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In this paper, both singular and hypersingular
fundamental solutions of plane Cosserat elasticity
are derived and given in a ready-to-use form.
The hypersingular fundamental solutions allow to
formulate the analogue of Somigliana stress identity,
which can be used to obtain the stress and couple-
stress fields inside the domain from the boundary
values of the displacements, microrotation and
stress and couple-stress tractions. Using these newly
derived fundamental solutions, the boundary integral
equations of both types are formulated and solved by
the boundary element method. Simultaneous use of
both types of equations (approach known as the dual
boundary element method (BEM)) allows problems
where parts of the boundary are overlapping, such as
crack problems, to be treated and to do this for general
geometry and loading conditions. The high accuracy
of the boundary element method for both types of
equations is demonstrated for a number of benchmark
problems, including a Griffith crack problem and a
plate with an edge crack. The detailed comparison
of the BEM results and the analytical solution for a
Griffith crack and an edge crack is given, particularly
in terms of stress and couple-stress intensity factors,
as well as the crack opening displacements and
microrotations on the crack faces and the angular
distributions of stresses and couple-stresses around
the crack tip.
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1. Introduction

This paper presents both a complete derivation of the fundamental solutions arising in plane
Cosserat elasticity and a demonstration of their use within a boundary element framework
based on the simultaneous use of two types of boundary integral equations (BIEs) on the
crack faces.

The Cosserat (also known as micropolar) theory of elasticity was first introduced by the
Cosserat brothers [1] and further developed by Eringen [2], Nowacki [3] and others as a
generalization of the classical elasticity, which takes into account the effects of a material’s
microstructure by enriching material infinitisimal elements with additional rotational degrees of
freedom and introducing material internal length-scale parameters directly into the constitutive
equations. This theory is known to represent well a number of natural and engineered
materials, e.g. fibre-reinforced composites, metal foams, concrete, synthetic polymers and human
bones.

A number of analytical and numerical methods, which have been successfully used to treat
boundary value problems in classical elasticity, have been developed for micropolar elasticity
as well. While the finite-element method (FEM) remains the most popular tool of numerical
analysis, the boundary element method (BEM) is evolving as an efficient alternative, especially in
modelling problems with discontinuities.

The mathematical foundation of BEM is the BIE method, which was introduced in [4,5] to
study the solvability of boundary value problems in plane micropolar elasticity. It has been shown
that the solutions of these boundary value problems can be found in terms of single layer and
double layer potentials, i.e. in the form of an integral of the product of the unknown densities
and the kernel functions, known as the fundamental solutions. This representation allows one to
reduce a boundary value problem to the systems of weakly singular, singular and hyper-singular
BIEs, which can be subsequently solved by the BEM.

The BEM for singular integral equations, which are also known as displacement/microrotation
boundary integral equations (DBIEs), was developed in [6-8]. To the authors” knowledge, no BEM
solutions for the traction boundary integral equations (TBIEs) of micropolar elasticity have been
published yet. This might be attributed to the fact that the hyper-singular fundamental solutions
are available in the literature only in an implicit form, which requires additional derivations
before it can be implemented into a computer code. However, application of the DBIE-based BEM
to crack problems results in a singular system matrix, due to the coincident crack surfaces, and
therefore it is limited to problems with symmetry [9], which avoid use of one of the coincident
boundaries. The most common approach to overcome this difficulty, which has been successfully
used in classical elasticity, is known as the dual BEM and it consists in simultaneous use of the
both types of the BIEs on the crack surfaces.

For this purpose, in this work, the BEM is developed for the BIEs of both types and its accuracy
is demonstrated in various numerical examples, including problems with cracks. Only a limited
amount of research in Cosserat fracture is available in the literature and it is limited to the studies
of some specific cases (e.g. [10-13]). This work contains the first BEM approach to a general
case of a crack problem in Cosserat elasticity. For the sake of comparison with the analytical
solution, a classical problem of a Griffith crack is chosen as a numerical example. The obtained
data are shown to be in excellent agreement with the exact solutions in terms of stress and
couple-stress intensity factors and the crack opening displacements and microrotations along the
crack faces.

The BEM results are also compared with the analytical asymptotical solutions and the FEM
data obtained in [13] for an edge crack problem in Mode I and Mode II in terms of angular
distributions of the stresses and couple-stresses around the crack tip.

