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We show that the classical homogenization is able
to describe the dispersion relation of spoof plasmons
in structured thick interfaces with periodic unit cell
being at the subwavelength scale. This is because the
interface in the real problem is replaced by a slab of an
homogeneous birefringent medium, with an effective
mass density tensor and an effective bulk modulus.
Thus, explicit dispersion relation can be derived,
corresponding to guided waves in the homogenized
problem. Contrary to previous effective medium
theories or retrieval methods, the homogenization
gives effective parameters depending only on the
properties of the material and on the geometry of the
microstructure. Although resonances in the unit cell
cannot be accounted for within this low-frequency
homogenization, it is able to account for resonances
occurring because of the thickness of the interface and
thus, to capture the behaviour of the spoof plasmons.
Beyond the case of simple grooves in a hard material,
we inspect the influence of tilting the grooves and the
influence of the material properties.
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1. Introduction
Man-made materials designed to control the propagation of waves are based on the observation
of the properties of natural materials, transposed to a larger scale. Photonic and phononic artificial
crystals are inspired from atomic lattices able to forbid the propagation of electrons. These
artificial crystals produce a strong coupling with the wave able to realize wave guiding and light
slowing [1–3] and to produce resonant ultra-directional sources, optical fibres and bio-sensors
[4–7]. Nevertheless, being associated to the band structure of the periodic medium, they have
two major drawbacks: they have a wavelength scale period that cannot be reduced and they are
inherently sensitive to any weakening in the constructive or destructive interferences, such as the
weakening due to the attenuation or to the disorder [8,9].

Alternatively to artificial crystals, metamaterials built with a subwavelength unit cell behave
as homogeneous materials at large scale, with effective properties being, in general, anisotropic.
This artificial anisotropy can be engineered by assigning a desired value of each parameter of the
permeability and/or permittivity tensors [10–12]. To that aim, at least two theoretical ingredients
have nowadays reached a level of sophistication that can be leveraged for the design of unique
manufacturable optical components (i) geometrical, or optical, transformations provide in a
mathematically rigorous formalism the permeability and permittivity tensors of the metamaterial
able to control the wave propagation in a proper way [13], (ii) retrieval methods [14,15] or
homogenization theories [16–20] allow to design the unit cell restituting the desired effective
tensors at large scale.

In this paper, we use a formalism based on the effective anisotropy able to give a simple and
comprehensive picture of the resonances that can take place in such metamaterials, and which
are not related to the resonances of constituents in the unit cell; the reader interested by high-
frequency homogenization may refer to, for example, [21] and references herein. Our formalism
captures the dispersion relation of guided waves (being guided within the homogenized slab)
which corresponds to the dispersion relation of plasmons and spoof plasmons in the actual
metamaterial.

The wave equation is written for a two-dimensional problem in a generic form

∇ . [a∇p(x, y)] + k2bp(x, y) = 0, (1.1)

where a and b are relative parameters measured with respect to a reference medium (where a = 1,
b = 1), and k the wavenumber in the reference medium. A time dependence e−iωt is assumed and
it is omitted in the following. This equation applies for acoustic waves

∇.
[

1
ρ

∇p(x, y)
]

+ k2

B
p(x, y) = 0, (1.2)

with p the pressure field, (ρ, B) the mass density and bulk modulus, respectively. For
electromagnetic waves, we restrict ourselves to the case of transverse magnetic polarization (the
magnetic field H = H(x, y)ez is perpendicular to the incidence plane), leading to

∇.
[

1
ε
∇H(x, y)

]
+ k2μH(x, y) = 0, (1.3)

with (ε, μ) the permittivity and permeability, respectively. The same structure of the wave
equation can be found for a transverse electric field as for elastic simple harmonic waves or
water waves.

The paper is organized as follows. In §2, we derive the dispersion relation of waves guided in
a homogeneous isotropic slab surrounded by air for acoustics or vacuum for electromagnetism
(the reference medium hereafter referred as medium A©) and by a substrate (hereafter referred
as medium C©). The derivation is done in an unusual way by solving a scattering problem,
rather than solving a homogeneous problem, and the equivalence between the two derivations
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is provided. It allows the characterization of the behaviour of the slab for waves being either
propagating or evanescent in the succession of media. The approach is then generalized to the
case of a homogeneous anisotropic slab, and the place where guided waves can take place are
given, as their associated dispersion relations.

In §3, the homogenization theory of layered media is briefly recalled, which provides a
rigorous mathematical formalism to get the effective parameters of a microstructured interface
(we restricted ourselves to the case of periodic layers, with period d, being possibly tilted).
Next, the equivalence between the scattering properties of this structured interface and the
homogenized anisotropic slab is inspected and discussed in terms of the periodicity value, that
has been assumed to be small in the homogenization process (typically, the homogenization is
found to be robust for kd values up to about 0.3).

Practical illustrations are given in §4 for gratings and arrays (called sometimes ‘Reflection
gratings’ and ‘Transmission gratings’). In the context of electromagnetic waves, we recover the
dispersion relation for Neumann structured grating (spoof plasmons [17–19]); the case of an array
(structured interface in air) is also regarded. In the context of acoustics, we study the impact of
the variations of the physical characteristics of the layer material on the properties of the guided
waves, and we show that a significant tuning is achievable.

