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VIOLETA NOEMÍ CHANG CAMACHO

PROFESOR GUÍA:
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Resumen

La infertilidad es un problema cĺınico que afecta hasta a 15% de parejas en edad reproductiva,
con implicancias tanto emocionales como fisiológicas. Un análisis de semen es el primer paso
en la evaluación de una pareja infértil. El énfasis en identificar no sólo cabezas normales de
espermatozoides sino también categoŕıas de cabezas anormales puede tener una significativa
utilidad cĺınica al decidir por un tratamiento de fertilidad. Esta tesis propone una nueva
metodoloǵıa para detectar, segmentar, caracterizar y clasificar cabezas de espermatozoides
humanos, con el objetivo de facilitar el posterior análisis morfológico, para diagnósticos de
fertilidad, toxicoloǵıa reproductiva, investigación básica o estudios de salud pública.

En la primera parte de este tesis, se ha tratado la detección y segmentación de cabezas de
espermatozoides humanos. En este sentido, se propone un gold-standard para segmentación
de espermatozoides construido con la cooperación de un experto referente en el área, para
comparar métodos para detección y segmentación de espermatozoides. Además, se ha de-
sarrollado un framework para la detección y segmentación de componentes de cabezas de
espermatozoides humanos (incluyendo acrosoma y núcleo) que usa tres espacios de color
además de técnicas de clustering y análisis estad́ıstico del histograma. La evaluación ex-
perimental muestra que el método propuesto mejora el desempeño del estado del arte. Los
resultados logran 98% de detección correcta a expensas de un número menor de falsos posi-
tivos, comparado con el estado del arte. Aśı mismo, los resultados de segmentación de cabeza,
acrosoma y núcleo muestran más de 80% de solapamiento comparado con las máscaras de
segmentación manual del gold-standard.

En la segunda parte de esta tesis, el enfoque estuvo en la caracterización y clasificación de
cabezas de espermatozoides humanos. Aśı, se introduce un gold-standard para clasificación
de cabezas de espermatozoides humanos, construido con la colaboración de tres expertos
referentes en área, y de acuerdo al criterio de la OMS. Además, se ha formulado un nuevo de-
scriptor para cabezas de espermatozoides que, combinado con otros descriptores basados en
forma, permite discriminar entre cabezas de espermatozoides normales y anormales, identif-
icando cuatro tipos de cabezas anormales. También se propone un esquema de clasificación,
que permite categorizar las cabezas de espermatozoides en 5 clases diferentes, según la OMS.
La evaluación experimental muestra que el esquema propuesto tiene mejor desempeño que
distintos clasificadores monoĺıticos, aśı como varios esquemas de clasificación en cascada que
fueron diseñados en el contexto de esta investigación. Los resultados muestran más de 70%
de clasificación correcta usando un dataset de total concordancia entre expertos del área.
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Abstract

Infertility is a problem that affects up to 15% of couples worldwide with emotional and
physiological implications. Emphasis on identifying not only normal sperm heads, but also
categories of abnormal, may have significant clinical utility when deciding on an infertility
treatment. This thesis proposes a new methodology for accurately detecting, segmenting,
characterizing and classifying human sperm heads which facilitates a further morphological
analysis for fertility diagnoses, reproductive toxicology, basic research or public health studies.

In the first part of this thesis, we focused on detection and segmentation of human sperm
heads. In this sense, we propose a segmentation gold-standard built with the cooperation
of a referent expert in the field to compare methods for detecting and segmenting sperm
cells. We also present a two-stage framework for detection and segmentation of human
sperm head characteristics (including acrosome and nucleus) that uses three different color
spaces. The first stage detects regions of interest (ROIs) that define sperm heads, using
k−means. Candidate heads are then refined using mathematical morphology. In the second
stage, we work on each ROI to accurately segment the sperm head as well as nucleus and
acrosome, using clustering and histogram statistical analysis techniques. Our experimental
evaluation shows that our proposed method outperforms the state-of-the-art. Our results
achieve above 98% in the sperm head detection process at the expense of having significantly
fewer false positives obtained by the state-of-the-art method. Our results also show an
accurate head, acrosome and nucleus segmentation achieving over 80% overlapping against
the hand-segmented gold-standard.

In the second part of this thesis, we focused on characterizing and classifying human sperm
heads. Thus, we introduce a classification gold-standard for evaluating morphological sperm
analysis methods, built with the active collaboration of three referent experts in the field.
We present a new descriptor for human sperm heads that combined with different shape
descriptors allows for discrimination among normal and abnormal sperm heads; separating
four different types of abnormal heads. We also present a two-stage classification scheme for
classifying human sperm heads using a combined classifier approach together with an en-
sembled feature selection technique. Our experimental evaluation shows that our proposed
scheme outperforms a number of monolithic classifiers, as well as different cascade classifica-
tion schemes designed in the context of this research. Our results achieved more than 70%
of classification accuracy on a dataset with total agreement among domain experts.
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Chapter 1

Introduction

Infertility is a problem that affects up to 15% of couples worldwide [WHO, 2010a]. This
condition has emotional and physiological implications including stress, depression or sexual
dysfunction [Domar et al., 1992]. A semen analysis according to standard criteria [WHO,
2010b], is the first step in the evaluation of the male factor and sets the basis for all posterior
steps for medical treatment of the couple [Nafisi et al., 2005]. A typical spermiogram considers
concentration, motility, vitality, and/or the fragmentation of the spermatic DNA. In addition,
the morphology of the sperm cells is considered as an important parameter to elucidate the
potential fertility of a sample [Katz et al., 1986]. As a result of morphological semen analysis,
all the sperm cells in the semen sample are classified as normal or abnormal [Auger, 2010].
Many studies have demonstrated the close relationship between fertility and morphologically
normal sperm [Moench and Holt, 1931,MacLeod and Gold, 1951,Kruger et al., 1986,Enginsu
et al., 1991,Kobayashi et al., 1991].

The morphology of human sperm is considered to be a clinical tool dedicated to the fertility
prognosis and serves, mainly, for making decisions regarding the options of assisted repro-
duction technologies (ART). Furthermore, in addition to a rigorous application of existing
guidelines and respect to high laboratory standards, emphasis on identifying the categories
of abnormal sperm heads may have significant clinical utility when deciding on an infertility
treatment. For example, a significant increase in percentage of sperm with elongated heads
may be due to stress caused by a male urogenital genital tract infection [Menkveld et al.,
2011]. Also for clinical decisions, morphological details of sperm considered abnormal, such
as diagnosing a genetic anomaly, can expedite the process of deriving directly to in-vitro
fertilization/intracytoplasmic sperm injection (IVF/ICSI) [Menkveld et al., 2011]. There is
also clinical significance regarding the shape of sperm heads, and each class is associated
with different genetic and environmental factors that impact clinical decisions pertaining to
an infertility treatment. Therefore, a complete analysis of not only normal sperm but also
abnormal sperm turns out to be critical in this context. Specifically, a complete classifica-
tion of head shapes becomes very important. However, the classification of abnormal sperm
morphology is a difficult task since the spectrum of possible malformations is considerably
wide [Kruger et al., 1993].

There is evidence from previous decades that the quantification of abnormalities is a

1



challenging task. In 1966, a comparative study in 47 laboratories dedicated to human sperm
morphological analysis showed that the traditional method of performing the analysis was
personality oriented, as well as subjective, qualitative, non repeatable and difficult to teach
to students and technicians [Katz et al., 1986, Freund, 1966]. Despite of the fact that the
classification rules for morphological semen analysis have been simplified [WHO, 2010b],
the visual analysis of sperm morphology still presents a substantial challenge concerning
reproducibility and objectivity (see Figure 1.1), while inter and intra observer still presents
a well known problem [Barroso et al., 1999,Auger et al., 2000,Soler et al., 2003,Cipak et al.,
2009,Rivera-Montes et al., 2013]. There are many authors revealing a lack of standardization
of the methods used in laboratories in many countries [Walczak-Jedrzejowska et al., 2013,
Rivera-Montes et al., 2013]. A sophisticated computational analysis might help overcome
these problems.

Figure 1.1: Slight variations among sperm classes. Representative bright field image
from a semen sample, containing five different sperm classes: a) amorphous, b) normal, c)
tapered, d) pyriform, and e) small (Image size: 277× 144 pixels ≈ 58× 30 µm).

Overall, the evaluation of cellular and sub-cellular regions (size of the sperm head, tail
length, residual cytoplasm area, etc.) and pattern recognition (multiple heads or tails, absent
tail, coiled tail, etc.) are required for categorizing defects according to normal and abnormal
sperm definitions in visual sperm classification under the microscope [Auger, 2010]. An
alternative to replacing the poor visual ability to assess the size and shape of sperm is to
analyze the sperm morphology with the help of a computer [Auger, 2010].

Currently, there are Computer-Aided Sperm Analysis (CASA) systems. They were pri-
marily developed to measure sperm concentration, the percentage of motile sperm and some
details of sperm movement. To obtain useful information from the visual assessment of sperm
morphology, it is crucial some kind of standardization of methods and variables to be an-
alyzed [Wang et al., 1991, Davis and Gravance, 1993, Lacquet et al., 1996, Coetzee et al.,
1999,Auger, 2010]. Although there are some commercial applications for sperm morphology
assessment, none of these study abnormal sperm in depth, which has been proven to have
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a significant impact in research. In addition, these kinds of systems are sold as black boxes
without any possibility of modification for research purposes, and, of course, there are no
publications related to the algorithms implemented in these systems.