The paper is organized as follows. Section 2 contains mathematical foundations of Cosserat
elasticity; in §3, the BIEs are formulated; in §4, the BEM is outlined. Numerical examples are
presented in §5 and the main results are summarized in §6.
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2. Mathematical foundations of plane micropolar elasticity

In what follows, a linear homogeneous micropolar elastic solid is considered. The solid occupies
an open domain S € R? with the boundary 8S. The plane strain state is described by two in-plane
displacements 11, up and one out-of-plane microrotation ¢3. In addition to stresses 011, 012, 021, 022
(note, that 013 # 021), two couple-stresses 113, mp3 are introduced (figure 1), and the following
constitutive equations hold [4].

Oap = )\u;/,yfsaﬁ + (n+ K)(”a,ﬁ + uﬁ,ot) - K(”oz,ﬂ + 8aﬂ3¢3)} @.1)

and My3 = V¢)3,oz-

In equation (2.1) and throughout the paper, it is assumed that Greek indices take values 1,2, while
Latin indices vary from 1 to 3, 8ij is the Kronecker delta, &ijk is the alternating symbol and 4, u, «, y
are material parameters.

In absence of body forces and body couples, the equilibrium equations [4] are given as

oupa =0 }

(2.2)
and M3, + Eap30ap = 0.

In this work, we use the same notations for the main equations of plane micropolar elasticity in the
matrix and operator form, as originally introduced in [14] and employed, for example, in [5,9,15]
and others. In order to introduce a unified approach to displacements and microrotations, it is
convenient to denote 13 = ¢3 and introduce a vector of generalized displacements u = (1, 12, uz)T
and generalized tractions t = (t1, t2, t3)T, where boundary tractions t1,t; and a couple traction 3
are defined as

te =0panp and 3 =mgy3ng, (2.3)

where n = (11, 12)" is a unit outward normal to 95.
The equations of equilibrium (2.2) then can be rewritten in the form

L(0y)u=0, (2.4)

where the matrix differential operator L(dy) = L(&) is given by [5]

(A + WEE + (n +K)A (A + wEE K&
L&) = (A + W& A+ wWE+w+r)A  —kE |, (2.5)
—K& k&1 yA =2k

with & = 8/dxy and A = 8%/0x3 + 8%/9x3 = &7 + £3.
Together with L(&,), the boundary stress operator T(dyx) = T(§y) is considered [5], which is
defined by the following equation:

(A 420+ K)g1ny + (K + n)éany Aany + pErng K1
T(t) = uéany + AErng (u+r)eny + (A +2u +K)eony  —kny |- (26)
0 0 )"‘;:ana

Operator T(dy) is defined according to (2.1) and (2.3) in such a way that
t=T(dx)u. (2.7)
Then the boundary value problem (figure 2) is formulated as follows:
L(d)u=0 1in§,
u=1u onaSy (2.8)
and t=% ondS;,
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Figure 1. Stresses oz and couple-stresses mg3 acting on a material element in plane micropolar elasticity.

Figure 2. Boundary value problem defined by equation (2.8).

where #t = (ii1,1l,12)T consists of the displacements 7,7, and the microrotation iz = ¢;3
prescribed on Dirichlet boundary 9S;, and t= (fl,fz, f3)T consists of the tractions f1,f, and the
couple traction 3 prescribed on Neumann boundary a5;.

Together with A, u,«,y, the following (engineering) micropolar material constants are
introduced in [16]:

E_ Cu+c)Br+2u +k)

Young’s modulus

20+ 2u 4«
2
G= e 2+ K shear modulus
A Poi ' rati
V= —m
T on ik oisson’s ratio 2.9)
Y .. .
|= | ———— characteristic length (bendin
20n 1) gth ( g)
K
and N= [—— coupling number 0 <N < 1.
2(u + «) ping -~

When N =0 or [ =0, the micropolar theory reduces to classical elasticity. Case N =1 corresponds
to well-known so-called ‘couple-stress theory’, which has been studied independently, for
example, in [17-20]. In this theory, the couple-stresses are taken into consideration; however, the
microrotations are constrained, i.e. defined analogously to macrorotations in classical elasticity.

