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Abstract

Non-attractor models of inflation are characterized by the super-horizon evolution of

curvature perturbations, introducing a violation of the non-Gaussian consistency relation

between the bispectrum’s squeezed limit and the power spectrum’s spectral index. In this

work we show that the bispectrum’s squeezed limit of non-attractor models continues to

respect a relation dictated by the evolution of the background. We show how to derive

this relation using only symmetry arguments, without ever needing to solve the equations

of motion for the perturbations.
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1 Introduction

The measurement of departures from a purely Gaussian distribution of primordial curvature

perturbations would give us access to exquisite details about the physics underlying cosmic

inflation [1–3]. Indeed, different models of inflation predict distinctive deviations from Gaus-

sianity that are sensitive to the perturbations’ self-interactions, as well as their interactions

with other degrees of freedom that might have existed during inflation [4,5]. This realization

has motivated an extensive amount of research over the past decade on the subject of primor-

dial non-Gaussianity, both theoretically [6–13] and observationally [14–17]. Although current

constraints on non-Gaussianity coming from Cosmic Microwave Background (CMB) observa-

tions remain poor [18–20], future Large Scale Structure surveys [21–23] and Lyman-α Forest

observations [24–26] promise to substantially improve our knowledge about non-Gaussianity,

giving us better insights into the elusive nature of inflation.

Because a complete characterization of non-Gaussianity is somewhat out of reach, it is cus-

tomary to parametrize non-Gaussian departures by defining the bispectrum BR(k1,k2,k3),

which determines the 3-point correlation function of adiabatic curvature perturbations, hereby

denoted by R, in momentum space

〈R(k1)R(k2)R(k3)〉 ≡ (2π)3δ3(k1 + k2 + k3)BR(k1,k2,k3), (1.1)

where the Dirac-delta function appears as a consequence of the homogeneity and isotropy of

the inflationary background. At first order, the functional dependence of BR on the three

momenta k1, k2 and k3 is determined by the non-linear evolution of R, parametrized by tree-

level cubic interactions appearing in the Lagrangian describing its perturbative dynamics.

As a consequence, in the simplest class of inflationary models —namely single field slow-roll

inflation— one predicts a scale invariant bispectrum with an amplitude suppressed by the

slow-roll parameters [9,10], but with a shape determined by the configuration of the momenta,

restricted to the shell k1 + k2 + k3 = 0. More exotic single-field (non-canonical) models of

inflation may predict substantially larger departures from Gaussianity [27,28], some of them

even showing strong departures from scale invariance [29–33]. These models have been syste-

matically analyzed with the help of the effective field theory of inflation approach [34], which

allows one to study both canonical and non-canonical models of inflation within a general

framework without the need of specifying the physics underlying inflation [35–40]. In this

framework, deviations from canonical inflation are parametrized by the sound speed at which

curvature perturbations propagate (among other quantities). It is now well understood that

a suppressed sound speed increases the strength of curvature perturbations’ self-interactions,

therefore enhancing the amount of primordial non-Gaussianity generated during inflation.

Models characterized for allowing a suppressed value of the sound speed, with distinctive

non-Gaussian shapes, include P (X)-inflation [27, 28, 41], DBI-inflation [42, 43], and the low

energy limit of multi-field inflation with heavy fields [44–46], just to mention a few. On the

other hand, it is also possible to have large non-Gaussianity appearing as a consequence of

nontrivial initial states [47–50].
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One of the most outstanding discoveries in the study of non-Gaussianity is the so-called

consistency relation, first reported by Maldacena in ref. [10]. This relation tells us that in the

squeezed limit (that is, the configuration where the size of one of the three momenta k1, k2

and k3 is much smaller than the remaining two) the bispectrum is determined by the power

spectrum PR and its spectral index nR in the following specific way

lim
k3→0

BR(k1,k2,k3) =
(

nR(k3)− 1
)

PR(k1)PR(k3), (1.2)

where ki ≡ |ki|, and where PR(k) and nR are defined via:

〈R(k1)R(k2)〉 ≡ (2π)3δ(3) (k1 + k2)PR(k1), (1.3)

nR(k) ≡ 1 +
d

d ln k
ln
[

k3PR(k)
]

. (1.4)

Because both the amplitude of the power spectrum PR and its spectral index nR are fairly

well measured [51,52], this consistency relation is regarded as one of the most powerful tools

available to falsify a large variety of single field inflationary models. It is not even restricted

to slow-roll models of inflation [53]. Its elegant derivation, which will be reviewed in Sec-

tion 2, combines simple symmetry arguments with simple statistical considerations that are

independent of the dynamical details of inflation [54–56]. The basic assumption underlying

its derivation is that, during inflation, the value of every background quantity (for example

the Hubble parameter H) is uniquely determined by a single time-dependent parameter (for

instance, the value of the inflaton vacuum expectation value, were we interested in the case

of single field inflation). Models respecting this property are called attractor models, and

they are further characterized by the fact that curvature perturbations freeze after horizon

crossing. For this reason, a violation of the consistency relation, confirmed by observations,

would automatically rule out every model of inflation in which the amplitude of curvature

perturbations remained constant after horizon crossing, encompassing essentially all sensible

single-field models of inflation.

One of the preferred ways to constrain non-Gaussianity with the help of CMB observations

is by defining the so called local fNL-parameter, which is related to the squeezed limit of the

bispectrum through the relation

fNL ≡ − 5

12
lim
k3→0

BR(k1,k2,k3)

PR(k1)PR(k3)
. (1.5)

from where one reads fNL ≃ −5(nR − 1)/12 ≃ 0.02 after using the latest constraints on the

spectral index nR. However, projection effects in the measurement of the CMB preclude us

from directly measuring this predicted value of fNL, implying that the consistency relation is

in fact equivalent to fobsNL = 0 [57], which may be compared to the most recent constraints on

local non-Gaussianity [20], given by fobsNL = 0.8 ± 5.0. Thus, current observations are rather

weak in providing a useful assessment of the validity of the consistency relation. Neverthe-

less, the prospects of measuring violations to the consistency relation (1.2) has motivated a