This PhD thesis set out to develop, implement and calibrate a novel methodology to accu-
rately detect, segment, characterize and classify sperm heads in the context of morphological
sperm analysis with results within the variability among those of referent experts in the
field, focusing on a depth analysis of abnormal sperm heads for fertility diagnosis, prognosis,
reproductive toxicology, basic research or public health studies.

1.1 Thesis Impact

The results presented in this thesis will have a direct impact on social and public health.
From the view point of education and training of new specialists, the classification gold-
standard generated in this research is very relevant. There is no collection of semen smear
images obtained from Chilean laboratories and manually labeled by referent domain experts.
Counting with variability analysis and detailed labels from each expert, it will be possible to
find out cases with difficult diagnoses that may require a deep review while training future
andrologists.

From the view point of medical diagnosis, this research will have significant impact. As
a result of this research, a pipeline for classifying sperm heads trained with experience from
different domain experts was generated. The implementation of this pipeline is expected to
increase the accuracy and efficiency of medical diagnosis. In this sense, laboratories without
experts in morphological sperm analysis in their permanent staff will have the opportunity
to remotely access this supporting tool.

Finally, it is worth mentioning that this work will have a significant impact in the image
processing community, because it proposes a new approach for segmenting and describing
biological microscopic structures under certain characteristics and conditions. Furthermore,
this approach could be slightly modified to be applied to another kind of cells, different from
sperm, facing the very challenging problem of cell segmentation in image processing research.

1.2 Thesis Contribution

In detail, this PhD thesis has the following contributions:

• We introduced a gold-standard1 for sperm parts segmentation [Chang et al., 2014].
This dataset was built with the active cooperation of a referent expert in the field and
contains twenty images with more than two hundred sperm cells plus hand-segmented
masks. This gold-standard has been used to evaluate and compare our detection and
segmentation results with the only reproducible detection and segmentation method

1Available in http://morfologia.cedai.cl/public/
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that has been published in the past and therefore represents our state-of-the-art refer-
ence method.

• We developed a framework for detecting and segmenting human sperm heads that
outperformed the state-of-the-art [Chang et al., 2014], since a reliable detection and
segmentation presents the first step for all posterior classification algorithms. This
fully automatic approach is based on a clustering method for detecting sperm heads,
combining different color spaces as well as on image processing techniques specially
adapted for this application. Another contribution is the proposal of a novel algorithm
to determine which direction the sperm head points. This is a very important issue for
posterior stages in the quest for an accurate morphological analysis.

• We introduced a gold-standard for sperm head classification [Chang et al., 2015] accord-
ing to World Health Organization (WHO) criteria [WHO, 2010b]. This gold-standard
was built with the collaboration of three referent domain experts. The combination of
the three experts labels was performed using majority voting. We analyzed inter-expert
variability.

• We proposed a morphological descriptor, based on single shape-based measures, for
extracting features from segmented sperm heads, as well as a descriptor combining
approach to take advantage of different descriptors proposed in the literature.

• We developed and validated a pipeline for sperm head classification, according to WHO
criteria [WHO, 2010b]. In this sense, we proposed a classification two-stage scheme that
permits classifying sperm heads among five different classes (one class for normal sperm
heads and four classes for abnormal sperm heads) combining an ensembled strategy for
feature selection and a cascade approach with SVM multi-classifiers. We conducted
experiments with results within the variability among those of domain experts.

1.3 Thesis Methodology

This PhD thesis set out to develop, implement and calibrate a novel methodology to de-
tect, segment, characterize and classify sperm heads in the context of morphological sperm
analysis, focusing on a depth analysis of abnormal sperm heads for fertility diagnosis, progno-
sis, reproductive toxicology, basic research or public health studies (See Algorithm 1). This
research followed the next procedure:

1. As an initial step in this research, a gold-standard2 for sperm parts segmentation was
built with the active cooperation of a referent expert in the field (Section 4.4). This
dataset consists of 210 valid sperm cells. For each sperm cell, there are five hand-
segmented masks: head, acrosome, nucleus, mid-piece and tail. Thus, the output of
this step is a segmentation gold-standard to validate and evaluate sperm detection and
segmentation methods.

2. Since a reliable detection and segmentation presents the first step for all posterior clas-
sification algorithms, a framework for detecting and segmenting human sperm head,
acrosome and nucleus was developed (Chapter 5). The first stage was aimed to detect

2Available in http://morfologia.cedai.cl/public/
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sperm heads (Section 5.1, Algorithm 2), while the second stage was devoted to segment
sperm head (Section 5.2, Algorithm 3), acrosome and nucleus (Section 5.2, Algorithm
5) from detected sperm heads in previous stage (Section 5.2). The main idea beyond
our framework was a fusion of color space combinations, k−means approach and math-
ematical morphology operations. In addition, our method proposed an ellipse fitting
based algorithm to identify the head front direction (Section 5.2, Algorithm 4). The
only reproducible detection and segmentation method that has been published in the
past [Carrillo et al., 2007b,Carrillo et al., 2007a] has been implemented and represents
the state-of-the-art reference method for this part of the thesis (Appendix A). The
segmentation gold-standard has been used to evaluate and compare our detection and
segmentation results with the state-of-the-art method. Thus, the contribution of this
step to the main goal of this thesis are the sperm detection algorithm and the sperm
head segmentation algorithm.

3. Having the segmented heads, the next step was the characterization and classification
of sperm heads according to WHO criteria. In this sense, a gold-standard for sperm
head classification was built with the collaboration of three referent domain experts,
according to WHO criteria (Section 4.5). This dataset contains 1, 854 sperm heads
that were manually classified by each expert in one of the following classes: normal,
tapered, pyriform, small or amorphous. Thus, the output of this step is a classification
gold-standard to validate and evaluate automatic classification methods.

4. Next step in this research was characterization sperm heads. To this end, one of the
first decisions is about how would be the segmented sperm head representation. It was
decided to use a continuous representation of the curve that defined the sperm head,
using anisotropic diffusion and active contours (Section 6.1). We use a number of shape
descriptor proposed in the literature and formulate a morphological descriptor, based
on single shape-based measures, for extracting features from segmented sperm heads
(Section 6.2.3), as well as a descriptor combining approach to take advantage of different
descriptors proposed in the literature (Section 6.3). The classification gold-standard
was used for making decisions about: 1) which shape-based descriptors to combine, 2)
which shape-based measures to include in the proposed morphological descriptor, and
3) which topology of feature selection and combination to use. Thus, the output of
this step is a new morphological descriptor for sperm heads and a descriptor combining
approach.

5. Finally, the next step was focused on designing a pipeline for sperm head classification,
according to WHO criteria. A number of monolithic classifiers were evaluated using the
classification gold-standard (Appendix B). Also, different cascade classification schemes
were designed and evaluated using the classification gold-standard (Appendix B). Af-
ter evaluating different classification schemes, a two-stage classification scheme was
designed (Section 7.1). The proposed classification scheme permits classifying sperm
heads among five different classes (one class for normal sperm heads and four classes for
abnormal sperm heads) combining an ensembled strategy for feature selection and a cas-
cade approach with SVM multi-classifiers (algorithm 7). This classification scheme was
trained using a subset of the classification gold-standard and validated using another
subset of the same gold-standard. The training step returned the trained combined
classifiers for each stage of the scheme (Tables 7.3, 7.5, 7.6, 7.7, and 7.8). The vali-
dation step returned the selected descriptors used for each combined classifier (Tables
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7.2 and 7.4). Thus, the contribution of this step to the main goal of this thesis is
the sperm head classification scheme, along with the trained combined classifiers and
selected descriptors for each stage of the classification scheme.

1.4 Thesis Deliverables

The deliverables of this PhD thesis are:

• A sperm head segmentation gold-standard (Section 4.4)

• A sperm head classification gold-standard (Section 4.5)

• A pipeline for detection, segmentation, characterization and classification of human
sperm heads (Algorithm 1) that encompasses all the algorithms designed in this thesis

• A published article in CMPB Gold-standard and improved framework for sperm head
segmentation [Chang et al., 2014]

• A submitted article in CMPB Gold-standard for computer-assisted morphological sperm
analysis [Chang et al., 2015]

• A manuscript in preparation for CMPB Framework for automatic classification of hu-
man sperm heads

Algorithm 1 Pipeline for detecting, segmenting, characterizing and classifying sperm heads
developed in this thesis.

imRgb: original image containing several sperm cells
svm1: combination of three trained SVMs of Stage 1 {Section 7.1.1}
v1: trained verifier for normal and amorphous {Section 7.1.2}
v2: trained verifier for tapered and amorphous {Section 7.1.2}
v3: trained verifier for pyriform and amorphous {Section 7.1.2}
v4: trained verifier for small and amorphous {Section 7.1.2}

1: imgDetection ← detectionSpermHeads(imRgb) {Algorithm 2 (Section 5.1)}
2: sperms ← labelRegions(imgDetection)
3: for each sperm i do
4: spermRgb ← imgDetection(sperm i)
5: spermSegmented ← segmentationSpermHead(spermRgb) {Algorithm 3 (Section 5.2)}
6: spermAni ← anisotropicDiffusion(spermRgb)
7: contour ← activeContours(spermAni,spermSegmented)
8: [MorphoD,FourierD,GeomD,ZernikeD,ConvD,EllipD]← calculateDescriptors(contour) {Sections 6.2.3

and 6.2.2}
9: label(i) ← testingClassificationScheme(MorphoD,FourierD,GeomD,ZernikeD,ConvD,EllipD,

svm1,v1,v2,v3,v4) {Algorithm 7 (Section 7.2.4)}
10: end for
11: return label

1.5 Thesis Outline

Chapter 2 is devoted to detailing background knowledge about related areas that are critical
for the best understanding of the whole thesis document. We first describe biological issues
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about components and features of human sperm cells as well as a variety of sperm defects
according to WHO criteria and the spermiogram as the result of a sperm smear evaluation,
introducing the reader to the world of morphological sperm analysis. Second, some specific
techniques from image processing are reviewed according to their promising utility in the
final application of this work. Third, we present a brief description of clustering, shape-
based feature extraction, classification and dimensionality reduction techniques that were
used in the next chapters. Finally, we present a general description of metrics for evaluating
final results of our proposed methods.

