial Bernoulli measure µ and generic configuration
c, the density of reliable cells goes to 1 as time increases.

Proof. For a cell at time t and position z to be unreliable it is necessary
that state * does not occur in the initial configuration within the interval
[z − λ(t); z + λ(t)] (where λ is a linear function related to the slope of the inner
cone). The configuration c being generic for a non-trivial Bernoulli measure,
we immediately have that the density is upper bounded by (1− p)2λ(t) where
0 < p < 1 is the probability of state * . The lemma follows.

In the following we will focus on reliable parts of the configuration only.

3.3 Centralization
Definition 3.2. In a configuration c at time t, a segment is an interval [z1; z2]
of reliable cells not containing # and such that both z1 − 1 and z2 + 1 are in
state # .

15

In this section, we describe the external behavior of segments, that is how
they interact. In the next section, we will need to dispose of arbitrarily large
segments, and to get rid of the small ones. Thus, the idea is to erase some
delimiters # in order to pool the available space of many segments into a single
one. We will make sure that most segments eventually merge with another one,
which means most segments become arbitrarily large through time. We still
do not concern ourselves with the primary layer. For the secondary layer, all
the states we will use in this section are in the alphabet Q2 ×Q3 that already
contains { # } ×Q3. We will use the alphabet Q3 later, hence suppose that the
Q3 component is always 03 (the quiescent state for Q3) for the moment.

Now, let us describe the dynamics of segments among themselves. We will
specify particular times when merging can happen, independently from the com-
putation performed inside each segment. We will fix a lower bound on the
acceptable size of a segment, and at these specific times, any segment that is
smaller than this bound will merge. For this purpose we need to synchronize
all the segments. As counters compute the time since the initial configuration,
we will keep this information in segments. Therefore, time since the initial con-
figuration is an information shared by every segment. With such a protocol,
mergings are many to one and not only two to one.

3.3.1 Synchronization

When a # is created by the collision of two counters, their common value of
time is written in base K, for some K ≥ 2 (the value will be precised later),
on each side of the # . Hence, the age of each segment is written on both its
sides. And every such K-ary counter keeps computing time. As any segment
is delimited by acceptable # , this age is the same for all of them and is stored
within dlogK(t)e cells on each side.

Denote ti = dK
√
ie for all i ∈ N. We allow segments to merge only at time

ti for any i ∈ N. We say that a segment is admissible at time t if its length n is
such that dlogK(t)e ≤ b√nc. For any i, dlogK(t)e =

√
i+ 1 remains unchanged

between t = ti and t = ti+1, hence each segment has to decide before t = ti+1−1
if i+ 1 ≤ n. If not, the segment decides to merge.

To test this condition, segments will measure their own length. This is
achieved by sending a signal from the left delimiter to the right one and back.
The signal will count the length n in base K, then bi + 1c is computed inside
the dlogK(

√
n)e leftmost cells. Now each segment knows its age and its size.

3.3.2 Merging

For some i ∈ N, each segment has to decide whether it will need to merge at
time ti (if it is smaller than i + 1). If so, it checks whether its neighbors want
to merge too. Then the rules to choose which neighbor it will merge with, are
the following:

• if none of its neighbors wants to merge, it merges with the left one,

16

• if only one among its neighbors wants to merge, it merges with that one.

Then each # delimiter between a segment and the segment it wants to merge
with is erased. New segments are created between the remaining # .
Remark 3.1. To prepare itself, a segment that needs to merge before ti+1 (sup-
pose we are at timestep t = ti) has to:

• compute its length n, which needs 2n timesteps;

• compute i+1 which takes time polynomial in
√
i (value given by the length

of the word encoding the age);

• compare both, linear time;

• check its neighbors: n timesteps (if we suppose they have achieved their
own computations).

A segment needs to merge if n ≤ i + 1, each of these steps requires only
polynomial time in i, and for large enough i (large enough time), this is achieved
in less than (ti+1 − ti) timesteps. So each segment that needs to merge has
enough time to decide it before the merging step ti+1. Other segments declare
nothing to their neighbors, meaning they do not want to merge.

So mergings can concern:

• either many segments that all want to merge,

• or one that wants to merge and one that does not.

Remark 3.2. 1. For any i ∈ N, after time ti, each segment is larger than i.

2. If two segments exactly merge at time ti, i ∈ N, at least one of them is
smaller than i.

3. If three or more segments merge together at time ti, i ∈ N, they are all
smaller than i.

3.3.3 µ-limit sets

The purpose of this slow merging process is to control the size of segments so
that the computation process we put inside can do its job correctly:

• we need larger and larger segments to do longer and longer computations,

• but but we want the typical size to grow slowly enough so that the com-
putation process has time to fill the segment with the result of the com-
putation.

We already saw that, by construction, segments at time ti are of size at least
i. So it remains to put an upper bound on the desired size of segments.

Definition 3.3. For all i ∈ N, a segment is said to be well-sized at time
ti ≤ t < ti+1 if its size is greater than i and less than Ki = i3.

17

The main goal of this section is to show that the density of cells that are
inside a well-sized segment goes to 1. To show this we will focus on all cells that
are in an undesirable situation, i.e. in one of the following cases:

1. unreliable,

2. reliable but not inside a segment.

3. inside a too large segment (too small segments can not exist by construc-
tion),

The first case was solved in the previous section (Lemma 3.3). We will now
formalize the others cases. In the sequel, all the reasoning is done starting from
a configuration c which is generic for some non-trivial Bernoulli measure. The
general idea is to consider (at any time t) maximal intervals of cells which are
reliable but not in state # . For instance, a segment is such an interval with
a # at both ends. To each interval we associate its corresponding pattern in
the initial configuration. Then, to show that a certain kind of interval has a
small density, it is sufficient to show that the corresponding pattern in the initial
configuration has a sufficiently small probability compared to the length of the
interval.

Lemma 3.4. Let d0(t) (resp. d0(t, l)) be the density of reliable cells at time t
that are in a maximal reliable interval (resp. of size l) but not inside a segment.
We have the following:

1. ∃α, 0 < α < 1, such that d0(t, l) ≤ αl for any t and for l large enough;

2. d0(t) −−−−→
t→+∞

0

Proof. Consider a maximal reliable interval I ⊆ Z which is not a segment at
time t: at least one of its ends corresponds to the inner cone generated by some
state * at position z0 ∈ I in the initial configuration. So there is some constant
α > 0 (slope of the cone) such that |I| ≥ α · t. Now, considering the history of
I, i.e. the successive maximal reliable intervals It′ containing z0 at any time t′
between 0 and t, we have the following:

• It′ is never a segment;

• therefore, if a merging happens at some extremity of some It′ , it can only
be when t′ = ti (for some i) and involve It′ plus a single segment of size
at most i.

We deduce that |I| ≤ 2 · α · t (the worst case being when I has not been involved
in any merging in all its history). Therefore, there must be an interval I0 ⊂ I of
cells which are not in state * in the initial configuration and whose size verifies:
|I0| ≥ |I|/2.

Denoting by dL(t, l) the density of cells which are the leftmost cell of a
maximal reliable interval of size l which is not a segment at time t, we have:

18

1. dL(t, l) = 0 if l ≤ α · t;

2. dL(t, l) ≤ l · (1− p)l/2 otherwise,

where p is the probability of state * . Hence d0(t, l) ≤ l2 ·(1−p)l/2 for any t and
the first item is proved. Moreover we deduce that the density d0(t) of reliable
cells not inside a segment at time t verifies:

d0(t) ≤
+∞∑
l=αt

l2 · (1− p)l/2

≤
+∞∑
l=αt

(
(1− p) 1

4

)l for t large enough

=
(1− p)αt/4

1− (1− p)1/4 −−−−→t→+∞
0.