2



fairly big amount of research devoted to the study of models of inflation where curvature per-

turbations are forced to evolve outside the horizon.1 The most prominent example of such

models is multi-field inflation, where curvature perturbations have the chance to interact

with other light degrees of freedom even after horizon crossing, allowing for large deviations

of the consistency relation [63–65]. Another example is the case of warm inflation [66], in

which the inflaton remains coupled to a thermal bath. However, it was recently realized that

curvature perturbations may also grow after horizon crossing in purely single field models

characterized by a “non-attractor” evolution of their background. For instance, the authors

of ref. [67] (see also [68]) studied the generation of non-Gaussianity in a class of models known

as ultra slow-roll inflation [69,70], where the inflaton potential is exactly flat, precluding the

existence of an attractor regime. In such a model, curvature perturbations grow outside the

horizon at a dramatic rate, implying a squeezed limit for the bispectrum of the form

lim
k3→0

BR(k1,k2,k3) = −6PR(k1)PR(k3), (1.6)

corresponding to fNL = 5/2. Given that in these models the power spectrum is almost scale

invariant nR ≃ 1, we see that eq. (1.6) represents a flagrant violation of the consistency

relation depicted in eq. (1.2). Furthermore, it has been argued that large violations of the

consistency relation may constitute a generic feature of non-attractor models [72, 73] which

may provide an alternative paradigm —to that offered by slow-roll inflation— in order to

explain the generation and evolution of primordial curvature perturbations.

After accepting the fact that in this class of models the consistency relation is violated due

to the super-horizon evolution of curvature perturbations, we ought to ask whether there are

alternative explanations behind eq. (1.6) other than a brute force computation based on the

dynamics of the perturbations. The purpose of this article is to clarify the underlying nature

of the violation of the consistency relation in models with super-horizon evolution. To this

extent, we will focus our discussion on single field models with non-attractor backgrounds.

Our aim is to show that models displaying a violation of the consistency relation are still

restricted to respect well defined relations between the squeezed limit of the bispectrum and

the power spectrum, similar to Maldacena’s consistency relation. We will show that, in fact,

the same arguments leading to Maldacena’s consistency relation, if phrased correctly, will still

reproduce the result expressed in eq. (1.6) found in ref. [67]. In other words, the squeezed

limit may be determined purely from symmetry and statistical arguments, without the need

of understanding the details about the dynamics of the specific system under interest. We

will do this first for ultra slow-roll inflation, and then extend our results to more general non-

attractor models. In this regard, we deduce a general expression determining the bispectrum’s

squeezed limit, given by

lim
k3→0

BR(k1,k2,k3) =
3

c2s
(4 + η)PR(k1)PR(k3), (1.7)

1It is also possible to violate the consistency relation with a non-trivial initial state for curvature pertur-

bations. See for instance refs. [58–62].
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where η = ǫ̇/Hǫ (with ǫ = −Ḣ/H2 and H being the Hubble expansion rate during inflation)

and cs is the speed of sound of curvature perturbations. In this expression, the value of

both η and cs will depend on the specific model allowing for non-attractor solutions of the

background.

We have organized this article as follows. In Section 2 we review the derivation of the

consistency relation (1.2) closely following the discussions found in refs. [54, 55]. Then, in

Section 3 we briefly review the model of ultra slow-roll inflation, which is the simplest model

admitting a non-attractor behavior of the background. Section 4 is devoted to the study of

the superhorizon behaviour of the inflaton and metric (scalar) perturbations in this model. In

Section 5 we show how the same arguments used to derive Maldacena’s consistency relation

can help to set up a modified relation valid for ultra slow-roll inflation, yielding the same

result derived in ref. [67] by a direct computation. Then, in Section 6 we generalize the

arguments developed in the previous sections to more general non-attractor models, based

on P (X)-models of inflation. Finally, in Section 7, we provide our concluding remarks.

Before commencing, a quick word about units and notation: We shall use natural units

whereby c = 1, ~ = 1 and M2
Pl = 1/8πGN = 1. In addition, in this paper we formally

denote the gauge invariant co-moving curvature perturbation by R, which in co-moving

gauge coincides with the spatial metric perturbation (usually denoted by ψ). Furthermore,

there is a sign difference between our convention for R (and ψ) and the convention used in,

among others, references [10, 54, 67]. See for example our metric in (2.1). At every stage

where we cite results obtained in these references, we have accounted for that sign difference.

2 Review of the consistency relation

In this section we offer a review of the derivation of the consistency relation (1.2), closely

following the discussions of refs. [54] and [55] (see also ref. [74,75]). Let us start by recalling

that the perturbed Friedman-Robertson-Walker (FRW) metric in co-moving gauge may be

written with the help of the Arnowitt-Deser-Misner formalism [76] as

ds2 = −N2dt2 + a2(t)e−2Rδij(dx
i +N idt)(dxj +N jdt), (2.1)

where a(t) is the scale factor parametrizing the expansion of spatial foliations during inflation,

and R represents the adiabatic curvature perturbation. In addition, N and N i are the usual

lapse and shift functions respectively, to be determined in terms of other quantities by solving

constraint equations. It is customary to define δN through

N ≡ 1 + δN, (2.2)

in which case the background FRW metric is recovered by setting R = 0, δN = 0 and

N i = 0. Let us notice that an immediate consequence of the metric (2.1) is a symmetry

under simultaneous rescalements of the scale factor and the co-moving coordinates:

a(t) → a′(t) = a(t)e∆C , dx→ dx′ = dxe−∆C . (2.3)
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This rescalement does not affect other observable background quantities, such as the Hubble

expansion rate H = ȧ/a. In addition, notice that the rescalement of the scale factor may be

absorbed in the curvature perturbation

R → R′ = R−∆C, (2.4)

implying that the equations of motion for R must admit at least one solution of the form

R = constant, which reminds us that, after all, we can only measure gradients of R.

2.1 Attractor backgrounds and long wavelength modes

Our main focus in this section are models of inflation characterized by a background with

an attractor behavior. These are models where every background quantity is uniquely de-

termined by a single parameter, which may be used as a replacement of time. The simplest

example of such backgrounds is offered by single field slow-roll inflation, where the back-

ground quickly asymptotes to an attractor trajectory respecting equations of motion of the

form

3Hφ̇+
∂V

∂φ
= 0, 3H2 = V (φ), (2.5)

where H = ȧ/a is the Hubble expansion rate. These equations tell us that both H and φ̇ are

completely determined by the value of φ, irrespective of the initial conditions. Universes fol-

lowing this feature have been dubbed single-clock universes by the authors of ref. [54]. There

is a direct consequence on the dynamics of perturbations springing out from this behavior.