2. The problem of guided waves by a homogeneous slab: the isotropic
and anisotropic case

The propagation of waves in an anisotropic medium is described by

∇ . [a∇p(x, y)] + k2bp(x, y) = 0, (2.1)

with pinc(x, y) an incident wave, where a is a tensor, which reduces to a= aI for isotropic media (and
I is the identity). In the principal directions of anisotropy (X, Y), a is diagonal and it is denoted

a=
(

ae 0

0 ao

)
(X,Y)

. (2.2)

As for a birefringent medium, we associate the direction X to the extraordinary refractive index
ne and the direction Y to the ordinary refractive index no, with

ne ≡
√

b
ae

and no ≡
√

b
ao

. (2.3)

In this section, we recall the derivation of the dispersion relation of classical guided waves within
an homogeneous slab, being isotropic or anisotropic ( B© being homogeneous, figure 1). A guided
wave corresponds to a resonant wave, propagating along x within the slab and evanescent
when moving away from the slab, along the y-direction (p(x, |y| → ∞) → 0). Classically, guided
waves phom(x, y) are found by solving the homogeneous problem (without incident wave) with
phom(x, |y| → ∞) = 0 which leads to solve an eigenvalue problem [22] where k2 plays the role of
the eigenvalue. When such a wave exits (say, at certain frequencies), the scattering problem (that is
in the presence of an incident wave) is ill posed. The non-inversibility of the wave operator is due
to the existence of solutions of the homogeneous problem and thus to the non-uniqueness of the
solution. If one insists in solving the scattering problem, as we do in the following, a divergence
of the scattering coefficients at these frequencies is observed. Note that this divergence of the
scattering coefficients does not question the energy conservation since the incident wave will be
found evanescent, and thus, does not transport energy.
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Figure 1. Scattering problem by a homogeneous isotropic slab B© of thickness � between air A© and a substrate C©. The slab
material is characterized by the two scalars a and b. (Online version in colour.)

(a) Classical guided waves in a homogeneous isotropic waveguide
A guided wave is a non-zero solution of (2.1) in the form

p(x, y ≥ �) = eikxxr ei
√

k2−k2
xy,

p(x, 0 < y ≤ �) = eikxx
[
m−e−i

√
n2k2−k2

xy + m+ ei
√

n2k2−k2
xy
]

and p(x, y ≤ 0) = eikxxt e−i
√

n2
s k2−k2

xy,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.4)

with the refractive indices n2 = b/a in the medium B© and n2
s = bs/as in the medium C© (a = b = 1

in the medium A©). Such guided wave exists only along the dispersion relation kx = β(k) we are
looking for. In practice, it is easier to look for a scattered solution since the scattering problem by
a homogeneous isotropic slab (figure 1) is a trivial one-dimensional problem (along y). We denote
x the direction along the slab and y the transverse direction.

With an incident wave of the form

pinc(x, y) = Pinceikxx−i
√

k2−k2
xy (2.5)

(and Pinc is not unity for convenience), the wavefield solution of equations (1.1) is

p(x, y ≥ �) = eikxxPinc[e−i
√

k2−k2
xy + R ei

√
k2−k2

xy],

p(x, 0 < y ≤ �) = eikxxPinc[M−e−i
√

n2k2−k2
xy + M+ei

√
n2k2−k2

xy]

and p(x, y ≤ 0) = eikxxPincT e−i
√

n2
s k2−k2

xy.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.6)

This one-dimensional problem can be solved owing to the continuity relations imposed by the
structure of equations (1.1) (continuity of p(x, y) and continuity of a(y)∂yp(x, y)). We have

p(x, 0−) = p(x, 0+), as∂yp(x, 0−) = a∂yp(x, 0+)

and p(x, �−) = p(x, �+), a∂yp(x, �−) = ∂yp(x, �+).

}
(2.7)

Next, (R, T), (M+, M−) can be calculated easily, and we report the result for R

R = ξ (1 − Z) + i(1 − Zξ2) tan kw�

ξ (1 + Z) − i(1 + Zξ2) tan kw�
, (2.8)
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where we have introduced

kw ≡
√

n2k2 − k2
x,

ξ ≡
√

k2 − k2
x

akw
and Z ≡

as

√
n2

s k2 − k2
x√

k2 − k2
x

,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.9)

and we chose the convention
√−1 = +i. Here, kw is simply the wavenumber along y in the slab B©.

ξ and Z are the ratio of the impedances, respectively, between media A© and B© and between A©
and C©. M± and T are not given but it is easy to show that they have the same denominator as R.
Let us take

Pinc = ξ (1 + Z) − i(1 + Zξ2) tan kw�, (2.10)

the common denominator of R, M± and T. It is clear from equation (2.8) that, if Pinc = 0 (note
that then PincR 
= 0), then the problem equation (2.6) is no longer a scattering problem, but it is
a homogeneous problem, and the solution in equation (2.6) is a guided wave solution of (2.4)
with r = PincR, m± = PincM± and t = PincT. In other words, the scattering problem (2.6) with a
non-vanishing amplitude of the incident wave (Pinc = 1 for instance) and divergent scattering
coefficients (R, T, M±) is equivalent to the homogeneous problem (2.4) with finite coefficients
(r, t, m±). It follows that the dispersion relation of guided waves is obtained for kx = β(k) in
equations (2.9) and

ξ (1 + Z) = i(1 + Zξ2) tan kw�. (2.11)

(b) Classical guided waves in a homogeneous anisotropic waveguide
We now extend the previous calculation to the case where the slab is anisotropic with the principal
directions of anisotropy (X, Y) being tilted by an angle α with respect to (x, y). The problem is
reduced to the same exercise as previously (with Pinc = 1), namely solving

p(x, y ≥ �) = eikxx[e−i
√

k2−k2
xy + R ei

√
k2−k2

xy],

p(x, 0 < y ≤ �) = eikxx[M+eiκ+y + M−e−iκ−y]

and p(x, y ≤ 0) = eikxxT e−i
√

n2
s k2−k2

xy,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.12)

and the difference is only that the component of the wavevectors along y in the slab 0 < y ≤ �,
denoted κ±, are not just of opposite signs. Indeed, in the (x, y) frame, the wave propagation is
described by ∇ · [a∇p] + b k2p = 0 with

a=
(

ax axy

axy ay

)
, (2.13)

and
ax ≡ ao sin2 α + ae cos2 α,

ay ≡ ao cos2 α + ae sin2 α

and axy ≡ (ae − ao) cos α sin α

⎫⎪⎪⎬
⎪⎪⎭ (2.14)