Lemma 3.5. The density d1(t) of cells which are at time t in a segment which
is not well-sized goes to 0 as t→∞.

Proof. Let d+(i) be the density of cells at time ti which are in a segment larger
than Ki and consider a time t with ti ≤ t ≤ ti+1. Too small segments (i.e.
smaller than i) can not exist by construction and too large segments can only
come from too large segments at time ti or reliable intervals which turned into
segments at time t. So we have:

d1(t) ≤ d+(i) + d0(t− 1).

Therefore, using Lemma 3.4, it is sufficient to prove that d+(i) goes to 0 when
i→∞.

Consider a segment of size l ≥ Ki at time ti. It may only come from one of
the following situations:

1. a segment of size l at time ti−1,

2. the merging of a segment of size l − i and another of size i at time ti−1,

3. a reliable interval which is not a segment of size at least l− i at some time
t, ti−1 ≤ t ≤ ti,

4. the merging of many segments of size i at time ti.

Going back in time recursively through cases 1 or 2 until encountering case 3 or
4, we deduce that to each segment of size l ≥ Ki at time ti corresponds either a
reliable interval which is not a segment of size at least l − i2 at some time t ≤ ti,
or a merging of many segments of size j at time tj (for some j ≤ i) resulting in
a large segment of size at least l − i2 (in both cases the reduction of i2 in size
is an upper bound on the worst case where we lose i at time ti, i − 1 at time

19

ti−1, etc). Now, denoting by dS(i, l) the density of cells which are in a segment
of size l at time ti, and dM (j, k) the density of cells which are at time tj in a
segment of size k resulting from a merging of many segments of size j, we have:

dS(i, l) ≤ l

l − i2
(∑
j≤i

dM (j, l − i2) +
∑
t≤ti

d0(t, l − i2)
)

(1)

Let’s focus first on dM (j, k) and consider a segment at time tj coming from a
merge of k/j segments of size j. Let’s z0 ∈ Z be the leftmost position of that seg-
ment: by hypothesis, this implies that at each position z0 + nj, for 0 ≤ n ≤ k/j,
a # is created at some time before tj . This in particular implies that the specific
pattern P = * a * a * (where a 6= *) does not occur centered at any of the
aforementioned positions z0 + nj in the initial configuration: indeed, it would
create a # at positions z0 + nj − 1 and z0 + nj + 1 at time 1, and forbid forever
the apparition of the required # at position z0 + nj. Let q be the probability
of this pattern P , we deduce that the density of such positions as z0 is less than

(1− q)k/j

and therefore
dM (j, k) ≤ k · (1− q)k/j .

Now putting back this upper bound on dM (j, k) and the one from Lemma 3.4
on d0(t, l) into Equation 1, we get

dS(i, l) ≤ l

l − i2
(
i · l · β l−i

2

i + ti · αl−i
2)

where α and β are constants between 0 and 1. We therefore have

d+(i) ≤
∑
l≥Ki

l

l − i2
(
i · l · β l−i

2

i + ti · αl−i
2)

Since ti grows like K
√
i and Ki grows like i3, there is some constant γ between

0 and 1 such that, for large enough i, each term of the sum above is less than
γl (for all l ≥ Ki). The lemma follows because for large enough i we then have:

d+(i) ≤
∑
l≥Ki

γl =
γKi

1− γ −−−−→i→+∞
0.

From the two lemmas above, we deduce the main result of this section.

Proposition 3.6. The density of cells which are inside a well-sized segment at
time t goes to 1 as t→∞.

Proof. The density of such cells is exactly 1− dNR(t)− d0(t)− d1(t) where
dNR(t) denotes the density of non-reliable cells at time t. Lemmas 3.3, 3.4
and 3.5 concludes the proof.

20

3.4 Computing and Writing
In this section we describe the final part of the construction. We concentrate on
the internal behavior of the segments, and we will use the states of the alphabet
Q2 × Q3. The Q2 part was described in the previous section, and the Q3 part
does not interfere with it, hence the state is in {O2} ×Q3 when the Q2 part is
not specified by the rules of the previous section.

The computation inside segments depends on two growing sequences (wi)i
and (w′i)i which can each be generated on input i in time 1

4 (ti+1− ti) and space√
i.
In a segment at time ti, i ∈ N, the computation process goes through the

following steps (see figure 3):

(a) in the b
√
ic leftmost cells, the Turing machines T and T ′ compute and

output the words wi and w′i;

(b) a writing head carrying a memory writes copies of the word wi separated
by some delimiter € ;

(c) the writing head comes back to the left of the segment and wait until
t = ti + 1

2 (ti+1 − ti) + (|wi|+ 1)Ki;

(d) a writing head carrying a memory writes copies of the word w′i separated
by some delimiter € , thus erasing the copies of wi;

(e) the writing head kills itself.

Suppose the length of the segment is l, recall l ≥ i.
For the first part (a), the Turing machines are simulated successively in the

obvious way, and thanks to the previous remark, they never use more than b
√
ic

cells, and the computation is achieved before time ti + 1
2 (ti+1 − ti).

For the second part (b), once the words wi and w′i computed and stored in
the b

√
ic leftmost cells of the segment, a prefix of the word (wi €)ω is written

all over the segment, this is achieved with a head that carries wi as its memory,
hence it needs |wi|.l timesteps to reach the end of the segment.

The third part (c) takes only l steps, thus, for any well-sized segment, the
head arrives at the left of the segment before time ti+ 1

2 (ti+1−ti)+(|wi|+1)Ki.
In the case of a non well-sized segment, the writing process stops there.

The fourth part (d) is similar to the third one and the fifth part (e) is
instantaneous.

The whole process takes less than 1
4 (ti+1− ti) + 1

4 (ti+1− ti) + (|wi|+ 1)Ki +

|w′i|l ≤ 1
2 (ti+1 − ti) + (2

√
i + 1)l which is less than ti+1 − ti for any well-sized

segment (l ≤ Ki).
For any segment s at time t, denote wt(s) the content of s, that is F t(c)[a,b] if

the segment is between positions a and b. Therefore, for any s and t, wt(s) is the
concatenation of two subwords: the beginning of the result of the computation
in the segment, and the end of the results written by its predecessors, which
may contain € states. One of those two parts may be empty.

21

ti+1

ti,3

ti,2

ti,1

ti

##

##

##

#

#

#

#

w′i−1 w′i−1 w′i−1

w′i−1 w′i−1 w′i−1

wi

w′i

√
i+ 1

ti+1−ti
2

i i i

Figure 3: Computation process in a well-sized segment after a merging.

3.5 Proof of the theorem
Recall the statement of the theorem:

Theorem 3.7. Given a finite alphabet Q0:

1. for any growing computable sequence w ∈ W(Q0), there exists a CA A
over alphabet Q ⊇ Q0 such that Lµ(A) = Lw where µ is a full-support
Bernoulli measure over Q.

2. for any growing computable sequences w,w′ ∈ W(Q0), there exists a CA

A over alphabet Q ⊇ Q0 such that
{
Lµ(A) = Lw ∪ Lw′
Cµ(A) = Lw′

where µ is a

full-support Bernoulli measure over Q.

We will prove the second part of the theorem. We then deduce the first point
by taking wi = w′i,∀i ∈ N. First, by lemma 2.1, remark that it is possible to
suppose that the growing computable sequences (wi)i and (w′i)i are such that
there exist Turing machines T and T ′ such that, given i ∈ N as an input, T
(resp. T ′) computes wi (resp. w′i) in time 1

4 (ti+1 − ti) and space
√
i.