First, notice that since we are working in co-moving gauge (that is, scalar perturbations are

only present in the metric via eq. (2.1)), then every patch of the universe is determined by

the same value of φ, implying that every patch is characterized by the same Hubble parame-

ter H. Second, recall that the wavelength of any perturbation in a FRW background grows

proportionally to the scale factor a(t). This means that we can split both R and δN in short

and long wavelength contributions

R = Rs +Rℓ, δN = δNs + δNℓ, (2.6)

whereRℓ and δNℓ contain contributions with frequencies smaller thanH. A physical observer

who has access only to short wavelength perturbations will not be able to distinguish the long

wavelength contributions Rℓ and δNℓ from the background. To understand the consequence

of this, let us consider a reference time t0 and insert back the long wavelength contributions

of the splitting (2.6) in the metric (2.1). We find

ds2
∣

∣

x
= −dt2B + a2eff(tB ,x)δijdx

idxj , (2.7)

where tB and aeff are given by:

tB(t,x) = t+ δt(t,x), δt(t,x) ≡
∫ t

t0

dt′δNℓ(t
′,x), (2.8)

aeff(tB ,x) = a(t(tB))e
−Rℓ(t,x), (2.9)

φeff(tB ,x) = φ(t(tB)), (2.10)
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where t(tB) = tB − δt (notice that we have conveniently set δt = 0 for t = t0). Now, we

wish to examine how the long wavelength fields affect the local background about x at the

vicinity of t = t0. First, notice that aeff has to be a solution of the same equations of motions

respected by the original solution a(t). Given that proper time at the x-patch is given by tB ,

the only possibility for aeff to satisfy these equations is that it consists of a evaluated at tB ,

up to a multiplicative constant allowed by the symmetry (2.3) of the background:

aeff = a(tB)e
−∆C . (2.11)

By equating this with (2.9) we find

a(t)e−Rℓ = a(t+ δt)e−∆C . (2.12)

Then, expanding the right hand side about t, we obtain

a(t)e−Rℓ ≃ a(t) [1 +Hδt(t,x)] e−∆C ≃ a(t)eHδt(t,x)−∆C . (2.13)

Comparing this result with (2.11) we see that Rℓ = ∆C −Hδt, from where we derive that

Ṙℓ = −Ḣδt − HδNℓ. Then, by disregarding Ḣδt ≃ ḢNℓ(t − t0), which is sub-leading

compared to the other two terms, we conclude that:

δNℓ = −Ṙℓ

H
. (2.14)

Notice that this is the usual relation obtained by solving the constraint equation for the shift

δN at linear order. While this result is valid for all wavelengths, our derivation is only valid

for long wavelength modes.

Up to this point our arguments have been rather general, and valid for both attractor and

non-attractor backgrounds. To see the implications of dealing with an attractor background,

let us go back to eq. (2.10). Recall that, since we are in co-moving gauge, in an attractor

background there is only one value of φ characterizing the background at a given time t. In

particular, the value of the background field at the local patch centered at x must coincide

with φ(tB):

φeff(tB ,x) = φ(tB). (2.15)

By comparing this expression with (2.10) we see that δNℓ = 0. In addition, it also implies

that

Rℓ = constant, (2.16)

is the only allowed behavior for long wavelength curvature perturbations in attractor back-

grounds. In other words, as their wavelengths are stretched, curvature perturbations must

freeze (implying that the second long wavelength mode must decay).
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2.2 The consistency relation

Having established some properties of attractor backgrounds, let us now proceed to derive

the consistency relation. We want to compute 〈R(k1)R(k2)R(k3)〉 in the squeezed limit

where k3 ≪ k1, k2. In this limit, the long mode k3 has left the horizon much earlier than

those parametrized by k1 and k2. We can then compute the correlation function between

R(k1) and R(k2) in a background renormalized by R(k3). We begin in position space

(parametrized by co-moving coordinates) by computing the two-point correlation function

〈RR〉(x1,x2) ≡ 〈R(x1)R(x2)〉 in a patch of the universe centered at (x1+x2)/2 and inflating

according to the effective scale factor:

aeff = a(t)e−R̄ℓ , R̄ℓ = Rℓ

(x1 + x2

2

)

. (2.17)

Now, we may choose to rescale aeff back to a as long as we properly rescale the co-moving

coordinates. In other words, we may write

〈RR〉B(x1,x2) = 〈RR〉0(e−R̄ℓx1, e
−R̄ℓx2), (2.18)

where 〈RR〉0 denotes the computation of the two-point correlation function in a background

with an expansion dictated by a(t) alone. However, since 〈RR〉0(x1,x2) is just the two-point

correlation function computed in the true homogenous and isotropic background, the result

must depend on the difference |x1 − x2|. This further implies that:

〈RR〉B(x1,x2) = 〈RR〉0(e−R̄ℓ |x1 − x2|). (2.19)

We may now Taylor expand about Rℓ = 0. Keeping the first two terms of the expansion, it

is straightforward to find:

〈RR〉B(x1,x2) = 〈RR〉0(|x1 − x2|)−Rℓ

(x1 + x2

2

) d

d ln |x1 − x2|
〈RR〉0(|x1 − x2|) + · · · .

(2.20)

Next, we can move the expressions to Fourier space. By performing a Fourier transformation

with respect to x1 and x2, it is direct to find

〈RR〉B(k1,k2) ≃ 〈RR〉0(ks) +Rℓ (kℓ)
1

k3s

d

d ln ks

[

k3sPR(ks)
]

, (2.21)

where kℓ ≡ k1 + k2 and ks ≡ (k1 − k2)/2. As a last step, we may correlate the result

of eq. (2.21) with R(k3). By doing this, the first term at the right hand side of eq. (2.21)

averages out, returning:

〈〈RR〉B(k1,k2)R(k3)〉 ≃ 〈Rℓ(kℓ)R(k3)〉
1

k3s

d

d ln ks

[

k3sPR(ks)
]

. (2.22)

The left hand side of this expression gives us back 〈R(k1)R(k2)R(k3)〉k3→0, finally leading

to the desired result

lim
k3→0

BR(k1,k2,k3) =
(

nR(k3)− 1
)

PR(k1)PR(k3), (2.23)
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where the spectral index is identified with:

nR(k) = 1 +
d

d ln k
ln
[

k3PR(k)
]

. (2.24)

The consistency relation tells us that any measurement of fNL larger than 1−nR ≃ 0.04 will

rule out every model in which the superhorizon perturbations Rℓ freeze, i.e. every attractor

adiabatic single field slow-roll inflation model. On the other hand, in the next section we will

see that in the non-attractor model of ultra slow-roll inflation, the modes Rℓ evolve rapidly

outside the horizon. Then it does not come as a surprise that the consistency relation breaks

down, as reported in [67].

