
lable at ScienceDirect

International Journal of Thermal Sciences 98 (2015) 81e89
Contents lists avai
International Journal of Thermal Sciences

journal homepage: www.elsevier .com/locate/ i j ts
Natural convection in thermal plumes emerging from a single
heat source

R.H. Hern�andez
LEAF-NL, Departamento de Ingeniería Mec�anica, Universidad de Chile, Casilla, 2777, Santiago, Chile
a r t i c l e i n f o

Article history:
Received 22 August 2013
Received in revised form
23 August 2014
Accepted 18 June 2015
Available online 30 July 2015

Keywords:
Natural convection
Thermal plumes
Instabilities
E-mail address: rohernan@ing.uchile.cl.

http://dx.doi.org/10.1016/j.ijthermalsci.2015.06.010
1290-0729/© 2015 Elsevier Masson SAS. All rights res
a b s t r a c t

We report numerical simulations of confined natural convection from a single heat source, leading to the
evolution of thermal plumes in two and three dimensions. Thermal plumes are driven through a single
heat source mounted flush at the bottom of a slender cavity where vertical and top walls are isothermal
heat sinks. Velocity and temperature fields were obtained for two Prandtl numbers, P ¼ 0:025;0:71 at
three different values of the Rayleigh number, R ¼ 104;5� 104;105 and for different box aspect ratios.
Two kind of flow solutions were found: (i) Steady states corresponding to stable thermal plumes char-
acterized by a well defined flow circulation inside the cavity and (ii) periodic states where both the flow
and thermal fields oscillate in time. Unsteadiness of fluid and thermal flows is favored by choosing low
Prandtl number fluids, working at high Rayleigh numbers inside high aspect ratio cavities. Instabilities
are characterized by a periodic and propagative motion of the thermal plume in both transverse and
vertical direction. It can be attributed to destabilizing shear stresses between ascending and descending
fluid layers.

© 2015 Elsevier Masson SAS. All rights reserved.
1. Introduction

Thermal plumes associated to the convective motion originated
from localized heat sources, where hot fluid penetrates into a
colder region above, are special cases of non linear driven flows
systems where buoyancy is steadily supplied [1]. Thermal plumes
created in closed environments (boxes) are very sensitive to ther-
mal forcing and boundary conditions, specially in the case of high
aspect ratio or slender cavities. Bifurcated states are readily set up
accompanied by saturated oscillatory solutions with particular
eigen modes (frequency and wavelength) which depend on the
fluid physical properties, the amplitude of the forcing parameter
and box dimensions.

From a physical viewpoint, particular emphasis on the shape
and time dynamics of thermal plumes has been devoted [2] indi-
cating that in some situations it can be considered a problem of
pattern formation. The fluid near the heat source receives heat
increasing its buoyancy, allowing the development of a primary
fluid pattern which evolves finally to a well known thermal plume.
As the plume rises losses its connection with the source which
produced it [1], in particular when the plume develops inside a
erved.
large container. The evolution of the cap of the plume at the first
stages of its formation reveals certain non linear properties which
have been explored through different numerical approaches [4,5]
and observed in nice experiments [6].

Experimental and theoretical works frequently dealt with point
or line heat sources [6,7] considered as a fundamental phenomena
in natural convection heat transfer. Of increased complexity is the
case of thermal plumes emerging from finite size heat sources [3,4]
where numerical predictions can be useful in determining both the
heat transfer and temporal evolution of such objects. The case of
round heat sources has been recently considered as a basic setup
for the determination of instability modes in a mechanically driven
thermal plume by ultrasound scattering [8]. Scattering of sound
waves of high frequency can be used a powerful non-disturbing
tool to measure experimentally all spatial length scales of an un-
stable thermal plume [9].

Another important view point is the role of small-scale plumes
emerging from discrete heat sources in 3D hard RayleigheB�enard
turbulence. For instance, the abrupt detachment of very small hot
regions (plumes) from a wall could be the physical mechanism
responsible for the different scalings laws when soft and hard
turbulence are considered [10]. Examples of confined natural con-
vection flows from finite size heat sources have been reported long
time ago [11] as an effort to understand the efficiency of discrete
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Nomenclature

g gravitational acceleration
W ;H box dimensions in x; y coordinates respectively
Nu local Nusselt number uiq� vq

vxi
in direction i

〈Nu〉xðtÞ wall averaged Nusselt number
p dimensionless pressure
P Prandtl number n=a
R Rayleigh number gbDTW3=na

t; f0 dimensionless time and frequency respectively
Th; T0 hot and cold temperatures respectively
u; v dimensionless x; y components of velocity respectively
x; y dimensionless coordinates

a thermal diffusivity
b coefficient of thermal expansion
dt discrete time step
DT temperature difference (Th � T0)
dx; dy discrete steps in x; y coordinates respectively
dq contour intervals for isotherms
Gxy aspect ratio H=W ¼ 5
l dimensionless wavelength
n kinematic viscosity
Q dimensionless temperature ðT � T0Þ=ðTh � T0Þ
r fluid density
td diffusive time scale W2=a
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heaters in particular configurations as passive elements in elec-
tronic cooling [3,12].