Two typical approaches to determine Cosserat material constants are experimental methods
[16,21,22] and analytical derivation, based on various homogenization schemes for materials with
periodic microstructure, which have been proposed, for example, in [23-26].
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3. Boundary integral equations

In what follows, a source point is denoted by x = (x1, x2) and a field point by y = (y1, y2).
The matrix of fundamental solutions D = D(x, y) of system (2.4) is derived in [5], in the implicit
form, using the method of associated matrices, described in [14], in the form

D(x,y) = L*(9x)t(x,y), (3.1)

where L*(dy) is the adjoint of L(dx) (matrix consisting of cofactors of L(dx)) and t(x, y) is given as
H0x,y) = oo R — yP? + 4] log [x — y| + 4Ko(klx — y)) (3:2)
and constants a and k are defined by

KkQ2u + )
y+r)’

where Kj is the modified Bessel function of order zero. The full expression of matrix D in polar
coordinates

A=y +2u+x)(n+k) and K= (3.3)

y1=x1+pcosf and yy=x2+ psiné (3.4)
is given, for example, in [27,28]. In view of (3.1) and (3.2)

D(x,y) = (D(y,x)". (3.5)

Along with D, the matrix of singular solutions P = P(x, y; ny) is introduced by
P(x,y;ny) = (T(3,)D(y, x))", (3.6)

where notation 9, implies that in equation (2.6) &, = 9/dy, and normal n, is applied at the point
y. The full expression of matrix P is given, for example, in [27]. It can be verified by direct
differentiation that the columns of D(x,y) and P(x,y; ny) satisfy (2.4) atall x,y € R?, x#¥y.

In order to formulate TBIEs, two more matrices are required. Namely, matrix H = H(x, y; ny)
and S = 5(x, y; nx, ny) which are obtained by applying stress operator T(dy) to matrices D(x,y) and
P(x, y; ny):

H(x, y;nx) =T(0x)D(x,y) and  S(x,y;nx, ny) = T(3x)P(x,y; 1y). (3.7)

The full derivation of matrices D, P, H and S is presented in [28] with the final expressions in a
ready-to-use form in both, symbolic and C/C++ formats.

In order to investigate the behaviour of matrices D, P, H and S in the vicinity of x =1y, they
are expanded in Taylor series in polar coordinates (3.4). Straightforward derivations show that as
p — 0, the weakly singular terms of D are [4]

b 1
Diipp=—7— Inp+0(1) and Dzyz=———1Inp+ 0(1), (3.8)
2 2y
where
1+v [/ 3—-4v 5 1 1+v
= — N 1 7 —_— = "7 3.9
E (2(1 —y ~ N+ ”)> v = 2P 39)

The components of matrices P and H with the highest order of singularity being p~1 are listed
below:
u ng cosf — n{ sinf

Prop1=+5— +0(1)
(3.10)
w' n3cosf —njsind
and Higp = T, T o@),

where ' = (1 — 2v)/2(1 — v) — N2 [4]. Components Py3, P3y, Hyz and Hz, are weakly singular, i.e.
of order In p.
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For matrix S as p — 0, the expansion is

4

w1 1
St =t-— +0(np), Si=— +0(np)
21 p 21 p
" sin @ " cos O (3.11)
I n
S1331 =+~ +O(np), and Syz=F + O(In p),
27 p 2w

where u” = E(1/(1 — v?) 4+ 2N?), 1" = EN? /(1 + v) and components S13, S»1 are of order In p.
The derivation of the BIEs in plane Cosserat elasticity is based on the following analogue of
Somigliana identity [5]:

u;i(x) = LS[Dij(x, V() — Pij(x, y; ny)u;(y)ldsy, xe€S. (3.12)

Analogously to the classical theory, the DBIE is obtained from (3.12) by letting point x tend to
the boundary dS. Removing a small vicinity of a singular point x and using the Taylor series
expansions of the kernel functions, a straightforward derivation yields

1
Eu,-(x) + ][as Pii(x, y; ny)u;(y) dsy — LS Dji(x, y)t(y)dsy =0, xedS. (3.13)

Sign f indicates that the integrals containing Pjp, Pp; are singular and understood as Cauchy
principal values. Factor % in (3.13) is known in classical elasticity as the jump term’, which
remains equal to % on a smooth piece of the boundary in Cosserat elasticity for both,
displacements 11, u and microrotation u3.

