
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 200.89.68.74

This content was downloaded on 28/12/2015 at 14:39

Please note that terms and conditions apply.

 Consistency relations for sharp features in the primordial spectra

View the table of contents for this issue, or go to the journal homepage for more

JCAP10(2015)062

(http://iopscience.iop.org/1475-7516/2015/10/062)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1475-7516/2015/10
http://iopscience.iop.org/1475-7516
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
C
A
P
1
0
(
2
0
1
5
)
0
6
2

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

Consistency relations for sharp
features in the primordial spectra

Sander Mooij,a Gonzalo A. Palma,a Grigoris Panotopoulosa and
Alex Sotob

aDepartamento de F́ısica, Facultad de Ciencias F́ısicas y Matemáticas, Universidad de Chile,
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Abstract. We study the generation of sharp features in the primordial spectra within the
framework of effective field theory of inflation, wherein curvature perturbations are the con-
sequence of the dynamics of a single scalar degree of freedom. We identify two sources in the
generation of features: rapid variations of the sound speed cs (at which curvature fluctua-
tions propagate) and rapid variations of the expansion rate H during inflation. With this in
mind, we propose a non-trivial relation linking these two quantities that allows us to study
the generation of sharp features in realistic scenarios where features are the result of the
simultaneous occurrence of these two sources. This relation depends on a single parameter
with a value determined by the particular model (and its numerical input) responsible for
the rapidly varying background. As a consequence, we find a one-parameter consistency
relation between the shape and size of features in the bispectrum and features in the power
spectrum. To substantiate this result, we discuss several examples of models for which this
one-parameter relation (between cs and H) holds, including models in which features in the
spectra are both sudden and resonant.
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1 Introduction

Current Cosmic Microwave Background (CMB) and Large Scale Structure (LSS) observations
favor cosmological initial conditions consistent with a Gaussian distribution of curvature
perturbations, parametrized by an almost scale invariant power spectrum. In the absence
of better explanations, these observations are usually considered to support the idea that
our universe underwent an early stage of accelerated expansion [1], in the form of canonical
single-field slow-roll inflation [2, 3], wherein primordial perturbations evolved adiabatically
in a quasi-de Sitter background, driven by the evolution of a scalar field gently descending
the slope of a smooth scalar potential. Such models generically predict an almost Gaussian
distribution of primordial fluctuations with a slightly red tilted power spectrum [4, 5] in
addition to a small value for the tensor to scalar ratio, in agreement with the latest CMB
constraints [6, 7].
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It is possible, however, that primordial fluctuations had their origin under less placid
conditions, with their dynamics characterized by time-scales shorter than the inverse of the
quasi-de Sitter expansion rate H, breaking the simple statistical properties offered by single-
field slow-roll scenarios. If present, such time-scales are expected to be associated to the
existence of massive degrees of freedom (with masses larger than H) either affecting the
inflationary background or interacting with curvature perturbations as they exit the horizon
during inflation [8]. The landmark of models incorporating time-scales shorter than H−1

is the emergence of features in the primordial spectra, with their size and shape charac-
terizing the physics associated to the high energy degrees of freedom that participated in
their production [9–16]. Consequently, the existence of features in both the primordial power
spectrum and bispectrum could represent a unique chance of acquiring a better understanding
of inflation by giving us insights into mass scales —additional to H — characterizing the
fundamental theory responsible for them [17].

There are well known examples of inflationary models allowing for features in the pri-
mordial spectra. One obvious class corresponds to canonical single-field models in which the
inflaton field traverses a sudden change in the slope of its potential, for example in the form
of a step or a bump, resulting in a brief interruption of the slow-roll dynamics. This type
of dynamics leads to a sudden variation of the expansion rate, without necessarily implying
large deviations from the quasi-de Sitter background as the leading geometrical configura-
tion during inflation. These sudden variations of the background are inevitably felt by the
primordial fluctuations while they exit the horizon, leaving a set of features imprinted in
the power spectrum and bispectrum [18–30]. The same mechanism leads to the production
of features in P (X,φ) models if the φ-dependent part of the Lagrangian has a feature that
interrupts the slow-roll evolution of the field as it traverses the target space of the theory.
In this case, not only the expansion rate will display a sudden variation in time, but also
the sound speed cs at which curvature perturbations propagate (typically encountered in
non-canonical realizations of inflation such as P (X,φ)-models), leading to a richer variety
of features imprinted in the primordial spectra as compared to those produced in canonical
models of inflation.

Another class of models allowing for features in the primordial spectra are multi-field
models of inflation,1 in which the inflaton background trajectory meanders the landscape
offered by the multi-field target space [37–41], enhancing the interaction between curvature
perturbations and fields orthogonal to the trajectory each time the trajectory undergoes
a bend [8, 11, 42–45]. The resulting interactions have the chance of generating localized
features in the spectra if the bend-rate is larger than the Hubble expansion rate H during
inflation [46]. In this case there are two main regimes leading to features:

I. Features generated by multiple degrees of freedom: if the time variation of the bend-rate
of the trajectory is comparable to —or larger than— the mass of the fields orthogo-
nal to the trajectory, these become excited, generating features in the spectra with a
wavelength characterized by the mass of the excited degrees of freedom [11, 47, 48].
These degrees of freedoms may be heavy or light, depending on whether their masses
are larger or smaller than the inflationary expansion rate H.

1Yet another mechanism leading to the emergence of features — also involving additional degrees of freedom
— is offered by particle production during inflation [31–36]. We will not be concerned about this type of models
in this article.
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II. Features generated by a single degree of freedom: on the other hand, if the time varia-
tion of the bend-rate is smaller than the mass of the fields orthogonal to the trajectory,
then the only dynamically relevant degree of freedom consists of curvature perturba-
tions [49, 50]. It is then possible to study these features using an effective single-field
theory describing the evolution of curvature perturbations, in which the background
is parametrized by the sound speed cs of curvature perturbations and the expansion
rate H [49–59]. In this case, the features in the primordial spectra are found to be the
consequence of the time variation of cs and H resulting from the bend in multi-field
space [8, 11, 60, 61].

While in the second regime the background is of the multi-field type, the dynamics associated
to the fluctuations maps into an effective single-field theory description. This is possible
because the heavy degrees of freedom may decouple from the light curvature perturbations
even if the bend rate is much larger than the expansion rate [11]. Nonetheless, the multi-
field dynamics associated to the heavy degrees of freedom continue to be present through
the background, leading to the emergence of nontrivial couplings in the effective field theory
for the fluctuations, such as the sound speed cs describing the propagation of curvature
perturbations.

Despite of the complexity involved in the emergence of features, the study of models
allowing for them may be systematically organized —and substantially simplified— by adopt-
ing the effective field theory (EFT) framework [62, 63] in which one disregards the details
of the background dynamics to focus, instead, on the dynamics of curvature perturbations
and any other degrees of freedom relevant around horizon crossing. To be more specific, the
EFT approach allows one to study the generation of features in the primordial spectra by
parametrizing any nontrivial dynamics containing tiny time-scales into background couplings,
such as the sound speed cs and the expansion rate H appearing in the EFT Lagrangian for
the fluctuations. This is precisely the case of both P (X,φ) models and multi-field models
with heavy fields (second regime already mentioned), where the emergence of features in the
primordial spectra may be traced back to sudden time variations of the sound speed cs and
the expansion rate H (and subsequent time derivatives) appearing in the effective Lagrangian
describing the dynamics of curvature perturbations.

1.1 Correlating features in the primordial spectra

The purpose of this article is to study the emergence of features in the primordial spectra by
employing the effective field theory of inflation formalism. Adopting this framework will allow
us to uncover model independent relations between features appearing in different n-point
correlation functions of primordial curvature perturbations, in particular between features
in the power spectrum and the bispectrum. This will turn out to be possible because the
EFT action of the curvature perturbation depends only on a reduced number of background
parameters present at every order of its non-linear perturbative expansion. In this way, by
relating the time-variation of these parameters, we will be able to deduce a set of consistency
relations correlating features in the inflationary primordial spectra.

For instance, it is already well known how to express the bispectrum as a function of the
power spectrum in the particular case of features due to small sudden changes of the sound
speed cs of curvature perturbations away from the value cs = 1 [64] (see also ref. [65]). The
existence of such a relation is allowed by the possibility of expressing the sound speed as a
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function of the power spectrum in the following way

1− c2s(τ) =
2

πi

∫
dk

k

∆P
P0

(k)e−2ikτ , (1.1)

where τ is the usual conformal time, and the difference ∆P ≡ P − P0 parametrizes features
in the power spectrum P(k) against its featureless counterpart P0(k) (which has a slight red
tilt). This equation results from analyzing the relation determining the power spectrum P(k)
as a function of cs(τ) and inverting it. On the other hand, given that the combination 1− c2s
appears as a coupling in the cubic part of the EFT action for the fluctuations (generating
non-Gaussianity), having cs as a function of the power spectrum permits one to compute the
bispectrum in terms of the power spectrum. Specifically, one finds that the fNL parameter2

has the general dependence on the power spectrum given by

fNL(k1, k2, k3) =

[
f2

d2

d ln k2
∆P
P0

(k) + f1
d

d ln k

∆P
P0

(k) + f0
∆P
P0

(k)

]
k=(k1+k2+k3)/2

, (1.2)

where fi = fi(k1, k2, k3) are known smooth scale-independent functions of the triangle con-
figuration k1 + k2 + k3 = 0, determined by the fact that features come from sound speed
variations [64]. Equation (1.2) is found to reduce to the well known Maldacena’s consistency
relation [66–68] in the squeezed limit, where one of the momenta is much smaller than the
other two (i.e. k3 � k1, k2). Moreover, in the particular case of sharp features, where the
sound speed is subject to rapid variations with a characteristic time-scale much smaller than
H−1, the features become dominated by the second order ln k-derivative, giving us back the
following general expression for sharp features

fNL ' β
[

d2

d ln k2
∆P
P0

(k)

]
k=(k1+k2+k3)/2

, (1.3)

where β = β(k1, k2, k3) is a smooth function, independent of the overall scale, but dependent
on the shape of interest and the source of the feature (f2 in the parametrization of eq. (1.2)).

It is possible to generalize eq. (1.1) to the case in which features are generated by
both, time variations in the sound speed and time variations in the expansion rate H. This
generalization was derived in ref. [69], and is found to be given by

1

8
(1− c2s)′′′′ +

δ′′H
2τ2
− δH
τ4

=
4

πi

∫ +∞

−∞
dk k3

∆P
P0

(k)e−2ikτ , (1.4)

where δH ' −1
2τη

′, and η = ε̇/Hε (with ε = −Ḣ/H2 the usual slow roll parameter and ′

standing for derivatives with respect to conformal time τ). However, because both 1−c2s and
η are couplings appearing in the cubic action, it is clear that under more general backgrounds
the bispectrum cannot be expressed uniquely in terms of the features appearing in the power
spectrum, inevitably introducing a degeneracy in the parameter space determining the source
of features.3 Despite of this, eq. (1.4) may be used to express the bispectrum as a function of
the power spectrum in two limiting cases: when features are generated by a variation of the
sound speed, and when they are generated by a variation of the expansion rate. To be more

2The fNL-parameter is defined in eq. (2.30).
3This point was specially emphasized in ref. [70] where a general expression for the bispectrum in terms of

the power spectrum was obtained.
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specific, in the case of sharp features, if features are generated by a variation of the sound
speed one finds that the bispectrum has the form shown in eq. (1.3) with β given by

βs =
5

6

k1k2k3
k31 + k32 + k33

k21 + k22 + k23
(k1 + k2 + k3)2

, (1.5)

whereas if features are generated by a variation of the expansion rate, then β acquires the
form given by:

βε =
5

12

k1k2k3
k31 + k32 + k33

. (1.6)

These two results for β may in principle be tested by searches of features in the CMB non-
Gaussian angular spectrum.