In Chapter 3 we present an up-to-date review of related research works. We will disscuss
the most prominent approaches for detecting and segmenting eukaryotic cells. Regarding the
small variability inter classes and the subjectivity at characterizing and classifying, a very
related area is grain featuring and classification, including food and pollen grains. Therefore,
we will review published research works that addressed the problem of characterizing and
classifying sperm cells at first, and grain kernels, later.

Chapter 4 presents the design and construction of a segmentation gold-standard, regarding
the opinion of one expert, as well as a classification gold-standard, regarding the opinion of
three referent experts in the field. In this sense, we describe in detail the staining method,
the features of the equipment we used to capture the images and specific details about images
and manual methods in both of our gold-standards.

Chapter 5 presents a framework for detecting and segmenting human sperm heads as
a reliable detection and segmentation presents the first step for all posterior classification
algorithms. We will describe in detail our proposed approach and present experimental
results on the introduced segmentation gold-standard. We include Appendix A to discuss
the state-of-the-art segmentation method that we used as reference to compare our results.

In Chapter 6, we discuss common shape-based descriptors as well as describe a mor-
phological descriptor designed particularly with this application in mind. Looking to get
a feature vector as compact as possible, it is imperative to select the best combination of
feature spaces. In this chapter we therefore explain the strategies available for selecting and
combining feature spaces.

In Chapter 7 we propose a classification pipeline for sperm heads according to WHO
criteria. We present a two-stage classification scheme as a cascade ensemble of SVMs. We
explain in detail both stages of our classification scheme as well as present the results of
applying each stage and the whole scheme to the classification gold-standard. The discarded,
but evaluated, previous classification schemes that we designed are presented in Appendix
B, as well as the justification on choosing the classificacion scheme.

Although we present a whole approach for detecting, segmenting, characterizing and clas-
sifying sperm heads in the context of morphological sperm analysis, still many extensions of
this research deserve further consideration. Chapter 8 outlines directions for future research,
summarizes this thesis and discusses its findings and conclusions.
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Chapter 2

Background

From a computational point of view, a system for analyzing images requires the confluence
of several methods from related areas such as image processing and pattern recognition.
There are many methods for specific situations in each of these areas, but some are more
promising for automated morphological analysis of sperm. Therefore, this chapter is devoted
to detailing some background knowledge on related areas critical for better understanding
the whole thesis.

The first section 2.1 describes biological issues about components and features of human
sperm cells as well as a variety of sperm defects acoording to WHO criteria and the result of a
sperm smear evaluation: the spermiogram. This section also attempts to introduce the reader
to the world of morphological sperm analysis. Some specific techniques from image processing
are reviewed in Section 2.2, according to their promising utility in the final application of this
work. In Section 2.3, the reader finds a brief review of pattern recognition issues like shape-
based feature extraction, clustering, classification and dimensionality reduction techniques.
Finally, a general description of metrics for evaluating final results is presented in Section
2.4.

2.1 Biological Concepts

2.1.1 Sperm Structure

A sperm cell consists of three major parts: head, mid-piece and tail (see Figure 2.1).

The human sperm has a head with a regular contoured ellipsoid form of 5µm long, 3µm
wide and 1.5µm thick. Most of the head is occupied by the nucleus containing DNA with
densely coiled chromatin fibers, surrounded anteriorly by the acrosome, which contains en-
zymes used for penetrating the female egg, comprising 40− 70% of the head area [Menkveld
et al., 2001]. The acrosome region does not contain large vacuoles; however, it could have up
to two small vacuoles which should not cover more than 20% of the sperm head (see Figure
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a) b) c)

Figure 2.1: Morphology of the normal human sperm. (a) Representative bright field
image of a normal human sperm (Image size: 277× 144 pixels ≈ 58× 30 µm). (b) Manually
segmented ground-truth of the sperm: Head, acrosome, nucleus, mid-piece and tail of stained
spermatozoa. (c) Schematic drawing of the principal components of a normal human sperm.
Oval head: 5µm long and 3µm wide. Acrosome: 40−70% of the head area. Mid-piece: 5µm.
Tail: 55µm.

2.2). There should not be any vacuoles in the post-acrosomal region [WHO, 2010b].

Figure 2.2: Sperm cells with vacuoles in their acrosomal region.

The mid-piece of the sperm has a central filamentous core with many mitochondria spiraled
around it, which provides the energy for sperm motion. The mid-piece is usually slender,
regular and about the same length as the sperm head. The major axis of the sperm head
should be aligned with the major axis of the mid-piece [WHO, 2010b].

Finally, the tail of the sperm is approximately 45µm long. The tail is made of protein fibers
that contract on alternative sides, giving a characteristic wavelike movement that drives the
sperm through the seminal fluid, which also supplies additional energy. The tail is usually
thinner than mid-piece and has a uniform caliber along its length. If there is no sharp angle
indicative of a flagellar break, the tail may be looped back on itself [WHO, 2010b].
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2.1.2 Spermiogram

A spermiogram is a report of a microscopic semen smear analysis. This evaluation is the most
important and initially asked laboratory test for the evaluation of men fertility potential.

A typical semen analysis measures, at least, the following parameters:

Concentration

Sperm concentration (count of sperm cells) is highly important for being able to fertilize the
ovum. Sperm concentration is the number of sperm cells in one milliliter of semen. In a
normal ejaculation, there are approximately 20E6/ml sperm cells. A sperm concentration
lower than 15E6/ml might indicate a fertility problem.

Motility

Motility (mobility of sperm cells) is the percentage of moving sperm cells in one sample and
indicates the direction and rate of their movement. Motility of sperm cells is also important
for being able to fertilize the ovum because only moving sperms can go down the female
genital tracts and fertilize the ovum. At least 50% of sperm cells should be able to move
swiftly and travel in a straight line for an hour after ejaculation.

Vitality

Sperm vitality is a reflection of the proportion of live sperm cells determined by the evaluation
of membrane integrity. Sperm vitality is especially important for samples with less than about
40% progressively motile sperm cells. Less than 58% of sperm cells with intact membrane
might suggest a fertility problem.

Morphology

Another important factor for fertilization capacity is the form of the sperm cells and whether
any structural deformations are present. It is not possible for a deformed sperm cell to
fertilize the ovum. Morphology parameters indicate the form of the sperm cells and analyzes
the size, form and appearance of cells. To evaluate this parameter, 200 sperm cells are
analyzed and the deformed ones are noted. The greater number of abnormal sperm cells,
the less the likelihood of fertility is. Abnormal forms include anomaly of head, neck and tail,
and immature forms. At least 4% of sperm cells should present normal morphology.

10



2.1.3 Sperm Defects

There are sperm cells with different kinds of malformations in human semen samples. De-
pending on the types of anomalies, abnormal sperm generally have a lower fertilizing potential
and may also have abnormal DNA. The following categories of defects should be noted in a
reliable morphological analysis1 [WHO, 2010b]:

1. Head defects: large or small, tapered, pyriform, round, amorphous, vacuolated (more
than two vacuoles or > 20% of the head area occupied by unstained vacuolar areas),
vacuoles in the post-acrosomal region, small or large acrosomal areas (< 40% or > 70%
of the head area), double heads, or any combination.

2. Neck and mid-piece defects: asymmetrical insertion of the mid-piece into the head,
thick or irregular, sharply bent, abnormally thin, or any combination.

3. Tail defects: short, multiple, broken, smooth hairpin bends, sharply angulated bends,
of irregular width, coiled, or any combination.

4. Excess residual cytoplasm (ERC): this is associated with abnormal sperm produced
from a defective spermatogenic process. Sperm characterized by large amounts of
irregular stained cytoplasm, one third or more of the sperm head size, often associated
with defective mid-pieces [Mortimer and Menkveld, 2001] are abnormal.

In Figure 2.3, schematic drawings of some abnormal forms of human sperm are shown,
according to [WHO, 2010b].

Figure 2.3: Human sperm abnormalities. Image reproduced exactly as appears in [WHO,
2010b].

1The next list has been taken exactly as appears in the cited reference
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2.1.4 Morphological Sperm Analysis

Assessment of human sperm morphology is based on the microscopic analysis of stained
smears. It could be done in the manual way (through visual observations) or by using image
processing and analysis methods [Auger, 2010]. For any of these cases, an optimally stained
smear is needed to provide sharp contrast for defining the sperm outline and cell details
(see Figure 2.1a)). Recognition of these details also depends on the final magnification, for
example 100× oil objective [Auger, 2010]. In the fifth edition of WHO laboratory manual
[WHO, 2010b], pre-analytical procedures have been described.

In the manual method based on visual observations, each sperm cell is classified as normal
or abnormal, and each anomaly encountered is sub classified using strictly defined criteria.
By contrast, in the computer-assisted method, each sperm cell has different morphological
features (mostly head parameters) that are measured [Auger, 2010].