(see [15]). The wave equation is [ax∂x2 + ay∂y2 + 2axy∂x∂y + b k2] p = 0. Looking for a solution of
the plane wave in the form ei(kxx+κy) leads to the dispersion relation D(kx, κ ; k) = axk2

x + ayκ
2 +

2axykxκ − bk2 = 0, leading to

κ± = − axy

ay
kx ±

√
b
ay

k2 − aoae

a2
y

k2
x (2.15)

(and we have used axay − a2
xy = aoae). Next, to get the scattering coefficients (R, T) in

equation (2.12), the continuity relations at the interfaces y = 0 and y = � are imposed by the
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structure of the equation (2.1), namely the continuity of the field p and the continuity of the normal
component of the vector a∇p. This leads to

p(x, 0−) = p(x, 0+), as∂yp(x, 0−) = ay∂yp(x, 0+) + axy∂xp(x, 0+)

and p(x, �−) = p(x, �+), ay∂yp(x, �−) + axy∂xp(x, �−) = ∂yp(x, �+).

}
(2.16)

We get the same expression of R as in equation (2.8), the same dispersion relation of the guided
waves as in equation (2.11), but now

kw = no/ne

cos2 α + n2
o/n2

e sin2 α

√
n2

e(cos2 α + n2
o/n2

e sin2 α)k2 − k2
x,

ξ ≡
√

k2 − k2
x

aykw
and Z ≡

as

√
n2

s k2 − k2
x√

k2 − k2
x

.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.17)

The expressions of (kw, ξ , Z) in the isotropic case equation (2.9) are recovered obviously from the
expressions in equations (2.17) for n = ne = no. Note that for α = 0, kw = κ+ (axy = 0, ay = ao).

(c) General considerations in the (kx , k) plane
Now we inspect the conditions for which a guided wave can take place in the (kx, k) plane. Figure 3
shows the reflection coefficient |R| of the slab for the anisotropic problem, equation (2.12) (R is
given by equations (2.8) and (kw, ξ ) given by equations (2.17)); the incident wave is described in
the (kx, k) plane. Several regions are drawn in this plane, delimited by the light lines of equation
kx = Nk with N a refractive indice, which separate the region where waves are propagating in the
y-direction kx < Nk, from the region where waves are evanescent in the y-direction kx > Nk. In the

media A© and C©, N = 1 and ns, respectively, and in the layer B©, N =
√

n2
e cos α2 + n2

o sin α2 (see
kw in equation (2.17)). We have considered an anisotropic slab: in the slab B©, α = 0, b = 1, ao = 0.5,
ae = 0.02 (N = ne � 7.1) and in C©, bs = 1, as = 0.1 (ns � 3.2).

It yields the regions 1© to 4© in figure 3. In Region 1©, above the light line for vacuum kx = k,
the waves are propagating in all the media A©, B© and C©. There, perfect transmissions R = 0 can
take place if the impedance matching condition is satisfied at each interface y = 0, � [20,23]. Next,
in Region 2© above the line kx = nsk, the wave is evanescent in the vacuum and propagating both
in the slab B© and in the substrate C©; it follows that only quasi-resonances (with finite amplitude)
can occur. In Region 3© above the line kx = nek, the incident wave and the transmitted wave are
evanescent while the wave in the slab B© is propagating (since 1 < ns < ne); There, guided modes
(called also spoof plasmons) can take place. Eventually, the region 4© below the line kx = nek,
where the waves are evanescent in all media can give rise to surface plasmon resonances at the
interfaces.

Obviously, the existence of these regions does not mean that the phenomena of perfect
transmission or of plasmonic resonances will be observed. In the example of figure 3, we observe
perfect transmissions in the Region 1© (deep blue lines corresponding to |R| = 0), quasi resonances
(Region 2©) and resonances of spoof plasmons (Region 3©), with light red lines and bright red lines
corresponding, respectively, to large and infinite |R| values in our scattering problem. Next, the
chosen configuration does not support surface plasmon (no resonances are observed in Region
4©). Resonances in the Region 4© mean that waves are guided at the two interfaces A©– B© and
B©– C© while being evanescent in the three media A©, B© and C©. In other words, each single

interface (� = 0 for a succession of media A©– B© or B©– C©) has to support surface waves. For
� = 0, the dispersion relation, equation (2.11), is satisfied for Z = −1, and consequently, from
equation (2.17), as < 0. These are the classical surface plasmons which occur only for negative
permittivity ε (and as = 1/ε), as the interface between air and metals in the visible range. More
precisely equation (2.17) leads to

β(k) = k
√

ε

1 + ε
.
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Figure 2. Scattering problem by an homogeneous anisotropic slab of thickness �. The slab material is characterized by the
matrix a and the scalar b. (Online version in colour.)
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Figure 3. Reflection coefficient log |R| in the (kx , k) plane; the incident wave is ei(kx x+kyy) with k2x + k2y = k2 for an anisotropic
slab (figure 2) of length � = 2. The parameters of the materials in B© and C© are (ao, ae)= (0.5, 0.02), b= 1 and as = 0.1,
bs = 1. The regions 1© to 4© correspond to different behaviours (propagating or evanescent) of the waves in the media A©,
B© and C©. (Online version in colour.)

Note that in figure 3, we report log |R| in colourscale. Because 0 ≤ |R| ≤ +∞, the log
representation highlights the perfect transmissions |R| = 0 and the resonances |R| → +∞.
Nevertheless, the colourbar is given in terms of min and max only, since their values depend
on the discretization chosen for kx and k (perfect transmissions can reach arbitrary large negative
values of log |R| and perfect resonances arbitrary large positive values of log |R|).