1.2 Article’s main idea & results

Equation (1.3), together with the functions βs and βε of eqs. (1.5) and (1.6), parametrizes
features in the two limiting cases in which these are generated by a variation of the sound
speed and the expansion rate respectively. From these results, it is reasonable to expect that
eq. (1.3) continues to be valid under more general circumstances in which these two sources
occur simultaneously, as expected in more realistic models. As we will show in this article,
this is indeed the case: there exists a natural one-parameter realization for the function β
in eq. (1.3) such that βs and βε of eqs. (1.5) and (1.6) constitute the desired limiting cases.
This one-parameter realization of β is a consequence of a relation between η, parameterizing
the evolution of the expansion rate, and the sound speed cs given by

η = η0 +
α

2
τ
d

dτ
c2s, (1.7)

where α is a constant specified by the model underlying the emergence of features, and η0
represents the slowly varying part of η. Although it is clear that this non-trivial relation is not
guaranteed to be valid in general, we will argue that it remains a fairly good approximation for
a large variety of models admitting sudden time variations of their slowly varying background
quantities, including P (X,φ) and multi-field models with heavy fields. For the purposes of
the present work, admitting the validity of eq. (1.7) enables us to interpolate between the
two limiting cases shown in eqs. (1.5) and (1.6), obtaining a much more general relation for
β given as:

βα =
5

12

1

1 + α

k1k2k3
k31 + k32 + k33

[
α+ 2

k21 + k22 + k23
(k1 + k2 + k3)2

]
. (1.8)

This relation gives us back eq. (1.5) in the specific case of α = 0 and eq. (1.6) in the
case |α| → +∞. Equation (1.8) constitutes the main result of this work. It consists of a
single parameter consistency relation between the power spectrum and the bispectrum valid
for triangle configurations away from the squeezed limit, where one recovers Maldacena’s
consistency relation. It offers a concrete —and fairly model independent— parametrization
of features to be tested in future primordial spectra reconstructions using cosmic microwave
background and/or large scale structure observations [79–88].

1.3 Outline

The present article is organized as follows: we will start in section 2, where we propose the use
of eq. (1.7) as a valid prescription relating the time dependence of both the sound speed and
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the inflationary expansion rate. There we show that by admitting this relation one obtains
eq. (1.8), linking together the features in the primordial bispectrum and the primordial power
spectrum. In section 3 we justify the use of eq. (1.7) and examine its validity within different
field theoretical realizations of inflation involving the presence of a sound speed. To be more
precise, we numerically solve inflationary backgrounds with sudden features in various classes
of P (X,φ) and multi-field models of inflation. Then, in section 4 we show that our proposed
relation (1.7) also serves to parametrize resonant features. Finally, in section 5 we provide
our concluding remarks on the findings of this work.

2 A general parametrization of features

The appearance of sharp features in the primordial spectra may be traced back to the time-
variation of background quantities at a rate much larger than those characteristic of slow-
roll inflation [73–78]. To analyze the effect of these rapid variations on the dynamics of
fluctuations, we adopt the EFT of inflation perspective. This framework asserts that the
action describing the dynamics of curvature perturbations may be parametrized with the
help of a limited number of background parameters, determining non-trivial relations between
coefficients appearing at different orders in the theory. In comoving gauge, the action for
primordial curvature perturbations, up to cubic order, may be written in the following way

S = S(2) + S(3), (2.1)

where the quadratic part of the action, S(2), corresponds to (written in units such that
m2

Pl = 1)

S(2) =

∫
d4x a3ε

[
1

c2s
Ṙ2 − 1

a2
(∇R)2

]
, (2.2)

whereas the cubic part, S(3), is given by [89]

S(3) =

∫
d4x a3ε

[
1

c4s

[
3(c2s − 1) + ε− η

]
RṘ2 +

1

c2sa
2

(
(1− c2s) + η + ε− 2ċs

Hcs

)
R(∇R)2

+
1

H

(
1− c2s
c4s

− 2λ

εH2

)
Ṙ3 +

1

4a4
(∂χ)2∇2R− 4− ε

2εa4
∇2χ∂iR∂iχ+

f

εa3
δS(2)

δR

]
, (2.3)

where χ is given by the constraint equation ∇2χ = a2εṘ/c2s. In these expressions, the
expansion rate H and the slow roll parameters ε and η parametrize the evolution of the scale
factor a(t) as

H =
ȧ

a
, ε = − Ḣ

H2
, η =

ε̇

Hε
, (2.4)

where the dot represents a derivative with respect to cosmic time t. A relevant background
quantity parametrizing coefficients appearing in both quadratic and cubic parts of the action,
corresponds to the sound speed cs(t) which determines the speed at which long wavelength
modes propagate. On the other hand, the parameter λ in eq. (2.1) parametrizes the strength
of the operator Ṙ3, and it is usually found to depend on cs according to a relation determined
by the specific model in question. Finally, the quantity f multiplying the linear classical
equation of motion δS(2)/δR is a given quadratic function of R, whose specific form will turn
out to be irrelevant for the present discussion.

– 6 –
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This action may be simplified substantially by making a few reasonable assumptions
about the type of features we want to study. First of all, we will consider variations of the
sound speed cs such that it stays close to the value cs = 1. That is, we will assume that

θ ≡ 1− c2s � 1, (2.5)

at all times. We find this assumption reasonable, because a suppressed sound speed cs is
known to produce a sizable level of equilateral non-Gaussianity [90, 91], so far undetected [71].
An immediate consequence of this choice relates to the size of the coefficient in front of the
operator Ṙ3 appearing in eq. (2.3). Indeed, from an effective field theory point of view, it is
possible to show that this coefficient is in fact naturally of order θ2 (see for instance, ref. [92]):

1− c2s
c4s

− 2λ

εH2
∼ (1− c2s)2

c4s
∼ θ2. (2.6)

Another important assumption that we will adopt is that the time variation of the background
does not break the quasi de Sitter phase characterizing inflation during the horizon crossing
of the modes responsible for the primordial spectra accessible to observations. In other words,
we will assume that the evolution of H is such that

ε� 1, (2.7)

at all times. In practice, because ε is restricted to be positive, eq. (2.7) implies that ε will
have the form

ε = ε0 + ∆ε, (2.8)

where ε0 corresponds to the slowly varying part of ε, characterizing the average slow-roll
behavior of inflation, and ∆ε is the part containing rapid departures from ε0. In addition to
condition (2.7), we will assume that ∆ε is such that its variation is small relative to ε0. In
other words:

∆ε� ε0. (2.9)

This condition means that the background of our interests contains rapid variations, but will
continue to stay close to the quasi-de Sitter stage parametrized by the featureless value ε0.
The previous splitting of ε implies that η may be written in terms of ∆ε in the following way

η = η0 + ∆η, ∆η ≡ ∆ε̇

Hε0
, (2.10)

where η0 = ε̇0/Hε0 represents the slowly varying part of η. Finally, we will assume that the
time variation of both ∆ε and cs are characterized by a time scale much smaller than H−1

(which is what we mean by rapid variations). Consequently, the features we are interested
in are characterized by the following hierarchies:

1

H

∣∣∣dθ
dt

∣∣∣� θ,
1

H

∣∣∣d∆ε

dt

∣∣∣� ∆ε. (2.11)

It may be appreciated that condition (2.11) implies that ∆η, defined in (2.10), may be of
order 1 (or even larger) without implying a breaking of condition (2.7). More generally, we
assume that any background quantity A parametrizing rapid variations (such as θ, ∆ε and
∆η) satisfies:

1

H

∣∣∣dA
dt

∣∣∣� |A|. (2.12)
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It is also useful to cast this hierarchy in terms of both conformal time τ and e-folds N . Let
us recall that conformal time is defined to satisfy the relation dτ = dt/a, whereas N satisfies
dN = Hdt. Then, the previous hierarchy may be written in the following two alternative
ways, that will turn out to be useful in the next discussions:∣∣∣τ dA

dτ

∣∣∣� |A|, ∣∣∣ dA
dN

∣∣∣� |A|. (2.13)

To continue, all of the previous assumptions may be put together to organize and simplify
the form of our initial action given in eq. (2.1). In particular, the cubic part of the action is
found to be dominated by the following terms:

S
(3)
int = −

∫
d4x a3ε0

{
(3θ + η)RṘ2 +

1

a2
(τθ′ − η)R(∇R)2

}
. (2.14)

This result allows us to study the effects of features in the bispectrum using the in-in for-
malism of cosmological perturbation theory. Details of how this is done may be found in
ref. [69]. Here instead we quote the main results of appendix A in order to derive various
relevant expressions to obtain the primordial spectra.

2.1 Features in the power spectrum

Let us first consider the effects of a rapid variation of the background on the power spectrum.
The dimensionless power spectrum P(k) is usually defined in terms of the 2-point correlation
function of curvature perturbations in Fourier space (evaluated at the end of inflation) as:

〈RkRk′〉 ≡ (2π)3δ(k + k′)
2π2

k3
P(k). (2.15)

The computation of 〈RkRk′〉 may be performed using the in-in formalism of perturbation
theory discussed in appendix A. In particular, one finds that the power spectrum P(k) has
the following form (see appendix A):

P(k) = P0 + ∆P(k), P0 =
H2

0

8π2ε0

(
k

k∗

)ns−1
. (2.16)

Here P0 corresponds to the zeroth order featureless power spectrum, which coincides with the
conventional prediction offered by canonical single field slow-roll inflation (ns is the spectral
index parametrizing the small scale dependence of the power spectrum, and k∗ is a pivot
scale fixed by mode that exited the horizon when the background was characterized by an
expansion rate H0). On the other hand, ∆P is the part containing the features, and is
given by [69]

∆P
P0

(k) = k

∫ 0

−∞
dτ

[
−θ +

δH
k2τ2

+
2δH
k4τ4

− 1

k4τ3
dδH
dτ

]
sin(2kτ), (2.17)

where τ represents conformal time. In addition, δH is a function containing information
about the time varying background, which in the case of rapid variations is found to be
given by [69]:

δH = −1

2
τη′. (2.18)
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We may quickly verify the validity of eq. (2.17) for the particular case in which θ = θ0 � 1
is a constant and δH = 0. In this case the integral of eq. (2.17) may be solved by dropping
the highly oscillatory part of the lower limit τ → −∞, giving us back

∆P
P0

=
θ0
2

=
1− c2s

2
' 1− cs. (2.19)

This result, together with eq. (2.16) gives us back the result P = P0/cs = H2
0/8π

2ε0cs, which
is the well known expression valid for the power spectrum for curvature perturbations with
a constant sound speed.