The computer assisted sperm morphology assessment has been fueled by the inherent lack
of objectivity in the evaluation of human sperm morphology, the difficulty in standardizing,
implementing and controlling manual methods, and the high degree of variation within and
between laboratories and technicians [Soler et al., 2003].

2.2 Image Processing

Modern digital image technology is widely used today. This has leaded research in areas aimed
to manipulate multi-dimensional signals (images) with two different goals: image processing
starts with one image and produces a modified version of that image, while image analysis
is a process that transforms a digital image into something other than a digital image, such
as a set of measurements [Shih, 2009].

In this sense, image processing is the study of any algorithm that takes an image as input
and returns an image as output, while suppressing undesired distortions and highlighting
some information for further analysis. Thus, image processing techniques are applied in
the initial stage of any application that requires extracting some kind of information from
images [Sonka et al., 2008]. For instance, getting edge information of an image is a very
important task in many applications. In this case, the idea is to suppress undesired in-
formation about homogeneous-intensity regions and highlight information about intensity
local-variations (edges). Other useful operations applied in the context of image process-
ing include color balancing, noise reduction, exposure correction, and sharpening, among
others [Szeliski, 2011].

The wide range of applications of image processing and analysis techniques has extended
to almost all scientific and engineering fields: remote sensing, quality and security control,
visual inspection, document imaging, biology, microscopy, and medical imaging, among others
[Soille, 2010]. For example, some specific applications in biological and medical imaging
[Soille, 2010] include: 1) the use of geostatistical and morphological tools for the analysis of
confocal images of cells [Conan et al., 1992], 2) a methodology for segmenting skin biopsy
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samples [Casas et al., 1994], and 3) a segmentation approach for connected fibroblasts on
light micro-graphs [Metzler et al., 2000].

This section is aimed to briefly review image processing techniques that will be useful in
the further development of our proposed algorithms. Even though these reviewed techniques
do not seem related to each one, all of them have a significance impact in algorithms of
Chapter 5. In this sense, we will review the basic notion of pixel connectivity, the basic
mathematical morphology operations, a brief description of anisotropic diffusion filter, the
basic notions of active contours, as well as the main features of some color spaces, useful for
our detection and segmentation purposes.

2.2.1 Pixel Connectivity

Mathematical notion of connectivity plays an important role in a variety of problems related
to image processing such as image filtering and image segmentation [Braga-Neto and Gout-
sias, 2003]. In general, pixel connectivity refers to a relation between two or more pixels on
a region of interest (ROI) inside an image. The idea is that for two pixels to be connected,
they need to meet certain criteria related to intensity values and spatial relationship.

Mathematically, connectivity could be define from two perspectives. The first one uses a
topological framework [Dugundji, 1966] and it is useful for images defined over a continuous
space. Whereas the second option uses a graph-theoretic framework [Diestel, 2010] useful
for images defined over a discrete space. In this thesis we are interested in the notion of the
neighborhood of a pixel in the image, according to digital topology.

In this sense, the digital plane Z is defined as a representative model of the Euclidian
plane, consisting in the set of all points in the plane R2 having integer coordinates [Eckhardt
and Latecki, 2008]. In image processing, the digital plane is taken as a mathematical model
of digital binary images [Eckhardt and Latecki, 2008]. In this application one usually has a
given set, namely the set S of white points in the image and the complement C(S), which is
the set of black points. Given a point P = (m,n) ∈ Z2, the 8−neighbors of P are all points
with integer coordinates (k, l) such that

max(|m− k|, |n− l|) ≤ 1

Figure 2.4: Neighbors of point P . The 4−neighbors of P are N0(P ), N2(P ), N4(P ) and
N6(P ). The 8−neighbors of P are Ni(P ), i = 0 . . . 7.
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Figure 2.4 shows the way in which the 8−neighbors of P are numbered [Eckhardt and
Latecki, 2008]. Neighbors with even numbers are the direct or 4−neighbors of P , those
with odd numbers are the in-direct neighbors. The 8−neighborhood of P is the set of all
8−neighbors of P (excluding P ), while the 4−neighborhood of P is the set of all 4−neighbors
of P (excluding P ).

2.2.2 Mathematical Morphology

Mathematical morphology is a set theory approach, developed by Serra and Matheron [Serra,
1986], that provides lossy and nonlinear filters for image processing and pattern analysis.
The basic principle of morphological operators is to simplify the image data while preserving
their essential shape features and eliminating irrelevancies [Serra, 1986]. With morphological
operators it is possible to extract shape characteristics such as edges, holes, and corners by
operating with structuring elements of varied sizes and shapes [Shih, 2009]. In fact, most
morphological filters are designed using a priori knowledge about the geometric properties
and shape of ROIs in the image [Soille, 2010].

Mathematical morphology uses tools of non-linear algebra and operates with point sets,
their connectivity and shape [Sonka et al., 2008]. A binary image can be treated as a 2D
point set, where points belonging to ROIs in the image represent a set S (these points
are pixels with value equal to one). Points of the complement set C(S) correspond to the
background with pixel values equal to zero. A morphological transformation Ψ is defined as
the relation of the image with another small point set B called structuring element. To apply
the morphological transformation Ψ(S) to the image S means that the structuring element
B is moved systematically across the entire image [Sonka et al., 2008]. It is important to
note that the structuring element can be placed at any pixel in an image. The position
(i, j) of a reference pixel defines where the structuring element has been placed B(i, j). The
structuring element could be symmetric or asymmetric.

In this thesis, we are interested in morphological operations such as erosion, dilation,
opening and closing on binary images using symmetric structuring elements. The primary
morphological operations are dilation and erosion. The erosion of S by B is defined to be
the set of all pixel locations for which B placed at that pixel is contained within S. This is
denoted S 	B and may be written as

S 	B = (i, j) : B(i,j) ⊂ S

Erosion is used to simplify the structure of an object, smoothing edges and it might decompose
complicated objects into several simpler ones [Sonka et al., 2008].

A complementary operation to that of erosion is dilation. It is defined simply as the
erosion of the complement of a set. The dilation of a set S by a structuring element B,
denoted S ⊕B, is defined by

S ⊕B = C(C(S)	B)

Dilation is used to fill small holes and narrow gulfs in objects [Sonka et al., 2008].
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Erosion and dilation are not inverse transformations, it means that if an image is eroded
and then dilated, the original image is not re-obtained. Instead, the result is a simplified and
less detailed version of the original image [Sonka et al., 2008]. Erosion followed by dilation
creates a morphological transformation called opening. The opening of an image S by the
structuring element B is denoted by S ◦B and is defined as

S ◦B = (S 	B)⊕B

Dilation followed by erosion is called closing. The closing of an image S by the structuring
element B is denoted by S •B and is defined as

S •B = (S ⊕B)	B

2.2.3 Anisotropic Diffusion

Anisotropic diffusion is a technique aiming at reducing image noise that encourages intrare-
gion smoothing while inhibiting interregion smoothing introduced by Perona and Malik [Per-
ona and Malik, 1990]. The main idea beyond this filter is a transformation with two features:
non-linearity and scale-space. In this sense, anisotropic diffusion creates a scale space in
which an image generates a parameterized family of successively more and more blurred im-
ages based on a diffusion process where each resulting image is a combination between the
original image and a filter that depends on the local content of the original image.

According to Perona and Malik [Perona and Malik, 1990], the anisotropic difussion is
defined as an evolving process as following:

∂I

∂t
= div(c(x, y, t)∇I) = ∇c · ∇I + c(c, y, t)∆I,

where ∆ is the Laplacian operator and∇ denotes the gradient operator. In addition, c(x, y, t)
represents the diffusion coefficient which depends on the point (x, y) and the time variable
t. The idea behind using this coefficient is to control the strength of the smoothing, so that
the diffusivity is reduced (low diffusion coefficient) at those locations which have a larger
likelihood to be edges, while non-edge regions must be linked to a higher coefficient [Weickert,
1998]. To this end, c(·) is chosen as a function of the image gradient. In the original work,
Perona and Malik proposed the following two functions:

c(||∇I||) = e−(||∇I||/κ)2 c(||∇I||) =
1

1 +
(
||∇I||
κ

)2

where κ is fixed to control the smoothing strength around edge regions. The evolution with
respect to t is related to iterate the diffusion process T times. This allows us to get a
scale-space representation of the diffusion and the final diffused image is obtained at time
T . In a discrete implementation, it is needed a parameter λ for controlling the speed of
diffusion [Perona and Malik, 1990].
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2.2.4 Active Contours

Active contours are methods to locate object boundary curves in images. Active contours
approach is more robust than conventional segmentation techniques when dealing with noisy
images [Caselles V. et al., 1993]. The name of active contours is due to the fact that these
boundary detectors iteratively move their final position forward according to the image forces
[Blake and Isard, 1998].

One kind of these methods, introduced originally as snakes [Kass M. et al., 1988], is a two-
dimensional spline curve that evolves towards image features such as strong edges according
to a energy-minimizing equation [Szeliski, 2011]. However, active contours need an initial
curve that will finally evolve to the desired shape.

Formally, an active contour is defined as a parametric curve v(s) = x(s) + y(s), s ∈ [0, 1]
that moves on the image domain D ∈ R until minimizing the energy equation [Kass M. et al.,
1988,Giraldi and Oliveira, 2000]. The minimized energy equation can be written as:∫

E∗snake =

∫ 1

0

Esnake(v(s))ds

The snake energy can be interpreted as∫ 1

0

Esnake =

∫ 1

0

Eint(v(s))ds+

∫ 1

0

Eimagen(v(s))ds+

∫ 1

0

Eext(v(s))ds

where Eint represents the internal energy of the curve, Eimagen represents the image force,
and Eext the external force that acts on the snake. The image force attracts the snake to
lines and edges.

