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SUMMARY

Honeycomb sandwich structures are used in a wide variety of applications. Nevertheless, because of manufactur-
ing defects or impact loads, these structures can experience imperfect bonding or debonding between the skin and
the honeycomb core. Instances of debonding reduce the bending stiffness of the composite panel, which causes
detectable changes in its vibration characteristics. This article presents a new methodology to identify debonded
regions in aluminium honeycomb panels that uses an inverse algorithm based on parallel genetic algorithms.
The honeycomb panels are modelled with finite elements using a simplified three-layer shell model. The adhesive
layer between the skin and core is modelled using linear springs, with reduced rigidity for the debonded sectors.
The algorithm is validated using experimental data from an aluminium honeycomb panel containing different dam-
age scenarios. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The applications of sandwich structures continue to increase rapidly and range from satellites, aircraft,
ships, automobiles, rail cars, wind energy systems and bridge construction, among others [1]. Sand-
wich panels typically consist of two thin face sheets or skins and a lightweight thicker core, which
is sandwiched between two faces to obtain a structure of superior bending stiffness. Nevertheless, be-
cause of manufacturing defects or impact loads, these structures can experience imperfect bonding or
debonding between the skin and the honeycomb core. Debonding in a sandwich structure may severely
degrade its mechanical properties, which can produce a catastrophic failure of the overall structure.
Therefore, it is important to detect the presence of debonding at an early stage.

A disadvantage of sandwich structures is that their structural failure, especially in the core, cannot
always be detected by traditional nondestructive detection methods. A global technique called
vibration-based damage detection has been rapidly expanded over the last few years [2]. The basic idea
is that vibration characteristics (natural frequencies, mode shapes, damping, frequency response func-
tion, etc.) are functions of the physical properties of the structure. Thus, changes to the material and/or
geometric properties due to damage will cause detectable changes in the vibration characteristics.
Many studies have demonstrated that vibration characteristics are sensitive to delamination in compos-
ite laminates, even if it is located in hidden or internal areas [3,4]. Nevertheless, there have only been a
few studies related to the debonding of sandwich structures [5–10]. Jiang et al. [5] used a commercial
finite element software to investigate the behaviour of debonded honeycomb structures. Their results
show that natural frequencies are sensitive indicators to the presence of debonding. Kim and Hwang
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INVERSE IDENTIFICATION OF DEBONDING IN HONEYCOMB PANELS 1427
[6] studied the effect of internal face-layer debonding in the natural frequencies and frequency response
functions of a honeycomb beam. Their results reveal that the extent of the debonding plays an impor-
tant role in determining the natural frequencies and mode shapes of the debonded sandwich beam.
Burlayenko et al. [7,8] studied the influence of skin/core debonding on the vibrations of honeycomb
panels. The authors investigated the influence of the debonding type, size and location on the modal
parameters of damaged sandwich panels with different boundary conditions. They concluded that
the size of the debonded zone strongly influences the panel modal parameters, reduces the natural fre-
quencies and creates a discontinuity in the mode shapes. This influence is stronger for higher frequency
modes. Mohanan et al. [9] studied the sensitivity of natural frequencies, mode shapes and modal strain
energy to debonds and dents in metallic honeycomb beams. Their results indicate that natural frequen-
cies and mode shapes are sensitive indicators to the presence of damage, but less sensitive in identify-
ing its location and size. However, modal strain energy was more effective in identifying the elements
affected by the damage. Shahdin et al. [10] presented an experimental study on the effects of impact
damage and core-only damage in honeycomb sandwich beams. Their results show that the damage pro-
duces a decrease in the natural frequency accompanied by an increase in the damping ratio. Further-
more, the damping ratio is a more sensitive parameter for damage detection than the natural
frequencies, although it is much harder to estimate it compared with the natural frequency. Lou
et al. [11] studied the effects of local damage of the core on the natural frequencies and vibration
modes of composite pyramidal truss core sandwich structures by numerical simulation and experimen-
tal modal analysis. They concluded that natural frequencies decrease because of the loss stiffness
caused by local damage and that vibration modes show local deformation in the damaged region.