To continue, eq. (2.17) may be simplified by assuming that both θ → 0 and δH → 0
as τ → 0−, which simply means that small variations of the background happening at the
end of inflation are meaningless for the purpose of computing features in the long wavelength
power spectrum, describing modes that exited the horizon long before inflation finishes. This
assumption allows one to perform several integrations by part and write:

k3
∆P
P0

(k) = −1

2

∫ 0

−∞
dτ

[
1

8
θ′′′′ +

δ′′H
2τ2
− δH
τ4

]
sin(2kτ) . (2.20)

Let us emphasize here that up to this point, we have made no assumptions about the sharp-
ness of features. This new expression may be Fourier-inverted by conveniently extending the
time domain of the functions θ and δH to the whole range τ ∈ (−∞,+∞), and demanding
them to be odd under τ → −τ . The result is found to be given by eq. (1.4) already shown
in the introduction. However, if we further use the fact that δH satisfies the hierarchy of
eq. (2.13), we are allowed to drop the lower order time-derivatives from the left hand side of
eq. (1.4), from where we finally obtain:

1

8
θ′′′′ − η′′′

4τ
=

4

πi

∫ +∞

−∞
dk k3

∆P
P0

(k)e−2ikτ . (2.21)

This relation gives us the time dependence of a specific combination of background quantities
in terms of the features appearing in the power spectrum. Before moving on to consider
features in the bispectrum, it is important to notice that the hierarchy of eq. (2.13) together
with eq. (2.21) implies a hierarchy between k-derivatives for the power spectrum, which takes
the form: ∣∣∣∣ d2

d ln k2
∆P
P0

∣∣∣∣� ∣∣∣∣ d

d ln k

∆P
P0

∣∣∣∣� ∣∣∣∣∆PP0
∣∣∣∣ . (2.22)

In other words, rapid variations of the background (characterized by a timescale much smaller
than H−1) imply sharp features in the power spectrum. We will use this important result in
the next discussions, and verify its validity in section 3, where we examine several concrete
examples of models with features.

2.2 Features in the bispectrum

We may now examine the appearance of features in the bispectrum. Let us recall that
the bispectrum B may be defined through the 3-point correlation function of curvature
perturbations, in Fourier space, at the end of inflation as

〈R̂k1R̂k2R̂k3〉 = (2π)3δ(k1 + k2 + k3)B(k1,k2,k3), (2.23)
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where, because of the delta function δ(k1 + k2 + k3), the three momenta are restricted to
add up to zero. By computing the three point correlation function using the in-in formalism
one finally obtains

B = B0 + ∆B, (2.24)

where B0 represents the standard featureless, slow-roll suppressed bispectrum [91]. On the
other hand, ∆B is the part containing features, and is found to be given by (see appendix A)

∆B(k1,k2,k3) =
2π4P2

0

(k1k2k3)3

∫ +∞

−∞
dτ

[
(3θ + η)

(
k1k2 + k3k1 + k2k3 + 3i(k1k2k3)τ

)
+

(τθ′ − η)

2τ2
(k21 + k22 + k23) (1 + ik1τ) (1 + ik2τ) (1 + ik3τ)

]
ieiKτ , (2.25)

with the shorthand K = k1 + k2 + k3. This relation is equivalent to that of eq. (2.17) and
allows us to compute the shape and size of features in the bispectrum out from the varying
background quantities θ and η.

2.3 A proposal to relate background quantities

Crucially, both ∆P and ∆B depend on θ and η simultaneously. This implies that ∆P and
∆B are in principle not tied together, and may contain scale dependent features which do
not correlate with one another. Nevertheless, we may break the degeneracy in the para-
meter space of these observables by assuming a dynamical relation between the background
quantities θ and η. In this respect, our proposal consists of assuming the following relation

η = η0 −
α

2
τθ′, (2.26)

where η0 = ε̇0/Hε0, and α is a slowly varying dimensionless function that may be considered
to be a constant for all practical purposes. We will justify the use of this relation in the next
section, where we will verify its validity within a wide range of models, including P (X,φ)
and multi-field models of inflation. In the meantime, notice that this relation, together with
eq. (2.20), implies that the power spectrum is now given by:

∆P
P0

(k) = −(1 + α)k

∫ 0

−∞
dτ θ(τ) sin(2kτ). (2.27)

On the other hand, using eq. (2.21) allows us to determine the form of both θ = 1− c2s and
∆η = η − η0 in terms of the features appearing in the power spectrum as:

θ =
1

1 + α

2

πi

∫ +∞

−∞

dk

k

∆P
P0

(k)e−2ikτ , (2.28)

∆η =
α

1 + α

1

πi

∫ +∞

−∞
dk

(
∂

∂k

∆P
P0

(k)

)
e−2ikτ . (2.29)

It may be seen that in the limit α → 0 one recovers the case in which the features are
exclusively due to variations of the sound speed, and in the limit |α| → +∞ one reobtains
the case in which features are due to variations of the expansion rate. One may worry about
the limit α → −1, which makes eqs. (2.28) and (2.29) diverge. In that limit, subleading
terms that were neglected at the left hand side of eq. (2.21) take over, and modify the final
forms of eqs. (2.28) and (2.29). In the present analysis we omit this specific situation and
leave the related problem of finding such expressions open (we further comment on this issue
in section 3.3).
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2.4 A general correlation between features

Now that we have both θ and η expressed in terms of the piece ∆P determined by features,
we may use eq. (2.25) to reach a general expression determining ∆B as a function of ∆P.
To obtain it, it is enough to replace eqs. (2.28) and (2.29) back into eq. (2.25). To write the
result, it is convenient to introduce the standard fNL-parameter as a function of k1, k2, and
k3, defined as:

fNL ≡
10

3

k1k2k3
k31 + k32 + k33

(k1k2k3)
2

(2π)4P2
0

∆B. (2.30)

Then, by keeping the leading contributions to ∆B, which according to eq. (2.22) consists of a
term proportional to second order derivatives of ∆P in terms of ln k (and a term proportional
to a first order derivative that dominates in the squeezed limit) we finally find

fNL '
[
βα

d2

d ln k2
∆P
P0

(k)− 5

12

d

d ln k

∆P
P0

(k)

]
k=(k1+k2+k3)/2

, (2.31)

where βα = βα(k1, k2, k3) is a scale-independent function given by:

βα =
5

12

1

1 + α

k1k2k3
k31 + k32 + k33

[
α+ 2

k21 + k22 + k23
(k1 + k2 + k3)2

]
. (2.32)

This final form of β interpolates between the results (1.5) and (1.6) discussed in the intro-
duction, found in the two separate cases in ref. [69]. In particular, it is worth highlighting
that in the equilateral configuration k1 ' k2 ' k3, β has the form

β(eq)α =
5

36

1

1 + α

[
α+

2

3

]
, (2.33)

while in the folded configuration k1 = k2 = k3/2, β becomes:

β(fold)α =
1

12

1

1 + α

[
α+

3

4

]
. (2.34)

Finally, it is worth noticing that in the squeezed limit (k1 = k2, k3 → 0) we recover the well
known consistency relation (see also ref. [93]), as the coefficient of the second derivative of
the power spectrum disappears

f
(sq)
NL = − 5

12

[
d

d ln k

∆P
P0

(k)

]
, (2.35)

independently of the value of α. As already mentioned in the introduction, eq. (2.32) consti-
tutes our most important result. It provides a unique relation determining the shape and size
of features in the bispectrum in terms of those appearing in the power spectrum with only
one parameter to adjust. As we shall see in the next section, the parameter α is determined
by the model responsible for features, and in principle may be constrained by observations
aiming to characterize the scale dependence of the the primordial spectra. At any rate, it
is important to recall that eq. (2.32) is strictly valid away from the value α = −1, and that
it assumes that features were generated by rapidly varying background quantities satisfying
eq. (2.13).
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2.5 On the general structure of the correlated spectra

The results of this section ratify the general dependence anticipated by eq. (1.2) of the
introduction. A striking aspect of this relation is the fact that fNL does not depend on third
order derivatives of ∆P/P0 or even higher. In fact, (1.2) constitutes a truncated version of
a more general relation between fNL and derivatives of ∆P/P0 that may be expressed as:

fNL(k1, k2, k3) =
n=∞∑
n=0

fn
dn

d ln kn
∆P
P0

(k). (2.36)

However, it is possible to verify that fn with n > 2 are slow-roll suppressed. To appreciate
this, first notice that ln k-derivatives acting on ∆P/P0 are the consequence of terms contai-
ning powers of conformal time τ appearing inside the integral of (2.25). These in turn, come
from the time dependence of the curvature perturbation wave function Rk(τ) given in (A.32),
valid in the de Sitter limit ε → 0 (see the discussion of the appendix A). Nevertheless, this
specific form of Rk(τ) receives corrections of order ε that introduce additional powers of τ
inside (2.25), finally leading to (2.36) but with coefficients fn (with n > 2) suppressed by
slow-roll parameters. This observation gives us an upper limit on the sharpness of features
that our method is allowed to study. That is, in order for the truncation to remain valid,
features in the power spectrum must be such that:

ε

∣∣∣∣ d3

d3 ln k

∆P
P0

∣∣∣∣� ∣∣∣∣ d2

d2 ln k

∆P
P0

∣∣∣∣ . (2.37)

In other words, our approach is useful to analyze sharp features, but their sharpness is limited
by the size of the slow-roll parameter ε.

3 Sound speed and expansion rate during inflation

Our main result (2.32), deduced in the previous section, depends crucially on the validity
of eq. (2.26) relating the sound speed cs and the slow-roll parameter η. In this section we
provide arguments to support this conjecture and discuss a few examples for which it is
found to be valid. Let us start by emphasizing that, a priori, there are no reasons to expect a
simple relation determining the value of η in terms of the sound speed cs since, in principle,
the background dynamics has enough degrees of freedom to allow for situations in which η
and cs evolve independently. Nevertheless, in the class of models that we are attempting
to describe, features appear as the consequence of small deviations from the quasi-de Sitter
background driven by inflation, characterized by constant values of ε and c2s:

ε = ε0, c2s = c20. (3.1)

In these models, ε parametrizes the quasi de Sitter geometry whereas cs parametrizes the
non-trivial kinematical properties of the fluid that is causing the quasi-de Sitter dynamics in
the first place. It is therefore reasonable to envisage that a small change in ε away from ε0
will come together with a small compensating change to the sound speed c2s away from the
value c20. In other words, whatever may be the cause of the rapid background variations, it
should induce simultaneous variations of ε and c2s. As long as these variations are small, we
expect that

∆ε ∝ ∆c2s, ∆ε = ε− ε0 � ε0, ∆c2s = c2s − c20 � c20, (3.2)
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where ε0 and c0 are the slowly varying values of ε and cs, that may be taken as constant values
for all practical purposes. The idea behind this relation is simple: each time a constant value
of ε is reached (that is, each time d

dN∆ε = 0) a new quasi-de Sitter geometry is achieved,
which should be characterized by a new constant value of the sound speed cs. This precisely
requires that both quantities vary in synchrony. The proportionality relation ∆ε ∝ ∆c2s
allows us to deduce a more useful relation between η and cs. Indeed, by using eq. (3.2) back
in eq. (2.10) where we defined ∆η, we obtain the non-trivial relation

η = η0 −
α

2

d∆c2s
dN

, (3.3)

where α represents some slowly varying background quantity determined by the specific
model causing the rapid variation. Then, in the particular case in which the sound speed
varies away from the background value c0 = 1, we finally obtain

η = η0 +
α

2

dθ

dN
, (3.4)

which is our desired result. In what follows we check the validity of these results by analyzing
several concrete examples.