The internal force of a snake is defined as:

Eint = α(s)

∣∣∣∣dvds

∣∣∣∣2 + β(s)

∣∣∣∣d2v

d2s

∣∣∣∣2
where the first order derivative dv

ds
makes the curve elastic. The second order derivative d2v

d2s

makes the curve rigid. The values of α and β control the behavior of the snake: when it
should be elastic or keep rigid.

The external force Eext tries to put the snake on the edges. Regarding a gray-level image
I(i, j), the external energy can be defined as:

Eext(i, j) = −|∇I(i, j)|2

Eext(i, j) = −|∇(Gσ(i, j) ∗ I(i, j))|2

where G is a Gaussian filter and σ stands for the standard deviation that controls the smooth-
ing effect.

An expansion ballooning force can be added to the equation in order to move each point
along its normal [Cohen and Cohen, 1993]. This is an interesting alternative because regular
snakes tend to shrink [Szeliski, 2011].
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2.2.5 Color Spaces

A color space is a method by which color can be specified, created and visualized. Several
color spaces are used in practice, and these spaces can be transformed into each other.
The components of each color space are impacted in different ways by an image processing
technique, especially by segmentation techniques, and it is a good idea to take advantage
of this. In the following, we will review three different color spaces that will be used in
algorithms of Chapter 5.

RGB

The RGB color space has its origin in color television. RGB is one of most widely used color
space for processing and storing the digital image data. The value of a particular color is
expressed as a vector of three elements (intensities of three primary colors R-red, G-green
and B-blue). This model is non-linear with visual perception. It is device dependent and
specification of colors is semi-intuitive [Ford and Roberts, 1998]. There is a high correlation
between the three components and chrominance and luminance components are mixed [Kaur
and Kranthi, 2012].

L*a*b*

The L*a*b* color space is a color-opponent space with dimension L for luminance and a and
b for the color-opponent dimensions. Unlike the RGB color space, L*a*b color space has
perceptual uniformity [Vezhnevets et al., 2003], and its L component closely matches human
perception of lightness. However, the perceptual uniformity is obtained at the expense of
heavy computational transformations, because the computation of the luminance L and
the chroma ab is obtained through a non-linear mapping of compressed coordinates [Kaur
and Kranthi, 2012]. One of the most important attributes of the L*a*b* model is device
independence.

YCbCr

YCbCr color space has been defined in response to increasing demands for digital algorithms
in handling video information and has become a widely used model in digital video [Kaur and
Kranthi, 2012]. In the YCbCr color space, luminance information is stored as a single luma
component Y , and chrominance information is stored as two color-difference components (Cb
and Cr). In this sense, Cb is the difference between blue and luma component and Cr is the
difference between red and luma component. In contrast to RGB, the YCbCr color space is
luminance independent [Kaur and Kranthi, 2012].
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2.3 Pattern Recognition

2.3.1 Shape-based Feature Extraction

Shape-based description is one of the basic steps in the ROI classification process, and consists
in quantifying some of the ROI properties, known as features. For instance, a ROI can be
described in terms of its area, its perimeter, and its number of holes, among other features
[Costa and Cesar, 2009].

To semantically describe the content of an image, ROI shape-based description has been
proven to be much more effective than other descriptions, such as those based on texture
or color [Persoon and Fu, 1977]. However, when invariance with respect to a number of
possible transformations such as scaling, shifting, and rotation is required, the construction
of shape-based descriptors is more complicated [Belongie et al., 2002].

Shape-based descriptors are categorized as contour-based shape descriptors and region-
based shape descriptors. The first kind of shape-based descriptors, the contour-based ones,
exploit information just at the boundary points focusing on contour features, which is crit-
ical for human perception of shapes [Zhang and Lu, 2004]. Whereas, region-based shape
descriptors are useful at describing non-connected and disjoint ROIs because they combine
information across an entire object, so they can capture the interior content of a ROI [Zhang
and Lu, 2004]. Fourier descriptor is an example of a contour-based descriptor, while geomet-
ric moments is an example of a region-based descriptor [Amanatiadis et al., 2011]. In the
following we briefly describe the shape-based descriptors used in this thesis, while a detailed
formulation can be found in Chapter 6.

Contour-based Shape Descriptors

Convexity Measure Convexity in image processing has been studied for many years. There
are many proposals of convexity measures that have been applied in object classification
and recognition [Zunić and Rosin, 2004,Rosin and Mumford, 2006]. The most naive and
common approach is the one based on the convex hull of the ROI boundary. Either
the ratio of areas or perimeters can be used [Rosin, 2009]. Also, there are different
convexity measures that are invariant with respect to translation, rotation and scaling
transformations and range through the interval (0, 1], taking the value of 1 only for
convex shapes [Rahtu et al., 2006,Rosin and Mumford, 2006,Zunić and Rosin, 2004].

Fourier Descriptor Fourier descriptor has been successfully applied to many shape rep-
resentation applications because of its simple derivation, simple normalization and its
robustness to noise [Zhang and Lu, 2002]. The Fourier descriptor is obtained by apply-
ing a Fourier transform on a shape signature. The shape signature is an one-dimensional
function that is derived from the ROI boundary coordinates. With Fourier descriptor,
global features are captured by the first few low frequency terms, while higher fre-
quency terms capture the finer features of the ROI [Zhang and Lu, 2004]. The Fourier
descriptor overcomes the noise sensitivity in the shape signature representations.
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Ellipticity Measure Several ellipticity measures already exist in the literature [Aktas and
Žunić, 2011,Rosin, 2003,Sonka et al., 2008]. All of them use their own way of evaluating
how the ROI considered differs from an ellipse. These measures assign a highest possible
ellipticity to all the ellipses (including circles) [Aktas and Žunić, 2013]. Aktas et. al.
[Aktas and Žunić, 2013] presented a family of shape ellipticity measures that evaluates
how much a given ellipse S differs from an ellipse, ranges over (0, 1], is invariant under
similarity transformations and picks the value 1 if and only if S is an ellipse.

Region-based Shape Descriptors

Geometric Moments Image moments are considered as an example of region-based shape
descriptors. Image moments are global descriptors characterized by representing a
ROI in a compact way avoiding the effect of noise [Nixon and Aguado, 2008]. In
addition, image moments describe the rate of change within a local area. Formally,
descriptors based on image moments interpret a normalized gray-level image function
as a probability density of a two-dimensional random variable. The properties of this
random variable can be described using statistical characteristics or moments [Sonka
et al., 2008]. Hu introduced the use of moments for shape description [Hu, 1962] and
showed that information is preserved when using moments for describing ROIs.

Zernike Moments Zernike-moment descriptor (ZMD) is one of the best shape-based de-
scriptors among the existing shape-based descriptors, since its proposal [Teague, 1980].
Many researchers report promising results of ZMD [Kim and Kim, 2000,Zhang and Lu,
2001]. Zernike moments allow independent moment invariants to be constructed to an
arbitrarily high order using the theory of orthogonal polynomials. ZMD is obtained
by using all the pixel information within a ROI, because it does not assume boundary
information. The theory of Zernike moments is similar to that of the Fourier transform,
to expand a signal into a series of orthogonal basis [Zhang and Lu, 2004]. The precision
of shape representation depends on the number of moments truncated from the series
expansion.

2.3.2 Pattern Classification

Pattern classification is a scientific area whose purpose is to classify objects (patterns) in
certain classes or categories by a priori knowledge or statistical information extracted from
the patterns. Generally, the data to be classified defines sets of observations which correspond
to points in a multidimensional space [Zheng and Xue, 2009].

There has been extensive interest in applying pattern classification methods for biomedical
applications including microcalcification detection [El-Naqa et al., 2002], fetal lung maturity
analysis [Bhanu Prakash et al., 2002], and polyp detection [Gokturk et al., 2001].

The main difficulty in pattern classification is the variability problem that appears when
objects belonging to the same class undergo variations due to illumination changes, geometric
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distortions, and occlusion, among others.

A complete pattern recognition system consists of (1) a sensor that perceives observations,
(2) a pre-processing module that performs any operation that contributes in defining a com-
pact representation of the pattern, (3) a feature extraction module, and (4) a classification
module [Zheng and Xue, 2009]. In the case of visual patterns, step 1 is carried out by any
photosensitive device and step 2 is carried out by image processing operations.

Classification is a process in which a classifier assigns a class label to an input. Following
the proposal of Jain et al. [Jain et al., 2000], a classifier can be designed following one of the
next approaches:

• Similarity Approach: Similar patterns should be assigned to the same class. The K-
nearest neighbor classifier and the nearest mean classifier belong to this category.

• Probability Approach: The optimal Bayes decision rule assigns a pattern to the class
with the maximum posterior probability.

• Construction decision boundaries: This category of classifiers constructs decision bound-
aries by optimizing certain criterion. The Support Vector Machine (SVM) belongs to
this class.

• Classifier Combination: The idea is to combine weak classifiers to produce a strong
classifier. Adaboost [Viola and Jones, 2002] is the most representative classifier in this
category.

2.3.3 Base Classifiers

K−Nearest Neighbor Classifier

The k− nearest neighbor (kNN) classifier is a nonparametric learning algorithm [Vege, 2012]
and one of the simplest techniques for machine learning [Duda et al., 2000,Dasarathy, 1991].