In order to derive the TBIE, the first operator T(dy) is applied to equation (3.12) (with arbitrary

direction 7(x)) to obtain the following analogue of Somigliana stress identity:
Tij(3x)u;j(x) = JaS[Hij(x, Y mti(y) — Sij(x, y; nx, my)uj(y)ldsy, xe€S. (3.14)

Then, taking n(x) to be the normal to S and performing limiting process analogously to the
procedure described above for DBIE, the following TBIE is obtained:

1
Eti(x) — J[as Hij(x, y; nx)tj(y) dsy + :EJS Sij(x, y; nx, my)uj(y)dsy =0, x€9S5, (3.15)

where integrals containing Hip, Hp1, S13, S23, S31, S32 are singular and sign § indicates that the
integrals with Sy1, Sop, S33 are hyper-singular and understood as Hadamard finite part integrals.

4. Boundary element method formulation

In this work, the standard BEM discretization with the quadratic Lagrange basis is applied to
equations (3.13) and (3.15), which makes use of the following set of shape functions:

5(52;2?»0), No(e) = _E+ )»0)(25 M) g Na(e) = §E+40)

N1(§) =
0 0 245

(4.1)

The boundary 9S is discretized with N elements 95, and the shape functions (4.1) with Ao =1,
while the solutions u;(y) and t;(y) are approximated with the discontinuous basis with 19 = %
and the three nodal values at each element. All weakly singular integrals, arising from such
discretization are calculated using Telles transform [29]. Singular and hyper-singular integrals
are calculated by means of so-called singularity subtraction technique [30,31], which makes use
of the Taylor expansion of the fundamental solutions in the vicinity of a collocation point, given
by equations (3.10) and (3.11). Then, the collocation point is placed subsequently at every node at
each element, yielding a system of 9N linear algebraic equations for the unknown nodal values
of generalized displacements and tractions.
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5. Numerical results

In this section, four numerical examples are shown. In the first example, the problem of a bending
plate is considered, and it is shown that the exact solution, given by the polynomials of second
degree, can be reproduced with a good accuracy by BEM on a coarse mesh.

In the second example, the problem of the stress concentration around a circular hole is
studied. The stress concentration factors (SCFs) obtained from both types of equations and the
stress and couple-stress field on the boundary and inside the domain are compared with the
analytical solutions.

In the third example, the classical problem of a Griffith crack is solved by means of the dual
BEM with use of both types of BIEs. The BEM solution is compared with the analytical data for
stress and couple-stress intensity factors, as well as for the displacements and microrotations at
the crack faces.

In the fourth example, the dual BEM formulation is applied to the problem of an edge crack
in both loading modes. The BEM results are shown to be in a good agreement with the analytical
and FEM solutions available in the literature for the distribution of stresses and couple-stresses
around the crack tip, as well as the stress and couple-stress intensity factors.

(a) Asquare plate under pure bending

As a first example, a square micropolar plate under pure bending is considered (figure 3). The
following boundary conditions are prescribed:

ur =0, tHh=0, uz=0 atx;=0,

H=th=t3=0 atxy==h, (5.1)
and HH=o0px2, th=0, t3=-—my atxy3=2h,
where
2G My yMy Gh®
_ , =L =, 5.2
=T D+ ™ D1y 6(1— ) (5:2)

The analytical solution ut = (u{‘, u’;, u’é‘)T for this problem was first derived in [32] as

Mox1x 1 M v Mox
A 0A1A2 A 0 2 2 A 041
= , =—= d - 5.3
“TDyyn 2T 2Dtk (xl 1 vx2> anc s D+ yh ©:3)

In [6], this problem, but for a rectangular geometry, was solved by BEM for the following values
of the parameters, which we used in this study as well:

My=1000N, h=0.1m, G:5.1768><107% and v=03. (5.4)

The relative error e; of every component of the BEM solution ub = (uf, ug, ug )T is defined as

max |u? — uf‘|
e = A - (5.5)
max u;|

The boundary was discretized with four elements, or 36d.f., as show in figure 4. As the
polynomial form of the solution approximation can represent the solution exactly, the main source
of error in the BEM results is the integration error. In contrast to the BEM of classical elasticity,
accuracy of integration in the Cosserat case depends significantly on the material constants due to
the presence of small parameter / in the Bessel functions in the fundamental solutions. Therefore,
in order to capture the behaviour of the kernels, the order of Gaussian quadrature was chosen
depending on material parameter I (increasing for decreasing values of I), and it was kept the
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Figure 3. A micropolar plate under pure bending.

e clement boundaries
X collocation points

Figure 4. A plate under pure bending: coarse mesh of the boundary.

same for different values of N corresponding to the same value of I. The results for both types of
BIEs are shown in table 1. The obtained relative errors, as defined by equation (5.5), are of order
between 10710 and 10~%. It was observed that, for the same values of material parameters and the
order of Gaussian quadrature, TBIEs perform slightly better than DBIEs.