3.1 Features in P (X,φ)-models

For our first two examples we consider a class of k-essence models [94] with a Lagrangian
of the form L = P (X,φ), where P (X,φ) is a given function of X = −(∂φ)2/2 and φ. The
homogeneous background equations describing the evolution of inflation are given by the
Friedman equation and the equation of motion for the scalar field φ, which, in terms of
number of e-folds N , are found to be

3H2 − E = 0, (3.5)

d2φ

dN2
+
(
3c2s − ε

) dφ
dN

+
c2s

H2PX
Eφ = 0, (3.6)

where now X = φ̇2/2 (due to the homogeneity of the background), E ≡ 2XPX − P is the
energy density of the inflaton field, and Eφ ≡ ∂φE, PX ≡ ∂XP , etc. In these models, the
slow roll parameter ε and the sound speed cs are respectively given by:

ε =
XPX
H2

, c2s =
PX

PX + 2XPXX
. (3.7)

Both of these quantities stay almost constant in a quasi-de Sitter regime. Thus, the origin of
features may only appear as the consequence of a non-trivial dependence of these quantities
on the rolling inflaton field φ, producing displacements of ε and c2s away from their quasi-de
Sitter fiducial values ε0 and c20. These displacements will happen not only due to the explicit
appearance of φ in eq. (3.7), but also on the time variations of X responding to this non-
trivial dependence. However, as we shall see, as long as these displacements are small, they
will happen in synchrony, in such a way that quasi-de Sitter is recovered in terms of both
parameters at the same time. In what follows we examine a few examples for which this
happens and corroborate the validity of eqs. (3.2)–(3.4).
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3.1.1 Example 1: localized features in the potential

Let us start by considering the specific case in which a rapid variation of the background is
caused by a localized feature in the potential. To be concrete, we choose a P (X,φ)-theory
of the form

P (X,φ) = X +AX2 − V (φ), (3.8)

where A parametrizes a non-trivial contribution to the kinetic term, quadratic in X, and
V (φ) corresponds to a chaotic potential with a small feature on top of it in the following
manner

V (φ) =
m2φ2

2
[1 + f(φ)] , (3.9)

where m is a mass scale parametrizing the featureless chaotic potential, and f(φ) is a function
parametrizing the localized feature. To discuss this class of models let us consider two
particular choices for f(φ). For our first choice, model-(a), we consider a small step feature
of the form

f(a)(φ) = B tanh

[
φ− φ0√

2∆φ

]
, (3.10)

where φ0 gives us the position of the step, ∆φ its width, and B the size of the jump produced
by the step. For our second choice, model-(b), we consider a small Gaussian bump in the
potential of the form

f(b)(φ) = B exp

[
−(φ− φ0)2

2∆φ2

]
, (3.11)

where, again, φ0 represents the position of the step, ∆φ its width, and B the amplitude
of the bump. These potentials have been studied in the work [95]. To be consistent with
the hierarchy of eq. (2.13) we assume that both features are “sharp” in the sense that their
effects on the solutions φ(N) and H(N) take place within an e-fold of inflation. In practice,
this means that ∆φ should be such that ∆φ � |dφ/dN |. In this way, even if we choose the
amplitude B of the features such that they have a tiny effect on ε and c2s, the sharpness due
to the small value of ∆φ may induce a dramatic effect on η and ∂Nθ. More to the point, let
us consider the following values (in Planck units) for the parameters in both models:4

A = 1010, φ0 = 14.19, B = 5× 10−4, ∆φ = 0.002, m = 5.975× 10−6. (3.12)

These parameter-values imply a background sound speed c20 ' 0.8. It is important to assert
that the formulas of the previous sections — involving the primordial spectra— are strictly
valid for the case c20 = 1, and therefore we are not allowed to use this example to infer a
relation between the bispectrum and the power spectrum as discussed in section 2. In spite
of this fact, this example is still useful to reinforce our confidence on the validity of eqs. (3.2)
and (3.3). We have chosen the value of φ0 in such a way that it produces a feature about 60
e-folds before the end of inflation, roughly implying the generation of features in the power
spectrum within the window of scales relevant for CMB observations.

Figure 1 summarizes the main numerical results obtained by solving the equations of
motion (3.5) and (3.6) for the two models in question. The left hand side panels show the
results pertinent to model-(a), whereas the right hand side panels show the results for model-
(b). In particular, the top panels show the functions ∆ε = ε − ε0 and ∆c2s = c2s − c20 as a

4In all our numerical examples, we define the end of inflation by ε = 0.1, and choose our parameters such
that P0 = 2.43 · 10−9 60 e-folds before the end of inflation. The feature takes place inside the CMB-window:
in all plots the point N = 0 corresponds to 55 e-folds before the end of inflation.
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Figure 1. The figure shows the main numerical results for model-(a) (left-panels) and model-(b)
(right-panels). The top panels show the functions ∆ε = ε − ε0 and ∆c2s = c2s − c20 as a function of
N . The bottom panels show ∆η and α∂Nθ/2 as a function of N . Notice that to satisfy eq. (3.3),
model-(a) requires α ' 15 whereas model-(b) requires α ' 15.6.

function of N . On the other hand, the bottom panels compare ∆η and α∂Nθ/2 as a function
of N for the values

α(a) ' 15, α(b) ' 15.6, (3.13)

for models (a) and (b) respectively. We see that the plots ratify, in a rather eloquent way, the
validity of eqs. (3.2) and (3.3). The features on the potential with the parameters values of
eq. (3.12) imply the rapid variation of background quantities within a window of ∆N ∼ 0.075
e-folds. In both examples the variations experienced by ∆ε = ε − ε0 and ∆c2s = c2s − c20
remain small, but the variations of ∆η and ∂Nθ are found to be large. Moreover, the fact
that α(a) and α(b) are larger than 1 implies that the features are mostly the result of the
rapid variation of the expansion rate. We have tried values for the parameters different from
those of eq. (3.12) and have found similar results, except for the cases in which conditions
∆ε� ε0 and |∆c2s| � c20 are violated.

3.1.2 Example 2: DBI inflation with features

For our second example we will stay within the realm of P (X,φ)-models, and consider a DBI
theory [96, 97] parametrized by the following Lagrangian:5

P (X,φ) = f−1(φ)
[
1−

√
1− 2f(φ)X

]
− V (φ). (3.14)

5An alternative example, which renders similar results to those offered by this example, consists of
P (X,φ) = X + g(φ)X2 − V (φ), where g(φ) accomplishes the same role of f(φ).
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Here, f(φ) corresponds to the warping factor describing a system of D3 branes on a warped
background accomplished in certain string compactifications. f(φ) couples together the ra-
pidity φ̇ and the vacuum expectation value φ, allowing for departures from c2s = 1 depending
on the shape of f(φ). Observe that in order to ensure that we stay in the physical regime
1− c2s ≥ 0 at all times, we require f(φ) ≥ 0 everywhere. For definiteness, let us consider two
choices for f(φ) characterized for being suppressed everywhere except for a region of finite
support. Our first choice, model-(c), consists of a Gaussian bump of the form

f(c)(φ) = B exp

[
−(φ− φ0)2

2∆φ2

]
, (3.15)

where φ0 and ∆φ are the position and width of the bump, and B is the amplitude modulating
the coupling between φ and X. For our second choice, model-(d), let us consider the following
form for f(φ), consisting of a Gaussian bump multiplied by (φ− φ0)2:

f(d)(φ) = B
(φ− φ0)2

∆φ2
exp

[
−(φ− φ0)2

2∆φ2

]
. (3.16)

Here again, φ0 and ∆φ are the position and width of the bump, which this time consists
of two peaks around φ0. These two alternatives for f(φ) induce a brief exchange between
both kinetic and potential energy when the vacuum expectation value of φ hits the value φ0.
Moreover, the non-trivial dependence of the Lagrangian on X implies a sound speed different
from unity during the duration of this exchange. To examine the effects of these sudden
variations of the background, let us consider again a chaotic potential of the form

V (φ) =
m2

2
φ2, (3.17)

able to realize inflation within canonical single field slow roll inflation, with 60 e-folds of
inflation, and adjust the values of φ0, ∆φ, and B to generate variations such that ∆ε � ε0
and 1− c2s � 1. We have chosen (for both models)

φ0 = 15.387, B = 5× 109, m = 5.875× 10−6. (3.18)

Moreover, in model-(c) we set ∆φ = 0.005 while in model-(d) we have ∆φ = 0.004. Figure 2
shows the main numerical results for our two models. The top panels show the background
solutions for both ∆ε = ε− ε0 and 1− c2s as a function of e-folds N . It may be seen that they
happen in synchrony, as already anticipated by our general discussion linking both quantities.
The bottom panels show both ∆η = η − η0 and α ∂Nθ/2 as functions of N . We find that
there is a good agreement between both quantities for the values

α(c) ' −0.53, α(d) ' −0.52. (3.19)

The resulting plots ratify the validity of our ansatz (3.4). We have checked that this relation
is ensured as long as the conditions ∆ε � ε0 and 1− c2s � 1 are satisfied. As soon as these
conditions are broken, one starts to observe a disagreement between both quantities.

3.2 Features in multi-field inflation

Let us now take a look into the appearance of features within the framework of multi-field
inflation. Concretely, we consider a multi-field model with a set of two scalar fields φa,
a = 1, 2, with a non-trivial sigma model metric γab, and a Lagrangian given by

L = −1

2
γab∂φ

a∂φb − V (φ), (3.20)
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Figure 2. The figures show some relevant results concerning models (c) and (d) (left and right
panels respectively). The top panels show 1 − c2s and ∆ε = ε − ε0 as a function of N . The bottom
panels show ∆η = η − η0 and α∂Nθ/2 as a function of N .

where V (φ) is the scalar potential responsible for producing inflation. Given that we are
focusing our interest on the case of multi-field models with only two fields, it is convenient to
introduce a pair of unit vectors T a and Na tangent and normal to the inflationary trajectory
φa = φa(t), defined as

T a ≡ 1

φ̇0

dφa

dt
, (3.21)

Na ≡
√

det γεabT
b, (3.22)

where εab is the Levi-Civita symbol in two dimensions (notice that these definitions keep the
orientation of the two vectors fixed). In addition, we have defined

φ̇0 ≡
√
γbcφ̇bφ̇c. (3.23)

As usual, the metric γab and its inverse γab are used to lower and rise indices on tensor living
in the tangent space of the multi-field manifold parametrizing the model. The vectors T a

and Na allow us to introduce the local rate of turn of the inflationary trajectory Ω defined
to satisfy6

DT a

dt
= −ΩNa, (3.24)

6Notice that this quantity has been denoted θ̇ in refs. [8, 11] studying the effect of turns on the dynamics
of curvature perturbations. Here we opt to use Ω in order to avoid any confusion with θ = 1− c2s.
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where DT a/dt = Ṫ a + ΓabcT
bφ̇c is the covariant time derivative of T a with Γabc being the

Christoffel symbols computed with the help of γab. The quantity Ω is nothing but the angular
velocity of the tangent vector T a as the inflationary trajectory bends. To continue, the
equations of motion dictating the evolution of the fields φa, deduced from the action (3.20),
are given by:

Dφ̇a

dt
+ 3Hφ̇a + V a = 0, (3.25)

3H2 =
1

2
φ̇20 + V (φ). (3.26)

The two equations of motion for the scalar fields (3.25) may be projected along T a and Na

respectively, giving us back

φ̈0 + 3Hφ̇0 + Vφ = 0, (3.27)

Ω =
VN

φ̇0
, (3.28)

where Vφ ≡ T aVa and VN ≡ NaVa. On the other hand, by differentiating eq. (3.26) with
respect to time, eq. (3.27) allows us to show that:

ε =
1

2

φ̇20
H2

. (3.29)

A detailed analysis of the dynamics of the two scalar fluctuations in this class of theory shows
that perturbations may be decomposed into curvature perturbations and a massive degree of
freedom, associated to the fluctuations perpendicular to the inflationary trajectory [37–39].
The mass m of the massive degree of freedom is found to be

m2 = VNN + εH2R + 3Ω2, (3.30)

where VNN ≡ NaN b(Vab − ΓcabVc), and R is the Ricci scalar computed out of γab. Then, it
turns out that if m2 � H2 it is possible to deduce a low energy effective theory for curvature
perturbations alone, of the form (2.1), where the sound speed is given by [8]:

c−2s = 1 +
4Ω2

m2 − 4Ω2
. (3.31)

In other words, the sound speed will always decrease as soon as the inflationary trajectory
suffers a turn.