3 Non-attractor backgrounds: Ultra slow-roll inflation

In this section we examine some aspects of non-attractor models, where the evolution of the

background keeps some memory of the initial conditions. To keep our discussion simple we

will focus our attention on the particular case of ultra slow-roll inflation studied in refs. [69,

70]. We shall examine more general non-attractor backgrounds in Section 6.

3.1 Ultra slow-roll inflation

Ultra slow-roll inflation was first introduced in ref. [69] and further worked out in ref. [70]. In

its simplest version, ultra slow-roll inflation is realized by an exactly flat scalar field potential

of the form

V (φ) = V0, (3.1)

where V0 is a constant. Evidently, this potential does not constitute a very realistic choice (see

for example the discussion in [68]) but it allows us to study the evolution of perturbations in

backgrounds that are dramatically different from those encountered in conventional slow-roll

inflation. Let us notice that eq. (3.1) automatically implies that the theory is invariant under

the shift symmetry φ→ φ′ = φ+∆φ in addition to the rescaling of the scale factor examined

in Section 2. We will come back to the consequences of this symmetry in a moment. The

background equations of motion of the system are

φ̈+ 3Hφ̇ = 0, (3.2)

6H2 = φ̇2 + 2V0. (3.3)

The first equation already tells us that there is no such thing as an attractor behavior

dominated by the friction term 3Hφ̇ except for the trivial solution φ̇ = 0. By adopting the

notation H = H(φ), these equations can be combined into a single equation given by:

3H2 − 2(H ′)2 = V0. (3.4)

The solution to this second equation gives us H in terms of φ once we have adopted a set

of boundary conditions. For definiteness, we choose these conditions in such a way that

8



3H2 = V0 at φ = 0. This condition implies:

H(φ) =

√

V0
3

cosh
(

√

3/2 φ
)

. (3.5)

To continue, we may choose to study inflation in the range φ < 0. Then, the equation of

motion for φ(t) may be integrated once to give:

φ̇ = −
√

2V0 sinh
(

√

3/2 φ
)

. (3.6)

These equations permit us to compute various background quantities in terms of φ. For

instance, the scale factor a(φ) is found to be

a(φ) = a0

[

− sinh
(

√

3/2 φ
)]−1/3

, (3.7)

whereas the slow-roll parameters ǫ ≡ −Ḣ/H2, η ≡ ǫ̇/(ǫH) and ξ ≡ η̇/(ηH) are respectively

found to be given by

ǫ(φ) = 3 tanh2
(

√

3/2φ
)

, (3.8)

η(φ) = −6 cosh−2
(

√

3/2 φ
)

, (3.9)

ξ(φ) = 6 tanh2
(

√

3/2φ
)

. (3.10)

These results, in combination with eq. (3.6), show that in the limit t→ +∞ the background

parameters have the following asymptotic behavior:

ǫ→ a−6, η → −6, ξ → a−6. (3.11)

Thus we see that this inflationary background is characterized by a substantially large value

of η, offering a large departure from conventional slow-roll inflationary models. In what

follows, we will restrict our analysis to the particular case of ǫ ≪ 1, which is necessary to

reproduce a scale invariant power spectrum (See appendix A).

3.2 Long wavelength perturbations

Just as we did in Section 2.1, we may infer the behavior of long wavelength modes in co-

moving gauge by examining the symmetries of the non-attractor background at hand. To

start with, recall that the ultra slow-roll background of eq. (3.1) is characterized by the

symmetry:

φ→ φ′ = φ+∆φ. (3.12)

Let us emphasize that, as opposed to the case of attractor backgrounds, in ultra slow-roll

inflation there are no solutions uniquely linking (background quantities like) H and φ. A

variation of the initial conditions leads to a variation of the relation between H and φ. This

implies that, as the wavelength of perturbations are stretched by the expansion of space, the
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long wavelength contribution to Nℓ of eq. (2.6) may modify the background value of φ felt

by sub-horizon modes, just as in eq (2.10), in a way consistent with the symmetry (3.12). In

other words, this time, in addition to eq. (2.11), we may have

φeff (tB,x) = φ(tB) + ∆φ, (3.13)

where ∆φ is a constant incorporating the effects of long-wavelength perturbations via the

shift function Nℓ (but should not be confused with perturbations of the field φ, which in

co-moving gauge are turned off). From (2.10) we see that the previous equation is equivalent

to

φ(t) = φ(t+ δt) + ∆φ. (3.14)

This implies that to linear order:

δt = −∆φ

φ̇
. (3.15)

Then, using this result in combination with (2.11) and (2.9) we obtain

Rℓ = ∆C +
H

φ̇
∆φ. (3.16)

Recalling eqs. (3.5) and (3.6) of the previous section, we see that the asymptotic behavior of

Rℓ soon or later will be dominated by ∆φ which implies a growing mode of the form:

Rℓ ∼ a3. (3.17)

That is, ultra slow-roll inevitably contains super-horizon evolution of curvature perturbations.

We are for sure not the first ones to achieve this result, see for example [67, 70]. However,

we would like to emphasize that in this case it has been exclusively deduced with help of

symmetry considerations.

3.3 A violation of the consistency relation?

The result expressed in eq. (3.17) tells us that the argument used to derive the consistency

relation involving the rescalement of the co-moving coordinates cannot be repeated without

carefully taking into account the additional contribution from φeff felt by sub-horizon modes.