In [6], the solution at the corner point was shown to have an accuracy of order 10~ for the
boundary discretization with eight to 20 elements, which is comparable with the errors obtained
in this work for the singular BIEs with the use of four elements.

(b) Acircular hole in an infinite plate

In the second example, the problem of an infinite plate in tension, weakened by a circular hole of
radius g, is considered (figure 5). The full analytical solution for all stresses and couple-stresses
is given in [33]. In order to demonstrate the performance of the method for the non-straight
boundaries as well as non-polynomial boundary conditions, the problem is modelled as a finite
quarter-plate of size L x L, L =4a with the analytical tractions and couple tractions, given by
rational functions, prescribed at x =L and y =L (figure 6).

In tables 2 and 3, the SCFs are presented for two values of the material length [:1=a, [ =0.1a,
respectively, v = 0.3 and for different values of the coupling number N, for both types of BIEs. In
all cases, a mesh consisting of 68 elements, uniformly graded towards the edges of the hole, was
used. The number of Gauss points per element was chosen for all cases to be 200. As it is seen
from tables 2 and 3, the SCF solutions for a circular crack can be reproduced by both types of
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Figure 5. An infinite plate with an circular hole in tension.

Table 1. A plate under pure bending: relative errors e;, e,, €5, as defined by equation (5.5), for both types of BIEs for various
values of the coupling number N and ratio of the material length / to the size of the plate 2h.

I/h) =102

1/(h) =10~
O
o

equations with the relative error within 1%. The relative error is defined as

. |SCFBEM _ SCFAnalyt|

sC FAnalyt (5 : 6)

The detailed BEM analysis of stress concentration around a hole in a micropolar plate is done in
[7]. Case N =1 corresponds to the couple-stress elasticity and it was studied also by means of the
BEM in [20].

The stress distribution along the edges of the quarter plate is obtained as a direct output of
BEM. In figure 7, distribution of oy along 6 = /2 is shown for [ =4, v =0.3 and various values
of N. Next, the Somigliana stress formula (3.14) is used to obtain the stress distribution inside
the domain. In figures 8-10, the distribution of normalized stresses o4, 0g, and couple-stress 1,

OLZ05107 L2 ¥ 205§ 20g Biobuysiigndiaaposieoreds:


http://rspa.royalsocietypublishing.org/

Downloaded from http://rspa.royalsocietypublishing.org/ on November 19, 2015

exact tractions and couple traction

L =
~ 5]
3]
u;=0 §
[}
t,=0 =
¢2 0 §
3 L v-c%
Z
8
g
t=t,=1,=0 g
a 5
a 1,=0, uy= ¢3=0
Figure 6. A quarter of a plate with a circular hole, L = 4a.
Table 2. SCFs for a circular hole: / = a.
N analytical DBIE e (%) TBIE e (%)
0.10 2.9728 2.9720 0.03 2.9790 0.21
0.25 2.8484 2.8478 0.03 2.8532 0.7
0.50 2.5490 2.5489 0.01 2.5490 0.0006
0.75 2.2739 2.2740 0.004 2.2683 0.25
0.90 21416 21418 0.007 21326 0.42
Table 3. SCFs for a circular hole: / = 0.1a.
N analytical DBIE e (%) TBIE e (%)
0.10 2.9827 2.9819 0.03 2.9888 0.21

respectively, are shown along the line 6 = /4 for [=a, v =0.3 and various values of N. As it can
be seen from figures 7-10, the results are in a good agreement with the analytical solution from
[33]. Analytical solutions are shown in all plots by solid black lines.