The idea of the proof is that well-sized segments that result from a merging
of well-sized segments, called good segments, tend to almost cover the images of

22

a generic configuration (direct corollary of Proposition 3.6), and they contain
essentially copies of the words wi or w′i. The technical point justifying to focus
only on good segments and not on all well-sized segment is that a well-sized
segment that just merged from a not well-sized segment might not be properly
initialized.

It is essential to note that the content of good segments is easily described
as said in the following remark.

Remark 3.3. For ti ≤ t ≤ ti+1 and any good segment s, wt(s) = v0v1v2v3v4
where:

• |v0| ≤
√
i, this corresponds to the computation area and the storage of

the age counter;

• |v4| ≤
√
i, this corresponds to the storage of the age counter on the right;

• |v2| ≤
√
i, this corresponds either to the signal that computes |s| (t ≤

ti+
1
2 (ti+1−ti)) or to the writing head and its memory (t ≥ ti+ 1

2 (ti+1−ti));

• v1 and v3 belong to Q∗0.

The words v2 and v3 may be empty. Moreover, v1 and v3 contain periodic
repetitions of w′i−1 (written before ti), wi or w′i, depending of the status of the
writing process. In particular, for t = ti, v2 and v3 are empty and v1 contains
repetitions of w′i−1. At t = ti+1 − 1, v2 and v3 are empty and v1 contains
repetitions of w′i.

Denote for i ∈ N:

• ti,1 = ti + 1
2 (ti+1 − ti): at that time, the writing process starts in good

segments;

• ti,2 = ti + 1
2 (ti+1− ti) + (|wi|)Ki: at that time, copies of wi € are written

all over well-sized segments;

• ti,3 = ti + 1
2 (ti+1 − ti) + (|wi| + |w′i| + 1)Ki: at that time, the writing

process is finished.

First, the following Lemma justifies that we focus on the density of words
inside good segments.

Lemma 3.8. Take u ∈ Q∗ and c a generic configuration, and consider (αt)
such that dwt(st)(u) ≥ αt for any good segment st at time t starting from c. We
have the following:

1. if αt 6→ 0 then u ∈ Lµ(A)

2. if αt does not go to 0 in Cesaro mean then u ∈ Cµ(A)

23

Proof. From Proposition 3.6, for any ε > 0 and for any large enough t, the
density of cells outside good segments is at most ε (because the density at step
ti+1 of well-sized segments which are not good is less than the density at step ti
of segments which are not well-sized). Therefore we have from the hypothesis:

dAt(c)(u) ≥ (1− ε) · αt

Lemma 2.2 and 2.3 then allow to conclude.

Claim 3.9. Lw′ ⊆ Cµ(A)

Proof. Let u ∈ Lw′ and c a generic configuration.
There exists ε > 0 such that ∀i0 ∈ N,∃i ≥ i0 such that dw′i(u) > ε. We will

consider t ∈ N such that ti,3 ≤ t ≤ ti+1 − 1. For i large enough, in every good
segment st at time t, v0 and v4 are negligible in the description of Remark 3.3.
Therefore

dwt(st)(u) ≥ 1

2
d
(w′i €)ω

(u) ≥ 1

4
dw′i(u) ≥ 1

4
ε.

So we put αt = 1
4ε for t verifying ti,3 ≤ t ≤ ti+1− 1 (i large enough) and αt = 0

elsewhere. Summing at time ti+1 − 1, we get:

1

ti+1 − 1

ti+1−1∑
t=0

αt ≥
1

ti+1 − 1

ti+1−1∑
t=ti,3

αt

≥ 1

ti+1 − 1
(ti+1 − 1− ti,3)

1

4
ε

≥ 1

16
ε

We conclude thanks to Lemma 3.8.

Claim 3.10. Lw ⊆ Lµ(A)

Proof. Similarly as in the previous proof, there exists ε > 0 such that for ar-
bitrarily large i dwi(u) > ε. Then we can lower-bound the density of u in any
good segment at time ti,2 by 1

4ε, and we conclude thanks to Lemma 3.8.

Claim 3.11. Lµ(A) ⊆ Lw′ ∪ Lw
Proof. Take u /∈ Lw′ ∪ Lw, for any t ∈ N, the density of u in At(c) is due to
occurences of u outside good segments (density dt(u)) and occurences inside
good segments (density d′t(u)). Since the density of cells outside good segments
tends to 0 (Proposition 3.6), dt(u)→t→∞ 0.

Inside good segments, the density of u is less than the sum of densities of u
in wi, in w′i and in cells corresponding to v0, v2 or v4 in the description of these
segments made in Remark 3.3, that is ∀ti ≤ t < ti+1, d

′
t(u) ≤ dwi(u)+dw′i(u)+εi

with εi →i→∞ 0. This proves the claim, using Lemma 2.2.

Claim 3.12. Cµ(A) ⊆ Lw′

24

Proof. As Cµ(A) ⊆ Lµ(A), it is enough to prove that ∀u ∈ Lw \Lw′ , u /∈ Cµ(A).
Take such an u and a generic configuration c.

For i ∈ N, recall ti,1 = 1
2 (ti+1−ti) and ti,3 = 1

2 (ti+1−ti)+(|wi|+ |w′i|+1)Ki.
For any t ∈ N such that ti ≤ t ≤ ti,1 or ti,3 ≤ t < ti+1, it is possible to bound
dAt(c)(u) by some εi with εi →i→∞ 0. Indeed, for such t, in every good segment,
in the description of Remark 3.3, v1 and v3 contain copies of w′i or w′i−1; and
cells outside good segment have a density going to zero (from Proposition 3.6).
To simplify the proof, let’s choose εi such that it is also a bound on the density
of cells outside good segments for any t between ti and ti+1.

Then for every good segment at time ti:

ti+1−1∑
t=ti

dwts(u) =

ti,1∑
t=ti

dwts(u) +

ti,3∑
t=ti,1

dwts(u) +

ti+1−1∑
t=ti,3

dwts(u)

We deduce that:

ti+1−1∑
t=ti

dAt(c)(u) ≤ 1
2 (ti+1 − ti)εi + (|wi|+ |w′i|+ 1)Ki + 1

2 (ti+1 − ti)εi + (ti+1 − ti)εi
ti+1−1∑
t=ti

dAt(c)(u) ≤ 2(ti+1 − ti)εi + (2
√
i+ 1)Ki

Now take t ∈ N, there exists i ∈ N such that ti ≤ t < ti+1, hence

1
t

t∑
τ=0

dAτ (c)(u) ≤ 1
t

i∑
j=0

tj+1−1∑
τ=tj

dAτ (c)(u)

≤ 1
t

i∑
j=0

(
2(tj+1 − tj)εj + (2

√
j + 1)Kj

)
→t→∞ 0

4 Building complex µ-limit sets

4.1 Complexity upper-bounds
Before giving examples of complex µ-limit sets, let’s establish some upper bounds.

A word w is a wall for a CA F if for any c, c′ ∈ [w]0 we have:

1. if cz = c′z for every z < 0 then F t(c)z = F t(c′)z for every z < 0 and any
t ≥ 1

2. if cz = c′z for every z ≥ |w| then F t(c)z = F t(c′)z for every z ≥ |w| and
any t ≥ 1

It is well-known that a one-dimensional CA F has equicontinuous points if
and only if it has walls [Kůr97].

The following proposition is a generalization of theorem 1 of [BPT06] to a
broader class of measures.