The scope of this work is to examine the heat transfer and
natural convection of two-dimensional thermal plumes emerging
from a small heat source mounted flush with the bottom of a
slender cavity in a thermally uniform environment. Using a nu-
merical approach we will solve the governing equations and
provide accurate results for the local and overall dynamics of
thermal plumes in the case of two different Prandtl numbers
(P ¼ 0:025;0:71) at different values of the governing parameter,
the Rayleigh number R and for different cavity's aspect ratio. The
onset of time dependent solutions will be validated by compari-
son with three-dimensional numerical simulations of similar sit-
uations. These results will be provided just to confirm the range of
validity of the two-dimensional approximation, which indeed will
represent much lower computational costs.
2. Formulation

The physical situation (see Fig. 1) corresponds to a small
heat source of length b located at the bottom (center) of a
slender cavity of aspect ratio H=W ¼ 5. The heat source of
size b (W ¼ 10b) has a uniform and constant temperature Th,
while the side walls and the top wall are kept at uniform
Fig. 1. (a) Schematic of the physical set up. A slender 2D cavity of aspect ratio
Gxy ¼ H=W ¼ 5 with a localized heat source of size b (W=b ¼ 10) at constant tem-
perature Th , at the bottom wall center. The rest of the bottom wall is adiabatic and
lateral and top walls have temperature T0 < Th . Gravity vector is g ¼ �gby. (b) A typical
instability is represented by temperature iso-contours (iso-contour interval is
dq ¼ 0:02) at R ¼ 105 and P ¼ 0:71. (c) Iso-contours of vorticity (U) showing the pe-
riodic structure of the unstable thermal plume at R ¼ 105 and P ¼ 0:71 (iso-contour
interval is dU ¼ 1:6).
temperature T0 (Th > T0). The rest of the bottom wall is thermally
insulated. Velocity vanishes on rigid walls. The 2D Boussinesq
governing equations, retaining time derivatives in dimensionless
form are the mass, momentum and energy conservation
equations,

V$u (1)

vu
vt

þ u$Vu ¼ �Vpþ R P qþ PV2u; (2)

vq

vt
þ u$Vq ¼ V2 q (3)

The governing parameter is the Rayleigh number
Ry ¼ gbDTL3=na (Rx ¼ 0), where the choice for the characteristic
length scale L has been the distance between the hot and cold walls,
i.e., L ¼ W as the shortest characteristic distance between the heat
source and cold lateral walls. The fluid Prandtl number is the ratio
between the conduction and viscous times scales, P ¼ n=a, where a

is the thermal diffusivity and n the kinematic viscosity. The tem-
perature difference between the heat source and the environment
is DT ¼ Th � T0, g is the gravitational acceleration and b the thermal
expansion coefficient.

Non dimensional equations were obtained by means of the
following scaling; time, velocity and pressure were scaled using
W2=a;a=W ; rða=WÞ2 respectively as reference quantities, where r

is the fluid density. Coordinates were scaled with the horizontal
dimension of the cavity W and the dimensionless temperature was
defined as q ¼ ðT � T0Þ=ðTh � T0Þ.

In the context of our problemvariables, the boundary conditions
are the following: Fluid velocity vanishes on rigid walls and tem-
perature Th is imposed at the locally heated portion of the bottom
wall, b. Temperature of vertical and topwalls is T0. In dimensionless
form we have:

ðW � bÞ=2 � x � ðW þ bÞ=2
0 � x � ðW � bÞ=2
ðW þ bÞ=2 � x � WÞ
0 � x � W
x ¼ 0;W

y ¼ 0
y ¼ 0
y ¼ 0
y ¼ 0
0 � y � H

u; v ¼ 0 q ¼ 1
u; v ¼ 0 vyq ¼ 0
u; v ¼ 0 vyq ¼ 0
u; v ¼ 0 q ¼ 0
u; v ¼ 0 q ¼ 0

Overall heat transfer quantities, like the Nusselt number, were
spatially averaged over each cavity wall. By definition, the averaged
Nusselt over each cavity wall is