3. The case of a microstructured slab using homogenization theory
of layered media

(a) From plasmonic waves to guided waves
(i) The homogenization theory of layered media

We briefly recall the homogenization theory at zero order for the wave equation ∇ . (a∇p) + b
k2p = 0 in a two-dimensional d-periodic medium, with a(x, y) and b(x, y) being periodic functions
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Figure 4. Scattering problem for a structured thick interface between air A© and a substrate C©. The microstructure is made
of tilted layers alternating a material of parameters (a�, b�) and air. (Online version in colour.)

in the unit cell (x, y) ∈ [0, d]2. At leading order, p can be approximated by p0 solution of

∇ . (a�∇p0) + k2〈b〉p0 = 0,

where 〈.〉 denotes the spatial average over the unit cell. a� is a 2 × 2 matrix defined by

a� =
〈

a

⎛
⎜⎜⎝

1 + ∂w1

∂x
∂w2

∂x
∂w1

∂y
1 + ∂w2

∂y

⎞
⎟⎟⎠
〉

,

where the functions w1(x, y) and w2(x, y) are d-periodic along x and y, satisfying the so-called cell
problems [16]

∂

∂x

[
a
(

1 + ∂w1

∂x

)]
+ ∂

∂y

(
a
∂w1

∂y

)
= 0,

∂

∂x

(
a
∂w2

∂x

)
+ ∂

∂y

[
a
(

1 + ∂w2

∂y

)]
= 0.

The layered case a(x, y) = a(x) leads to explicit solutions of the cell problems, with wi(x, y) = wi(x).
We immediately get a�

21 = 0 and a�
22 = 〈a〉. Next, the cell problems reduce to [a(1 + w′

1)]′ = 0
and (aw′

2)′ = 0 (where prime denotes the derivative with respect to x). The first relation gives
w′

1(x) = C1/a(x) − 1 with C1 an unknown constant; the periodicity condition leads to 〈w′
1〉 = 0

which provides the value C1 = 〈a−1〉−1; this leads to a�
11 = 〈a(1 + w′

1)〉 = C1. The second relation
gives w′

2(x) = C2/a(x) and the periodicity condition gives now C2 = 0, from which a�
12 = 〈aw′

2〉 = 0.
To conclude, the effective tensor is simply

a� =
(

〈a−1〉−1 0

0 〈a〉

)
. (3.1)

(ii) Application to a microstructured thick interface

We consider the case where the anisotropy of the slab results from a subwavelength
microstructure corresponding to layers regularly spaced with spacing d being at subwavelength
scale, namely kd � 1 (figure 4). The structure consists in layers of length ϕd (ϕ is a filling fraction)
and is made of a material with parameters (a�, b�) regularly spaced in the air (note that no further
complication arises if we replace the air by another material).
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When α = 0, the homogenization theory provides for the slab B© an equivalent effective
medium described by a= a� of equation (3.1) and by b = 〈b(x)〉. a� can be compared to a of
equation (2.2) with ae = 〈a−1〉−1, ao = 〈a〉. The averages reduce to

ao = ϕa� + (1 − ϕ),

ae =
[

ϕ

a�
+ (1 − ϕ)

]−1

and b = ϕb� + (1 − ϕ).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.2)

When α 
= 0, the slab is described in terms of the a tensor in equations (2.13) and (2.14), with
the above values of (ao, ae, b). From the definition of ne and no in equation (2.3), we get

ne =
√

[ϕb� + 1 − ϕ]
[

ϕ

a�
+ 1 − ϕ

]

and no =
√

[ϕb� + 1 − ϕ][ϕa� + 1 − ϕ]−1.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.3)

(b) Inspection of the validity of the homogenized problem
The dispersion relation equation (2.11), obtained in §2 for homogeneous slabs, is exact. In the
case of a slab containing a micro structure, the homogenization introduces an approximation and
it makes sense to inspect its limits of validity. To do that, we make reference to the scattering
problem discussed previously (figure 3). The anisotropy of the layer B© is now ensured by layers
with a� = 1

100 , b� = 1 and ϕ = 1
2 and with some thickness d; using equations (3.2), we get ao � 0.5

and ae � 0.02 as previously. The geometry of the slab corresponds to α = 0 and � = 2, and the
substrate C© has as = 0.1 and bs = 1.

Obviously, in the homogenized version, d does not exist since it is associated to the scale
of the microstructure, which has been lost in the homogenization process; this is why we use
dimensional quantities, and kw is thought in term of arbitrary unit. Because the length scale d is
lost, we loose two information simultaneously (i) the smaller scale of the structure that the wave
is assumed to feel on average only; if kd becomes of order unity, the wave becomes sensitive to
that scale and the homogenization fails and (ii) the periodicity of the structure, which defines the
first Brillouin zone kx < π/d. With d → 0 in the homogenization process, the size of the Brillouin
zone is infinite, and this is not the case for practical cases.

Thus, we inspect the validity of our expression with respect to actual layers with finite
d-period. We performed full wave computations [24] for the same range of k values and with
d = 0.1, 0.2 and 0.3. The results are shown in figure 5. Expectedly, we observe (i) that the
homogenization prediction is valid only in the first Brillouin zone, so that a smaller d enlarges
the validity of the homogenization prediction in terms of kx-value by just shifting the limit of the
Brillouin zone, (ii) for large kd values (kd > 0.3 − 0.4 in figure 5), the homogenization becomes less
accurate because smaller wavelengths become sensitive to the actual microstructure.

In the following, these effects are disregarded and we assume that d is small enough so that
the captured phenomena are associated to kx being in the first Brillouin zone and kd � 1.

(c) The case of perfectly conducting layers, the Neumann limit
A Neumann boundary condition corresponds to vanishing normal derivative of the field at the
interfaces. This corresponds to a large impedance of the material, namely |Z�| = |1/

√
a�b�| → ∞.