Vibration-based damage assessment methods are classified as model based or nonmodel based.
Nonmodel-based methods detect damage by comparing the measurements from the undamaged and
damaged structures, whereas model-based methods locate and quantify damage by correlating an ana-
lytical model with test data from a damaged structure. Additionally, model-based methods are partic-
ularly useful for predicting the system response to new loading conditions and/or new system
configurations (damage states), allowing damage prognosis [12]. Model-based damage assessment re-
quires the solution of a nonlinear inverse problem, which can be accomplished using supervised learn-
ing algorithms as neural networks [12–18] or by global optimisation algorithms [17–26]. Islam and
Craig [13] trained a back-propagation neural network with the first five natural frequencies of a com-
posite beam to determine the location and size of any delamination. Natural frequencies were obtained
through a modal analysis, which was performed using piezoceramic patches as both sensors and actu-
ators. Back-propagation neural networks were used by Okafor et al. [14] to predict delamination size in
composite beams based on changes in their natural frequencies. In this case, the delamination is as-
sumed to be at the middle of the beam. The network was able to accurately predict dimensionless de-
lamination sizes between 0.22 and 0.82 but under-predicted delamination sizes below 0.08. A similar
approach is used by Valoor and Chandrashekhara [15] to predict delamination locations and sizes in a
thick composite beam. They found that the errors were highest for delaminations located near the beam
end and that in symmetrical structures, the network can only predict the possible location in each sym-
metrical segment. Hence, to locate the damage in symmetrical structures, more information, such as
mode shapes, is needed. Ishak et al. [16] trained a multilayer perceptron network to identify the loca-
tion, depth and length of delamination in carbon/epoxy laminated composite beams. The network in-
puts are experimental displacement responses measured with a scanning laser vibrometer.
Chakraborty [17] proposed a neural network approach to predict the size, shape and location of delam-
ination in composite panels using natural frequencies. The method was validated using simulated data
from a composite panel. The results show that the network works reasonably well when tested with
unknown data. Nevertheless, the authors stated that the actual efficacy of the approach can be deter-
mined only when the network is trained and tested with experimental data. Su et al. [18] compared
the efficiency of neural networks and genetic algorithms (GAs) for the evaluation of delaminations
in composite beams based on the change in their natural frequencies. The response of the beams is
measured using fibre Bragg grating sensors. The authors concluded that both algorithms are able to
evaluate the delamination location, size and depth, but neural networks are more stable. Zhang et al.
[19] examined three different inverse algorithms to predict the location and size of delamination in a
composite beam: a direct solution using a graphical method, neural networks and surrogate
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optimisation based on GA. Their results show that the three algorithms can predict the delamination
parameters, but neural networks are more sensitive to experimental noise. Zhu et al. [20] proposed a
GA-based method to identify the location and size of debonding in honeycomb sandwich beams.

There has been significant interest in implementing GAs for damage assessment problems [21–25].
Nevertheless, GAs are inherently slow when they work with complicated or time-consuming objective
functions. Parallel genetic algorithms (PGAs) solve this problem; they are particularly easy to imple-
ment and provide superior numerical performance [26]. Meruane and Heylen [27] implemented a
real-coded parallel GA to detect structural damage. Their results showed that PGAs provided an impor-
tant increase in the performance compared with the sequential GAs. The parallel algorithm was not
only much faster than the sequential algorithm but also able to reach a better solution. This algorithm
was later improved [28,29], making each population work with a different crossover. This ensures an
effective search with an adequate balance between exploration and exploitation.

This article presents a new methodology to identify debonded regions in aluminium honeycomb
panels that uses an inverse algorithm based on parallel GAs. The objective function is based on mode
shapes and natural frequencies. It considers a damage penalisation term to avoid false damage detection
due to experimental noise or modelling errors. The honeycomb panels are modelled with finite elements
using a simplified three-layer shell model. The adhesive layer between the skin and core is modelled
using linear springs, with reduced rigidities for the debonded sectors. The algorithm is validated using
experimental data from an aluminium honeycomb panel containing different damage scenarios.
2. MODELLING