〈Nu〉xðtÞ ¼
1
H

Z �
uq� vq

vx

�
dy (4)
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〈Nu〉yðtÞ ¼
1
W

Z �
vq� vq

vy

�
dx (5)
where 〈Nu〉xðtÞ is calculated for both left and right walls and
〈Nu〉yðtÞ is calculated at the top wall.
3. Numerical procedure

These governing equations were solved in primitive variables
using a finite volume formulation and the SIMPLER algorithm [13],
which has been extensively used in box confined natural convec-
tion flows, performing well with Newtonian fluids in 3D situations
[5,14,15] and, very recently, with non Newtonian fluids [16]. In or-
der to confirm the consistency and accuracy of our computer code,
it was validated against the benchmark results of de Vahl Davis [17].
In the present case, the discretization of the physical domain was
done with a two-dimensional uniform and staggered grid of
(61 � 301) points in the horizontal (x) and vertical (y) coordinates
respectively, providing an aspect ratio Gxy ¼ 5. As a check of grid
independence, the numerical simulationwas carried out on coarser
and finer meshes up to (81 � 401) grid points. These preliminary
tests with different grids allow an appropriate choice of the mesh
size without compromising accuracy and CPU time. Staggered
uniform grids were used with a uniform step dxi ¼ 0:016 giving
reasonable grid independent solutions and spatial resolution as it is
shown in Table 1. A time step dt ¼ 0:001was used in all calculations
representing 0:1% of the smallest diffusive time scale td ¼ W2=a.
Therefore it can be considered as a small fraction of the charac-
teristic time scales of the thermal phenomenon and at the same
time should allow to resolve the smallest time scales associated to
any developing instability in a convection-dominated regime.

With these definitions, an overall check of consistency of the
numerical code was made in order to evaluate the residue of heat
flows across the cavity. An overall residue less than 1% was
considered as a good energy balance and it was incorporated as a
critical condition to progress in time with our numerical code. In
general, to obtain converged solutions at each time step we used a
simple but accurate criteria for each of the several variables of our
problem. We considered converged solutions if and only if the

condition
���εkij � ε

k�1
ij

���<10�6 is satisfied by any variable εij at each

grid point ði; jÞ, where k represents a given iteration of our code.
Such a condition is very time consuming, however it is a consistent
criteria for all cases here considered, specially when the system
becomes unstable.
4. Results

We have focused our attention on two different Prandtl
numbers; P ¼ 0:71;0:025, and for each one we solved our set of
equations at three Rayleigh numbers; R ¼ 104;5$104;105. Steady
states were only reached at moderate Rayleigh numbers
R ¼ 104;3$104 for P ¼ 0:71 and in general, can be characterized by
a thermal plume formed by a central upward flow accompanied by
two symmetrical fluid loops of cold fluid moving along the lateral
Table 1
Grid independence study for aspect ratio Gxy ¼ 5, R ¼ 104 and P ¼ 0:71.

Grid size hNulix hNurix 〈q〉

21 � 101 0.1575 0.0125 0.0086
41 � 201 0.1061 0.1061 0.0304
61 � 301 0.1048 0.1048 0.0301
81 � 401 0.1047 0.1047 0.0301
walls that ultimately feed the plume entrainment region close to
the heat source.

A thermal plume developed inside a closed box has a very
different behavior from those generated in open environments. In a
closed environment, the imposed shear and thermal losses (by
virtue of boundary conditions) will considerably attenuate the
plume dynamics and therefore reduce the number of degrees of
freedom of the system. Moreover, in a closed domain the mass
conservation constraint will force the fluid to circulate along some
particular paths, generating an effective or time-averaged fluid
circulation pattern. In any of the tested cases, there are two closed
fluid loops in the proximity of the heat source, that feed with cold
fluid the lower zone of the plume. Fig. 1 shows the isotherms (b)
and iso-vorticity (c) contours for a thermal plume in air P ¼ 0:71 at
R ¼ 105 where the thermal field appears disturbed across the cavity
as a result of the developing instability. The periodic motion orig-
inated by the instability is detected in the heat fluxes across the
lateral walls, an effect which can be used to distinguish between
stable and unstable states in an experimental set up.