Nonparametric classification is often associated with the notion of a representative element
from a class. The class label assigned to an input feature vector is based on the similarity
of this vector to one or more representative elements. Typically, similarity is defined in a
geometrical sense, that is, based on a certain distance [Kuncheva, 2004]. Euclidean distance
can be used to compute distance between vectors [Vege, 2012].

In this sense, a data sample in kNN is classified on the basis of a selected number of k
nearest neighbors. To classifiy an input feature vector, the k nearest neighbors are retrieved
together with their class labels. The input feature vector is labeled with the most represented
class label among the k nearest neighbors [Kuncheva, 2004].
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Naive-Bayes Classifier

A naive-Bayes classifier is a simple probabilistic learning method based on Bayes theorem
where every feature is assumed to be class-conditionally independent [Duin, 1996].

The Bayes classification rule requires the estimation of the probability density functions,
based on the available training set of size N . In order to guarantee good estimates, N must
be large enough. But, this turns in a difficult scenario when the dimension of the feature
space increases. In this sense, if in an one-dimensional feature space N could be regarded
as large enough, then in a D-dimensional space ND points would be necessary [Theodoridis
and Koutroumbas, 2009]. Assuming that individual features are statistically independent,
the naive-Bayes classifier uses only DN points to estimate a D one-dimensional probability
density functions for each of the classes [Theodoridis and Koutroumbas, 2009].

Decision Trees

The decision tree classifier is a multistage nonlinear classifier, in which classes are sequentially
rejected until we reach a finally accepted class [Theodoridis and Koutroumbas, 2009]. To
this end, the feature space is sequentially split into unique regions, corresponding to the
classes [Theodoridis and Koutroumbas, 2009].

Upon the arrival of a feature vector, the searching of the region to which the feature
vector will be assigned is achieved via a sequence of decisions along a path of nodes of a
tree [Theodoridis and Koutroumbas, 2009]. The first decision is made at the root of the tree
by asking a question with a small number of different answers. Depending of the answer,
a branch is selected and the child node is visited. Another decision is made at this node,
and so on, until a leaf is reached. The leaf contains a single class label, which is assigned to
the feature vector being classified [Kuncheva, 2004]. To this end, the sequence of decisions
is applied to individual features, and the questions to be answered are of the form is feature
xi ≤ α?, where α is a threshold value [Theodoridis and Koutroumbas, 2009].

Decision tree classifiers are intuitive because the decision process can be traced as a se-
quence of simple decisions [Kuncheva, 2004]. In addition, tree structures can capture a
knowledge base in a hierarchical arrangement [Kuncheva, 2004]. However, this hierarchical
nature of the tree classifiers yields their high variance. A small change in the training dataset
might result in a very different tree. In this way, an error that occurs in an early stage in
the tree propagates all the way down to the leaves below it [Theodoridis and Koutroumbas,
2009].

Support Vector Machine Classifier

Support Vector Machine (SVM) is a machine learning tool that is widely used for pattern
classification, which implements non-linear mapping of input vectors to high dimensional fea-
ture space, while performing minimization of error function by an iterative training algorithm
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to construct its optimal separation hyper-plane [Ramakrishnan and Emary, 2010].

According to SVM, optimal classification of a separable two-class problem is achieved by
maximizing the width of the empty area (margin) between the two classes [Sonka et al.,
2008]. The margin width is defined as the distance between the discrimination hypersurface
in n−dimensional feature space and the closest training patterns: these are called support
vectors. In this sense, the support vectors specify the discrimination function. In addition,
SVMs need a kernel function that maps the data in the input space to feature space where
they are linearly separable. There are many kernel mapping functions available; however,
the Radial Basis Function (RBF) kernel is the most commonly used [Ukil, 2007].

2.3.4 Combination of Classifiers

Methods for combining classifiers have been widely explored over recent years. Two main
goals have fueled this field: a) to reduce the error rate in classification tasks in opposite
to monolithic classifiers, and b) to make the performance of the whole system more robust
against the difficulties that each individual classifier may have on each particular dataset
[Dietterich, 2000]. Figure 2.5 shows the monolithic and the combined classifier paradigms.

a) b)

Figure 2.5: Monolithic vs. combined classifier approach. We show a schematic ex-
planation of the difference between a monolithic classifier (a) and a combined classifier (b).
x stands for input feature vector, y stands for output class label and Classifier and Ci

(i = 1 . . . n) stand for any base classifier.

Combining classifier methods can be grouped acoording to the level at which they operate:
at feature or at decision level. Combining classifiers at feature level has the advantage that the
features from two or more sets at the same time can potentially provide additional information
about the classes. If combination methods operate at decision level, they combine outputs
of the classifiers using a combination rule with the main advantage of lower complexity
compared to the first group [Tulyakov et al., 2008].

A combination of classifiers can be constructed either in a parallel or serial manner. The
selection of a proper topology depends on the type of problem at hand. Some tasks can be
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divided into subtasks, and consequently, each subtask can be implementd using a different
classifier. However, the most common use of combination of classifiers involves the devel-
opment of diverse classifiers which solve the same task and the combination of them in a
parallel manner [Ranawana and Palade, 2006].

2.3.5 Combination Rules

Once the individual classifiers have been designed and implemented, the next most important
task involves the combination of the individual results obtained through individual classifiers
[Kittler et al., 1998]. In the following, we list common combination rules that were used to
obtain the results presented in Chapter 7.

Plurality

This rule selects the relevant class by polling all the classifiers to see which class is the most
popular. The class with the highest vote is selected.

Majority

Similar to plurality, except for the fact that there is the constrain about the selected class.
It should be the most voted class, concentrating simple majority of all individual classifiers.

Unanimity

In the unanimity combination rule, a decision is made for some class if all individual classifiers
agree on that class; otherwise the combiner refuses to decide.

Maximum

The classifier output with the highest value (confidence) is chosen as the output of the overall
combiner. A slight variation consists of setting a threshold value and only considers classifier
outputs that overcome that threshold.

2.3.6 Clustering Methods

The purpose of clustering methods is to detect similar subgroups among a large collection of
data points and to assign those data points to the clusters [Nisbet et al., 2009]. These methods
are very suitable for color image segmentation, where the data points are represented by the
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color intensities of pixels and the subgroups are represented by the objects in the image.
Here, we review the most common algorithm used for clustering in segmentation approaches.

K−means

The classic k−means algorithm was introduced by Hartigan [Hartigan, 1975] and is based
on a simple idea. Suppose we have a data set x1, . . . , xn consisting of n data points from a
multidimensional Euclidean space. The main goal is to partition the data set into a given
number k of clusters, assigning each data point to one of those clusters so that the mean
across clusters are as different from each other as possible [Nisbet et al., 2009]. A cluster is
defined as a group of data points whose inter-point distances are small compared with the
distances to points outside the cluster [Bishop, 2006].

The k−means algorithm is based on the use of squared Euclidean distance as the measure
of dissimilarity between a data point and the center of a cluster [Bishop, 2006].

2.3.7 Dimensionality Reduction Techniques

Dimensionality reduction is an important task related to compression and coding, statistics,
with latent variables, as well as machine learning and sampling theory. In essence, the goal
is to change the representation of data sets, originally in a form involving a large number of
variables, into a low-dimensional description using only a small number of free parameters.
The new representation should describe the data in a faithful manner, by preserving some
quantities of interest such as local mutual distances [Coifman and Lafon, 2006]. In the
following, we will review four dimensionality reduction techniques that will be referenced in
the discussion of the results of Chapter 7.

Principal Component Analysis

Principal Component Analysis (PCA) is a technique that is widely used for dimensionality
reduction [Jolliffe, 2002]. PCA is a linear transform that represents the data in a new
coordinate system in which basis vectors follow modes of greatest variance in the data: it is the
optimal linear transformation which divides an observed space into orthogonal subspaces with
the largest variance [Sonka et al., 2008]. PCA involves evaluating the mean and the covariance
matrix of the D−dimensional data set and then finding the M eigenvectors corresponding
to the M largest eigenvalues [Bishop, 2006]. This represents a compression of the data set,
because for each data point we replaced the D−dimensional vector with a M−dimensional
vector.
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Multidimensional Scaling

Multidimensional scaling (MDS) is a linear dimensionality reduction technique used to project
data onto a lower-dimensional space [Cox and Cox, 2008]. It finds a low-dimensional pro-
jection of the data looking to preserve, as closely as possible, the pairwise distances between
data points, and involves finding the eigenvectors of the distance matrix. In case where the
distances are Euclidian, it gives equivalent results to PCA [Bishop, 2006].

Kernel Principal Component Analysis

Kernel Principal Component Analysis (Kernel PCA) is a nonlinear generalization of PCA
[Schölkopf et al., 1998]. The main idea is that a dataset in the original data space is projected
by a nonlinear transformation φ into a feature space. The function φmaps the original dataset
into a larger feature space by creating nonlinear combinations of the dataset. By performing
PCA in the feature space, the principal components are obtained [Bishop, 2006].

Diffusion Maps

Diffusion maps is a nonlinear dimensionality reduction technique introduced by Coifman and
Lafon [Coifman and Lafon, 2006]. It finds a family of embeddings of a data set into a lower-
dimensional Euclidean space whose coordinates can be obtained from the eigenvectors and
eigenvalues of a diffusion operator on the data. The diffusion distance between probability
distributions centered at points in the embedded space is equal to the Euclidean distance
between those points.