In electromagnetism, this is the case for perfectly conducting layers in TM polarization (metals
in the far infrared regime), where the propagation is described by the wave equation (1.3) with
large |ε|-values (negative ε = 1/a�) and μ = 1 (μ = b�). The limit |ε| → ∞ is known to be in conflict
with the limit of homogenization, where all the length scales of the microstructure have to be
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Figure 5. Reflection coefficients log |R| in the (kx , k) plane: (a) |Rex| in the actual problem (structured thick interface, figure 4)
and (b) |R| in the homogenized problem (figure 3). On (a), the calculations have been performed for the layers spacing d = 0.1,
0.2 and 0.3, from top to bottom. (Online version in colour.)

Neumann limit

m
em = Cte

e /m Æ •

e

Figure 6. Neumann limit in the (ε,μ) plane remaining valid within homogenization theory. (Online version in colour.)

small compared to all the length scales associated to the wave. The limit |Z�| = |√ε/μ| → ∞ is
accompanied by a diverging imaginary index n = √

εμ, and thus a vanishing skin depth; this
latter length scale is associated to the wave which explains the conflict. This has been extensively
studied and discussed [25–27] to avoid the failure of the homogenization.

This conflict does not appear for acoustic waves. In this context, Neumann boundary
conditions are associated to sound hard materials, which have large relative density ρ (a = 1/ρ)
and large relative bulk modulus B = ρc2 with c the sound speed (b = 1/B). The wave equation for
the pressure field p is equation (1.2). Because c does not change much from one material to another,
Za = ρc is associated to a large density but the refraction index n = √

ρ/B does not increase
dramatically (and one may choose to consider constant n value). This means that the wavelength
inside such media can be still considered large compared to the microstructure scale and the
Neumann limit can be taken within the homogenization limit safely by considering Z → ∞ while
considering constant n value. This is similar to the trajectory suggested in [26] for non-magnetic
materials, and the trajectory is chosen in the (k, ε) space in this reference (the Neumann limit
corresponding to ε → ∞ and k → 0). By analogy with the acoustic case, our trajectory in the phase
space (b = μ, a = 1/ε) is illustrated in figure 6.
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This analogy has already been used to easily homogenize layers made of perfectly conducting
metals [28] and this is what we will use in the following. With a�, b� → 0 and a�/b� = Cte,
equation (3.2) simplifies in ao = 1 − ϕ = b, ae = 0, and equation (2.14) gives ay = (1 − ϕ) cos2 α (note
that to take b� = μ = 1 as in the real medium would lead to the wrong result b = 1 instead of 1 − ϕ).
Then ξ and kw in equation (2.17) are deeply simplified, with no = 1, ne = ∞, in

kw = k
cos α

and ξ =
√

k2 − k2
x

k(1 − ϕ) cos α
, (3.4)

and as expected, the result does not depend on the value of the constant a�/b�.

4. Examples
In this section, we give examples of guided waves in particular geometries. First, we recover
the classical spoof plasmon for a grating [17–19] in the context of electromagnetic waves, which
corresponds to metallic layers supported by a metallic substrate (medium C©) (in a frequency
range where metal can be associated to Neumann boundary conditions); we also consider the
case of an array where the metallic layers form an array surrounded by air (the medium C© is
identical to A©). Next, we consider guided waves by an array in the context of acoustic waves
and we inspect the influence of the layer material, from the limit of sound hard material to sound
soft material.

(a) Electromagnetic waves: dispersion relation of spoof plasmons
As previously discussed, the Neumann limit is taken considering vanishing a and b values and
a finite b/a value. This is the right boundary condition to be applied on the interface with a
perfectly conducting metal for transverse magnetic polarization of the wave (the magnetic field
H = H(x, y)ez is perpendicular to the incidence plane and Ez = 0). We recall that this boundary
condition reflects the continuity relation of the component of the electric field E(x, y) tangent to the
interface, E × n = 0 (with n the unit vector normal to the interface, and because the electric field
is zero inside a perfect conductor). Next, with ∇ × H ∝ E, we get E × n = ∇H . n = 0. Note that
since the magnetic field is also zero inside a perfect conductor, the continuity of the component of
H perpendicular to the interface leads to H.n = 0 which is automatically satisfied for transverse
magnetic polarization.

(i) The case of gratings

For a grating, both the layers and the substrate C© are perfectly conducting metal, which
corresponds to as = al → 0, bs = bl → 0 with ns =cst. Thus, from equation (2.17), we have Z = 0,
and the condition of resonance, equation (2.11), simplifies to

ξ = i tan kw�, (4.1)

with (kw, ξ ) given by equation (3.4). We note kx = β(k) the solution, which exists only if β > k and
if tan(kw�) > 0: indeed, then we have

ξ = i

√
β2 − k2

k(1 − ϕ) cos α
, (4.2)

with our convention for the square roots. We get the explicit dispersion relation

β = k
[

1 + (1 − ϕ)2 cos2 α tan2
(

k�
cos α

)]1/2
, tan

(
k�

cos α

)
> 0, (4.3)

and this dispersion relation is usually given for α = 0 [17–19]. Note that the restriction to
tan(k�/ cos α) > 0 is not indicated in these references, where the authors are interested in the first
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Figure 7. Dispersion relation of the spoof plasmon in a perfect metal grating, log |Rex| (calculated in the actual structure, with
�/d = 10,ϕ = 0.9) is represented in colourscale, and the dispersion relation is visible by means of log |Rex| → ∞ reaching
large values. Two orientations of the layers are considered: (a)α = 0 and (b)α = π/4. In (a,b), the dashed white lines show
the dispersion relations equation (4.3), and the dashed black line is the air light line k = kx . The insets on the top left show
the geometry of the structure and the insets with arrows show the wavefields calculated numerically at a resonance for (kx , k)-
values satisfying the dispersion relation (equation (4.3)). (Online version in colour.)

branch only. Inspecting the expression of the reflection coefficient R in equation (2.8), a negative
value of tan(k�/ cos α) can produce a vanishing R value, for ξ = −i tan kw�. The band gap in
between is visible.