Fig. 2(a) displays the isotherms for P ¼ 0:71 at three increasing
values of the Rayleigh number. Steady states found at the lowest R
value are charecterized by a static plume development, where the
plume penetration or plume height increases considerably with R.
At R ¼ 104 the wall-averaged Nusselt number reach a constant
value and the respective plume height is rather small. For the next
curve, at R ¼ 5$104, wall-averaged Nusselt number, 〈Nu〉xðtÞ, dis-
plays a very small oscillation (see Table 1) attributed to the starting
Fig. 2. Converged solutions of the thermal plume for P ¼ 0:71 at R ¼ 104;5$104;105.
(a) Iso-contours of temperature (dq ¼ 0:02) (b) Temporal behavior of averaged Nusselt
number, 〈Nu〉xðtÞ, at side walls versus the number of cycles (t$f0), where t is the time
and f0 is the oscillation frequency of the instability.



Fig. 3. (a) Snapshots of the periodic evolution of the iso-contours of the temperature
field qðx; y; tÞ at different times for R ¼ 105 and P ¼ 0:71 (dq ¼ 0:02). (b) Associated
periodic evolution of the averaged Nusselt number 〈Nu〉x at the left (upper curve) and
right (lower curve) walls as a function of the number of cycles, given by (t$f0), where t
and f0 are the time and characteristic frequency respectively. The inset indicates
specific times where the snapshots were taken.
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instability of the thermal plume. Such a small fluctuation can not be
directly observed in the respective iso-contours of temperature. On
the last curve, at R ¼ 105, the unstable plume is easily observed
through a periodic thermal pattern on the cavity accompanied by
the respective wall-averaged Nusselt number shown in Fig. 2(b). A
clear increase of Nusselt number with Rayleigh number is observed
and the unstable plume is responsible of a periodic oscillation of
the local, as well as, the wall-averaged heat fluxes at the lateral
walls. In all cases we get a constant time lag of half a period be-
tween maximum values of Nusselt number at opposite walls, after
the long transient part. The developing instability of the third
thermal plume can be characterized in the frame of a linear stability
analysis by a complex growth rate s. For short times after instability
onset, linear theory predicts that instability will occur when the
most unstable mode, s ¼ sr þ ju, crosses the imaginary axis (ju),
i.e., when sr >0. If the associated frequency u is not zero, the
transition therefore corresponds to a Hopf bifurcation [18]. In our
case it seems that the instability appears when we increase the
Rayleigh number beyond a certain critical threshold, say Rc, but this
value seems to depend on the choice of the fluid Prandtl number.
After instability onset, the plume displays a spatial periodic pattern
and a characteristic frequency which can be regarded as a Hopf
bifurcation marking the transition between a steady and spatio-
temporal periodic flow. In any case, an accurate determination of
the intrinsic properties of this bifurcation is beyond the scope of
this work.

A cycle of oscillation is shown in Fig. 3 for the unstable thermal
plume obtained with P ¼ 0:71 at R ¼ 105. Snapshots of the iso-
therms were taken at times indicated by the dots in the inset of
Fig. 3(b). Right wall-averaged Nusselt number 〈Nu〉xðtÞ (shown in
the inset) oscillates around a mean (or dc) value where the fre-
quency of these fluctuations is associated to the lateral periodic
motion of the unstable plume. Inside the cavity, temperature
fluctuations as well as velocity fluctuations have the same fre-
quency of oscillation found in the wall-averaged Nusselt number.
An important contribution to wall-averaged Nusselt number
comes from the base of the plume, where high transverse velocity
occur giving therefore high values of local Nusselt number that are
enhanced when the starting plume bends toward the corre-
sponding wall.

When we consider the case of small Prandtl number P ¼ 0:025
we found an unstable thermal plume at any of the three Rayleigh
numbers. As the initial conditions are exactly the same used in the
previous runs (fluid at rest), we understand that the threshold
value of Rayleigh number, Rc, not only depends on Prandtl number,
but it is smaller for P ¼ 0:025. Fig. 4 displays instantaneous snap-
shots of the isotherms at R ¼ 104;5$104;105 with the corre-
sponding wall-averaged Nusselt numbers. As the Prandtl number is
small, the fluid ability for momentum spreading is weaker than in
the previous case, generating thermal plumes of smaller size or
small penetration depth. The global dynamics is therefore
concentrated at the base of the cavity as shown in Fig. 4(a). The
wall-averaged Nusselt number of Fig. 4(b) displays strong periodic
oscillations at each Rayleigh number R, where the relative saturated
amplitude increases with R and the peak-to-peak amplitudes are
important when compared to the mean Nusselt number (time
averaged).

The period of oscillation here is considerably greater than that of
the case P ¼ 0:71 by a factor of 6 (see Table 2). In both cases the
period of oscillation decreases with the Rayleigh number, meaning
that the characteristic frequency of the unstable eigenmode in-
creases with the governing parameter, and that implies that the
heat flow changes its sign at increased frequencies with higher R.
Another important fact is that the peak-to-peak Nusselt fluctua-
tions are really important (P ¼ 0:025) when compared to the wall-
averaged Nusselt number, and they are increasing functions of the
Rayleigh number as shown in the Table 1.