2.4 Evaluation Metrics

Due to the fact that this PhD thesis is aimed to develop and calibrate a pipeline for detecting,
segmenting, characterizing and classifying human sperm heads, we need a number of evalua-
tion metrics for each stage of the proposed pipeline. In this sense, in this section we list the
evaluation metrics that we decided to use for detection, segmentation and classification of
human sperm heads. There are no specific evaluation metrics for the characterization stage
as this stage was validated along with the classification scheme.

2.4.1 Evaluation Metrics for Detection

Given a detection gold-standard, we have four possible scenarios to evaluate a detection
algorithm: true positives (TPs), the number of correctly detected objects, true negatives
(TNs), the number of correctly detected non objects, false positives (FPs), the number of

25



wrongly detected non objects, and false negatives (FNs), the number of wrongly non-detected
objects.

To evaluate our detection algorithm (introduced in Chapter 5), we use true-positive rate
(TPR), false-positive rate (FPR) and precision as follows.

TPR =
TP

TP + FN

FPR =
FP

FP + TN

precision =
TP

TP + FP

2.4.2 Evaluation Metrics for Segmentation

Given a segmentation gold-standard, we can use different metrics to evaluate the quality
of a segmentation method. In general, the idea is that the automatic segmentation S has
to be compared to the manually segmented image (gold-standard) G, by computing some
evaluation metrics. These metrics can be based on spatial overlap measures (e.g., Dice
coefficient [Dice, 1945]) and on distance measures (e.g., Hausdorff distance [Alt and Guibas,
2000]). Table 2.1 summarizes the evaluation metrics for segmentation results used in this
thesis.

Metric Dice Coefficient Hausdorff Distance

Expression D =
2|S∩G|
|S|+|G| H(S,G) = max(h(S,G), h(G,S))

h(S,G) = maxs∈S(ming∈G d(s, g))

Range [0,1] [0,1]

Interpretation 0: no spatial overlap between S
and G

0: maximum agreement between
perimeters of S and G

1: complete overlap 1: maximum disagreement between
perimeters

Table 2.1: Metrics for quality of segmentation

2.4.3 Evaluation Metrics for Classification

Taking advantage of having a classification gold-standard, the idea is to evaluate the perfor-
mance of a classification method against that gold-standard. Furthermore, it is possible to
compare the proposed method with each of the individual experts who collaborated in gen-
erating the gold-standard. In this thesis, we used four metrics to evaluate the two different
stages of our classification scheme as well as the whole classification method (see Chapter 7
for details).
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Confusion matrix

A confusion matrix is used to describe the performance of a classification method on a gold-
standard [Kohavi and Provost, 1998]. Each column of the matrix represents the instances in
a predicted class, while each row represents the instances in an actual class. The entries in
the confusion matrix are related to: true positives (TPs), the number of correctly classified
objects; true negatives (TNs), the number of correctly rejected objects; false positives (FPs),
the number of wrongly classified objects; false negatives (FNs), the number of wrongly re-
jected objects. Here, we present a confusion matrix for a two-class classification method that
can be extended for a multi-class classifier:

Predicted class
Positive Negative

Actual class
Positive TP FN
Negative FP TN

Accuracy rate

The accuracy rate indicates the proportion of the total number of predictions made by the
classification method that were correct compared against the gold-standard. It is defined in
terms of confusion matrix entries as:

accuracy =
TP + TN

TP + TN + FP + FN

True positive rate

True positive rate, also called sensitivity and recall, measures the proportion of positive cases
that were correctly identified as such. It is defined in terms of confusion matrix entries as:

TPR =
TP

TP + FN

2.5 Summary

In this chapter, we have discussed relevant topics required to understand the subsequent
chapters. The discussed topics come from a variety of research areas. First, we have discussed
biological concepts related to the structure and morphological deffects of human sperms
(Section 2.1). These concepts will be useful at understanding Chapters 4 to 7. Second, with
respect to the image processing notions (Section 2.2) discussed above, it is important to
realize that their main application will be focused in Chapter 5. For the sperm detection and
segmentation algorithms, it will be relevant topics about pixel connectivity, mathematical
morphology, color spaces and clustering methods (k−means). The anisotropic diffusion filter
and the active contour approach will be useful to understand the characterization stage of our
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methodology (Chapter 6). Third, the topics related to pattern recognition (Section 2.3) will
be required mainly in Chapters 6 and 7 as well as Appendix B. For understanding Chapter 7,
the reader will find helpful the sections that discussed combination of classifiers, combination
rules and dimensionality reduction techniques. While the discussion about base classifiers is
referenced in the Appendix B.
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Chapter 3

Related Work

This chapter presents an up-to-date review of related research. For easier reading, this
chapter is organized according to the main stages of this PhD thesis.

First, Section 3.1 discusses the most prominent approaches for detecting and segmenting
eukaryotic cells and separating sperm cells (see Section 3.1.1) from other eukaryotic cells
(see Section 3.1.2). This section pays special attention to methods for working specifically
with images from bright-field microscopy. Section 3.2 reviews published research works that
addressed the problem of characterizing and classifying sperm cells at first, and grain kernels,
later.

There are not many published research papers for sperm cell computer characterization
and classification that encompasses a full morphological analysis of sperm (see Section 3.2.1).
There is only one proposed approach for characterizing and classifying human sperm cells as
normal and abnormal sperm. Besides, to the best of our knowledge, there is no published
framework for identification of human sperm cell abnormalities. On the other hand, there
are a number of commercial applications for morphological analysis of sperm. Therefore, the
characteristics of the three major commercial applications are also described.

Regarding the small variability inter classes and the visual features of objects to charac-
terize and classify, a very related area is grain featuring and classification, including food
and pollen grains (see Section 3.2.2). In this area, the problematic situation is the same as
in sperm classification: the manual method is a hard-laborius task with subjective results.
Thus, the development of automatic classification methods in all these research fields would
increase the overall classification rate.
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3.1 Detection and Segmentation

3.1.1 Human Sperm Cells

Few publications are concerned with the detection and segmentation problems associated
with these cells. The following lists the most representative approaches with published ex-
perimental results.

A two-stage method for segmentation of sperm heads and mid-pieces was presented by
Carrillo et al. looking for an objective analysis of human sperm morphology [Carrillo et al.,
2007b,Carrillo et al., 2007a]. At the first stage, the objects obtained by thresholding using the
Otsu method [Otsu, 1979] are classified through histogram analysis. Some particles are then
removed according to their size. After that, each sperm cell detected (head and mid-piece)
is enclosed in a bounding box. Next, each sperm cell is extracted from the original RGB
color image. At the second stage, the authors proposed to segment the head and mid-piece
by applying a nth-fusion method to the enhanced image. The nth-fusion method is based
on nth-level thresholding of an image followed by intersection with n special growing masks,
constructed using prior object morphological models. The proposed method achieved 89.5%
of correct segmentation of sperm heads. To the best of our knowledge, this proposal is the
state-of-the-art reproducible method using images from bright-field microscopy, and other
research works compare their results with it [Bijar and Mikaeili, 2011,Bijar et al., 2012].

Gonzalez et al. presented a method to segment images of live and dead spermatozoa in
positive phase contrast images [González-Castro et al., 2009]. The authors addressed the
sperm head segmentation by means of applying an intelligent thresholding. The threshold
changed its value when the binary image obtained did not fulfill some surface and eccentricity
conditions. Then, using the same automatic criteria, the badly segmented images were
processed using the watershed transform. Experimental results showed almost 91% of correct
segmentation of sperm cells.

Bijar et al. proposed a method for segmentation of sperm acrosome, nucleus, mid-piece
and identification of tails [Bijar et al., 2012]. The segmentation step is performed by means
of a Bayesian classifier which uses entropy based expectation maximization and a Markov
random field. For sperm tail identification, the authors proposed to use a structural similarity
index and local entropy techniques. The paper presented results that outperformed those
of Carrillo et al. achieving 94.3% of correct segmentation of sperm heads, however the
experimental framework is so weak that it makes the validation of those results very difficult.

Shojaedini and Heydari presented an approach for automatic segmentation of human
sperm [Shojaedini and Heydari, 2014]. The authors proposed a sperm detection technique
based on minimization of the information distance between the original and processed images
using co-occurrence matrix. The final segmentation stage consisted of an algorithm based on
the watershed transform using candidates from the previous stage. The proposed framework
achieved 96% of correct segmentation of sperm cells in experiments conducted on microscopic
videos captured from human semen.
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3.1.2 Other Eukaryotic Cells

There are two types of cells: prokaryotic and eukaryotic. Prokaryotic cells are simpler cells like
bacteria cells, while eukaryotic cells include plant and animal cells [Karp, 2013]. Numerous
image processing techniques were used in different approches for detection and segmentation
of various kinds of eukaryotic cells different from sperm cells.

Korzynska et al. presented a semi-automatic method for segmentation of cells from bright-
field microscopy [Korzynska et al., 2007]. The algorithm consisted of a combination of the use
of texture threshold in a window sliding approach and of Prewitt edge detection method. It
was tested with neuthophils and lymphocytes and compared against common segmentation
methods as watershed and active contours. The main drawback is that the method required
much human interaction to provide competitive results. No specific segmentation accuracy
rate was reported.

Shah proposed an automatic cell image segmentation method using a shape-classification
model [Shah, 2008]. The main idea was to use k-means approach coupled with cluster
merging, based on a fitness function using proximity graphs to obtain cell localization. A
joint segmentation-classification approach incorporating an ellipse as a shape model was used
to detect the final cell contour based on the level-set method. The method was evaluated
with cytological images for thyroid lesions, reaching 92% of segmentation accuracy.