2.1. Honeycomb panels

Figure 1 shows a scheme for a honeycomb sandwich panel, consisting of two thin face sheets or skins
and a honeycomb core, which are bonded together by an adhesive layer. The panel can be modelled by
a detailed three-dimensional (3D) finite element model, but the computational effort increases very rap-
idly as the number of cells increases. Therefore, it is more convenient to develop equivalent simplified
model for the honeycomb core to reduce the required computational time. Burton and Noor [30] stud-
ied the performance of nine different modelling approaches based on two-dimensional shell theories to
predict the static response of sandwich panels. The results are compared with those from a detailed 3D
model. Their study showed that the global response can be accurately predicted by discrete three-layer
models, predictor–corrector approaches and even first-order shear deformation theory, provided that
proper values for the shear correction factors are used. According to Birman and Bert [31], a key factor
in the practical application of the first-order shear deformation theory is the determination of the shear
correction factor. The analysis presented by these researchers concluded that the shear correction factor
should be taken with a value equal to unity for sandwich structures, as a first approximation. The work
presented by Burton and Noor [32] showed that continuum layer models for the honeycomb core pro-
vide solutions that are close to those calculated by using detailed finite element models. Tanimoto et al.
[33] used beam elements to model the honeycomb core and the adhesive layer. The proposed model
Figure 1. Scheme of a honeycomb sandwich panel.
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was validated by experimental vibration tests. Burlayenko and Sadowski [34] performed an analysis of
sandwich plates with hollow and foam-filled honeycomb cores using a commercially available finite
element code. The sandwich plates were modelled on the basis of a simplified three-layered continuum
model using a mixed shell/solid approach. Consequently, the prediction of the dynamic response of the
honeycomb panels can be accomplished by equivalent continuum models.
2.2. Debonding

A debonded region between the skin and core of a honeycomb panel is similar to a delamination in lam-
inated composites. There is a considerable amount of analytical and numerical methods used to model
delaminated composite laminates. Della and Shu [35] provide an extensive review of them. The major-
ity of these methods can be categorised into two classes. The first is a region approach where the lam-
inate is divided into sublaminates and continuity conditions are imposed at the junctions, whereas the
second is a layer-wise model where delamination is introduced as an embedded layer or as a disconti-
nuity function in the displacement field. On the other hand, modelling vibrations in sandwich structures
with debonding is generally accompanied by contact problems between the interfaces of the debonded
region [36]. Jiang et al. [5] modelled a honeycomb panel as a three-layer structure using 3D solid ele-
ments and introduced the debonding between the skin and the core as a noncontacting area. Burlayenko
and Sadowski [7,8] modelled the debonded region in honeycomb panels by creating a small gap be-
tween the face and the core and by introducing bilinear spring elements between the double nodes in
the debonded area. The springs have a stiffness equal to zero in tension and a large value in compression,
simulating a contact condition. A piecewise linear model does not predict a unique mode shape as in a
linear system, but the mode shape depends on the vibration amplitude.
3. DAMAGE ASSESSMENT ALGORITHM

3.1. Damage parameterisation

To represent the damage, N points are uniformly distributed over the panel, and damage is
parameterised by circular-shaped debonded regions centred at some of the N points, as shown in
Figure 2. The damage scenario is represented by a vector β={β1,β2,..βN}, where the value βi> 0 im-
plies a debonded region with a radius βi centred at the ith point. Figure 2 illustrates an example of a
vector β that represents a damage scenario with two debonded regions centred at points r and s.
Figure 2. Example of a vector β that represents a damage scenario with two debonded regions.
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3.2. Formulation of the optimisation problem

The problem of detecting damage is a constrained nonlinear optimisation problem, where the factors βi
are defined as the updating parameters. The first error function is based on the natural frequency
changes due to structural damage and is defined as follows:

εϖ ¼ ωD � ωU

ωU

� �2

(1)

where ω represents a vector containing the natural frequencies and the superscripts D and U refer to
damaged and undamaged, respectively. The second error function represents the mode shape changes
due to damage and is defined as follows:

εϕ ¼
∑
i

ϕD
i � ϕU

i

� �2

max ∑
i

ϕD
i � ϕU

i

� �2� � (2)

where φi represents the ith mode shape vector. The vector of the mode shape changes is normalised
with respect to its maximum value to reduce the difference between the numerical and experimental
results. This difference is because the numerical model does not contain contact conditions and the ex-
perimental model does.

The objective function is defined as the normalised sum of the errors plus a damage penalisation term:

J βð Þ ¼ Wω
Fω βð Þ
Fω;0

þWφ
Fφ βð Þ
Fφ;0

þ FD βð Þ

Fω βð Þ ¼ εNω βð Þ � εEω
�� ��

Fφ βð Þ ¼ εN
φ
βð Þ � εE

φ

��� ���
(3)

where Fω,0, and Fφ,0 refer to the initial values of the sums (when β =0),Wω andWφ are weighting factors
and the superscriptsN and E refer to numerical and experimental, respectively. The variable FD is a dam-
age penalisation function that helps to avoid false damage detection caused by experimental noise or nu-
merical errors [24]. The damage penalisation function is defined as follows:

FD βð Þ ¼ γ∑
i
δi; δi ¼

1 βi > 0

0 βi ¼ 0

�
(4)