Fig. 4(b) indicates that the overall effect of increasing Rayleigh
number is more important on Nusselt fluctuations rather than on
the time averaged Nusselt number. If the Nusselt signal is decom-
posed into a dc (or time-averaged value) plus a periodic fluctuation,
we see that the dc component increases only slightly with Rayleigh
number. This effect means that at low Prandtl numbers heat flow
across lateral walls is concentrated at the base of the cavity as the
thermal plume height is small and it does not exhibit a notorious
increase of plume height with R for P ¼ 0:025 (see Fig. 4). On the
contrary, for P ¼ 0:71 the dc Nusselt value increases rapidly with R
because of the notorious increase of thermal plume height with R,
as shown in Fig. 3(a). The overall behavior of heat flow can be, as we
said before, decomposed into a time-averaged part (dc part) due to
the time-averaged plume penetration or plume height plus an
oscillating part associated to the wavy behavior of the thermal
plume being responsible of lateral heat flow fluctuations. As the
plume height at low P is not greatly affected by R, the global dy-
namics become localized, giving a nearly constant dc heat flow
across lateral walls. In that case, an increase in the Rayleigh number
will feed with energy almost exclusively the fluctuating part.

Fig. 5 shows snapshots of isotherms for P ¼ 0:025 at R ¼ 105

accompanied with the time evolution of the wall-averaged Nusselt
number. Snapshots were taken over a period of oscillation of the



Fig. 5. (a) Snapshots of the periodic evolution of the iso-contours of the temperature
field (dq ¼ 0:02) at different times for R ¼ 105 and P ¼ 0:025. (b) Associated periodic
evolution of the averaged Nusselt number 〈Nu〉x at the left (upper curve) and right
(lower curve) walls as a function of the number of cycles. The dots indicates specific
times where the snapshots were taken.

Fig. 4. Converged solutions of a thermal plume for P ¼ 0:025 at R ¼ 104 ;5 104; 105. (a)
Iso-contours of temperature (dq ¼ 0:02) (b) Behavior of averaged Nusselt number,
〈Nu〉xðtÞ, at side walls as function of cycles of oscillation (t$f0).
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Nusselt number (shown by the filled dots). As in the case of
P ¼ 0:71 the plume oscillation is responsible of the periodic lateral
heat flow fluctuations. However the plume height is about a third of
the cavity height, concentrating the overall dynamics close to the
heat source.

To be accurate, even here, the plume height changes periodi-
cally in time but these fluctuations are very small when compared
with the size of the box. An interesting estimation of plume
penetration is presented in Fig. 6. In order track in time the plume
penetration depth, we record the instantaneous position of
maxima of vertical fluid velocity, denoted by xmðtÞ; ymðtÞ, as a
function of time. In Fig. 6 we plot the time evolution of the axial
and lateral position of these maxima versus time. Both are
Table 2
Time period (f�1

0 ) of wall-averaged Nusselt fluctuations at right wall. We show peak-
to-peak Nusselt fluctuations 〈Nu〉pp (between brackets) and the time-average of the

wall-averaged Nusselt number 〈Nu〉, at different Rayleigh numbers, R, and Prandtl
numbers P.

f�1
0 (period) [〈Nu〉pp] 〈Nu〉

R P ¼ 0.025 P ¼ 0.71 P ¼ 0.025 P ¼ 0.71
104 3.26 ∞ [0.050] 0.100 [0] 0.104
5$104 1.53 0.25 [0.139] 0.124 [0.002] 0.143
105 1.06 0.18 [0.163] 0.143 [0.035] 0.169
periodic functions of time, with the same frequency, showing that
plume penetration, given roughly by ymðtÞ, evolves in the form of
spikes of short duration compared with the smooth behavior of
the transverse position xmðtÞ.

To get a two dimensional image of the periodic process, we built
the spatial locus of the maximum velocity which can then be
plotted in two dimensions across the cavity, as shown in
Fig. 6(b,c,d). All spatial locus are symmetric with respect to the
cavity vertical axis. There are four characteristic branches on each
locus (P ¼ 0:025) at each Rayleigh number. The two lateral
branches indicate the transverse motion of the thermal plume
approaching the lateral walls, and two nearly vertical branches at
the center of the cavity indicating vertical motion of the plume. The
two central branches become joined together when the Rayleigh
number is increased and represent a good estimation of the in-
tensity of the dynamical penetration depth inside the cavity.