25

Proposition 4.1. Let µ be a σ-ergodic measure with full support and F a CA
admitting w as a wall. Then Lµ(F) is exactly the set of words occuring in the
(temporal) period of the orbit of some (spatially) periodic configuration of period
wu for some u, formally:

v ∈ Lµ(F) ⇐⇒ ∃t, p ≥ 1, v1, v2, u such that
{
F t
(
ω(wu)ω

)
= ω(v1vv2)ω and,

F p
(
ω(v1vv2)ω

)
= ω(v1vv2)ω

Proof. First, consider some word v occuring in the period of the orbit of ω(wu)ω

as in the proposition. Then, for each k ≥ 0, we have [wuw] ⊆ F−t−kp
(
[v1vv2])

because w is a wall for F . Hence F t+kpµ([v]) ≥ µ([wuw]) > 0 because µ has
full support, which shows v ∈ Lµ(F).

Suppose now that v ∈ Lµ(F). By definition there is ε > 0 and a sequence
(tn) such that, for all n, F tnµ([v]) ≥ ε. Consider for any k ≥ 0 the set:

Xk =
⋃

−k≤i≤k

[w]i

The union X = ∪k≥0Xk has measure 1 because µ is σ-ergodic, X is σ-invariant,
[w]0 ⊆ X and µ has full support. Moreover the sequence Xk is increasing, so
there is k0 such that µ(Xk0) > 1− ε

2 . By σ-invariance of µ we deduce that the
set

Y = σk0+|w|(Xk0) ∩ σ−k0−|v|−1(Xk0)

is such that µ(Y) > 1− ε. Hence, for any n, F−tn([v]) ∩ Y 6= ∅. We deduce that
there is some sub-sequence (tnp) such that, for some i < |w| and j > |v|, and for
any p, F−tnp ([v]) ∩ [w]i ∩ [w]j 6= ∅ (recall that σ is the “left” shift). Using the
fact that w is a wall, we conclude that v occurs in the (temporal) period of the
orbit of some (spatially) periodic configuration of period wu for some u.

Theorem 4.2. Let A be any CA and µ a translation invariant measure. We
have the following upper bounds:

• if µ is computable then Lµ(A) is a Σ0
3 arithmetical set;

• if µ is σ-ergodic with full support and A has equicontinuity points, then
Lµ(A) is recursively enumerable.

Proof. Since µ is computable by some function f : A∗ ×Q→ Q, there is a com-
putable function g : A∗ × Q × N → Q such that for any ε, any t ∈ N and any
u: ∣∣Atµ([u]0)− g(u, ε, t)

∣∣ ≤ ε.
Indeed, it is sufficient to compute A−t(u) and sum f(v, ε′) for all elements v of
this set and a computably small enough ε′. Then, from the definition of Lµ(A)
we have

u 6∈ Lµ(A)⇔ ∀ε > 0,∃t0,∀t ≥ t0, g(u, ε, t) ≤ ε.
Therefore Lµ(A) is Σ0

3.

26

Now suppose that µ is σ-ergodic with full support and that A has equicon-
tinuous points. By hypothesis A admits some wall w (see [Kůr97]). Therefore
Proposition 4.1 ensures that Lµ(A) is the set of words occuring in the (tempo-
ral) period of the orbit of some (spatially) periodic configuration of period wu
for some u. Since the temporal cycle reached from a spatially periodic initial
configuration is finite and recursively bounded in the size of the spatial period,
Lµ(A) is recursively enumerable.

4.2 Σ3-hard example
Here we will prove that the µ-limit language of a cellular automaton can have
complexity Σ3-hard. For that, with the help of the construction described in
Section 3, we will prove a reduction from a Σ3-hard problem on Turing machines.

Definition 4.1. A Turing machine M is said to be co-finite (and we write
M ∈ COF) when there exists i0 ∈ N such that M halts on every input i ≥ i0.

The following result was proved in [Odi99].

Theorem 4.3. The problem COF has complexity Σ3-hard.

Now we can prove that:

Theorem 4.4. There exists a cellular automaton A such that Lµ(A) is Σ3-
complete for every fully supported Bernoulli measure µ.

Proof. We already know that this problem is Σ3 at most. We will use The-
orem 3.1 to prove the completeness. Let us describe the growing computable
sequence (wi)i∈N that will be used.

First consider a computable enumeration f of N3, such that for any (j, k, l) ∈
N3 there exist infinitely many i ∈ N with f(i) = (j, k, l). (Any such enumeration
will do.) Let (φn)n∈N be a computable enumeration of Turing machines. We
describe the Turing machine T such that T outputs wi when given the input i.

Take i ∈ N, there are j, k, l ∈ N such that f(i) = (j, k, l). The idea is to sim-
ulate the computation of the Turing machine φj on some particular sequence of
consecutive inputs then choose wi according to the results of the computations,
i.e. depending whether the machine halts on each input in this sequence or not.
We will say that i is successful if the machine does halt on each input. Indeed
saying that the machine is co-finite means that there exists k ∈ N such that
the computation ends on all sequences {k, k + 1, . . . , k + l}. Thus, wi will be
a witness (taking the form of a prefix of ($0

j $1
k $2)ω) of the success of a

sequence starting at k. We will have to avoid writing a witness for k more than
once for each l.

More formally, T does the following on input i:

• Compute (j, k, l) = f(i).

• Compute i0 = max{i′ < i, f(i′) = (j, k, l)}.

27

• At the same time, simulate the machine φj with successive inputs k, k +
1, . . . , k+l. If one of these simulations does not halt, then stop the sequence
of simulations after 2i steps (the bound is purely arbitrary). In this case,
i is said to be failed.

• If the machine φj does halt on all these inputs before timestep 2i, then
denote τ the exact time used for the whole computation.

• If τ ≤ 2i0 , then i is said to be failed again, since in this case, some smaller
integer was declared successful with the same sequence.

• In the remaining case, i is said to be successful and wi = ($0
j $1

k $2)i.

• If i is failed, wi = i(j+k+3).

Consider the word uj = $0
j $1 , we will prove that:

uj ∈ Lw ⇔ φj ∈ COF

Claim 4.5. φj ∈ COF ⇒ uj ∈ Lw
Proof of the claim:

First suppose that φj ∈ COF for some j ∈ N. In this case, there exists k ∈ N
such that ∀l ≥ k, φj halts on input l. This means that for any (j, k, l), l ∈ N,
there exists i ∈ N such that f(i) = (j, k, l) and 2i timesteps are enough to
simulate φj on inputs k, k + 1, . . . , k + l and verify that it halts in each case.
Thus for every triplet (j, k, l), l ∈ N, there exists a successful il ∈ N with f(il) =
(j, k, l).

Hence, wil = ($0
j $1

k $2)il . For l, and thus il, large enough, the density
of the word uj in every wil is larger than

1
2

1
|j|+|k| which is a constant.

�

Claim 4.6. φj /∈ COF ⇒ uj /∈ Lw
Proof of the claim: Here, with j fixed, if we take an infinite number of successful
integers, they necessarily concern unbounded values of the starting point k. We
will use the fact that the density of uj in ($0

j $1
k $2)ω decreases when k

increases.
Suppose φj /∈ COF for j ∈ N. Take ε > 0. For any i ∈ N, if f(i) = (j′, k, l)

with j 6= j′, then dwi(uj) = 0.
There exists k0 ∈ N, such that 1

|j|+|k0| < ε. As φj is not co-finite, there
exists l0 ≥ k0 such that φj does not halt on input l0. Thus, there are at most
l0

2 triplets (j, k, l) ∈ N3 with k ≤ k0 and l ≤ l0. There exists i0 ∈ N such that
for any (j, k, l), k ≤ k0, l ≤ l0:

• either every i ∈ N with f(i) = (j, k, l) is failed;

• or there exists i < i0 such that i is successful.

Now take i ≥ i0.