(c) A Griffith crack

In the third example, we consider a straight crack in an infinite plane in a uniform tension
(figure 11a) (known as a Griffith crack). The solution to this problem is a superposition of two
solutions. The first one corresponds to an infinite uncracked plate in tension (figure 11b) and the
second solution is the one of a crack opened up by a uniform tension applied to the crack faces
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Figure 7. Distribution of normalized o4 along 6 = 7z/2 for various values of coupling number N in comparison with the
analytical solution [33]. (Online version in colour.)

rla
O L
2 3 4 5
oy classical solution
analytical solution

-0.2 eeeo N=0(.1

=nn N=05

+++N=09

Figure 8. Distribution of normalized o4 along 6 = 77 /4 for various values of coupling number N in comparison with the
analytical solution [33]. (Online version in colour.)

(figure 11c). The solution to the first problem is given in [12] as

109 1 o9
Uy = 55(—‘)351)/ Up = 56(1 —v)xz, ¢3=0. (5.7)

and

onn=o0pp=021=0, op=o09, mz=m3z =mp3=mz=0. (5.8)
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Figure 9. Distribution of normalized o, along 6 = 77 /4 for various values of coupling number N in comparison with the
analytical solution [33]. (Online version in colour.)
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Figure 10. Distribution of normalized m,, along & = v /4 for various values of coupling number N in comparison with the
analytical solution [33]. (Online version in colour.)

Therefore, we only consider the problem of figure 11c for BEM modelling, i.e. the only BEM
boundary corresponds to the crack faces 95 =I" = I';. | I'- (figure 12) with prescribed tractions:

t1 =0, th=-—0p, t3=0, —c<x1<c, xp=0. (5.9)

In order to avoid the degenerated system matrix due to the coincident collocation points, we
prescribe DBIE on I} and TBIE on I"_, an approach known as the dual BEM. The obtained results
are compared with the analytical solutions obtained in [12]. Note, that the notations for N and
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Figure 11. (a) A through crack in an infinite plate in tension, (b) uncracked plate in tension, (c) crack opened up by a uniform
tension.

Table 4. Results for a problem of a Griffith crack.

T M up [12] o (BEM) E. 2 E. (BEM)

0.5 1 13022 13022 0.8646 0.8649
_____________ e T
_____________ T e e e veme
............. e PO
,,,,,,,,,,,,, A

[ in [12] differ from the notations used here by the factor V/2; therefore, we rename material
parameters from [12] as I*, N*. Therefore, I* = V2l and N* = V/2N. We present the BEM results in
the same way as in [12], where the solutions are analysed depending on two parameters: T =1[*/c
and M =N*/t. The case M =1 and v =0.25 is chosen for comparison. In table 4, the results are
given in terms of four parameters. The first parameter is a value of the crack opening displacement
at the centre of the crack:

(5.10)

The second parameter is characterized in [12] as ‘the mechanical energy required to form the
crack” and given by

E.
((1/2)7(co0)*(1 = v)/G)

1
E.= ZCGOJ up(r,0)dr, r= J%, and E.= (5.11)
0
Values of 1y and E. are listed in table 4. Note, that value v =0.001 was used in BEM to
approximate the limiting case of classical elasticity. In all cases, a fine mesh consisting of 196
elements, uniformly graded towards the crack tips, was used. The size of the mesh was chosen
for the purpose of extracting stress intensity factors from the limiting values of the crack opening
displacement as described below.
The stress intensity factor K; and the couple-stress intensity factor Kj;, are defined as

{Ks, K} =~/2r lim {022(r, 0), m23(r, 0)} (5.12)
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Figure 12. A crack opened up by a uniform tension.

Table 5. Stress and couple-stress intensity factors for a Griffith crack.

K; (BEM) relative error (%) K K relative error (%)

or in non-dimensional form

- Kt - Km
K = d Ky= .
(ove) (00c /)

The stress intensity factor K; is directly expressed from the BEM solution for the crack opening
displacement u5(r, 0) according to its asymptotic expansion in the vicinity of the crack tip:

(5.13)

=K
M2(V, 0) = m 1—172 + O(T) (514)

In table 5, the values of K; for various material parameters are compared with those in [12] and
an agreement within 1% is shown.
Following the solution procedure in [12], the couple-stress intensity factor K, is derived as

1—-E
K = c/cog 5 = (5.15)

According to equations (5.11) and (5.15), K;;; for a Griffith crack is entirely defined by the integral
of the crack opening displacement u5(r, 0), i.e. it can be obtained without using the asymptotics of
the microrotation and couple-stress fields. This method allows to use coarser discretization of the
crack domain to obtain accurate Ky, for all values of material parameters in comparison with the
methods, which require fitting solutions near the crack tip.