To understand the locus timing, we see in Fig. 7(a) that between
peak-to-peak horizontal cycles of xmðtÞ, two vertical spikes of ymðtÞ
take place. We denoted by consecutive numbers the temporal
sequence on the xmðtÞ and ymðtÞ plots, that can be identified with
each of the four branches of Fig. 7(b). Starting with a left branch (1),
the plume rapidly raises through the cavity reaching point (2) after
that the plume falls abruptly, passing by the cavity center to reach
point (3) which is a lateral maximum of xmðtÞ. The cycle is then
completed when the plume raises again reaching point (4), to



Fig. 6. (a) Evolution of plume penetration depth at R ¼ 5$104 ; P ¼ 0:025. The plume
oscillation can be observed finding the local position (xm; ym) of maximum v velocity
versus time. After a long transient, both quantities, xm; ym oscillate periodically. Locus
of plume penetration depth for P ¼ 0:025 at (b) R ¼ 104, (c) 5$104 and (d) 105. We
show only the base of the cavity.
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restart the cycle. The plume therefore reaches maxima of height
slightly off the symmetry axis of the cavity, moving close to a
lateral wall. There the spike effect of the plume is understood if
we think that a plume raising near a lateral wall will increase
the heat flow locally, and therefore will be cooled rapidly
decreasing local buoyancy and falling again toward the heat source
to restart the cycle.
Fig. 7. (a) Details of the periodic evolution of xmðtÞ and ymðtÞ at R ¼ 5$104 and P ¼ 0:025. (b)
indicated on each figure by consecutive numbers, to determine the spatial sequence of the
The plume spatial locus is useful to understand the observed
Nusselt curves of Fig. 4. The transit between lateral maxima shown
in Fig. 7 is responsible of the strong Nusselt fluctuations of Fig. 4. If
we consider the case P ¼ 0:025 at R ¼ 5$104, the period of thewall-
averaged Nusselt number on a wall is close to 1.5 (see Table 1),
which corresponds to the period of the function xmðtÞ on Fig. 7.
Now, the time between two consecutive peaks values at left and
right walls is exactly one half, i.e. � 0:75 and corresponds to the
same time scale between two consecutive spikes of function ymðtÞ
(Fig. 6). Moreover, the small change in the average vertical ampli-
tude of the locus, when we increase Rayleigh number, is respon-
sible of the slightly different (increasing) average values of Nusselt
number (see Table 1).

In the case of P ¼ 0:71 the spatial locus is a vertical line at the
centerline of the cavity (not shown) for the lowest Rayleigh number
R ¼ 104, because thermal plume fluctuations are very small (rather
in steady state) and their highest vertical flow velocities are found
at the vertical axis of the box. However if the Rayleigh number is
high, as in the case of R ¼ 105, the wall-averaged Nusselt number
fluctuations are important (see for instance Fig. 3), and the spatial
locus displays transverse fluctuations of similar shape as in Fig. 6
but of very small amplitude.

Even if the locus evolution is at the origin of the Nusselt fluc-
tuations and provides a simple but clear view of the spatio-
temporal character of the unstable thermal plume, the physical
mechanismwhich drives the flow instability is not clear. A possible
mechanism of flow instability, in such a slender cavity, could be
attributed in part to the shear stresses between ascending and
descending fluid layers, like a KelvineHelmholtz instability [18].

4.1. Unsteadiness and aspect ratio Gxy

The choice of a tall cavity obeys the fact that wewere looking for
an unsteady convection regime. Early runs with different aspect
ratios have shown that such unsteadiness of the thermal and ve-
locity fields can be triggered for high cavity aspect ratios
Gxy ¼ H=W for a given Prandtl and Rayleigh number. For air at R ¼
5$104 flow field unsteadiness starts to be seen at low aspect ratios,
then it becomes the dominant flow regime inside the entire cavity.

Unsteadiness is the result of a spatio-temporal instability, and
we believe that the mechanism driving the instability rely on the
shear stresses between central ascending plume and the lateral
descending fluid layers. In order to develop the instability, the size
Locus of plume penetration depth for P ¼ 0:025 at R ¼ 5$104. The periodic evolution is
locus performed by the plume.