28

• If f(i) = (j′, k, l), j′ 6= j then we have dwi(uj) = 0.

• If f(i) = (j, k, l), k ≥ k0 then dwi(uj) ≤ 1
|j|+|k0| < ε.

• If f(i) = (j, k, l), k ≤ k0, then dwi(uj) = 0 since i ≥ i0.

�

4.3 Descriptive complexity
In this section we will use Theorem 3.1 to construct cellular automata whose µ-
limit sets are constrained to be in a specific subshift. The following proposition
shows that we can build a µ-limit inside any effective subshift. However, let’s
recall that there are very simple effective subshits which can not be the µ-limit
set of some CA as shown in Example 2.1. The question of what kind of subshift
can appear as µ-limit sets has been specifically adressed in [BDS10].

Proposition 4.7. Given a non-empty effective subshift S over an alphabet Q0,
there exists a CA whose µ-limit set is included in S for every fully supported
Bernoulli measure µ.

Proof. Because the subshift S is effective, it can be characterized by a recursively
enumerable set of forbidden words. We will use Theorem 3.1 with a growing
computable sequence in which the word wi does not contain any of the first i
forbidden words.

Let us describe the Turing machine T that computes the sequence (wi)i.

• On input i, T enumerates and stores the first i forbidden words of S.

• All possible words of length i over Q0 are then enumerated in lexicographi-
cal order, and wi is the first one that does not contain any of the forbidden
words previously enumerated (there exists one because the subshift is non-
empty).

We now apply Theorem 3.1 with the growing computable sequence (wi)i
hence it is enough to prove that Lw contains only words in Σ∗ and none of the
forbidden words.

Now let us consider a forbidden word v in the recursively enumerable set
that characterizes the subshift S. It is the ith word enumerated for some i ∈ N,
hence it does not appear in wj , j ≥ i.

This proposition does not allow to describe the µ-limit set obtained, except
if the subshift is minimal. A subshift is said to be minimal ([LM95]) when it
does not contain a proper subshift. Hence the proposition implies that:

Corollary 4.8. Given a non-empty minimal effective subshift S, there exists
a cellular automaton whose µ-limit set is S for every fully supported Bernoulli
measure µ.

29

We will see now how the previous proposition implies the existence of a
cellular automaton whose µ-limit set contains only configurations of high Kol-
mogorov complexity.

Definition 4.2. Given a recursive function f : {0, 1}∗ → {0, 1}∗, the Kol-
mogorov complexity relative to f of a string x ∈ {0, 1}∗ is defined as Kf (x) =
min{|y|, f(y) = x}.

As such, the definition of Kolmogorov complexity depends heavily on the
choice of the function f and it is not properly defined for words x such that
{|y| | f(y) = x} is empty. However, it can be shown that there exists a recursive
function U such that, for any recursive function f , there is a constant cf ∈
N such that, for any string x ∈ {0, 1}∗ such that Kf (x) is defined, we have
KU (x) ≤ Kf (x) + cf . This also implies that KU (x) is properly defined for all
x. The Kolmogorov complexity of a string x is then defined as K(x) = KU (x)
for some such additively optimal U .

Informally, the Kolmogorov complexity of a word is the length of a shortest
program which outputs that word.

Definition 4.3 (α-complexity). Given a constant α > 0, a word of length n
on the alphabet {0, 1}∗ is said to be α-complex if its Kolmogorov complexity is
greater than αn. A word that is not α-complex is said to be α-simple.

Corollary 4.9 (of Proposition 4.7). For any α < 1, there exists a constant nα
and a cellular automaton whose µ-limit set contains only configurations whose
factors of length greater than nα are all α-complex for every fully supported
Bernoulli measure µ.

Proof. To use Proposition 4.7 we need to show that for some nα the subshift of
configurations over {0, 1} that contain no α-simple word of length greater than
nα is effective and non-empty.

As for the effectiveness, a word x is α-simple if and only if there exists y such
that U(y) = x and |y| ≤ α|x|. We can enumerate all such words by dovetailing
the computations of U(y) for all possible y and checking if the resulting word
is α-simple by comparing its length to that of the input y. Therefore the set of
α-simple words {x, K(x) ≤ α|x|} is recursively enumerable, and so is the set of
such words of length greater than nα.

The existence of nα and a configuration containing no α-simple factor of
length greater than nα is a consequence of the main result in [RU06] since there
exist at most 2αn forbidden words of length n and complexity less than αn.

Corollary 4.10 (of Corollary 4.9). There exists a CA whose µ-limit set contains
only non-recursive configurations for every fully supported Bernoulli measure µ.

Proof. In a recursive configuration c, the word c[0,n] starting at position 0 and
of length n has complexity O

(
log(n)

)
. Therefore no recursive configuration can

be α-complex in the sense defined above. Corollary 4.9 concludes the proof.

30

As a last application of Proposition 4.7, we will show that the quasi-periodicity
of a µ-limit set can be highly non-trivial using a result of [BJ10]. A configuration
c is said quasi-periodic if any pattern occurring in c occurs in any large enough
pattern of c. Any subshift contains a quasi-periodic configuration [Bir12]. For
such configurations the quasi-periodicity can be quantified through the quasi-
periodicity function.

Definition 4.4. Let c be a quasi-periodic configuration. We associate to c the
quasi-periodic function ρc : N→ N defined by:

ρc(n) = max
u∈L(c),|u|=n

min{p : any pattern of size p of c contains u}

Corollary 4.11 (of Proposition 4.7). There exists a cellular automaton such
that for any quasi-periodic configuration c of its µ-limit set, the function ρc can
not be bounded by any recursive function for every fully supported Bernoulli
measure µ.

Proof. It is a direct application of Proposition 4.7 with the effective subshift
obtained by corollary 3.4 of [BJ10].

5 Complexity of properties of µ-limit sets

5.1 A Rice theorem for µ-limit sets
In the case of the limit set of cellular automata, J. Kari [Kar94] proved a result
equivalent to Rice theorem, meaning that any non trivial property of limit sets
of cellular automata is undecidable. Using certain aspects of his technique, we
will prove here that any non trivial property of µ-limit sets of cellular automata
has a higher complexity than the negation of the problem of being co-finite for
a Turing machine. Since we will deal with different cellular automata in this
section, the considered measures will be the uniform ones on each alphabet.

5.1.1 Properties of µ-limit sets

Intuitively, a property of the µ-limit set is a property P which depends only
on the µ-limit set: if two CA have the same µ-limit set, then either both have
property P or none has property P. We use the same formalism as J. Kari
for limit sets. Recall that we have since the beginning consider a countable set
Q = {q0, q1, . . . } from which we take finite subsets to define alphabets.

Definition 5.1. A property P of µ-limit sets of cellular automata is a subset of
the powerset P(QZ). A µ-limit set of some cellular automaton is said to have
property P if it is included in P.

For example, µ-nilpotency is given by the family {qZi , i ∈ N}. We will talk
equivalently of properties of µ-limit sets and µ-limit languages, but a property of
cellular automata concerning the µ-limit set is not necessarily a property of µ-
limit sets. Surjectivity is the classical example to show that both differ. Indeed

31

surjectivity refers to the set of states of the automaton and not necessarily
only to those appearing in the µ-limit set. Note also that there is no obvious
relationship between properties of µ-limit sets and properties of limit sets:

• nilpotency is a property of limit sets but not a µ-limit property (e.g. for
µ the uniform Bernoulli measure, any CA with a spreading state is µ-
nilpotent but can be nilpotent or not);

• conversely, µ-nilpotency is a property of µ-limit sets, but it is not known
whether it is a property of limit sets.

A property is said to be trivial when either it contains all µ-limit sets or
none.