Indeed, a brute force computation of the squeezed limit of non-Gaussianity leads to a violation

of the consistency relation [67] in the form:

lim
k3→0

BR(k1,k2,k3) = −6PR(k1)PR(k3). (3.18)

This result signals a violation of the consistency relation (2.23) which in slow-roll attractor

backgrounds prescribes

lim
k3→0

BR(k1,k2,k3) = −(η + 2ǫ)PR(k1)PR(k3), (3.19)
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where we have used the standard relation between the spectral index and the slow-roll param-

eters 1−nR = η+2ǫ. In this case, the mere fact that a model of adiabatic single field slow roll

inflation can produce an order-one non-Gaussianity (one gets fNL = 5/2) shows the apparent

breakdown of the consistency condition2. Thus, as the consistency relation is supposed to be

valid for all adiabatic single-clock models of inflation, the model of ultra slow-roll inflation

seems to provide a counterexample. However, in section 5 we will show how a generalized

version of the consistency relation still holds for the model of ultra slow-roll inflation.

4 Freezing of superhorizon perturbations

Before analyzing the squeezed limit in the context of non-attractor models, let us briefly

analyze the non-linear relation between curvature perturbations and inflaton perturbations

in the context of ultra slow-roll. Up to this point, we have been working with adiabatic

perturbationsR in co-moving gauge, where inflaton perturbations are absent. More generally,

R is a gauge invariant quantity that reduces to spatial curvature perturbations of the metric

ψ under the condition that inflaton perturbations δφ vanish:

R|δφ=0 = ψ. (4.1)

Alternatively, we may work in flat gauge, and define a gauge invariant perturbation Q that

reduces to inflaton perturbations δφ under the condition that spatial curvature perturbations

of the metric ψ vanish:

Q|ψ=0 = δφ, (4.2)

It is then possible to find (see for instance [10]) that R and Q are non-linearly related, up to

quadratic order, in the following way:

R =
H

φ̇
Q+

η

4

H2

φ̇2
Q2 − H

φ̇2
QQ̇+ · · · , (4.3)

or equivalently

Q =
φ̇

H
R+

φ̇

H

η

4
R2 +

φ̇

H2
RṘ+ · · · , (4.4)

where the ellipses “· · · ” represent terms with spatial gradients. Now, as we have seen, in

conventional slow-roll inflation R freezes at long wavelengths, implying that Ṙℓ → 0 fast

enough to imply the relation:

Slow-roll: Qℓ =
φ̇

H
Rℓ +

φ̇

H

η

4
R2
ℓ , Rℓ =

H

φ̇
Qℓ −

H2

φ̇2
η

4
Q2
ℓ . (4.5)

2Note that the disagreement between (3.18) and (3.19) continues to hold in the decoupling limit: inserting

ǫ → 0 and η → −6 still produces a sign difference between the two. It is of course not completely fair to

compare the two results in such a way, since the derivation of the result (3.19) supposes ǫ, η ≪ 1.
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However, in the case of ultra slow-roll we have that Rℓ ∝ a3, from where we read Ṙℓ = 3HRℓ,

giving us back the relation

Ultra slow-roll: Qℓ =
φ̇

H
Rℓ −

φ̇

H

η

4
R2
ℓ , Rℓ =

H

φ̇
Qℓ +

H2

φ̇2
η

4
Q2
ℓ , (4.6)

where we have used η = −6 + 2ǫ. To exploit these relations, let us examine what happens if

we were to expand a few quantities encountered in Section 2 up to second order in the long

wavelength perturbations. First, if we expand (2.12) about t up to second order we find:

a(t)e−Rℓ ≃ a(t)

[

1 +Hδt(t,x) +
1

2
H2(1− ǫ)δt2

]

e−∆C ≃ a(t)eHδt(t,x)−
1

2
ǫH2δt2−∆C . (4.7)

This relation tells us that

Rℓ = ∆C −Hδt(t,x) +
1

2
ǫH2δt2. (4.8)

On the other hand, by expanding (3.14) about t to second order, we find

φ(t) ≃ φ(t) + φ̇δt+
1

2
φ̈δt2 +∆φ

≃ φ(t) + φ̇δt− 3

2
Hφ̇δt2 +∆φ, (4.9)

where we used the background equation of motion φ̈+ 3Hφ̇ = 0. This equation allows us to

deduce δt up to second order in ∆φ:

δt = −∆φ

φ̇
+

3

2

H

φ̇2
∆φ2. (4.10)

Plugging this result back into eq. (4.8) we finally deduce

Rℓ = ∆C +
H

φ̇
∆φ− 3− ǫ

2

H2

φ̇2
∆φ2, (4.11)

which, after noticing that η = −6 + 2ǫ, we see that is precisely consistent with (4.6) once

we replace Qℓ → ∆φ (and disregard ∆C). Thus, we see that Q must freeze in order to have

a long wavelength limit consistent with the symmetries of the background. In fact, a brute

force computation reassures us that Q indeed freezes [70]. For instance, to second order, the

action for Q is found to be given by:

S
(2)
Q

=
1

2

∫

d4xa3
[

Q̇2 − 2ǫV0Q2
]

. (4.12)

Notice the presence of the mass term proportional to ǫ which in fact breaks the shift symmetry

φ → φ′ = φ + ∆φ shared by the background. However, since ǫ ≪ 1 and ǫ ∝ a−6 it is still

compatible with the freezing of Q. To see this, we may perform the following field redefinition

u = Q/f(φ) with f a function of the background field φ. The quadratic action in terms of u

then reads

S(2)
u =

1

2

∫

d4xa3
(

f2u̇2 + φ̇2
[

ff ′′ + · · ·
]

u2
)

, (4.13)
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where the ellipses “· · · ” represents other terms containing f and its derivatives with respect

to φ. To find the freezing solutions for u, the part in square brackets above needs to vanish.

This gives us a second order equation for f . One of the solutions will correspond to u = R
(there is still a constant mode in R, but it is subdominant compared to the other mode which

grows as a3). The other solution corresponds to u = Q(1 +O(ǫ)), which is just another way

of stating that (the dominant mode of) Q freezes up to all orders in the perturbations in the

decoupling limit ǫ→ 0.