Values of K; and K;, are compared with the analytical solutions from [12] in table 5.

In figures 13 and 14, the full solutions for the crack opening displacement and microrotations
are plotted for various values of material parameters, and an excellent agreement between the
analytical solutions of [12] and the BEM data is seen.

Research in fracture mechanics of Cosserat materials (e.g. [10,13,34,35]) indicates that both
displacements and microrotations in the vicinity of a crack tip have asymptotic expansions of
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Figure 13. Crack opening displacement for different values of parameter T = +/2//c in comparison with the analytical
solutions [5]. (Online version in colour.)
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Figure 14. Variation of microrotations along the crack face for different values of parameter = = +/2//c in comparison with
the analytical solutions [5]. (Online version in colour.)

order ,/p, where p is the distance to the crack tip. The asymptotic expansion of a microrotation in
standard system of polar coordinates (p, #), associated with the crack tip, is given in [13] as
_ Ku2p . 6

¢3= 12G sin 5 + O(p). (5.16)
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Figure 15. Variation of microrotations along the crack face for coupling number N = 0.9 and various values of material length /.
(Online version in colour.)

In figure 15, the distribution of microrotations along the crack face is shown for N=0.9 and
varying values of parameter //c together with the plot of the first term of equation (5.16). Figure 15
illustrates the asymptotic property of microrotations, according to which the asymptotic range of
equation (5.16) is

o<, (5.17)

i.e. the size of the domain dominated by the first term in (5.16) depends on material parameters
and decreases with decreasing /. This behaviour indicates that in the extended FEM and BEM, the
adequate choice of the enrichment zone must significantly depend on the material parameters.
However, the application of enriched Cosserat BEM and FEM need detailed study and remain
the subject of future work.

(d) Aplate with an edge crack

In this example, we consider the problem of a plate with an edge crack (figure 16) and compare
our results with the FEM data obtained in [13]. For the sake of comparison, we consider the
same dimensions of the plate and the loading conditions, as in [13], i.e. the width of the plate
W =11 mm, height 2H = 20 mm and the length of the crack c =1 mm. The centre of the coordinate
system is placed at the crack tip and the polar coordinates (r, #) are introduced. However, in order
to avoid the rigid body motions, we impose a slightly different Dirichlet condition than the one
in [13], i.e. since in the collocation BEM, the boundary condition cannot be imposed at the crack
tip, we fix the point (10,0) on the boundary of the plate, i.e.

11(10,0) = 15(10, 0) = $3(10, 0) = 0. (5.18)

All sides of the plate are assumed to be traction free, and the loading is applied to the crack faces.
We consider two standard cases: in Mode I, the crack is opened up by the applied normal stress
09 =100MPa, i.e

t1 =0, th)=—ogny, t3=0, —c<x1<0, xp=0. (5.19)
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Figure 16. Edge crack in a rectangular plate.
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Figure 17. Edge crack in Mode I: angular distribution of stresses around the crack tip in comparison with the analytical
solutions [13]. (Online version in colour.)

Mode II corresponds to the applied shear stress op =100 MPa, i.e.
t =—ogny, th=0, t3=0, —c<x1<0, xp=0. (5.20)

Material parameters were set to E =100 GPa and v =0.3.
In figures 1720, we demonstrate the angular distributions of the stresses and couple-stresses
(for an equivalent problem of a crack with the traction-free faces) defined as

fap(O) =2mr00g, Qaz(0) =~2mrmg, a,f=r,0, (5.21)

which are normalized in such a way that fpy(0)=gp:(0)=1 in Mode I and f»,(0)=
gr2(0)=1 in Mode II. The remaining material parameters in figures 17-20 were taken /=
0.025495 mm, N =0.849837, which correspond to parameters y =100MPa and «/E =1 in [13].
The equation (5.21) were evaluated at r = 107> mm. In figures 17-20, the excellent agreement of
the BEM data with the analytical solutions, derived in [13] is shown for both loading modes. Note,
that due to the zero boundary condition imposed in [13] for o6 instead of oy,, our BEM solution
for o9 corresponds to oy, in [13], and oy, corresponds to o9 in [13]. Note, that according to [13],
couple-stresses 1y, mp; do not have a 1/4/r-singularity in Mode II. This is in agreement with our
BEM calculations, as can be seen in figure 20, where as a direct implementation of equation (5.21),
we observe the BEM data for the regular parts of m,,mg,, which, according to [13], for fixed 7,
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Figure 18. Edge crack in Mode I: angular distribution of couple-stresses around the crack tip in comparison with the analytical
solutions [13]. (Online version in colour.)