5.1.2 Computing a weakly generic configuration

In order to prove this Rice theorem, we will need to be able to compute the
prefixes of some weakly generic configuration, we will then refer to the following
proposition proved in [FK77]:

Proposition 5.1. There exists a computable weakly generic configuration cWG

on the finite alphabet X such that there exist A,B > 0 such that for any l ∈ N,
u ∈ X l and L ≥ |X|2l, we have:

A|X|−l ≤ dcWG[0,L−1]
(u) ≤ B|X|−l

Remark 5.1. The property over the densities of prefixes can be extended to
images of cWG by a cellular automaton, for k ∈ N and L ≥ 2k:

A/2dAk(cWG)(u) ≤ dAk(cWG)[0,L−1]
(u) ≤ 2BdAk(cWG)(u)

5.1.3 Construction

Theorem 5.2. Given a property P of µ-limit sets, either P is trivial or P is
Π3-hard.

To prove this theorem, we will use a reduction to the problem of being
co-finite for a Turing machine which is Σ0

3-complete.
The general idea of the proof is close to what J. Kari did for limit sets, using

the following proposition:

Proposition 5.3. There is an algorithm that, given a cellular automaton A
and a Turing machine φ, produces a cellular automaton B such that:

• if φ ∈ COF then Λµ(B) = QZ
A;

• else Λµ(B) = Λµ(A).

Using this property, whose proof will follow, we can prove Theorem 5.2.

32

Proof of Theorem 5.2. Given some non trivial property P of µ-limit sets, con-
sider a Turing machine φ and cellular automata A1 and A2 such that exactly
one among A1 and A2 has property P. We consider they have a common al-
phabet, which is always possible by increasing their alphabets if necessary. We
reduce the decision problem P to COF as follows. First denote B1 and B2 the
cellular automata given by Proposition 5.3 for respectively φ and A1 and φ and
A2. Then using the oracle for P on B1 and B2, we can decide if the answer is
the same or not. The first case corresponds necessarily to φ /∈ COF and the
second to φ ∈ COF . So we decided COF on φ.

Now we prove Proposition 5.3.

Proof of Proposition 5.3. The proof will have similarities with the one of The-
orem 4.4. Denote for this proof c = cWG.

It mainly relies on Theorem 3.1. Again, we make a reduction to the problem
of being co-finite for a Turing machine which is Σ0

3-complete. Let us describe the
computable sequence w = (wi)i∈N associated to it. First consider a computable
enumeration f of N2, such that for any (k, l) ∈ N2 there exist infinitely many
i ∈ N with f(i) = (k, l). Denote T the Turing machine that produces w.

For (k, l) = f(i), i ∈ N, the idea is to simulate the computation of φ on some
sequence of consecutive inputs ({k, k + 1, . . . , k + l}) and output different wi’s
whether the machine halts on each input in this sequence or not. We will say
that the sequence is successful if the machine does halt on each input and failed
in the other case. Indeed saying that the machine is co-finite means that there
exists k ∈ N such that all sequences {k, k + 1, . . . , k + l} are successful. Thus,
we will write a witness of the success of a sequence starting at k. We will have
to avoid writing a witness for k more than once for each l.

More formally, T does the following on input i:

• Compute (k, l) = f(i) and ν(i) = blog ic.

• Compute i0 = max{i′ < i, f(i′) = (k, l)}.

• Simulate the machine φ with successive inputs k, k + 1, . . . , k + l. If one
of these simulations does not halt, then stop the simulation after 2i steps.
In this case, i is said to be failed.

• If the machine φ does halt on all these inputs before timestep 2i, then
denote τ the exact time used for the whole computation.

• If τ ≤ 2i0 , the whole computation necessarily ended for i0 and again i is
said to be failed.

• Compute ui = c[o..(ν(i)−1)] and vi =
(
Aν(i)(c)

)
[o..(ν(i)−1)].

• If i is failed, define wi = vk+1
i .

• In the other case, i is said to be successful: define wi = uiv
k
i .

33

Claim 5.4. If φ ∈ COF then Lw = QZ
A.

Proof of the claim:
In this case, there exists k ∈ N such that ∀l ≥ k, φ halts on input l. This

means that for any l ∈ N, there exists il ∈ N such that f(il) = (k, l) and 2il

timesteps are enough to simulate φ on inputs k, k+1, . . . , k+ l and verify that it
halts in each case. Thus there are infinitely many successful i’s with f(i) = (k, l)
for some l ∈ N.

Take any word u ∈ Q∗A. For any such large enough successful i (ν(i) ≥
|QA|2|u|), we hence have dwi(u) ≥ A

2(k+1)|QA||u|
(with A from Proposition 5.1)

which is a constant as k is fixed.
�

Claim 5.5. If φ /∈ COF then Lw = Lµ(A).

Proof of the claim: Here, if we take an infinite number of successful sequences,
they necessarily concern unbounded values of the starting point k. We will use
the fact that the space covered by prefixes of an image of c decreases when k
increases.

Take u /∈ Lµ(A) and ε > 0.
There exists k0 ∈ N, such that 1

k0+1 < ε/2. As φ is not co-finite, there exists
l0 ≥ k0 such that φ does not halt on input l0. There are less than l0

2 pairs
(k, l) ∈ N2 with k ≤ k0 and k + l ≤ l0. Denote i0 the smallest integer such that
for any f(i) = (k, l) with i ≥ i0 and k ≤ k0:

• either φ does not halt on some input between k and k + l;

• or there exists i′ ≤ i0 with f(i′) = (k, l) such that φ halts on all these
inputs in less than 2i

′
timesteps.

Thus, when f(i) = (k, l) with i ≥ i0 and k ≤ k0, i is failed and wi =
(
(
Aν(i)(c)

)
[o..(ν(i)−1)])

k+1.
Take i1 ≥ i0 such that ∀i ≥ i1, dAν(i)(c)(u) < ε/(4B), which exists since

u /∈ Lµ(A).
Now take i ≥ i1 with f(i) = (k, l) ∈ N2.

• If k ≥ k0 then dwi(u) < 1
k0+1 + dAν(i)(c)[0..ν(i)](u) < ε.

• If k ≤ k0, then i is failed and dwi(u) < dAν(i)(c)[0..ν(i)](u) < ε.

Hence, thanks to Remark 5.1, we conclude that Lw ⊆ Lµ(A).
The other direction is easier: for u ∈ Lµ(A) and i ∈ N, dwi(u) ≥ 1

2dAν(i)(c)[0..ν(i)](u)
which does not tend to 0.

�

In the next section, we will deal more specifically with µ-nilpotency. We
leave open the question of properties of higher complexity. For example, being
a shift of finite type, a sofic shift or containing a weakly generic configuration. . .

34

In particular, it is not known whether there exist properties of arbitrarily high
complexity.

5.2 µ-nilpotency
Recall that a CA is µ-nilpotent if and only if its µ-limit set is a singleton.

Proposition 5.6. Let µ be a computable measure. The set of µ-nilpotent CA
is Π0

3.

Proof. If a CA is µ-nilpotent then the only configuration in the µ-limit set is
necessarily of the form ωqω for some state q. Hence, µ-nilpotency is equivalent
to the following property:

∀ε > 0,∃t0,∀t ≥ t0,∃q0, F tµ(q0) ≥ 1− ε

Since µ is computable and the number of states of a CA is finite, the predicate
“∃q0, F tµ(q0) ≥ 1− ε” (depending on t, F and ε) is recursive, which concludes
the proof.

The following theorem is a direct consequence of the Rice Theorem (5.2)
proved earlier.

Theorem 5.7. Let µ be some Bernoulli measure on the fullshift, the problem
of being µ-nilpotent for a cellular automaton is Π0

3-complete.