The value of the constant γ depends on the confidence in the numerical model and the experimental
data. The following values were used for the constants: γ=0.05, Wω=0.5 and Wφ=1.5. The optimisa-
tion problem is defined as follows:

min J βð Þ
subject to 0 ≤ βi ≤ 0:1

(5)

3.3. Optimisation algorithm

The optimisation problem is particularly challenging, and a robust optimisation algorithm is needed.
Based on this, it is proposed to use GAs as an optimisation tool. The GA is a global searching process
based on Darwin’s principle of natural selection and evolution. A sequential GA consists of three main
operations: selection, genetic operations and replacement (Figure 3). The GA starts by creating an initial
population. A set of possible solutions, referred to as chromosomes, form the initial population. A
sequence of genes that represents the variables of the problem forms each chromosome. The fitness func-
tion evaluates the fitness of each chromosome. Next, the algorithm passes the initial population through a
selection process. Chromosomes with a higher fitness have a higher probability to survive in the next
generation. After the selection process, the chromosomes are randomly paired. Each pair of chromosomes
is referred to as parents. The algorithm uses the basic GA operators, crossover and mutation, to reproduce
the parents. As a result, it creates new pairs of children. Crossover and mutation are applied randomly with
a probability of pc and pm, respectively. After the process of selection, genetic operations and replacement,
the algorithm evaluates the new population. This process is iterated for a number of generations until a
Copyright © 2015 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2015; 22: 1426–1439
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Figure 3. Working principle of a sequential genetic algorithm.
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convergence criterion is achieved. The crossover is considered the main search operator. Each crossover
technique directs the search in different areas near the parents, and some of them use more exploration
(or interpolation) and others more exploitation (or extrapolation). For the algorithm to be successful,
there must be an adequate balance between exploration and exploitation. Herrera et al. [37] showed that
by combining different types of crossovers, the effectiveness of the search can be improved.

The problem with sequential GAs is that they are inherently slow when they work with complicated
or time-consuming objective functions. To improve the search speed, PGAs are proposed. PGAs are
particularly easy to implement and provide superior numerical performance. Many studies show that
with PGAs, the execution time can be reduced by a factor greater than the number of processors used
[26]. The basic idea in parallel processing is to divide a large problem into smaller tasks. A group of
processors solves these tasks simultaneously. Parallelisation is applied to GAs by different approaches.
Three main methods are distinguished: global, migration and diffusion. Migration GAs, also known as
multiple population GAs, are the most popular parallel method and potentially the most efficient. In
this case, a number of populations are run in parallel. Each population runs a conventional GA individ-
ually. These populations exchange their individuals occasionally. This exchange is denominated mi-
gration. The separation into subpopulations prevents premature convergence because it allows each
population to search in different zones. Meruane and Heylen [27] investigated the advantages of PGAs
for structural damage detection problems. They concluded that PGAs always provide an improved and
faster search in the solution space when compared with sequential GAs.

Figure 4 illustrates the optimisation algorithm. This algorithm is a multiple population GA with four
populations and a neighbourhood migration. Each population runs a sequential GA that from time to time
exchanges information with its neighbours (migration). The gene of each chromosome is an updating
parameter of the optimisation problem. The GA uses a normalised geometric selection. To ensure an
effective search with an adequate balance between exploration and exploitation, each population works
with a different crossover: arithmetic crossover, heuristic crossover, BLX-0.5 crossover and uniform
crossover. In addition, a crossover function, denoted has extended simple crossover, has been specially
developed for this problem and has been incorporated in the four populations. In damage assessment
problems, the optimum solution is mostly formed by zeroes and a few values different to zero. The extended
simple crossover is particularly useful when the algorithm has found the locations of the damage but not
its magnitude. This crossover combines a simple crossover with a linear extrapolation of the parents,

x’ ¼ rxx1; rxx2;⋯; rxxk; ryykþ1;⋯; ryyn
� 	

y’ ¼ ryy1; ryy2;⋯; ryyk; rxxkþ1;⋯; rxxn
� 	 (6)

where x and y are the two chromosomes selected for the application of the crossover operator, x’ and y’
are the two children created by the extended simple crossover and rx and ry are uniformly distributed
Copyright © 2015 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2015; 22: 1426–1439
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Figure 4. Illustration of the parallel optimisation algorithm. GA, genetic algorithm.
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numbers between (1�α) and (1 +α). Here, α is set equal to 0.1. If x’ or y’ is infeasible, that is, one or
more of its genes are outside the allowed range, then new random numbers rx and ry are generated,
and x’ and y’ are revaluated. To ensure halting, after 10 failures, the children are set equal to the parents.