5 A consistency relation for ultra slow-roll inflation

Our next goal is to compute 〈R(k1)R(k2)R(k3)〉 in the squeezed limit k3 ≪ k1, k2 for ultra

slow-roll inflation, employing symmetry arguments as in the case of attractor models. As

we have discussed in the previous sections, the main challenge is to take into account the

super-horizon evolution of curvature perturbations R. To proceed, we adopt the flat gauge,

whereby spatial curvature perturbations ψ are turned off. In this gauge the metric line

element takes the form

ds2 = −N2dt2 + a2(t)δij(dx
i +N idt)(dxj +N jdt), (5.1)

and scalar perturbations enter as excitations of the inflaton field:

φ(x, t) = φ(t) +Q(x, t). (5.2)

As argued in the previous section, the symmetry of the theory implies that Q(x, t) asymptotes

to a constant on super-horizon scales. However, given that we derived this result in co-moving

gauge, it is instructive to show how this result is recovered in flat gauge. This time, we must

split both Q and N into short and long wavelength contributions of the form

Q = Qs +Qℓ, N = Ns +Nℓ. (5.3)

Then, a patch of the universe centered at x will be characterized by a background with an

effective field φeff and an effective scale factor aeff given by

φeff(tB ,x) = φ(t(tB)) +Qℓ(t,x), (5.4)

aeff(tB ,x) = a(t(tB)), (5.5)

where t(tB) = tB − δt and tB is given by eq. (2.8). Now, notice that the only form for aeff
consistent with the symmetries of the background is aeff = a(tB)e

∆C , with ∆C a constant.

This implies that:

a(t) = a(t+ δt)e−∆C ≃ ae−∆C+Hδt. (5.6)

Then, we see that δt = ∆C/H, or equivalently, δNℓ ∝ dH−1/dt. As a consequence, δNℓ

vanishes quickly

δNℓ ∝ ǫ→ a−6, (5.7)
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and the only long wavelength contribution to φeff is via Qℓ as:

φeff(t,x) = φ(t) +Qℓ(t,x). (5.8)

To continue, given that Qℓ → constant, we may compute the three-point correlation func-

tion 〈Q(k1)Q(k2)Q(k3)〉 in the squeezed limit k3 ≪ k1, k2 using the same arguments of

Section 2.2. To this extent, we start by computing the two-point correlation function

〈QQ〉(x1,x2) ≡ 〈Q(x1)Q(x2)〉 in a patch of the universe, centered at (x1 + x2)/2 which

feels a background given by

φeff = φ(t) +Qℓ

(x1 + x2

2

)

. (5.9)

The two-point correlation function 〈QQ〉B(x1,x2) computed in this background may then be

Taylor expanded about the background without the long wavelength contributions, giving us

back

〈QQ〉B(x1,x2) ≃ 〈QQ〉0(|x1 − x2|) +Qℓ

(x1 + x2

2

)[ d

dQℓ
〈QQ〉B(x1,x2)

]

0

≃ 〈QQ〉0(|x1 − x2|) +Qℓ

(x1 + x2

2

) d

dφ
〈QQ〉0(x1,x2), (5.10)

where we have traded the derivative with respect to Qℓ with a derivative made with respect

to φ, the background value of the scalar field. The next steps are straightforward. First, we

move to Fourier space by performing a transformation with respect to x1 and x2 to obtain

〈QQ〉B(k1,k2) ≃ 〈QQ〉0(ks) +Qℓ (kℓ)
∂

∂φ
PQ(ks), (5.11)

where kℓ ≡ k1 + k2 and ks ≡ (k1 − k2)/2. Then we correlate the result with a mode Q(k3).

This gives us the squeezed limit:

lim
k3→0

〈Q(k1)Q(k2)Q(k3)〉 = (2π)3δ3(k1 + k2 + k3)PQ(k1)
∂

∂φ
PQ(k3). (5.12)

To obtain a more explicit result we need an expression for the power spectrum PQ(k) in terms

of the background quantities.3 To this extent, it suffice to know that the power spectrum is

proportional to H2 (see for example [70])

PQ(k) ∝ H2. (5.13)

Then, knowing that H = H(φ), we may write ∂φPQ(k) = 2PQ(k)∂φH/H, which together

with the fact that ∂φH/H =
√

ǫ/2 (easily derived from eq. (3.5)) leads to

lim
k3→0

〈Q(k1)Q(k2)Q(k3)〉 =
√
2ǫ (2π)3δ3(k1 + k2 + k3)PQ(k1)PQ(k3). (5.14)

3Notice that we only need the amplitude of the power spectrum in terms of the background fields evaluated

at a pivot scale, and we need not to worry about its scale dependence.
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We can now use this result to find the three-point function of R. In eq. (4.4) we already

found how to rewrite Q in terms of R and Ṙ to quadratic order. Using that in ultra slow-roll

we have R ∼ a3 while η ≃ −6, then we can write

Q =
φ̇

H

[

R− η

4
R2
]

+ · · · . (5.15)

where the ellipses “· · · ” stand for spatial gradients, which in the present discussion may be

disregarded. Note that the Ṙ term effectively changes the sign of the correction to the first

order result. This is to be equivalent to the observation made in [67] that neglecting the

contributions of the decaying mode (i.e. the Ṙ-effects) changes the sign of the final result

for the computation of fNL. To continue, notice that in general, for a relation of the form

f = g + λg2 (see for example [10]) one finds:

〈f(x)f(y)f(z)〉 = 〈g(x)g(y)g(z)〉 + 2λ [〈g(x)g(y)〉〈g(x)g(z)〉 + cyclic] . (5.16)

Then, by choosing f ≡ Q/
√
2ǫ, g ≡ R and λ ≡ −η/4, we obtain

〈R(x)R(y)R(z)〉 = (2ǫ)−3/2 〈Q(x)Q(y)Q(z)〉+ η

2
[〈R(x)R(y)〉〈R(x)R(z)〉 + cyclic] . (5.17)

To finish, we just need Fourier transform this expression, take the squeezed limit and replace

the three-point correlation function by our previous result (5.14), to obtain:

lim
k3→0

〈R(k1)R(k2)R(k3)〉 = (2ǫ+ η) (2π)3δ3(k1 + k2 + k3)PR(k1)PR(k3). (5.18)

This coincides with the result (3.18) obtained in [67] in the decoupling limit ǫ → 0 and

η → −6. We wish to stress, once more, that to derive this result we never needed to deduce

the explicit solution of R nor Q. Instead, we have only used symmetry arguments to relate

long wavelength modes to the background. It is true, however, that even without explicitly

deriving it, to deduce our results we have assumed that eventually the faster growing solution

(the one proportional to a3) will dominate the other one (the constant one).