Proposition 5.8. Let µ be a σ-ergodic measure of full support. Then we have:

• the set of µ-nilpotent CA with a persistent state is co-recursively enumer-
able;

• the set of µ-nilpotent CA with equicontinuous points is Σ0
2.

Proof. Using Proposition 4.1, not being µ-nilpotent is equivalent to the existence
of different words of same size in the temporal period of some spatially periodic
configuration containing a wall. For CA with a persistent state, it is sufficient
to test with a wall made of r adjacent persistent states (r being the radius).
Hence we can recursively enumerate CA with a persistent state and a pair of
different words as said above. The first item of the Proposition follows.

For CA with equicontinuous points, the additional difficulty is that we don’t
know a priori which word is a wall. Testing this costs an additional quantifier.
Formally, a CA is µ-nilpotent with an equicontinuous point if and only if

∃w, q0
(
∀z, t R(w, z, t) ∧ ∀v R′(q0, w, v)

)
where predicates R and R′ are recursive and such that:

• R(w, z, t) checks that w is a wall up to time t and position z and −z (see
definition in Section 4.1)

35

• R′(q0, w, v) checks that periodic configuration wv converges to the q0-
uniform configuration (exponential time bound is enough to check)

The second item of the Proposition follows.

The definition of µ-nilpotency has been chosen analogously as the definition
of nilpotency. But in the case of nilpotent CA, we can show that the limit set
contains either a unique uniform configuration or an infinite number of distinct
configurations. As this property is false for µ-limit sets, a notion of weak µ-
nilpotency can be defined. The most natural way is to say a CA is weakly µ-
nilpotent when its µ-limit set is finite. Still, some refinements can be considered,
such as µ-limit sets containing only uniform configurations or the shift-orbit of
one unique periodic configuration.

In terms of complexity, the alphabet being finite, the second definition (only
uniform configurations) is equivalent to classical µ-nilpotency. Thanks to Rice
Theorem, other ones are at least as complex, but we need other quantifiers to
describe the finite µ-limit set.

6 Types of convergence towards the limit

6.1 Simple convergence
By definition words which are not in the µ-limit language are those whose prob-
ability goes to zero as time increases. However, this probability does not always
converge for words which are in the µ-limit language. As a consequence, con-
trary to the limit set, the µ-limit set is generally changed when taking iterates
of a given CA.

Theorem 6.1. For any fully supported Bernoulli measure µ, there exist F such
that F and F 2 do not have the same µ-limit set.

Proof. To construct such an F it is sufficient to use the counter construction
from the proof of Theorem 3.1, i.e. the initialization step. We just use the
trick of unary counters to build a growing uniform “protected area” alternating
between two states: all black (odd steps), or all white (even steps). We keep
the same collision rule described in the proof of Theorem 3.1:

• when two areas of different ages collide, the older is destroyed by the
younger;

• when two areas of same age collide, they simply merge (it is possible since,
having the same age, they have the same uniform content).

We say a cell is synchronized at time t0 if for any t ≥ t0 it is black when t is
odd and white when t is even. Then, using a simplified version of Lemma 3.3,
we can prove the following:

Claim. Starting from a generic configuration, the density of
cells which are synchronized at time t goes to 1 when t grows.

36

It follows that F 2 is µ-nilpotent whereas the µ-limit set of F contains two
configurations: the “all black” and the “all white”.

We say that a CA is simply convergent for µ if the probability of appearence
of a word u converges for any u, i.e.

∀u ∈ A∗,∃α ∈ R,∀ε > 0,∃t0,∀t ≥ t0 :
∣∣Atµ([u]0)− α

∣∣ ≤ ε.
Examples of simply convergent CA are µ-nilpotent CA. Indeed, the proba-

bility of apparence of any word goes to 0 except for one word of each size for
which it necessarily goes to 1.

If F is simply convergent for µ then, for any t ≥ 1, F t is simply convergent
and F and F t have the same µ-limit set. The Theorem 6.1 above gives an
example of CA which is not simply convergent.

As shown by the following theorem, the simple convergence assumption sim-
plifies the µ-limit set as well as some decision problems on it (to be compared
to Theorems 4.4 and 5.7).

Theorem 6.2. Let µ be a computable translation invariant measure.

• if A is simply convergent for µ then Lµ(A) is a Σ0
2 set;

• there exists a Π0
2 predicate that characterizes µ-nilpotent CA among simply

convergent CA;

• the set of simply convergent CA is Π0
3 and it is Π3-hard when µ is the

uniform Bernoulli measure.

Proof. If A is simply convergent for µ, we have the following characterization
of Lµ:

u ∈ Lµ ⇔ ∃t0,∃ε,∀t > t0 : F tµ([u]0) > ε.

We deduce the first item of the theorem.
A is not µ-nilpotent exactly when there are two different words of equal size

in Lµ. With the hypothesis of simple convergence, it can be written:

∃u, v, |u| = |v|, u 6= v,∃t0,∃εu,∃εv,∀t > t0 : F tµ([u]0) > εu ∧ F tµ([v]0) > εv

and the second item of the theorem follows directly.
To show the third item, let us first remark that simple convergence can be ex-

pressed by a Π0
3 formula saying that the sequence of probabilities of appearance

along time of each word is a Cauchy sequence:

∀u ∈ A∗,∀ε > 0,∃N, ∀p, q > N :
∣∣Apµ([u]0)−Aqµ([u]0)

∣∣ ≤ ε.
Finally, for Π0

3-hardness it is sufficient to verify that a subset of the CA con-
structed in the proof of Proposition 5.3 are either µ-nilpotent (hence simply
convergent), or not simply convergent. More precisely, in the construction, con-
sider a µ-nilpotent CA A (Lµ(A) = $ ∗ for some special state $). First note

37

that in Theorem 3.1 the simple convergence of the CA is equivalent to the sim-
ple convergence of the densities of words in the computable sequence (wi)i. If
you take a machine φ /∈ COF , then B is µ-nilpotent as shown in Claim 5.5. In
the other case, with φ ∈ COF , we still have lim infi dwi($) = 1. Indeed, you
get the result with a sequence (ij)j where f(ij) = (0, 0). Hence, as in this case
Lw = Q∗A (Claim 5.4), the convergence cannot be simple.

Complexity considerations allow to prove that some µ-limit sets are impos-
sible to obtain with simple convergence. We currently do not know any direct
proof of this fact.

Corollary 6.3. There exists a CA whose µ-limit set can not be the µ-limit set
of any simply convergent CA.

Proof. By Theorem 4.4 there exists a Σ0
3-hard µ-limit set. However, Theorem 6.2

shows that simply convergent CA produce µ-limit sets which are only Σ0
2.

6.2 Cesaro mean
The construction from Theorem 3.1 allowed us to build complex µ-limit sets. It
also shows that this complexity can be completely wiped out when considering
the Cesaro mean.

Theorem 6.4. For any cellular automaton, there exists another one with the
same µ-limit set (possibly up to a single uniform configuration) but which is
µ-Cesaro nilpotent.

Proof. It’s a direct application of Theorem 3.1 where w is chosen so that Lw
is the µ-limit set of the given CA and w′ chosen so that Lw′ contains only 1
letter.

6.3 Non-recursive convergence time
Here we want to point out the fact that convergence to the µ-limit language
may actually be really late, in particular the next proposition states that the
convergence rate may be slower than any recursive function.

Proposition 6.5. Given an enumeration of Turing machines, denote Tm the
halting time of machine m ∈ N on input 0. If m does not halt on 0, Tm = 0.