Fig. 9. Averaged Nusselt number on lateral and top wall versus cavity aspect ratio Gxy

at R ¼ 5$104 and P ¼ 0:71.
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of the system must have enough room to fit at least one instability
wavelength l, otherwise the spatial eigenmode can not be set and
the flow becomes stable. In Fig. 8 we show the same fixed number
of the thermal contours as a function of the cavity aspect ratio, and
we clearly see that the spatial wavelength fit the cavity size when
the aspect ratio is close to Gxy ¼ 1:9. After that, the plume feels free
to oscillate and eventually propagates upwards, reaching higher
but limited portions of the cavity as displayed in the locus of Fig. 7.

However, as the aspect ratio increases, the averaged heat
transfer across top wall shows a marked decrease due to the ther-
mal plume cap at a given Rayleigh number is unable to reach the
top part of the cavity producing a localized thermal dynamics
spatially limited to the lower part of the cavity.

In Fig. 9 we show the averaged Nusselt number as a function of
the aspect ratio. It is observed that the heat transfer across the top
wall is strongly dependent on Gxy becoming nearly zero when
aspect ratio Gxy ¼ 5 . On the other hand, the lateral heat flux slowly
decreases with Gxy, which is explained by the spatial localization of
the flow and thermal dynamics on the first lower portion of the
cavity. This can be observed in Fig. 8, where thermal contours
starting at Gxy ¼ 3 are very similar, i.e., they have the same spatial
distribution at similar times.With no doubt, thismeans that further
increase of the height of the cavity will have a very slight influence
on the overall flow structure. Note that the transition from steady to
unsteady flow occurs at Gxy � 1:9, exactly when the top and lateral
averaged Nusselt curves of Fig. 9 intersect, and just after that the
flow unsteadiness set forth as a result of the instability.

4.2. Tridimensional effects

Unsteadiness of the velocity and thermal fields in the 2D cavity
represent the onset of a transverse oscillating mode of the plume.
This mode may lead to the onset of longitudinal oscillation modes
of the plume that may not be clearly indentified in a 2D compu-
tation. In order to check the validity and limits of the 2D approxi-
mation we have performed a full 3D numerical simulation of one
Fig. 8. Unsteadyness of field variables as a consequence of the cavity aspect ratio Gxy ¼
H=W at R ¼ 5$104 and P ¼ 0:71.
unsteady situation, with Rayleigh and Prandtl numbers R ¼ 105

and P ¼ 0:71 respectively. We considered a three dimensional
(x; y; z) cartesian staggered grid of (41 � 201 � 401) points in each
coordinate respectively. By adjusting the spatial steps we define a
computational domain corresponding to a cavity of same width W
and height H but having a third z dimension or depth D, giving the
following aspect ratios Gxy ¼ H=W ¼ 5 and Gxz ¼ D=W ¼ 10. This
large aspect ratio provides enough room to develop a large portion
of the thermal plume far from the wall influence by confining
temperature and velocity gradients at the front (z ¼ 0) and back
(z ¼ 10) walls, leaving a central cavity section where the plume
complies with the two dimensional approximation, at least, in a
steady state regime. The cavity has the same boundary conditions
of the 2D case, i.e., no slip velocity conditions and constant tem-
perature, Tc, on vertical and top walls. The heat source is here a
heated stripe of size bmounted flush on the bottomwall that it was
kept at constant temperature Th. Discretization of the 3D domain
was donewith uniform steps dx ¼ dy ¼ dz ¼ 0:025, with a time step
of dt ¼ 10�3. In Table 3 we compare averaged heat transfer results
at lateral vertical walls from both the 2D and 3D calculation.

At Rayleigh number R ¼ 104 and Prandtl P ¼ 0:71 the thermal
plume developed in the 3D cavity reached a uniform and steady
state thermal plume similar to the snapshots of the 2D plume of
Fig. 2. At R ¼ 105 and P ¼ 0:71 the situation is different because the
3D thermal plume, after a certain time, become unstable and the
whole field starts to oscillate as in the 2D situation. Fig. 10 shows
that the 3D starting plume (at t ¼ 0:5) across the cavity is very
uniform in the central section (2< z<8). Temperature contours at
several z-planes are very similar in shape, penetration height and
lateral extension, indicating that the 2D approximation can be
invoked with prudence provided that the central cavity region is
limited to 2< z<8.

Between these bounds the averaged thermal plume flow field
may be considered as weakly 3D in the Rayleigh and Prandtl
Table 3
Comparison of 2D versus 3D grids. The 3D aspect ratios are Gxy ¼ H=W ¼ 5,
Gxz ¼ D=W ¼ 10. The Rayleigh and Prandtl numbers are R ¼ 105 and P ¼ 0:71
respectively. Nusselt numbers for the 3D grid were computed with eq. (4) and then
averaged between 2< z<8.