The result (5.14) is our proposed modification of Maldacena’s consistency relation, valid

for the model of ultra slow-roll inflation. However, we have to admit that strictly speaking it

is not a true consistency relation. The original consistency relation relates three observables:

power spectrum, bispectrum and spectral index. In this case, the power spectrum and

bispectrum are related via the factor (2ǫ+ η), which is not a direct observable (although for

ultra slow-roll it simply asymptotes to −6).

6 More general non-attractor backgrounds

Before concluding, let us show how our arguments may be implemented in more general non-

attractor backgrounds. To this extent, let us consider inflation in the context of P (X)-models,

where the Lagrangian is given by a general function of the inflaton field in the following form

L = P (X,φ), X = −1

2
(∂φ)2. (6.1)
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We remind the reader that even in these more general models, we still restrict ourselves to

models in which ǫ is zero or decaying very rapidly. The background equations of motion are

found to be given by

(2XPXX + PX)φ̈+ 2XPXφ + 3HPX φ̇− Pφ = 0, (6.2)

3H2 = 2XPX − P, (6.3)

where PX ≡ ∂XP , Pφ ≡ ∂φP , and now X = φ̇2/2. One can also deduce the additional

convenient equation

Ḣ = −XPX , (6.4)

which in turn, tells us that

ǫ =
XPX
H2

. (6.5)

These equations of motion admit both attractor and non-attractor backgrounds. Of course,

we will be interested in non-attractor backgrounds as long as they satisfy the condition ǫ≪ 1

(in order to have a quasi-de Sitter geometry). Our next challenge is to identify a symmetry

of the Lagrangian allowing us to deduce how the perturbations evolve after horizon crossing.

A transformation of the Lagrangian under such an alleged symmetry will satisfy

∆L = PX∆X + Pφ∆φ = 0, (6.6)

from where one reads Pφ = −PX∆X/∆φ. Inserting this result back into the background

equations of motions we find:

(2XPXX + PX)φ̈∆φ+ 2XPXφ∆φ+ 3Hφ̇PX∆φ+ PX∆X = 0. (6.7)

By noticing that ∆X = φ̇∆φ̇ = φ̇ d(∆φ)/dt, eq. (6.7) may now be integrated once. The

solution is found to be given by

∆φ =
∆C

a3
√
2XPX

, (6.8)

where ∆C denotes an integration constant. Thus, a transformation of the inflaton field of

the form φ→ φ′ = φ+∆φ with ∆φ given by (6.8) constitutes a symmetry of the background.

Notice that in the specific case of ultra slow-roll, examined in Section 3, we have P = X−V0,
PX = 1, and

√
2X = φ̇ ∝ a−3, and eq. (6.8) is reduced to a shift symmetry ∆φ = constant,

as it should. On the other hand, in the case of a slow-roll background, we recover ∆φ ∼ a−3,

reminding us about the attractor nature of slow-roll inflation.

6.1 Symmetry and long wavelength perturbations

To explore the consequences of eq. (6.8) on the perturbations, let us stick to the metric (5.1)

written in flat gauge. Then, repeating the arguments of Section 3.2, we see that δNℓ ∝ ǫ.

Then, if the non-attractor background is such that ǫ → 0 quickly, eq. (6.8) informs us that
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Nℓ → 1, and the value of the effective scalar field φeff at a given patch of the universe centered

at x will be given by:

φeff(t,x) = φ(t) +Qℓ(t,x). (6.9)

Then, because this form of the field has to be consistent with the symmetry underlying

eq. (6.8), we conclude that the long wavelength behavior of the scalar perturbation is given

by:

Qℓ =
C

a3
√
2XPX

. (6.10)

This in turn tells us that there is a perturbation F , proportional to Q, that freezes outside

the horizon, and is given by:

F ≡ a3
√
2XPXQ. (6.11)

On the other hand, let us recall that, up to second order in the fields, Q is related to the

adiabatic curvature perturbations R in the following way

Q =
φ̇

H

[

R+
η

4c2s
R2 +

1

Hc2s
RṘ

]

+ · · · , (6.12)

where this time we have accounted for the presence of the speed of sound cs of curvature

perturbations, which for the models examined up to this point had a value cs = 1. The

explicit value of cs in terms of other background quantities is:

c2s ≡
PX

PX + 2XPXX
. (6.13)

Equation (6.12) further implies that:

F = 2a3Hǫ

[

R+
η

4c2s
R2 +

1

Hc2s
RṘ

]

+ · · · , (6.14)

where we have used the identity of eq. (6.5). Now, at linear order we have R = F/2a3Hǫ.
Therefore, in the long wavelength limit Rℓ ∝ 1/2a3Hǫ, from where we deduce that at linear

order

Ṙℓ = −H(η + 3)Rℓ, (6.15)

which is obtained after using the background equations of motion, and the fact that ǫ ≪ 1.

Then, inserting this result back into eq. (6.14) we obtain

Fℓ = 2a3Hǫ
[

Rℓ + λR2
ℓ

]

, (6.16)

where

λ = − 3

4c2s
(4 + η), (6.17)

Equation (6.16) is what we need to derive the squeezed limit for the bispectrum of R. We

examine this derivation in the following discussion.
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6.2 A general squeezed limit for non-attractor inflation

In what follows, we derive a general expression for the squeezed limit of non-Gaussianity,

valid for general non-attractor models. To start with, by using eq. (5.16) with f ≡ F/2a3Hǫ
and g ≡ R, we obtain:

〈R(x)R(y)R(z)〉 = 1

8a9H3ǫ3
〈F(x)F(y)F(z)〉 − 2λ [〈R(x)R(y)〉〈R(x)R(z)〉 + cyclic] .