There exists a cellular automaton F (with 0 ∈ QF) such that:

• ∀n ∈ N,∃tn ≥ max {Tm : m ≤ n} , F tnµ([0]) ≥ 1
2n ;

• 0 /∈ Lµ(F).

Proof. To prove it we use again Theorem 3.1 with some growing computable
sequence w ∈ W(Q)(0 ∈ Q) that we will describe. Note first that, due to the

38

construction used in the proof of Theorem 3.1, the first point of the theorem is
implied by

∀n ∈ N,∃in ≥ max {Tm : m ≤ n} , dwin (0) ≥ 1

n

Take an enumeration f of the integers such that the preimage of any integer is
infinite and ∀i ∈ N, f(i) ≥ i. For i ∈ N with f(i) = m, simulate the computation
of machine m with input 0 during i steps. As in the proofs of Theorem 4.4
and Proposition 5.3, for each m ∈ N, the smallest i such that the computation
reaches its end is said to be successful and failed in the other case. If i ∈ f−1(m)
is successful, take wi = (1m−10)i, else wi = 1im.

Thus 0 has density 1
m in the writing layers of segments only when the sim-

ulation of the machine halts for the smallest i ∈ f−1(m), and 0 otherwise. The
two points of the result are now easily verified.

For the first point, given n ∈ N, considermn such that Tmn = max {Tm : m ≤ n}.
There exists in ∈ f−1(mn) successful, hence dwin (0) ≥ 1

n .
For the second point, given n ∈ N, there exists in ∈ N such that every

machine m ≤ n halts in less than in steps or never. Now, take jn ≥ in such that
every m ≤ n has been enumerated between in and jn. Thus, for every i ≥ jn
the density of the word 0 is dwi(0) ≤ 1

n .

7 Recap of results
In this section µ denotes the uniform Bernoulli measure. First we give compar-
ative recap of complexity of properties or problems concerning limit sets and
µ-limit sets.

Problem or property Limit Set µ-Limit Set

Being a singleton Σ0
1-complete

(see [Kar92])
Π0

3-complete
(see Thm. 5.7)

Any non-trivial property Σ0
1-hard

(see [Kar94])
Π0

3-hard
(see Thm. 5.2)

Worst-case language Π0
1-complete

(see [Hur87])
Σ0

3-complete
(see Thm. 4.4)

Simplest configuration always uniform can be α-complex
(see Cor. 4.9)

Simplest quasi-periodicity always periodicity can be not recursively bounded
(see Cor. 4.11)

Below is a recap on how the complexity of some problems is affected by
adding hypotheses on the input CA.

39

Type of input CA Worst Lµ µ-Nilpotency

General case Σ0
3-complete

(see Thm. 4.4)
Π0

3-complete
(see Thm. 5.7)

Equicontinuous Σ0
1

(see Thm. 4.2)
Σ0

2

(see Prop. 5.8)

Simply convergent Σ0
2

(see Thm. 6.2)
Π0

2

(see Thm. 6.2)

As shown in [dMS13] it is certainly possible to generalize the results obtained
here for large sets of measures (which was not the purpose of the present paper).
In this context, it becomes relevant to consider the particular case of surjective
CA. Indeed, as the uniform Bernoulli measure is preserved by surjective CA,
the µ-limit set is the full shift, but for another measure, the question is open.

Naturally, the extension of these results can be discussed for higher dimen-
sions. In particular, some of them should be reached given an equivalent con-
struction in higher dimensions.

Acknowledgment
We are grateful for the time spent by the anonymous referees on the first ver-
sion of this paper and for the incitative to write a better version through their
numerous comments.

References
[BDS10] L. Boyer, M. Delacourt, and M. Sablik. Construction of µ-limit sets.

In JAC, pages 76–87, 2010.

[Bir12] G. D. Birkhoff. Quelques théorèmes sur le mouvement des systèmes
dynamiques. Bulletin de la Société Mathématique de France, 1912.

[BJ10] A. Ballier and E. Jeandel. Computing (or not) quasi-periodicity func-
tions of tilings. In JAC, pages 54–64, 2010.

[BPT06] L. Boyer, V. Poupet, and G. Theyssier. On the complexity of limit sets
of cellular automata associated with probability measures. In MFCS,
pages 190–201, 2006.

[Del11] M. Delacourt. Rice’s theorem for µ-limit sets of cellular automata. In
ICALP (2), pages 89–100, 2011.

[dMS13] B. Hellouin de Menibus and M. Sablik. Characterisation of sets of
limit measures after iteration of a cellular automaton on an initial
measure. CoRR, abs/1301.1998, 2013.

40

[FK77] H. Fredricksen and I. J. Kessler. Lexicographic compositions and de-
bruijn sequences. J. Comb. Theory, Ser. A, 22(1):17–30, 1977.

[FK07] E. Formenti and Petr Kůrka. A search algorithm for the maximal
attractor of a cellular automaton. In STACS, pages 356–366, 2007.

[Hur87] L. P. Hurd. Formal language characterizations of cellular automaton
limit sets. Complex Systems, 1:69–80, 1987.

[Hur90a] M. Hurley. Attractors in cellular automata. Ergodic Theory and Dy-
namical Systems, 10:131–140, 2 1990.

[Hur90b] M. Hurley. Ergodic aspects of cellular automata. Ergodic Theory and
Dynamical Systems, 10:671–685, 11 1990.

[Kar92] J. Kari. The nilpotency problem of one-dimensional cellular automata.
SIAM Journal on Computing, 21:571–586, 1992.

[Kar94] J. Kari. Rice’s theorem for the limit sets of cellular automata. Theo-
retical Computer Science, 127:229–254, 1994.

[KM00] P. Kůrka and A. Maass. Limit sets of cellular automata associated to
probability measures. Journal of Statistical Physics, 100(5-6):1031–
1047, 2000.

[Kůr97] P. Kůrka. Languages, equicontinuity and attractors in cellular au-
tomata. Ergodic Theory and Dynamical Systems, 17:417–433, 3 1997.

[Kůr03] P. Kůrka. Topological and Symbolic Dynamics. Société Mathématique
de France, 2003.

[LM95] D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and
Coding. Cambridge University Press, 1995.

[Maa95] A. Maass. On the sofic limit sets of cellular automata. Ergodic Theory
and Dynamical Systems, 15:663–684, 7 1995.

[Odi99] P. Odifreddi. Classical Recursion Theory. Studies in Logic and the
Foundations of Mathematics. North Holland, 1999.

[RU06] A. Y. Rumyantsev and M. A. Ushakov. Forbidden substrings, kol-
mogorov complexity and almost periodic sequences. In STACS, pages
396–407, 2006.

41

	1 Introduction
	2 Definitions
	2.1 Words and Density
	2.2 Cellular Automata
	2.3 Measures
	2.4 -Limit Sets

	3 Construction Toolbox
	3.1 Overview
	3.2 Cleaning out the Space
	3.2.1 General Description
	3.2.2 The Younger, the Better
	3.2.3 Dealing with collisions

	3.3 Centralization
	3.3.1 Synchronization
	3.3.2 Merging
	3.3.3 -limit sets

	3.4 Computing and Writing
	3.5 Proof of the theorem

	4 Building complex -limit sets
	4.1 Complexity upper-bounds
	4.2 3-hard example
	4.3 Descriptive complexity

	5 Complexity of properties of -limit sets
	5.1 A Rice theorem for -limit sets
	5.1.1 Properties of -limit sets
	5.1.2 Computing a weakly generic configuration
	5.1.3 Construction

	5.2 -nilpotency

	6 Types of convergence towards the limit
	6.1 Simple convergence
	6.2 Cesaro mean
	6.3 Non-recursive convergence time

	7 Recap of results