Figure 7 shows the logarithm of the reflection coefficient log |Rex| in the (kx, k) plane, calculated
numerically for an actual metallic grating (with d = 0.1 and � = 1). The parameters of the grating
are ϕ = 0.9, and we have considered α = 0 and π/4. In our scattering problem, resonance of
evanescent waves (below the light line k = kx in dashed black line) are visible by means of
diverging log |Rex| values (red areas). We reported for comparison the dispersion relation,
equation (4.3) (dashed white curves). For both values of α, the agreement is good; note that
increasing α produce a decrease in the asymptotic of the first branch (k� � (π/2) cos α), revealing
the second branch starting at k� = π cos α according to the condition tan(k�/ cos α) > 0. Curves
of perfect transmission |Rex| = 0 (log |Rex| = −∞, blue areas) are located in the areas where
tan(k�/ cos α) < 0 (here, π/2 < k�/ cos α < π ).

(ii) The case of arrays

The case of arrays ( C© = A©, thus as = 1, bs = 1) has a significant simplification, with Z = 1 in
equation (2.11), leading to the dispersion relation with two branches

ξ = i tan
(

kw�

2

)

and ξ = 1
i tan(kw�/2)

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.4)

With ξ given by equation (4.2), it leads to the dispersion relations

β = k
[

1 + (1 − ϕ)2 cos2 α tan2 k�
2 cos α

]1/2
, for tan

k�
2 cos α

> 0,

and β = k
[

1 + (1 − ϕ)2 cos2 α cotan2 k�
2 cos α

]1/2
, for tan

k�
2 cos α

< 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.5)

The branches corresponding to tan(kw�/2) > 0 are the same branches as for the grating, with
� → �/2; they correspond to similar wave patterns: for α = 0, on figure 8a, the field associated with
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Figure 8. Dispersion relation of the spoof plasmon in an array of perfectly conducting inclusions (same representation as in
figure 7). The actual structure has dimensions�/d = 20 andϕ = 0.9 and different orientations: (a)α = 0 and (b)α = π/4.
The dashed white lines show the dispersion relations equation (4.5). (Online version in colour.)
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R

Figure 9. Configuration of (a) the actual microstructured thick interface made of a penetrable material and (b) the equivalent
homogenized slab. (Online version in colour.)

the first branch is symmetric with respect to y = �/2 and is the same (up to a factor 2 dilatation) for
�/2 ≤ y ≤ � that the field on figure 7a for 0 ≤ y ≤ �. The branches corresponding to tan(kw�/2) < 0
were forbidden in the array; they correspond to antisymmetric wave fields (vanishing at y = �/2).
It follows that the metallic array does not present band gaps.

We show in figure 8 the same quantities as in figure 7; we choose an array with � = 2 to recover
the same asymptotes as for the grating. Again, the agreement is good between the dispersion
relations in the homogenized problem (white curves) and in the actual structure (red areas).

(b) Acoustic waves: from sound hard to sound soft array of inclusions
In this section, we focus on the influence of the material properties of the inclusions forming an
array in a surrounding medium (figure 9a). Thus, the effect of tilting the inclusions is disregarded
and we consider in the following α = 0. The basic idea behind this study is to inspect whether or
not guided waves exist for different material properties of the inclusions and how the material
properties influence the characteristics of these waves, when they exist. To do that, we focus
on the case of acoustic waves, with the material properties being the mass density ρ = 1/a and
the bulk modulus B = 1/b, equation (1.2), and we introduce also the sound speed c which is
more common for acoustics (B = ρc2). The trajectory in the (ρ, c) space to go from sound hard
to sound soft material is first chosen, and the limits along this trajectory are inspected. Next,
the characteristics of the first guided wave (first branch of the dispersion relation) is regarded,
revealing the increase in the ratio β/k for softer material. This is relevant when one thinks of
applications to subwavelength imaging or subwavelength guiding. Finally, we discuss the link
with inclusions associated to Neumann and Dirichlet boundary condition.
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Figure 10. Typical values of the impedance ratio q and of the celerity ratio τ for a surrounding medium being water. For
increasing q, we have the solid inclusions (and τ < 1), liquid inclusions (and τ ∼ 1) and inclusions of gas (τ > 1). The
variations of q are much significative than the variations of τ . (CT stands for carbon tetrachloride and He, H stand for helium
and hydrogen.)

(i) Choice of one trajectory from sound hard to sound soft materials

The notion of sound hard/soft material is linked to the ratio of impedances between the
surrounding medium ( A© = C©) and the inclusions. In the context of acoustic waves, the
impedance is defined as ρc = √

ρB (as already discussed in §3c) and we define the ratio of
impedances q in equation (4.6), with ρ� and c� being the relative mass density and the relative
sound speed with respect to the surrounding medium. We also introduce τ being the inverse of
the relative sound speed of the inclusions. Our two parameters are

τ ≡ 1
c�

and q ≡ 1
ρ�c�

.

⎫⎪⎪⎬
⎪⎪⎭ (4.6)

This choice is not casual. Usual material have a rather constant velocity for sound waves (about
one order of magnitude, 1–10 km s−1) and it is mainly the mass density which varies (with three
orders of magnitude, for instance air and water). It is thus quite natural to consider that τ is
constant and q varies from 0 (sound hard material) to ∞ (sound soft material), and it is the
trajectory we consider in the following. In the case where the surrounding medium is water, we
report in figure 10 typical (q, τ ) values for inclusions being solids, liquids and gas. While τ is not
constant, its amplitude of variation is clearly much smaller than the amplitude of variation of q.