Each population applies both the boundary and uniform mutations. The population size and the
crossover and mutation probabilities are 20 individuals, pc = 0.90 and pm=0.002, respectively. The mi-
gration interval is automatically adjusted. If a population has no improvement after 20 generations, the
GA stops and exchanges the individuals with their neighbours. This exchange of individuals is syn-
chronous, that is, the algorithm waits until the four populations are ready to perform the migration.
At each migration, each population sends its best individual, whereas its worst individual is replaced
by the received individual. Before migration, the best individuals from all populations are compared.
If they are all the same, the optimisation is finished.

To create the initial population, a database of mode shapes and natural frequencies associated with
single damage scenarios is used. The database contains four debonding diameters for each damage lo-
cation, resulting in 468 different scenarios. Each scenario in the database is evaluated using the objec-
tive function, and the best 20 are selected to form part of the initial population.
4. APPLICATION CASE

The application case corresponds to an aluminium honeycomb panel. The next sections describe the
experimental panel, the numerical model and the results of the damage assessment algorithm.
4.1. Experimental panel

The experimental panel consists of a sandwich panels of 0.25× 0.35m2 made of an aluminium honey-
comb core bonded to two aluminium skins. The properties of the skin material and the core are
summarised in Tables I and II. The skins are bonded to the honeycomb core using an epoxy adhesive
that provides a high performance solution to ambient temperature cure bonding of aluminium honey-
comb to a wide range of skin materials. Figure 5a shows an aluminium sheet with a layer of epoxy
Copyright © 2015 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2015; 22: 1426–1439
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Table I. Properties of the skin.

Thickness 0.8mm
Young’s modulus 6.9 × 1010 Pa
Poisson ratio 0.33
Density 2700 kg/m3

Table II. Properties of the honeycomb core.

Cell size 19.1mm
Foil thickness 5 × 10�5m
Thickness 10mm
Density 20.8 kg/m3

Compressive strength 0.448MPa
Shear strength in longitudinal direction (σxy) 0.345MPa
Shear modulus in longitudinal direction (Gxy) 89.63MPa
Shear strength in width direction (σyz) 0.241MPa
Shear modulus in width direction (Gyz) 41.37MPa

a)
b)

Figure 5. Fabrication of the experimental panel: (a) layer of epoxy adhesive over the skin and (b) vacuum bagging
of the panel.
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adhesive, and the circular region without adhesive is introduced to simulate debonding. To ensure per-
fect bonding, the panel is cured using a vacuum bagging system, as shown in Figure 5b.

Figure 6 shows the experimental setup used to simulate a free boundary condition. The honeycomb
sandwich panel is suspended by soft elastic bands. The out-of-plane vibration is captured by four
miniature piezoelectric accelerometers located in three corners and in the centre of the panel. The panel
is excited by an impact hammer at the 117 points described in Figure 6b, resulting in 468 measured
frequency response functions.
4.2. Numerical model

In the present study, the honeycomb panels are modelled with finite elements using a simplified
three-layer shell model, and the adhesive layer between the skin and core is modelled using linear
springs. Because the properties of the skin are known, the attention is focused on modelling the
effective properties of the adhesive layer and the core material. The adhesive layer between the skin
and core is modelled using linear springs, with reduced rigidity in debonded sectors, as shown in
Figure 7.

The numerical model is built in Matlab® using the SDT Structural Dynamics Toolbox (SDTools,
Paris, France) [38], and the skins and honeycomb panel are modelled with standard isotropic four-node
shell elements. The final model shown in Figure 8 has 10 742 shell and 7242 spring elements.
Copyright © 2015 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2015; 22: 1426–1439
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a) b)

Figure 6. Experimental setup: (a) panel suspended by elastic bands and (b) distribution of measurement points.

Figure 7. Lateral view of the numerical model: (a) undamaged panel and (b) panel with a debonded region.

Figure 8. Finite element model of the sandwich panel.
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The mechanical properties of the sandwich construction depend upon the adhesives, temperature
and pressure used during curing. In addition, the anisotropic nature of the honeycomb core makes test-
ing the sandwich specimens mandatory to determine their properties with accuracy. Here, the mechan-
ical properties of the adhesive layer and the honeycomb core are determined by updating the finite
element model with the experimental mode shapes and natural frequencies for both undamaged cases
and those with debonding.