(6.18)

Then, we may compute 〈F(k1)F(k2)F(k3)〉 following the same procedure employed in Sec-

tion 5 for the case of ultra slow-roll. In this case, we obtain

lim
k3→0

〈F(k1)F(k2)F(k3)〉 = (2π)3δ3(k1 + k2 + k3)PF (k1)

[

∂

∂Fℓ
PBF (k3)

]

0

, (6.19)

where PBF (k) represents the power spectrum for F computed in a background that is renor-

malized by the long wavelength contributions Fℓ. This result may be reexpressed in terms

of the curvature power spectrum as:

lim
k3→0

〈F(k1)F(k2)F(k3)〉 = 16hF a
12H4ǫ4(2π)3δ3(k1 + k2 + k3)PR(k1)PR(k3). (6.20)

where we have defined:

hF ≡
[

∂

∂Fℓ
lnPBF

]

0

. (6.21)

Now, putting together eqs. (6.20) and (6.18) in momentum space, we finally arrive to

lim
k3→0

〈R(k1)R(k2)R(k3)〉 = 2hF a
3Hǫ(2π)3δ3(k1 + k2 + k3)PR(k1)PR(k3)

−4λ (2π)3δ3(k1 + k2 + k3)PR(k1)PR(k3). (6.22)

To simplify this expression, we notice that the first term of the right hand side should vanish

in the long wavelength limit. Indeed, on the one hand the overall factor 2a3Hǫ decreases

quickly for non-attractor models (otherwise curvature perturbations would not grow). On

the other hand, because F freezes in the long-wavelength limit, PF must tend to a constant,

independently of the value of Fℓ (as in the case of ultra slow-roll). These considerations lead

to our final result valid for general non-attractor models:

lim
k3→0

BR(k1,k2,k3) =
3

c2s
(4 + η)PR(k1)PR(k3). (6.23)

The overall factor at the right hand side is in general time-dependent, and therefore must

be evaluated at the end of the non-attractor phase, which could coincide with the end of

inflation, or could be the beginning of the attractor phase (see refs. [67, 71] for a discussion

on the phenomenological feasibility of this class of models). To finish, let us notice that

our result reduces to the already known answer found in ref. [71], where a specific family of

non-attractor solutions were studied.
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7 Discussion and conclusions

We have studied the violation of the non-Gaussian consistency relation within single field non-

attractor models of inflation, characterized by the fact that curvature perturbations do not

freeze after horizon crossing. Our analysis was based purely on symmetry considerations: we

found that the same arguments leading to the universality of the the non-Gaussian consistency

relation for attractor models of inflation, may be reproduced to deduce a relation valid for

non-attractor models. To achieve this, it was important to notice that while curvature

perturbations R do not freeze after horizon crossing, other perturbations do (Q in the case

of ultra slow-roll, and F in the case of more general non-attractor models). As a result,

it is possible to further understand the violation of the consistency relation as a natural

consequence of the super-horizon evolution of the modes, dictated by the background of

the model, independently of the model being an attractor or not. Our results agree with

those of previous analyses. In particular, we have re-derived the violation to the consistency

relation in the context of ultra slow-roll inflation reported in ref. [67], and we have found a

general expression for the squeezed limit of non-Gaussianity for non-attractor models which

generalizes the results found in ref. [71].

Our results offer a rationale to understand potentially large violations to the consistency

relation, telling us how to relate the size of the violation to the evolution of the inflationary

background. Given that future large scale structure surveys will offer substantially better

constraints on non-Gaussianity than those currently available from CMB experiments, it is

particularly timely to understand the difference between alternative mechanisms to violate

the consistency relation. In this regard, one particularly interesting task ahead is to charac-

terize the squeezed limit of other n-point correlation functions within non-attractor models.

Just as in the case of single-field attractor models, it should be possible to derive specific

relations among different n-point correlation functions, consistent with the symmetries of the

inflationary background [77–83].
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A Evolution of modes in ultra slow-roll inflation

In this appendix we explicitly compute the behavior of curvature perturbations for both

standard attractor slow-roll inflation and for non-attractor ultra slow-roll inflation, to linear

order. These computations are of course complementary to the derivations based on sym-
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metry arguments found in Sections 2.1 and 3. However, we will use them to re-derive the

freezing of the modes of Q on super-horizon scales

Let us start by quickly reviewing the freezing on super-horizon scales of curvature per-

turbations R. In single-field models it is common lore to define the canonically normalized

perturbation v in terms of R as:

v ≡ a
φ̇

H
R = a

(

φ̇

H
ψ + δφ

)

. (A.1)

In terms of its Fourier modes vk the equation of motion is

v′′k −
z′′

z
vk + k2vk = 0, z ≡ aφ̇

H
, (A.2)

where the prime ′ denotes a derivative with respect to conformal time τ . To zeroth order

in the slow-roll parameters, in standard slow-roll inflation we find that z′′/z = 2/τ2, where

conformal time may be written as τ = 1/(aH) where H is constant. Then, in the long

wavelength limit we obtain:

v′′k −
2

τ2
vk = 0, → vk = c1τ

2 +
c2
τ

∝ c1
a2

+ c2a. (A.3)

To zeroth order in the slow roll parameters the factor φ̇/H in (A.1) does not change in

time, so we find that the modes Rk indeed freeze on super-horizon scales. A more detailed

computation shows that this freezing is exact up to all orders in slow-roll parameters. For

our discussion the rough sketch above suffices.

How does this situation change in ultra slow roll-inflation? In this case, ǫ = φ̇2/(2H2)

falls down as a−6 and η asymptotes to −6. Surprisingly, to zeroth order in ǫ and all orders

in η (compatible with the decoupling limit), we still find z′′/z = 2/τ2 and τ = 1/(aH). To

be precise, we still have

z′′

z
=

1

τ2

[

ν2 − 1

4

]

, ν2 =
9

4

(

1 +
η

3

)2
→ 9

4
, (A.4)

as η → −6. Therefore, the solution found in (A.3) for the modes vk is still valid. Things

change, however, in the conversion to Rk, for which we now find the long wavelength limit:

Rk =
1

a

H

φ̇
vk ∼ a3. (A.5)

As we already found in (3.17) by our symmetry argument, in ultra slow-roll inflation the

modes Rk do not freeze on super-horizon scales. However, from the above it is clear (at least

up to zeroth order in ǫ and all orders in η), that the modes of a related perturbation

Q ≡ φ̇

H
ψ + δφ,

(

=
φ̇

H
R
)

(A.6)
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do freeze on super-horizon scales. Note that Q is as perfectly gauge invariant as R, since the

two only differ by a background quantity. Therefore, both variables share the same scalar

spectral index nR = nQ. (The fact that the modes Rk keep evolving after horizon crossing

does not take away that at any desired moment in time the relative differences in power

between modes of different wavelengths are encoded in nR.)
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