Now that we have a concrete relation giving us the sound speed in terms of quantities
parametrizing the inflationary trajectory, we can understand the validity of relation (3.4)
under a new scope. First, it is important to appreciate that departures of the sound speed
from the value cs = 1 are exclusively due to turns of the inflationary trajectory Ω 6= 0. In
addition, eq. (3.28) tells us that each time there is a turn, the trajectory is pushed against the
wall of the potential away from the minimum VN = 0 (which, from a Newtonian point of view,
it is a consequence of the angular momentum accompanying the turn). Then, each time there
is a turn, the inflationary trajectory will tend to climb the wall of the potential, implying
an increase in the value of the potential, and a consequential reduction of the kinetic energy
X = φ̇20/2. This has the cost of producing a small reduction of the value of ε, as implied by
eq. (3.29). Therefore, a turn simultaneously produces both a reduction of the speed of sound
c2s < 1 and a decrease of the value of ε, finally leading to eq. (3.3).
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3.2.1 Example 3: localized turns in a two-field target space

We now proceed to examine a few concrete numerical examples of inflationary trajectories
with turns, corroborating eq. (3.3). Let us start by choosing the following notation for the
two scalar fields:

φa = (χ, ψ). (3.32)

We will consider a model where turns occur as a consequence of a feature appearing in the
sigma model metric given γab. To simplify matters, let us parametrize the metric in the
following way7

γab =

(
1 f(χ)

f(χ) 1 + f2(χ)

)
, (3.33)

where f is a given function of the first field χ to be specified shortly. Notice that this metric
has a unit determinant by construction. In addition, we choose a potential with the following
generic form

V (χ, ψ) = v(χ) +
M2
ψ

2
ψ2, (3.34)

where v(χ) is a single field potential constructed to realize slow-roll inflation in the χ-
direction. On the other hand, the term with M2

ψ represents a mass term forcing ψ to stabilize
at the value ψ = 0. Notice that if f(χ) = 0 the two fields would remain decoupled, and in-
flation would happen along the χ-direction, as the χ-field descends the slope of the potential
v(χ), with ψ stabilized at the value ψ = 0. More generally, if f is a constant, then one can
always redefine the fields and deduce that the inflationary trajectory consists of a straight
path in the multi-field target space. To make things more concrete, let us consider a simple
chaotic potential of the form

v(χ) =
m2

2
χ2, (3.35)

and choose initial conditions in such a way that inflation lasts for about 60 e-folds. Next, let
us consider two different choices for the profile of the function f(χ), characterized for being
constant everywhere except for a region of finite support. For our first choice, model-(e), let
us consider the following function:

f(e)(χ) =
B

2

(
1 + tanh

[
(χ− χ0)√

2∆χ

])
. (3.36)

This represents a step function, with a width ∆χ centered at χ0 that changes from f = 0
to f = B. It is easy to see that this transition implies a single turn with non-vanishing rate
of turn Ω inducing a non-trivial departure of c2s away from unity. For our second choice,
model-(f), we consider a Gaussian function of the form

f(f)(χ) = B exp

[
−(χ− χ0)

2

2∆χ2

]
. (3.37)

This form of f induces two consecutive turns in opposite directions. As a consequence, we
obtain (for the same set of parameters) a non-trivial departure of c2s away from unity in the

7This type of model was already considered in ref. [11] to study features in the power spectrum as the
consequence of turns in multi-field models.
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Figure 3. The figures show various relevant results related to the models e and f (left and right
panels respectively). The top panels show 1 − c2s and ∆ε = ε − ε0 as a function of N . The bottom
panels show ∆η = η − η0 and α∂Nθ/2 as a function of N .

form of two consecutive bumps. To solve the inflationary dynamics of these two models we
consider the following values

B = 2.5, Mψ = 10−2, m = 5.89 · 10−6, ∆χ = 0.005, χ0 = 15.37. (3.38)

figure 3 shows the main numerical results for these two models. The top panels show the
background solutions for both ∆ε = ε− ε0 and 1− c2s as a function of e-folds N . It may be
seen that they happen in synchrony, as already anticipated by our general discussion linking
both quantities. On the other hand, the bottom panels show both ∆η = η− η0 and α ∂Nθ/2
as functions of N . We find that there is a very good agreement between both quantities for
the following values of α:

α(e) ' −0.53, α(f) ' −0.52. (3.39)

Yet again, these numerical results emphasize the accuracy of our ansatz (3.4) to describe
inflationary backgrounds with rapid deviations from quasi de Sitter.

3.3 Accuracy of the power spectrum

Our previous examples (2 and 3) consisted of models that required values of α that were
worryingly close to the value α = −1. Indeed, let us recall that our expression for the power
spectrum given by eq. (2.27) stops being valid for values of α close to −1, where other sub-
leading terms start to dominate the final form of the power spectrum. Nevertheless, we find
that for the aforementioned examples the power spectrum computed with (2.29) constitutes
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Figure 4. The figure shows a comparison between the power spectrum obtained by solving the mode
functions of curvature perturbations exactly (continuous red curves) and our analytical approximation
(dashed blue curves) using eq. (2.27).

a very good approximation of the power spectrum computed directly by numerically solving
the mode functions exactly. Figure 4 compares the power spectrum obtained by solving the
mode functions of curvature perturbations exactly (continuous red curves) and our analytical
approximation (dashed blue curves) using eq. (2.27), for models (c), (d), (e) and (f) respec-
tively. These plots confirm that the approximation offered by eq. (2.27) gives an accurate
representation of features in the power spectrum, in spite of the value α ∼ −0.5.

The main reason for the good agreement between both power spectra is the sharpness
of the features. Indeed, let us recall that eq. (2.27) is derived from (2.20) by keeping the
leading terms according to the hierarchy (2.13). This tells us that the power spectrum of
eq. (2.27) is accurate as long as

1 + α

∆N
� 1, (3.40)

where ∆N is the e-fold scale characterizing the rapidly varying background. If this condition
is not fulfilled (for instance, because α ' −1), then eq. (2.20) tells us that the leading order
term becomes:

∆P
P0

(k) = − 5α

16k3

∫ 0

−∞
dτ

θ′′′

τ
sin(2kτ) . (3.41)

Of course, this form of the power spectrum modifies our main result (1.8), a situation that
will not be examined in the present article.
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4 Resonant features

In this section we use our formalism to consider the case of resonant features. By resonant
features we mean features in the power spectrum and bispectrum induced by an inflatio-
nary background with a certain periodic time-dependence [98–101]. We wish to show that
our ansatz (3.4) continues to constitute a good characterization of the time-dependence of
resonant departures from quasi-de Sitter, and therefore our relation (2.32) offers a concrete
parametrization for the search of resonant features in the primordial spectra. Before consi-
dering a concrete example, let us first study the implication of eq. (3.4) analytically in the
case of resonant features. To do so, let us consider a background characterized for having a
varying sound speed with a harmonic dependence on the e-fold variable N :

θ(N) = θ0 [1 + sin(ω0(N −N0))] . (4.1)

Here ω0 is the frequency of the oscillations (in e-fold units) and θ0 corresponds to the average
value of θ(N). Equation (3.4) then implies that η(N) is given by

η(N) = η0 +
α

2
ω0 θ0 cos(ω0(N −N0)). (4.2)

We may use these relations to obtain an expression describing the features in the power
spectrum. Using N = N0− ln(τ/τ0), which is valid for a constant expansion rate H, we find
that (2.20) becomes

∆P
P0

(k) =
θ0
2

+ (1 + α)θ0k

∫ 0

−∞
dτ sin(ω0 ln(τ/τ0)) sin(2kτ), (4.3)

where the first term, θ0/2, comes from the non-oscillatory piece of eq. (4.1). In fact, our
discussion around eq. (2.19) tells us that we may absorb this piece in the definition of the
featureless power spectrum P0 → Ps = P0/c0, where c0 =

√
1− θ0. Then, integrating

eq. (4.3) we finally obtain

∆P
Ps

(k) = (1 + α)
θ0
2
ρ0 cosh(πω0/2) sin

(
ω0 ln(2k|τ0|) + ϕ0

)
, (4.4)

where ρ0 and ϕ0 are real functions of ω0 defined through the algebraic equation ρ0e
iϕ0 ≡

Γ(1−iω0), where Γ correspond to the usual Γ-function. This result may be more conveniently
summarized as

∆P
Ps

(k) = A sin [ω0 ln 2k + ϕ] , (4.5)

where ϕ = ϕ0 + ω0 ln |τ0|. This relation tells us that the power spectrum has a logarithmic
dependence on the scale k. This result may be plugged back in eq. (2.31) to obtain an
expression for the bispectrum containing resonant features

fNL ' −βα(k1, k2, k3)Aω
2
0 sin [ω0 ln(k1 + k2 + k3) + ϕ] , (4.6)

where βα is given by eq. (2.32). This result may be compared with previous parametrizations
used to search resonant features in the CMB data [102], such as the one used by the Planck
satellite to test resonant features in the non-Gaussian bispectrum [72], with the generic form
given by

Bres(k1, k2, k3) = g(k1, k2, k3) sin [C ln (k1 + k2 + k3) + φ] (4.7)

where g(k1, k2, k3) is a function of the shape of the triangle configuration. In our case, the α
parameter plays an important role in determining the shape of g(k1, k2, k3).
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Figure 5. The left panel of the figure compares the background quantities η− η0 and α∂Nθ/2. The
right panel compares the exact power spectrum computed numerically, with the analytical expression
given by eq. (4.4).