Grid size hNulix hNurix 〈q〉

(41 � 201) 0.1694 0.1694 0.0396
(41 � 201 � 401) 0.1785 0.1785 0.0354



Fig. 10. 3D starting plume at t ¼ 0:5. (a) Temperature contours for aspect ratios
Gxy ¼ H=W ¼ 5, Gxz ¼ D=W ¼ 10 at R ¼ 105 and P ¼ 0:71. (b) Temperature profiles
along the z-centerline at different heights y ¼ 0:1;0:2; 0:5;1:0 at R ¼ 105, P ¼ 0:71.

Fig. 12. 3D temperature contours at different z-planes, for aspect ratios
Gxy ¼ H=W ¼ 5, Gxz ¼ D=W ¼ 10 at R ¼ 105 and P ¼ 0:71. Simulation time.t ¼ 2:7.
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number range here studied. After a given time (t >1), temperature
and velocity (not shown) snapshots of the starting thermal plume
display sings of unsteadiness developing in phase along the z co-
ordinate. Moreover, averaged Nusselt numbers have very similar
values when compared to the 2D case (cf. Table 3).

In Figs. 11 and 12 we display a sequence of three dimensional
temperature contours along the z coordinate at two time instants of
the oscillating cycle for R ¼ 105 and P ¼ 0:71. We observe a weak
dependence of the thermal field along the z coordinate but having
the same spatial phase, i.e., there is no phase lag of the local tem-
perature fluctuations along z. This is a lock-in effect in the z coor-
dinate which explain the persistence of the single transverse
oscillation mode observed.

However, the upward plume motion observed is not uniform in
the z coordinate, showing signs of a slight modulation and 3D ef-
fects across the longitudinal cavity axis (z). This effect is not so
Fig. 11. 3D temperature contours at different z-planes, for aspect ratios
Gxy ¼ H=W ¼ 5, Gxz ¼ D=W ¼ 10 at R ¼ 105 and P ¼ 0:71. Simulation time.t ¼ 1:7.
strong to destroy the transverse oscillation, indicating that the in-
fluence of the slender cavity aspect ratio plays a dominant role on
the lock-in oscillation of the plume. The z-gradients resulting from
the front (z ¼ 0) and back (z ¼ 10) walls are unable to break the
lock-in overall behavior but can make appear a longitudinal mode.
We expect however, a break in the phase locked regime at higher R
or higher Gxz aspect ratios.
5. Concluding remarks

Detailed numerical simulations of 2D thermal plumes inside a
high aspect ratio cavity were performed using the SIMPLER
method. Thermal plumes were produced by a discrete heater
mounted flush with the bottomwall. Most of the simulations were
done keeping a constant cavity aspect ratio Gxy ¼ 5, in order to
track the vertical motion of the thermal plume as a response to
changes in both fluid Prandtl number and Rayleigh number. We
found evidence of a flow transition from a steady state into a pe-
riodic oscillating pattern when we increased the Rayleigh and
Prandtl numbers. The overall flow unsteadiness was associated
with flow instabilities characterized by a periodic but upward
propagative motion of the thermal plume cap in both transverse
and vertical directions. A possible mechanism of flow instability, in
such a slender cavity, could be attributed in part to shear stresses
between ascending and descending fluid layers, like a Kel-
vineHelmholtz instability. We have observed that instabilities of
the plume may arise at two very different Prandtl numbers, where
the frequency of the most unstable mode is an increasing function
of the Rayleigh number R. However, when we keep R constant, the
observed frequency of this mode decreases with Prandtl number,
probably because an increase in momentum diffusivity will raise
the viscous damping of flow fluctuations. The system appears here
looking for a more efficient way of energy dissipation through the
onset of instabilities giving rise to a complex fluid and thermal
pattern inside the box. It seems that there exists a threshold for the
Rayleigh number, Rc, which would explain the transition from a
steady to an unstable thermal plume. This value depends on the
fluid properties as it was found to decrease if we decrease the
Prandtl number. It has been found that at constant Rayleigh and
Prandtl numbers, higher aspect ratio of the cavity will favor the
flow unsteadiness and therefore the onset of the flow instability.
Finally, in order to check the validity and limits of the 2D approx-
imation, we performed numerical simulation checks on a three
dimensional box of same cross section dimensions under the
same boundary conditions. These results confirmed the onset of
unsteadiness of the plume produced by similar transverse oscilla-
tions predicted by the 2D numerical simulation. The 3D checks
confirmed that the plume oscillates in phase across the z-
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coordinate, under a locked transverse oscillation mode but also
showing signs of a modulation and 3D effects across the cavity z-
axis.
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