(ii) Behaviour of the guided waves for varying q

We start by expressing the terms of our tensor a in the homogenized problem in terms of (τ , q):
(a�, b�) with a� = 1/ρ� = q/τ and b� = 1/B� = qτ . From (2.14) and (3.2), we get

ax = ae =
(

ϕ
τ

q
+ 1 − ϕ

)−1
,

ay = ao = ϕ
q
τ

+ 1 − ϕ

and b = ϕτq + 1 − ϕ,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.7)
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and axy = 0 for α = 0. The dispersion relation remains the same as in equation (4.4),

ξ = i tan
(

kw�

2

)
, for tan

(
kw�

2

)
> 0,

and ξ = 1
i tan(kw�/2)

, for tan
(

kw�

2

)
< 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.8)

with ξ and kw being expressed in terms of (τ , q) (see equations (2.17) and (3.3))

ξ = f (τ , q)

√
k2 − k2

x

n2
ek2 − k2

x

and kw = g(τ , q)
√

n2
ek2 − k2

x,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.9)

and

ne ≡
[

(ϕτq + 1 − ϕ)
(

ϕτ

q
+ 1 − ϕ

)]1/2
,

f (τ , q) ≡
(ϕq

τ
+ 1 − ϕ

)−1/2
(

ϕτ

q
+ 1 − ϕ

)1/2

and g(τ , q) ≡
[(ϕq

τ
+ 1 − ϕ

)(ϕτ

q
+ 1 − ϕ

)]−1/2
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.10)

We focus now on a particular geometry (figure 9a) with � = 3d, ϕ = 0.7 and τ = 1.25 (τ > 1
ensures that a guided wave exists for any value of q and ϕ, see appendix A) and we consider
varying q. In the actual array, Rex refers to the reflection coefficient of this structure, that we
compute numerically. In the homogenized problem (figure 9b), R is calculated, equation (2.8) with
equations (4.9) and (4.10). The reflection coefficient |Rex| as a function of k and kx is reported in
figure 11a and compared with the reflection coefficient R in the homogenized problem (figure 11b),
for q = 10−6, 10−1, 10 and 102. The agreement is excellent in all cases.

In figures 11, the dispersion relation of the guided waves is visible by means of diverging |Rex|
and |R|, respectively (red zones). As already said, the guided waves take place in the regions of the
(kx, k)-space below the sound line of the air (k < kx) and above the sound line of the birefringent
layer in the homogenized problem (nek > kx, dashed white lines, with ne > 1 since τ > 1). The
index ne is close to infinity for q → 0 and the corresponding sound line corresponds to k = 0
(the wave is then always propagating in the slab with wavenumber k along y). Increasing q
towards unity first produces a decrease of ne and thus, an increase of the slope of the sound
line nek = kx (with maximum value being (ϕτ + 1 − ϕ) reached for q = 1, leading to a transparent
effective medium if τ = 1). During this first phase, the wavenumber of the first (lowest frequency)
guided wave kx = β(k) (in red) appears to be almost unaffected, with roughly β/k ≤ �/d (β ≤ π/d
in the first Brillouin zone). Increasing further q > 1 produces an increase in ne (and a decrease in
the slope of the sound line of the slab). But here, the dispersion relation β(k) remains stuck to the
sound line with β(k) � nek, resulting in an increase of β/k � ne.

This scenario is further illustrated in figure 12, which shows the behaviour of |Rex| as a function
of k and q, for a fixed kxd = 1. The dashed white line shows the dispersion relation for the guided
wave in the homogenized problem (equation (4.8)). As previously observed, the agreement is
excellent between the exact calculation and the analytical dispersion relation of the guided waves
in the homogenized problem. The transition is visible between q < 1 where the wavenumber
of the guided wave remains almost constant, and q > 1 where it follows the sound line of the
birefringent slab (kx = nek). By inspection of equation (4.10), it is easy to see that q → ∞ leads to
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Figure 11. Reflection coefficient log |R| in the (kx , k) space for different impedance ratios q (colour scale is in log scale). The
(a) panels show log |Rex| calculated numerically and the (b) panels show log |R|, equation (2.8) with equations (2.9), in the
homogenized calculation. The black dashed line represents the sound line of the air, k = kx . The white dashed line corresponds
to the sound line of the birefringent waveguide, nek = kx . (Online version in colour.)

ne →√
ϕ(1 − ϕ)τ

√
q and this scaling law is indeed observed. Finally, it is important to note that

the layer sound line has no physical meaning in the real problem.

(iii) Limiting cases q→ 0 and q→ ∞
When considering the simple cases of the scattering by a single circular inclusion or by a plane
interface, q is the only parameter which appears and q → 0 coincides with Neumann boundary
condition, while q → ∞ coincides with Dirichlet boundary condition. Obviously, this cannot be
generalized to more involved geometry, as our present array, and this latter has, a priori, two
degrees of freedom (q, τ ).

In the limiting case of sound-hard inclusions, q → 0, we have, from equations (4.10), ne =√
ϕ(1 − ϕ)τ/

√
q = (1 − ϕ)f = 1/g. Thus, neg = 1 and g → 0, leading to kw = k, and ne/f = (1 − ϕ)

leading to ξ = i
√

β2 − k2/[k(1 − ϕ)]. We recover the dispersion relation of the equation (4.5),
consistent with the dispersion relation derived for inclusions associated to Neumann boundary
condition in [17–19].
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Figure 12. |Rex| in log-scale as a function of k and of the impedance ratio q for kxd = 1 in the actual array (figure 9a). The
dispersion relation is visible by means of |Rex| → ∞. White dotted line shows the dispersion relation of the guided wave in
the homogenized problem (equation (4.8)) and dotted black lines show the sound lines kx = k and kx = nek. (Online version
in colour.)