4.1 Example 4: resonant features in multi-field inflation

Let us now consider an example where the background offers a periodic dependence on time.
To be concrete, we consider again the multi-field model of section 3.2.1, where the features
are introduced via the function f(χ) appearing in the σ-model metric of eq. (3.33). In this
occasion we shall consider the following form for the function f(χ)

f(χ) = B cos

(
2π

(χ− χ0)

∆χ

)
, (4.8)

and keep the chaotic potential v(χ) = m2φ2/2 for the inflationary sector χ within the multi-
field potential (3.34). The choice (4.8) ensures that the background quantities appearing in
the EFT of curvature perturbations will inherit a periodic dependence on time. In particular,
one finds that both cs and ε evolve periodically —and in synchrony— just as anticipated by
eq. (3.2), and one verifies the validity of eq. (3.4). To offer an example, we have used the
following values for the parameters of the present model:

B = 1.5, Mψ = 10−2, ∆χ = 0.05, m = 5.975× 10−6. (4.9)

These values ensure that the departures of c2s and ε are small from their respective featureless
background values 1 and ε0. Figure 5 compares both η − η0 and α∂Nθ/2 for the value
α = −0.53, which is found to give the best match between the two functions. Moreover, we
find that (4.1) constitutes a good fit of θ(N) with θ0 and ω0 given by:

θ0 ' 0.016, ω0 ' 35.4. (4.10)

With these values, it turns out that our expression for the resonant power spectrum of
eq. (4.4) offers an accurate representation of the effects of the oscillatory time dependence
of the background. The right panel of figure 5 compares the power spectrum of the model
computed numerically with the expression given by eq. (4.4), showing a very good agreement
between both functions.

It is important to mention that we have also verified that eq. (4.4) offers an accurate
expression for classes of models other than multi-field. Indeed, we have analyzed numerically
the example of section 3.1.2 for which we have chosen the warp factor f(φ) to have the same
form of f(χ) in eq. (4.8), and have found similar results to those presented here.
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5 Discussion and conclusions

While it is hard to conceive that observations could ever reveal the nature of the physics
responsible for features, it is clear that, if they are present at all, both the power spectrum
and bispectrum will contain complementary information about the source that generated
them. Indeed, in this work we have seen that, under certain reasonable assumptions, it is
possible to correlate features appearing in the bispectrum with those appearing in the power
spectrum. Specifically, we have studied the generation of sharp features by adopting the
perspective of effective field theory of inflation, where the primordial spectra of curvature
perturbations are the consequence of the dynamics of a single scalar degree of freedom. In
this framework, sharp features are the consequence of the simultaneous variations of the
sound speed cs and the expansion rate, parametrized by ε.

The novelty of this work is that we have shown that two different kind of features, the
ones caused by a perturbation in ε and the ones caused by a perturbation in cs, are in fact not
separate at all. After all, they follow from the same perturbed path that the inflaton takes
through field space. In this way, in order to correlate the primordial power spectrum with
the bispectrum, we had to uncover a universal relation linking cs and ε, given by eq. (1.7).
This relation — valid for small but rapid variations of cs and ε — led to our main result,
given by eq. (2.31) supplemented with eq. (2.32). To show the validity of eq. (1.7), we offered
several numerical examples of models allowing for sharp features.

The aim of this work therefore is to break the degeneracy between features in the
power spectrum induced by perturbations in ε, and features in the power spectrum induced
by perturbations in cs. Looking at the power spectrum alone, they cannot be told apart.
With this work in hand one can, however, link the features in the power spectrum to those
appearing in the bispectrum. One can extract a value for α, which indicates exactly to what
extent the feature is caused by a perturbation in ε, and to what extent by a perturbation in cs.

Our results leave several questions unanswered that deserve to be addressed. Let us
mention a few possible directions that we find interesting:

1. One may consider the general problem of using the present methods to study the
appearance of features in higher order n-point correlation functions. The present results
suggest that features in higher n-point correlation functions may be expressed in terms
of features in the power spectrum. More concretely, it would already be interesting to
learn how the tri-spectrum depends on features appearing in the power spectrum.

2. As emphasized in section 3.3, our main result (2.31) stops being valid for values of
α violating condition (3.40), with α the proportionality parameter α between η and
dθ/dN . Thus, a direction for further research could be to identify and analyze models
in which α is sufficiently close to −1. In this case, we need to reconsider the relation
between the perturbations in the power spectrum and η and θ, as terms which are
subleading for α 6= 1 become dominant.

3. In this work, α is just a constant that has been adjusted to satisfy eq. (3.3) in each
model. Nevertheless, it is clear that α is a model dependent quantity. Thus, it might
be possible to deduce analytical expressions for α in terms of parameters characterizing
the models hereby examined (i.e. P (X,φ) and multi-field models of inflation).

4. We have not considered models in which the slowly varying part of the sound speed c0
remains far from 1. Our first numerical example (section 3.1.1) shows that a background
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sound speed different from 1 does not spoil the relation between η and dθ/dN . However,
in this situation there are new operators in the cubic action (2.14) for R inducing
features in the bispectrum, not taken into account in the final result (2.31).

5. To correlate the features in the spectra we have assumed a standard single field effective
theory (2.2) describing the dynamics of curvature perturbations, in which the sound
speed is the main parameter describing departures from canonical single field inflation.
However, as already noticed in [62], there are more general classes of effective field
theories where the dispersion relation of curvature perturbations contains non-trivial
dependences on the scale [55, 58]. Therefore, it would be interesting to analyze the
way in which the primordial spectra are correlated within other classes of effective field
theories.

6. We have focussed our efforts exclusively on the case of sharp features, where the hierar-
chy of eq. (2.12) was assumed to characterize every rapidly varying background quantity.
We see no obstructions towards obtaining a more general expression correlating features
in the bispectrum with those of the power spectrum in the case where the variation of
background quantities is not so restricted (as in the case of ref. [64], for the particular
case of features emerging exclusively from a varying sound speed.).

We leave these interesting challenges as open problems.

To conclude, if some of the not-so-significant-yet features that Planck is seeing now turn
out to be real, our work provides a framework to analyze them. If not, it can be equally
useful in order to confirm the paradigm of plain, featureless single field slow roll inflation.
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A Perturbation theory for features

In this appendix we summarize the in-in formalism of perturbation theory in quasi-de Sitter
space-times [66, 103] that we use to compute the power spectrum and bispectrum with
features. More details may be found in ref. [69] and references therein.

A.1 The in-in formalism for features

As a starting point, let us consider the action (2.1), together with eqs. (2.2) and (2.3),
describing the dynamics of curvature perturbations R in comoving gauge. Then, it is useful
to introduce the canonically normalized curvature perturbation u(t,x) through the following
field reparametrization:

u = zR, z =
√

2ε
a

cs
. (A.1)
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Doing this change of variable allows us to split the quadratic part of action (2.1) as S(2) =

S
(2)
0 + S

(2)
int , where the zeroth order part S

(2)
0 and the interacting parts S

(2)
int , are respectively

given by:

S
(2)
0 =

1

2

∫
d3x dτ

[
u′2 − (∇u)2 +

2

τ2
u2
]
, (A.2)

S
(2)
int =

1

2

∫
d3x dτ

[
θ(τ)(∇u)2 +

1

τ2
δ(t)u2

]
, (A.3)

where δ(t) is a rapidly varying background quantity, given by:

δ = δH − τθ′ +
τ2

2
θ′′, δH = −1

2
τη′. (A.4)

Notice that the zeroth order piece, S
(2)
0 , corresponds to the conventional quadratic action

describing a scalar perturbation in a de Sitter space-time sliced with the help of cosmological

coordinates. On the other hand, S
(2)
int contains coefficients induced by the rapidly varying

parts of the background. Of course, we also have the cubic contribution to the total action,
which, to leading order in the rapid background quantities, is given by (2.14). This means
that, with the purpose of employing the in-in formalism, we may finally split the entire
theory as

S = S
(2)
0 + Sint, (A.5)

where Sint is the interacting part of the action, up to cubic order, and given by

Sint = S
(2)
int + S

(3)
int , (A.6)

where S
(2)
int is given by eq. (A.3) and S

(3)
int is given by eq. (2.14). Equation (A.2) informs us

that the u-field corresponds to the canonically normalized adiabatic curvature perturbation
with a canonical momentum given by π = ∂L/∂u′ which, to leading order, reduces to π = u′.
Both u and π satisfy the equal-time canonical commutation relation

[u(x, τ), π(y, τ)] = iδ(x− y), (A.7)

where δ(x − y) is the Dirac delta function. The field u(x, τ) and its canonical momentum
π(x, τ), satisfying this commutation relation, may be written in terms of the interaction-
picture field uI(x, τ) evolved in time with the help of the propagator U(τ) as:

u(x, τ) = U †(τ)uI(x, τ)U(τ), (A.8)

π(x, τ) = U †(τ)u′I(x, τ)U(τ). (A.9)

Here the interaction-picture field uI(x, τ) has the form of a free field, which may be expanded
in Fourier modes as

uI(x, τ) =
1

(2π)3

∫
d3k

[
akuk(τ)eik·x + a†ku

∗
k(τ)e−ik·x

]
, (A.10)

where a†k and ak are creation and annihilation operators satisfying the usual commutation
relations for particle states in a Fock space:[

ak, a
†
p

]
= (2π)3δ(k− p). (A.11)
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On the other hand, uk(τ) represents the normalized solution to the linear equation of motion
in momentum space derived from (A.2):

u′′k +

(
k2 − 2

τ2

)
uk = 0. (A.12)

The solution to this equation is obtained by selecting the Bunch-Davis vacuum, and is
given by:

uk(τ) =
1√
2k

(
1− i

kτ

)
e−ikτ . (A.13)

Returning to (A.8) and (A.9), the propagator is given by

U(τ) = T exp

{
−i
∫ τ

−∞+

dτ ′HI(τ
′)

}
, (A.14)

where T stands for the standard time ordering symbol and∞+ = (1+iε)∞ is the prescription
isolating the in-vacuum in the infinite past. Furthermore, HI is the interaction picture
Hamiltonian given by

HI(τ) = U †(τ)HintU(τ), (A.15)

where Hint is the interaction Hamiltonian derived from (A.6). In particular, it is possible to
show that the quadratic contribution to the interaction-picture Hamiltonian has the form:

H
(2)
I (τ) = −1

2

∫
d3x

[
θ(τ)(∇uI)2 +

δ(τ)

τ2
u2I

]
. (A.16)

On the other hand, the cubic contribution to the interaction picture hamiltonian, H
(3)
I , is

found to be given by

H
(3)
I = m2

Pl

∫
d3x a3ε

[
(3θ + η)RIṘ2

I +
1

a2
(τθ′ − η)RI(∇RI)2

]
. (A.17)

Notice that we have opted to express H
(3)
I in terms of RI = −uIH0τ/

√
2ε0 rather than uI .

These expressions allow us to compute the two- and three-point correlation functions for u
perturbatively. To first order in the rapid background quantities, one finds:

〈u(x, τ)u(y, τ)〉 = 〈0|uI(x, τ)uI(y, τ)|0〉+ i

∫ τ

−∞
dτ ′〈0|[HI(τ

′), uI(x, τ
′)uI(y, τ

′)]|0〉, (A.18)

〈u(x, τ)u(y, τ)u(z, τ)〉 = i

∫ τ

−∞
dτ ′〈0|[H(3)

I (τ ′), uI(x, τ
′)uI(y, τ

′)uI(z, τ
′)]|0〉. (A.19)

These expressions conform the basis to compute the power spectrum and bispectrum with
features, which is done in what follows.