eee / (6)
EEE r9(0)
vee f,0)
PN )]

= analytical solutions

-1.0

Figure 19. Edge crack in Mode II: angular distribution of stresses around the crack tip in comparison with the analytical
solutions [13]. (Online version in colour.)
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Figure 20. Edge crack in Mode II: angular distribution of couple-stresses around the crack tip in comparison with the analytical
solutions [13]. (Online version in colour.)

have the analytical form:
My ~cos6 and mg, ~ —sinfb. (5.22)
Next, we compare our results in terms of the stress and couple-stress intensity factors with

those obtained in [13] by the FEM. For comparison, we have chosen the case of N =0.849837
and the four values of the parameter | =0.025495, 0.254951, 0.806226,2.54951 corresponding to
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Table 6. Stress and couple-stress intensity factors for an edge crack in Mode | and Mode Il.

N / il i NN i

0.849837 0.025495 1.1819 0.0270 479 1.4053
_____________ e MEmL e M
_____________ 1 S SRS . S S
""""""" 084987 2549510 088% 04644 &3 092

y =102, 10%, 10°, 10° in [13]. The results for both modes are given in table 6. The data in table 6
were obtained by fitting the displacements the crack faces according to

41— KLyr

Loy
0= Ea s N =) var O
o (5.23)
and ulll(,o) = (1—v7) o " + O(/7)

E(142N2(1 —v)) 27

in Mode I and Mode II, respectively. Equations (5.23) were obtained from [13]; however, note that
there is a typo in their expression for 1! in eqn (72), which can be easily seen by integrating the
Mode II stresses from eqn (70) leading to the term 2(x + «)(1 — v) instead of 2(1 — a)(1 — v) in
eqn (72). The corrected constant is consistent with our BEM data.

For all material parameters, the same mesh with 193 elements on each crack face, gradually
refined towards the crack tip was employed for the BEM analysis, and the data in the vicinity
of r =1073/mm were used for fitting. The stress intensity factors in table 6 were normalized as
follows:

_ KI _ KH
K ==2 and KI=-¢2, (5.24)
kr ki1

where k; =208.1 MPa mm!/2, ky; = 199.3 MPamm?/2 are the values corresponding to the Mode I
and Mode II SIF solutions for an edge-cracked specimen in the case of the classical elasticity.

The couple-stress intensity factors were obtained by fitting the microrotations on the crack
faces according to (5.16). The normalized couple-stress intensity factors are given by

a_ K
" (o0ev/0)

which differ from the definition in [13] by the factor of /7Togcy/c. Values of /Togcy/cKl, are also
provided in table 6. The results in table 6 are in a good agreement with the data in [13]. For
the Mode I stress intensity factors, the difference is estimated to be less than 1.2%, for the Mode
I couple-stress intensity factors—less than 4.6% and for the Mode 1II stress intensity factors—
less than 2.3%. The difference in the results can be explained by the difference in the method of

evaluating KL, KI and K!, as well as by the slight difference in the boundary conditions.

(5.25)

6. Conclusion

This paper presented the derivation of the fundamental solutions for plane Cosserat elasticity
and their application within a boundary element framework. Both singular and hypersingular
BIEs of plane Cosserat elasticity were formulated using these fundamental solutions and solved
by the BEM. The dual BEM, developed in this work, was shown to be an accurate numerical tool
which can be used for analysis of problems with singularities, such as certain crack problems
without limitations on the geometry or the type of the loading conditions. The excellent accuracy
of the method was demonstrated on the classical example of a Griffith crack. The approach can
be further used to model crack propagation in micropolar materials and can be extended to the
three-dimensional case. The accuracy of the method for crack problems can be further improved,
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for a given number of degrees of freedom, by incorporating crack tip enrichments into the
approximation space which can be derived from the asymptotic behaviour of the displacements
and microrotations in the vicinity of a crack tip, also studied within this paper. This approach is
known as the eXtendend BEM and is the subject of further study.
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