In the limiting case of sound-soft inclusions, q → ∞, it is shown in appendix B that the
dispersion relation of the first guided wave takes the form

β �
[√

ϕ(1 − ϕ)τq − 1 − ϕ

k�

]
k. (4.11)

As previously said, at dominant order, β � nek, with ne =√
ϕ(1 − ϕ)τq, is close to the light line

of the birefringent waveguide. As q → ∞, the ratio of the wavenumbers β/k can reach very high
values. This is visible in figure 11: for q = 10 and 102, the resonances of |Rex| (by means of red
regions in the (kx, k) plane) occur along lines being closer and closer to the horizontal line k = 0.
Incidentally, the equation 4.11 also indicates that β < nek, which means that the guided wave is
propagating along the array of inclusions. It is worth noting that the ratio β/k has a singular limit
when ϕ → 1, and ϕ = 1 corresponds to an homogeneous slab (instead of the array of disconnected
inclusions). Indeed, using ϕ = 1 in equations (4.10) gives ne = τ , f = τ/q and g = 1, from which the
dispersion relation reduces to β → τk for q → ∞, and τ is not large. Therefore, a structured array
of inclusions can support guided waves with a wavelength much smaller than in a simple layer
of the same material; a practical application of this phenomenon has been proposed in [29].

5. Conclusion
We have shown that the classical homogenization theory is able to recover the main features of the
guided waves as observed in structured interfaces and structured arrays. This has been done in
the simple case of layered media for which analytical expressions of the effective parameters of the
equivalent anisotropic medium is available. This allows for the derivation of explicit dispersion
relations of the guided waves being, in the homogenized problem, the equivalent of the waves
propagating along the actual array or grating. Notably, the dispersion relation of the homogenized
problem recover the dispersion relations of plasmons and spoof plasmons for structurations
associated with the Neumann boundary condition, and a generalization for tilted layers has been
proposed. Beyond the case of structures made of hard materials, the dispersion relation of the
homogenized problem has been shown to predict correctly the existence of guided waves by
structures made of penetrable materials. Notably, the case of soft materials has been shown to
be promising for flexible tuning of the guided wave properties. Improvements in the design of
tuneable metamaterials require precise theoretical predictions; with regard to that aim, we think
that the homogenization theories are natural and powerful approaches.
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Appendix A. Constraint on the τ -value
As previously said in paragraph (c), the dispersion relation equation (2.11) has guided waves
solutions if k < kx < nek, that is, trapped waves being evanescent in the air and propagating in the
slab. This implies ne > 1, which translates, by inspection of equation (4.10), in

(ϕτ )2 + (1 − ϕ)2 + ϕ(1 − ϕ)τ
(

q + 1
q

)
> 1. (A 1)

This is obviously satisfied for τ = 1 since q + 1/q ≥ 2. Otherwise, it is sufficient to remark that (q +
1/q) is minimum at q = 1. Thus, the inequality is always satisfied if it is satisfied for q = 1, namely
(ϕτ )2 + (1 − ϕ)2 + 2ϕ(1 − ϕ)τ = (ϕτ + 1 − ϕ)2 > 1. Since for 0 < ϕ < 1, ϕτ + 1 − ϕ varies between
τ and 1, we get the final condition that τ > 1 or equivalently c� < 1, according to equation (4.6):
the material must be slower than the outside medium.

Appendix B. Higher branches of the penetrable array
Here, we present the dispersion relations of all the guided waves in the Neumann case. In the
limit q → ∞ of sound-soft inclusions, from equations (4.9) and (4.10), we get the simplifications

ξ ∼ i

√
τ

q
1 − ϕ

ϕ

√
λ2 − 1

ϕ(1 − ϕ)τq − λ2

and kw ∼ k
√

τ

ϕ(1 − ϕ)q

√
ϕ(1 − ϕ)τq − λ2,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(A 2)

where we have noted λ = kx/k, satisfying 1 < λ < ne ∼√
ϕ(1 − ϕ)τq to get a guided wave.

Let us concentrate on the first dispersion relation branch ξ = i tan(kw�/2) for tan(kw�/2) >

0, corresponding to symmetric guided waves. Since ξ → 0 when q → ∞, the solutions
of ξ = i tan(kw�/2) are obtained for kw�/2 = nπ + un, n = 0, 1, 2, . . . and 0 < un � nπ . From
equation (A 2), we get√

τ

q
1 − ϕ

ϕ

√
λ2 − 1

ϕ(1 − ϕ)τq − λ2 ∼ kw�/2 − nπ ∼ kl
2

√
τ

ϕ(1 − ϕ)q

√
ϕ(1 − ϕ)τq − λ2 − nπ ,

or equivalently

(1 − ϕ)
√

λ2 − 1 ∼ kl
2

[ϕ(1 − ϕ)τq − λ2] − nπ

√
ϕ(1 − ϕ)q

τ

√
ϕ(1 − ϕ)τq − λ2. (A 3)

The conclusion depends on the value of n : for n 
= 0, since the left-hand side of equation (A 3)
does not depend on q, we get for large q the dispersion relation kx = β(k) with

k2 =
(

2nπ

τ�

)2
+
(

β

ne

)2
, for β > k,
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where n2
e = ϕ(1 − ϕ)τq. For n = 0, the previous relation gives β � nek which is the light line, or

sound line, of the birefringent waveguide. To check that β < nek in order to prove the existence
of a guided wave, we have to perform a more precise calculation: starting from equation (A 3)
with n = 0, we look for a solution of the form λ = ne − v with 0 < v � ne. Using λ2 ∼ n2

e − 2nev

and ne � 1, we get v and we deduce the dispersion relation

β �
[√

ϕ(1 − ϕ)τq − 1 − ϕ

k�

]
k. (A 4)

For the antisymmetric dispersion relation branch ξ = 1/i tan(kw�/2) for tan(kw�/2) < 0, the
solutions are obtained for kw�/2 = (n − 1

2 )π + un, n = 1, 2, . . .. We get

k2 =
(

(2n − 1)π
τ�

)2
+
(

β

ne

)2
, for β > k.

On figure 11 and q = 102 (ne ∼ 5) are seen the branch n = 0 and the branch n = 1 of equation

(k�)2 =
(π

τ

)2 +
(

βd
ne

�

d

)2
, for β > k.

The condition β > k leads to βd > (πne/τ )(1/

√
n2

e − 1)(d/�) = 0.85, and this is confirmed on
figure 11: the second branch starts at the point kxd = 0.85 and k� = 0.85(d/�) = 2.56.
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