A.2 Primordial spectra with features

In order to define the power spectrum, and later on the bispectrum, we write the adiabatic
perturbations in Fourier space by introducing the mode function R̂k(τ) as:

R(x, τ) =
1

(2π)3

∫
d3k R̂k(τ)eik·x. (A.20)
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Then, the dimensionless power spectrum PR(k, τ), evaluated at a given time τ , is defined via
the equation:

〈R̂k(τ)R̂p(τ)〉 = (2π)3δ(k + p)
2π2

k3
PR(k, τ). (A.21)

Putting together (A.1) and (A.21) we deduce an expression for the power spectrum PR(k, τ)
in terms of the two-point correlation function of the canonically normalized u-field

PR(k, τ) =
k3

2π2z2

∫
x
〈u(x, τ)u(0, τ)〉e−ik·x, (A.22)

where
∫
x stands for

∫
d3x. Notice that one of the fields has been conveniently evaluated at

y = 0, allowed by the homogeneity and isotropy of the background. Similarly, the bispectrum
BR(k1,k2,k3, τ) is conventionally defined as:

〈R̂k1(τ)R̂k2(τ)R̂k3(τ)〉 = (2π)3δ(k1 + k2 + k3)BR(k1,k2,k3, τ). (A.23)

This expression may be inverted to give the bispectrum in terms of the three-point correlation
function of the u-field as

BR(k1,k2,k3, τ) =
1

z3

∫
x

∫
y
〈u(x, τ)u(y, τ)u(0, τ)〉e−ik1·x−ik2·y, (A.24)

where k3 = −k2 − k1. Just as we did with eq. (A.22), we have evaluated one of the fields at
the comoving coordinate z = 0. Finally, let us recall that our goal is to compute correlation
functions in the long wavelength limit |τk| � 1, which gives us the spectra at the end of
inflation. Thus, the power spectrum and bispectrum we are interested in correspond to the
following formal limits:

PR(k) ≡ lim
|τ |→0

PR(k, τ), (A.25)

BR(k1,k2,k3) ≡ lim
|τ |→0

BR(k1,k2,k3, τ). (A.26)

Given that R is constant after horizon crossing, these expressions give us the initial condi-
tions for adiabatic perturbations outside the horizon for the hot Big-Bang era, in terms of
background parameters at horizon crossing time, during inflation.

To compute the primordial power spectrum with features we just need to plug (A.18)
into (A.22). This leads to the following form of the power spectrum

P = P0 + ∆P, (A.27)

where P0 corresponds to the featureless power spectrum given by:

P0(k) = lim
τ→0

k3

2π2z2
|uk(τ)|2 =

H2
0

8π2ε0
. (A.28)

In fact, if we had considered slow-roll corrections to the zeroth order mode, we would have
obtained the more accurate expression (used in the present work)

P0(k) =
H2

0

8π2ε0

(
k

k∗

)ns−1
, (A.29)
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where ns is the spectral index parametrizing the small scale dependence of the power spec-
trum, and k∗ is a pivot scale fixed by mode that exited the horizon when the background
was characterized by an expansion rate H0. To continue with eq. (A.27), ∆P is the part
containing the features, found to be given by

∆P
P0

(k) = lim
k|τ |→0

i(2c30k
3τ2)

∫ τ

−∞
dτ ′

∫
x
e−ik·x〈0|

[
HI(τ

′), uI(x, τ)uI(0, τ)
]
|0〉

= k

∫ 0

−∞
dτ

[
−θ +

δH
k2τ2

+
2δH
k4τ4

− 1

k4τ3
dδH
dτ

]
sin(2kτ), (A.30)

where
∫
x stands for

∫
d3x. Finally, we may compute the bispectrum in a similar way by

plugging (A.19) into (A.24). This step gives us

∆B(k1,k2,k3) =
2ε0
iH2

0

R1(0)R2(0)R3(0)

∫ 0

−∞
dτ

(
3θ + η

τ2
[
R1(τ)R′2(τ)R′3(τ) + sym

]∗
+ c.c.

−τθ
′ − η
τ2

[k2 · k3R1(τ)R2(τ)R3(τ) + sym]∗ + c.c.

)
, (A.31)

where Ri(τ) ≡ R(ki, τ) is the wave function for comoving curvature perturbations obtained
from (A.13):

Rk(τ) = i
H0

2
√
ε0k3

(1 + ikτ) e−ikτ . (A.32)

The previous relation for the bispectrum may be further simplified. On the one hand, no-
tice that

k1 · k2 + k2 · k3 + k3 · k1 = −1

2
(k21 + k22 + k23), (A.33)

which is valid as long as k1 + k2 + k3 = 0. Then, by using eq. (A.32) and assuming that the
functions θ and η are odd functions of conformal time τ . Then we get

∆B(k1,k2,k3) =
2π4P2

0

(k1k2k3)3

∫ +∞

−∞
dτ

[
(3θ + η)

(
k1k2 + k3k1 + k2k3 + 3i(k1k2k3)τ

)
+

(τθ′ − η)

2τ2
(k21 + k22 + k23) (1 + ik1τ) (1 + ik2τ) (1 + ik3τ)

]
ieiKτ , (A.34)

where K = k1 + k2 + k3, and where we have identified P0 = H2
0/8π

2ε0. These are the results
needed to compute the final expressions linking features in the bispectrum with those of the
power spectrum.

References

[1] A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness
Problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].

[2] A.D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon,
Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. B 108
(1982) 389 [INSPIRE].

[3] A. Albrecht and P.J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively
Induced Symmetry Breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].

– 29 –

http://dx.doi.org/10.1103/PhysRevD.23.347
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D23,347"
http://dx.doi.org/10.1016/0370-2693(82)91219-9
http://dx.doi.org/10.1016/0370-2693(82)91219-9
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B108,389"
http://dx.doi.org/10.1103/PhysRevLett.48.1220
http://inspirehep.net/search?p=find+J+"Phys.Rev.Lett.,48,1220"


J
C
A
P
1
0
(
2
0
1
5
)
0
6
2

[4] A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys.
Lett. B 91 (1980) 99 [INSPIRE].

[5] V.F. Mukhanov and G.V. Chibisov, Quantum Fluctuation and Nonsingular Universe. (In
Russian), JETP Lett. 33 (1981) 532 [Pisma Zh. Eksp. Teor. Fiz. 33 (1981) 549] [INSPIRE].

[6] Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XXII. Constraints on inflation,
Astron. Astrophys. 571 (2014) A22 [arXiv:1303.5082] [INSPIRE].

[7] Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation,
arXiv:1502.02114 [INSPIRE].

[8] A. Achucarro, J.-O. Gong, S. Hardeman, G.A. Palma and S.P. Patil, Features of heavy physics
in the CMB power spectrum, JCAP 01 (2011) 030 [arXiv:1010.3693] [INSPIRE].

[9] J.A. Adams, G.G. Ross and S. Sarkar, Multiple inflation, Nucl. Phys. B 503 (1997) 405
[hep-ph/9704286] [INSPIRE].

[10] R. Bean, X. Chen, G. Hailu, S.H.H. Tye and J. Xu, Duality Cascade in Brane Inflation,
JCAP 03 (2008) 026 [arXiv:0802.0491] [INSPIRE].

[11] S. Cespedes, V. Atal and G.A. Palma, On the importance of heavy fields during inflation,
JCAP 05 (2012) 008 [arXiv:1201.4848] [INSPIRE].

[12] T. Battefeld, J.C. Niemeyer and D. Vlaykov, Probing Two-Field Open Inflation by Resonant
Signals in Correlation Functions, JCAP 05 (2013) 006 [arXiv:1302.3877] [INSPIRE].

[13] P. Adshead, W. Hu and V. Miranda, Bispectrum in Single-Field Inflation Beyond Slow-Roll,
Phys. Rev. D 88 (2013) 023507 [arXiv:1303.7004] [INSPIRE].

[14] T. Noumi and M. Yamaguchi, Primordial spectra from sudden turning trajectory, JCAP 12
(2013) 038 [arXiv:1307.7110] [INSPIRE].

[15] S. Mizuno, R. Saito and D. Langlois, Combined features in the primordial spectra induced by a
sudden turn in two-field DBI inflation, JCAP 11 (2014) 032 [arXiv:1405.4257] [INSPIRE].

[16] A. Ashoorioon, C. van de Bruck, P. Millington and S. Vu, Effect of transitions in the Planck
mass during inflation on primordial power spectra, Phys. Rev. D 90 (2014) 103515
[arXiv:1406.5466] [INSPIRE].

[17] J. Chluba, J. Hamann and S.P. Patil, Features and New Physical Scales in Primordial
Observables: Theory and Observation, Int. J. Mod. Phys. D 24 (2015) 1530023
[arXiv:1505.01834] [INSPIRE].

[18] A.A. Starobinsky, Spectrum of adiabatic perturbations in the universe when there are
singularities in the inflation potential, JETP Lett. 55 (1992) 489 [INSPIRE].

[19] J.A. Adams, B. Cresswell and R. Easther, Inflationary perturbations from a potential with a
step, Phys. Rev. D 64 (2001) 123514 [astro-ph/0102236] [INSPIRE].

[20] J.-O. Gong, Breaking scale invariance from a singular inflaton potential, JCAP 07 (2005) 015
[astro-ph/0504383] [INSPIRE].

[21] L. Covi, J. Hamann, A. Melchiorri, A. Slosar and I. Sorbera, Inflation and WMAP three year
data: Features have a Future!, Phys. Rev. D 74 (2006) 083509 [astro-ph/0606452] [INSPIRE].

[22] A. Ashoorioon and A. Krause, Power Spectrum and Signatures for Cascade Inflation,
hep-th/0607001 [INSPIRE].

[23] A. Ashoorioon, A. Krause and K. Turzynski, Energy Transfer in Multi Field Inflation and
Cosmological Perturbations, JCAP 02 (2009) 014 [arXiv:0810.4660] [INSPIRE].

[24] D. Chialva and U.H. Danielsson, Chain inflation and the imprint of fundamental physics in
the CMBR, JCAP 03 (2009) 007 [arXiv:0809.2707] [INSPIRE].

– 30 –

http://dx.doi.org/10.1016/0370-2693(80)90670-X
http://dx.doi.org/10.1016/0370-2693(80)90670-X
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B91,99"
http://inspirehep.net/search?p=find+J+"JETPLett.,33,532"
http://dx.doi.org/10.1051/0004-6361/201321569
http://arxiv.org/abs/1303.5082
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.5082
http://arxiv.org/abs/1502.02114
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.02114
http://dx.doi.org/10.1088/1475-7516/2011/01/030
http://arxiv.org/abs/1010.3693
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.3693
http://dx.doi.org/10.1016/S0550-3213(97)00431-8
http://arxiv.org/abs/hep-ph/9704286
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9704286
http://dx.doi.org/10.1088/1475-7516/2008/03/026
http://arxiv.org/abs/0802.0491
http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.0491
http://dx.doi.org/10.1088/1475-7516/2012/05/008
http://arxiv.org/abs/1201.4848
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.4848
http://dx.doi.org/10.1088/1475-7516/2013/05/006
http://arxiv.org/abs/1302.3877
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.3877
http://dx.doi.org/10.1103/PhysRevD.88.023507
http://arxiv.org/abs/1303.7004
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.7004
http://dx.doi.org/10.1088/1475-7516/2013/12/038
http://dx.doi.org/10.1088/1475-7516/2013/12/038
http://arxiv.org/abs/1307.7110
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.7110
http://dx.doi.org/10.1088/1475-7516/2014/11/032
http://arxiv.org/abs/1405.4257
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.4257
http://dx.doi.org/10.1103/PhysRevD.90.103515
http://arxiv.org/abs/1406.5466
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.5466
http://dx.doi.org/10.1142/S0218271815300232
http://arxiv.org/abs/1505.01834
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.01834
http://inspirehep.net/search?p=find+J+"JETPLett.,55,489"
http://dx.doi.org/10.1103/PhysRevD.64.123514
http://arxiv.org/abs/astro-ph/0102236
http://inspirehep.net/search?p=find+EPRINT+astro-ph/0102236
http://dx.doi.org/10.1088/1475-7516/2005/07/015
http://arxiv.org/abs/astro-ph/0504383
http://inspirehep.net/search?p=find+EPRINT+astro-ph/0504383
http://dx.doi.org/10.1103/PhysRevD.74.083509
http://arxiv.org/abs/astro-ph/0606452
http://inspirehep.net/search?p=find+EPRINT+astro-ph/0606452
http://arxiv.org/abs/hep-th/0607001
http://inspirehep.net/search?p=find+EPRINT+hep-th/0607001
http://dx.doi.org/10.1088/1475-7516/2009/02/014
http://arxiv.org/abs/0810.4660
http://inspirehep.net/search?p=find+EPRINT+arXiv:0810.4660
http://dx.doi.org/10.1088/1475-7516/2009/03/007
http://arxiv.org/abs/0809.2707
http://inspirehep.net/search?p=find+EPRINT+arXiv:0809.2707


J
C
A
P
1
0
(
2
0
1
5
)
0
6
2

[25] V. Miranda and W. Hu, Inflationary Steps in the Planck Data, Phys. Rev. D 89 (2014)
083529 [arXiv:1312.0946] [INSPIRE].