Figure 9 shows the first six experimental mode shapes compared with those from the numerical model
after updating. The correlation between the numerical and experimental mode shapes is measured by the
Modal Assurance Criterion (MAC), a value of 0 indicates no correlation whereas a value of 1 indicates
two completely correlated modes. The parameters that were updated in the numerical model are the
following: the density and Young’s modulus of the skins; the density, bending stiffness and shear
correction factor of the core; and the stiffness of the springs representing the adhesive layer.
Copyright © 2015 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2015; 22: 1426–1439
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Figure 9. Numerical and experimental undamaged mode shapes.

Figure 10. Numerical and experimental mode shapes with a debonded region at the centre of the panel.
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The correlation between the shapes of the numerical and experimental modes is almost perfect for
the first three modes with MAC values higher than 0.99. The fifth mode presents the lowest correlation,
with a MAC value of 0.83. In this case, the first-order shear approximation may not be sufficient. The
maximum difference between the experimental and the numerical natural frequencies is 11%.

Figure 10 presents the correlation between the numerical and experimental modes for the case with a
circular debonded region at the centre of the plate. The modes are plotted over the surface of the debonded
skin. Here, the numerical model was updated again, considering the spring stiffness in the debonded
region as updating parameters. Although the correlation is not as good as in the undamaged case, both
the numerical and experimental models show the same behaviour in the presence of damage, which is a
reduction in the natural frequencies, and a strong discontinuity at the debonded region for mode 4.
4.3. Results

The algorithm is tested for the three damage scenarios shown in Figure 11. The first case has a debonded re-
gion centred at point 59 (the centre of the panel), the second case has a debonded region centred somewhere
between points 30, 31, 39 and 40 and the third case has two debonded region centred at points 32 and 86.

To assess damage, debonding is restricted to the skin that is measured during experiments.
Figures 12b, 13b and 14b show the damage assessment results for the different damage scenarios.
The damage detected is represented as a grey region where each pixel represents a debonded spring.
The actual damage introduced into the panel is presented as a circle. In the first case, the centre of
Figure 11. Experimental damage scenarios introduced to the panel; the circles indicate the debonded regions.

a) b)

Figure 12. Damage assessment results for the first damage scenario: (a) convergence curves and (b) actual
debonded region (circle) versus detected region (grey). GA, genetic algorithm.

Copyright © 2015 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2015; 22: 1426–1439
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Figure 13. Damage assessment results for the second damage scenario: (a) convergence curves and (b) actual
debonded region (circle) versus detected region (grey). GA, genetic algorithm.

a) b)

Figure 14. Damage assessment results for the third damage scenario: (a) convergence curves and (b) actual
debonded regions (circles) versus detected regions (grey). GA, genetic algorithm.
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the experimental damage matches one of the 117 predefined positions. Thus, the algorithm is able to
detect the exact position of the debonded region and its magnitude. However, when the actual centre
of the damage does not match one of the 117 positions, as in the second case, the algorithm detects
the damage at a position that is close to the actual location but not at the exact position. In the third
case, at the larger debonded region, the algorithm detected two debonds instead of one.

The convergence curves presented in Figures 12a, 13a and 14a show the evolution of the best indi-
viduals in the four populations. The algorithm needed between 60 and 90 generations to reach the op-
timum. In the first two cases, three populations were able to find a solution close to the optimum before
15 generations, whereas in the third case, the populations reach the optimum after a couple of migra-
tions. This result is explained by the fact that in the third case, there are more possible locations for the
debonded regions, and thus, each population may find a different solution.
5. CONCLUSIONS

This article presented a new methodology to identify debonded regions in aluminium honeycomb
panels using an inverse algorithm based on PGAs. The algorithm was validated using experimental
data from an aluminium honeycomb panel subjected to different damage scenarios.

The honeycomb panels were modelled with finite elements using a simplified three-layer shell
model. The adhesive layer between the skin and core was modelled using linear springs, with the
Copyright © 2015 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2015; 22: 1426–1439
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1438 V. MERUANE AND V. DEL FIERRO
rigidity reduced in debonded sectors. This numerical model is able to predict with reasonable accuracy
the first six modes of the undamaged and damaged panels.

The results show that the algorithm is able to predict the debonding location and size. Hence, global
responses such as mode shapes and natural frequencies are suitable indicators of debonding. Further
research will focus on the assessment of debonding when the mode shapes are measured at the healthy
skin. In addition, further research is needed to study the effects of temperature changes in the
debonding assessed.
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