[26] A.E. Romano and A.G. Cadavid, Effects of discontinuities of the derivatives of the inflaton
potential, arXiv:1404.2985 [INSPIRE].

[27] C.P. Novaes, M. Benetti and A. Bernui, Primordial Non-Gaussianities of inflationary step-like
models, arXiv:1507.01657 [INSPIRE].

[28] Y.-F. Cai, E.G.M. Ferreira, B. Hu and J. Quintin, Searching for Features of a String Inspired
Inflationary Model with Cosmological Observations, arXiv:1507.05619 [INSPIRE].

[29] R.K. Jain, P. Chingangbam, J.-O. Gong, L. Sriramkumar and T. Souradeep, Punctuated
inflation and the low CMB multipoles, JCAP 01 (2009) 009 [arXiv:0809.3915] [INSPIRE].

[30] R.K. Jain, P. Chingangbam, L. Sriramkumar and T. Souradeep, The tensor-to-scalar ratio in
punctuated inflation, Phys. Rev. D 82 (2010) 023509 [arXiv:0904.2518] [INSPIRE].

[31] D.J.H. Chung, E.W. Kolb, A. Riotto and I.I. Tkachev, Probing Planckian physics: Resonant
production of particles during inflation and features in the primordial power spectrum, Phys.
Rev. D 62 (2000) 043508 [hep-ph/9910437] [INSPIRE].

[32] O. Elgaroy, S. Hannestad and T. Haugboelle, Observational constraints on particle production
during inflation, JCAP 09 (2003) 008 [astro-ph/0306229] [INSPIRE].

[33] G.J. Mathews, D.J.H. Chung, K. Ichiki, T. Kajino and M. Orito, Constraints on resonant
particle production during inflation from the matter and CMB power spectra, Phys. Rev. D 70
(2004) 083505 [astro-ph/0406046] [INSPIRE].

[34] A.E. Romano and M. Sasaki, Effects of particle production during inflation, Phys. Rev. D 78
(2008) 103522 [arXiv:0809.5142] [INSPIRE].

[35] N. Barnaby and Z. Huang, Particle Production During Inflation: Observational Constraints
and Signatures, Phys. Rev. D 80 (2009) 126018 [arXiv:0909.0751] [INSPIRE].

[36] M.A. Fedderke, E.W. Kolb and M. Wyman, Irruption of massive particle species during
inflation, Phys. Rev. D 91 (2015) 063505 [arXiv:1409.1584] [INSPIRE].

[37] C. Gordon, D. Wands, B.A. Bassett and R. Maartens, Adiabatic and entropy perturbations
from inflation, Phys. Rev. D 63 (2001) 023506 [astro-ph/0009131] [INSPIRE].

[38] S. Groot Nibbelink and B.J.W. van Tent, Density perturbations arising from multiple field
slow roll inflation, hep-ph/0011325 [INSPIRE].

[39] S. Groot Nibbelink and B.J.W. van Tent, Scalar perturbations during multiple field slow-roll
inflation, Class. Quant. Grav. 19 (2002) 613 [hep-ph/0107272] [INSPIRE].

[40] S.H.H. Tye, J. Xu and Y. Zhang, Multi-field Inflation with a Random Potential, JCAP 04
(2009) 018 [arXiv:0812.1944] [INSPIRE].

[41] S.H.H. Tye and J. Xu, A Meandering Inflaton, Phys. Lett. B 683 (2010) 326
[arXiv:0910.0849] [INSPIRE].

[42] A.J. Tolley and M. Wyman, The Gelaton Scenario: Equilateral non-Gaussianity from
multi-field dynamics, Phys. Rev. D 81 (2010) 043502 [arXiv:0910.1853] [INSPIRE].

[43] S. Cremonini, Z. Lalak and K. Turzynski, On Non-Canonical Kinetic Terms and the Tilt of
the Power Spectrum, Phys. Rev. D 82 (2010) 047301 [arXiv:1005.4347] [INSPIRE].

[44] S. Cremonini, Z. Lalak and K. Turzynski, Strongly Coupled Perturbations in Two-Field
Inflationary Models, JCAP 03 (2011) 016 [arXiv:1010.3021] [INSPIRE].

[45] T. Battefeld and R.C. Freitas, A Universal Bound on Excitations of Heavy Fields during
Inflation, JCAP 09 (2014) 029 [arXiv:1405.7969] [INSPIRE].

– 31 –

http://dx.doi.org/10.1103/PhysRevD.89.083529
http://dx.doi.org/10.1103/PhysRevD.89.083529
http://arxiv.org/abs/1312.0946
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.0946
http://arxiv.org/abs/1404.2985
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.2985
http://arxiv.org/abs/1507.01657
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.01657
http://arxiv.org/abs/1507.05619
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.05619
http://dx.doi.org/10.1088/1475-7516/2009/01/009
http://arxiv.org/abs/0809.3915
http://inspirehep.net/search?p=find+EPRINT+arXiv:0809.3915
http://dx.doi.org/10.1103/PhysRevD.82.023509
http://arxiv.org/abs/0904.2518
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.2518
http://dx.doi.org/10.1103/PhysRevD.62.043508
http://dx.doi.org/10.1103/PhysRevD.62.043508
http://arxiv.org/abs/hep-ph/9910437
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9910437
http://dx.doi.org/10.1088/1475-7516/2003/09/008
http://arxiv.org/abs/astro-ph/0306229
http://inspirehep.net/search?p=find+EPRINT+astro-ph/0306229
http://dx.doi.org/10.1103/PhysRevD.70.083505
http://dx.doi.org/10.1103/PhysRevD.70.083505
http://arxiv.org/abs/astro-ph/0406046
http://inspirehep.net/search?p=find+EPRINT+astro-ph/0406046
http://dx.doi.org/10.1103/PhysRevD.78.103522
http://dx.doi.org/10.1103/PhysRevD.78.103522
http://arxiv.org/abs/0809.5142
http://inspirehep.net/search?p=find+EPRINT+arXiv:0809.5142
http://dx.doi.org/10.1103/PhysRevD.80.126018
http://arxiv.org/abs/0909.0751
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.0751
http://dx.doi.org/10.1103/PhysRevD.91.063505
http://arxiv.org/abs/1409.1584
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.1584
http://dx.doi.org/10.1103/PhysRevD.63.023506
http://arxiv.org/abs/astro-ph/0009131
http://inspirehep.net/search?p=find+EPRINT+astro-ph/0009131
http://arxiv.org/abs/hep-ph/0011325
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0011325
http://dx.doi.org/10.1088/0264-9381/19/4/302
http://arxiv.org/abs/hep-ph/0107272
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0107272
http://dx.doi.org/10.1088/1475-7516/2009/04/018
http://dx.doi.org/10.1088/1475-7516/2009/04/018
http://arxiv.org/abs/0812.1944
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.1944
http://dx.doi.org/10.1016/j.physletb.2009.12.045
http://arxiv.org/abs/0910.0849
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.0849
http://dx.doi.org/10.1103/PhysRevD.81.043502
http://arxiv.org/abs/0910.1853
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.1853
http://dx.doi.org/10.1103/PhysRevD.82.047301
http://arxiv.org/abs/1005.4347
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.4347
http://dx.doi.org/10.1088/1475-7516/2011/03/016
http://arxiv.org/abs/1010.3021
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.3021
http://dx.doi.org/10.1088/1475-7516/2014/09/029
http://arxiv.org/abs/1405.7969
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.7969


J
C
A
P
1
0
(
2
0
1
5
)
0
6
2

[46] X. Gao and J.-O. Gong, Towards general patterns of features in multi-field inflation, JHEP
08 (2015) 115 [arXiv:1506.08894] [INSPIRE].

[47] G. Shiu and J. Xu, Effective Field Theory and Decoupling in Multi-field Inflation: An
Illustrative Case Study, Phys. Rev. D 84 (2011) 103509 [arXiv:1108.0981] [INSPIRE].

[48] X. Chen, M.H. Namjoo and Y. Wang, Models of the Primordial Standard Clock, JCAP 02
(2015) 027 [arXiv:1411.2349] [INSPIRE].

[49] A. Achucarro, J.-O. Gong, S. Hardeman, G.A. Palma and S.P. Patil, Effective theories of
single field inflation when heavy fields matter, JHEP 05 (2012) 066 [arXiv:1201.6342]
[INSPIRE].

[50] A. Achucarro, V. Atal, S. Cespedes, J.-O. Gong, G.A. Palma and S.P. Patil, Heavy fields,
reduced speeds of sound and decoupling during inflation, Phys. Rev. D 86 (2012) 121301
[arXiv:1205.0710] [INSPIRE].

[51] A. Achucarro, J.-O. Gong, S. Hardeman, G.A. Palma and S.P. Patil, Mass hierarchies and
non-decoupling in multi-scalar field dynamics, Phys. Rev. D 84 (2011) 043502
[arXiv:1005.3848] [INSPIRE].

[52] D. Baumann and D. Green, Equilateral Non-Gaussianity and New Physics on the Horizon,
JCAP 09 (2011) 014 [arXiv:1102.5343] [INSPIRE].

[53] A. Avgoustidis, S. Cremonini, A.-C. Davis, R.H. Ribeiro, K. Turzynski and S. Watson,
Decoupling Survives Inflation: A Critical Look at Effective Field Theory Violations During
Inflation, JCAP 06 (2012) 025 [arXiv:1203.0016] [INSPIRE].

[54] C.P. Burgess, M.W. Horbatsch and S. Patil, Inflating in a Trough: Single-Field Effective
Theory from Multiple-Field Curved Valleys, JHEP 01 (2013) 133 [arXiv:1209.5701]
[INSPIRE].

[55] R. Gwyn, G.A. Palma, M. Sakellariadou and S. Sypsas, Effective field theory of weakly coupled
inflationary models, JCAP 04 (2013) 004 [arXiv:1210.3020] [INSPIRE].
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