Bradbury introduced a combined method for segmentation of bright-field eukaryotic cell
images for cancer studies [Bradbury, 2009]. The proposed approach involved the combination
of multiphase active contour and watershed method. There were three stages in the algorithm:
1) to use level-set method to select the seeds for a watershed technique, 2) after applying
a watershed technique, a binary image with two regions (cell and background) is obtained,
and 3) to use a simple level-set method on this binary image to extract the boundary of the
cell. No specific segmentation accuracy rate was reported.

The proposed method of Ali et al. was a complete approach for cell detection and bound-
ary and nucleus segmentation [Ali et al., 2012]. The authors used thresholding based on
deconfused images for cell detection. While the boundary segmentation was achieved using
local orientations as well as level-set based active contour. They proposed to use a texture
model to segment the nucleus of detected cells. The evaluation of this algorithm was done us-
ing several types of carcinoma cells (mammary and cervical among others) achieving 80% of
detection precision and 75% of segmentation accuracy compared to their own gold-standard
obtained from experts.

3.2 Characterization and Classification

In this section, relevant research works related to characterization and classification of sperm
heads are discussed. A few research studies were published about characterization of ani-
mal sperm cells. In case of classification sperm cells, there is only one proposed approach
for classifying human sperm cells as normal and abnormal sperm. The other research stud-
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ies discussed in this section are related not to morphology sperm analysis, but to vitality
sperm analysis as they proposed membrane integrity assessment techniques. We also discuss
research studies from a very related area: grain featuring and classification. In this case,
the problematic situation is the same as in sperm classification: the manual method is a
hard-laborius task with subjective results.

3.2.1 Sperm Cells

A number of image analysis and machine learning methods have been suggested for descrip-
tion and classification of sperm cells, from human and animal semen.

Beletti et al. described the morphology of animal sperm heads from a computational
point of view [Beletti et al., 2005a]. Sperm morphology was quantified in terms of the
following morphological features: head area, perimeter, width, length, aspect ratio, ellipticity,
shape factor, width of sperm basis, the three first Fourier values, side and anterior-posterior
symmetry and hydrodynamic coefficient.

Beletti et al. characterized the animal sperm head shape using a multiscale curvature
estimation [Beletti et al., 2005b]. This work described how a spectral approach to derivative
estimation was useful for extracting relevant features for sperm head morphology assessment.
Using the Fourier transform, the proposed method calculated three morphological features:
width of sperm head, implantation symmetry and bending energy of the frontal portion of
the head. Experiments with real data from several animal species are shown.

Severa et al. developed a framework to characterize stallion sperm heads and evaluate the
intrinsic shape variability [Severa et al., 2010]. Sperm head shape characteristics including
aspect ratio, position of the center of gravity, curvature and degree of roundness were assessed
and analysed using Fourier descriptors and inverse Fourier transformation.

Abbiramy and Tamilarasi evaluated the accuracy of neural networks for human sperm
classification, discriminating normal from abnormal sperm cells [Abbiramy and Tamilarasi,
2011]. The feature vector proposed by the authors includes first order statistics, textural
features (gray level co-ocurrence matrix) and morphological features (head area, perimeter
width and length, eccentricity and orientation, among others). For classification purposes,
the authors evaluated three neural networks techniques: feed forward, radial basis and El-
man back propagation. The experiments were done using images taken from WHO laboratory
manual [WHO, 2010b], and showed that the radial basis network produced the highest clas-
sification accuracy of 60%, 75% and 70% when trained with statistical features, combined
features (statistical, textural and morphological) and morphological features, respectively.

From a different perspective, a number of publications are concerned with the membrane
integrity validation. Sanchez et al. proposed several methods for the classification of boar
spermatozoa heads based on their intracellular intensity distribution and using a least square
classifier [Sánchez and Petkov, 2009]. Experiments were conducted on real images classified
by veterinarian experts as intact or damaged, and showed a missclassification error of 20%
when classifying sperm cells as intact or damaged.
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Alegre et al. developed a method for classification of the acrosome integrity of boar
spermatozoa images [Alegre et al., 2012]. In this scenario, the main goal is to discriminate
live from dead sperm cells. The proposed approach aimed to characterize the acrosomes
by means of textural and moment-based features. The head texture was described using
several Haralick descriptors computed after applying a discrete wavelet transform. In case
of moment-based features, the authors proposed to use Hu, Legendre and Zernike moments.
For classification purposes, kNN classifier and multilayer perceptron neural network were
used as classifiers. With the combination of textural features and multilayer perceptron, this
approach achieved 94.9% as correct classification of sperm cells discrimating live from dead
cells.

Gonzalez et al. used a curvelet-based descriptor to classify acrosoma integrity [González-
Castro et al., 2012]. The classification stage used a multilayer perceptron neural network.
Experiments were conducted to evaluate the proposed methods against other texture de-
scriptors based on the wavelet transform, as well as moment-based descriptors. The results
showed that textural descriptors performed better than other evaluated descriptors, and the
proposed descriptor achieved a correct classification in 97% of cases, trying to discriminate
live from dead sperm cells.

A method for assessing the acrosome state of boar sperm heads was proposed in [Alegre
et al., 2013]. The authors introduced a n-contour descriptor that includes local texture fea-
tures (local maximum gradient values, local mean gray level values and local standard devia-
tion). In the classification evaluation, three different classifiers were used: Relevance learning
vector quantization, class-conditional mean and kNN. The experimental results showed that
gradient magnitude data offered the best rate with an overall test error of 1%, while using
11NN at classifying sperm cells according to their vitality.

A recent proposal of Garcia et al. used an early fusion of texture and contour descriptors
for acrosome integrity assessment [Garćıa-Olalla et al., 2015]. With this purpose, three de-
scriptors have been considered, and combined in a whole feature vector: 1) thirteen Haralick
features on the co-occurrence matrix of the original image and on the images obtained in the
first Haar discrete wavelet transform decomposition, 2) a rotation invariant and uniform LBP
(local binary patterns), and 3) Fourier shape descriptors for the contour of the sperm head.
The classification was performed with a SVM backed by a least-square training algoritm and
a linear kernel. The proposed approach provided 99.2% of correct classification of sperm cells
in two classes (live and dead), outperforming the previous approaches.

3.2.2 Grain Kernels

Food Grains

Various research works have been published addressing characterization and classification of
food grains, especially corn and cereal grains. An approach for classifying rice seeds variety
was introduced by Liu et al. [Liu et al., 2005]. The main goal was to classify rice seeds in six
classes. This approach proposed the use of seven color features and fourteen morphological
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features in combination with discriminant analysis, achieving almost 85% of average correct
classification in six classes.

Anami et al. proposed an automatic method for grain classification in six classes, including
wheat, corn and redgram, among others [Anami et al., 2005]. The classification was performed
based on color and morphological features. Using neural networks approach, the proposed
method achieved up to 90% as classification accuracy.

Chen et al. developed a corn variety identification approach [Chen et al., 2010]. Several
morphological (13), geometric (17) and color features (28) were extracted. After ranking
features using stepwise discriminant analysis, the optimum sets of features for two models
were created individually. A two-stage classifier combining distance discriminant and a back
propagation neural network was built for identification. Experiments showed that the average
classification accuracy for five corn varieties (including white, yellow and mixed corn) was
up to 94%.

Kaur and Sinngh presented a method for classifying and grading rice kernels [Kaur and
Singh, 2013]. The main idea was to use a multi-class SVM based approach for grading
rice kernels in one of the following classes: Premium, Grade A, Grade B and Grade C. For
characterizing the rice kernels, the authors used ten geometric features and reported 86% of
correct classification.

Mebatsion et al. developed a method for classification of cereal grains using morphological
and color features [Mebatsion et al., 2013]. The authors used chain code representation for
grain boundary and extracted elliptic Fourier coefficients from them. The morphological
features included symmetrical Fourier index, aspect ratio, major diameter and roundness.
Using these features, a least-square classifier achieved around 98% of correct classification,
discriminating among four classes: barley, oat, rye and wheat.

Pollen Grains

Over the past decade, there has been increasing research interest in the automatic classifica-
tion of pollen grains. Accurate identification of pollen types is a relevant topic in different
scenarios. For instance, quantifying the concentration of airborne pollen may help people
suffering from allergic reactions to adopt adequate treatment strategies [Marcos et al., 2015].
In apiculture, pollen classification is required to identify nectar sources, which determine
the quality of the product and enable the authentication of its origin [Kaya et al., 2013].
Currently, pollen identification is based on visual inspection of microscopy images. It is
a time-consuming and costly procedure since a trained expert must manually classify each
pollen grain [Mitsumoto et al., 2009]. The combination of image processing techniques with
machine learning approaches achieves very promising results.

Treloar et al. proposed an automatic pollen grain classification method [Treloar et al.,
2004]. In this work, the authors used morphological, geometrical and texture features for the
charaterization stage. These features were used with a multi-variable statistical classifier for
recognizing twelve species of pollen reporting a 95% classification accuracy.
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Zhang et al. presented a method for pollen classification that used neural networks [Zhang
et al., 2004]. The descriptor was obtained by means of combining texture features computed
by the Gabor transform with geometrical features computed by invariant moments. The
whole approach showed a correct classification in 97% of test cases while classifying five
species of pollen grains.

Rodriguez-Damian et al. proposed a method for detecting and classifying pollen grains
[Rodŕıguez-Damián et al., 2006]. The authors used shape and texture features as well as
conventional first-order and second-order statistical features computed from Haralick’s co-
ocurrence analysis to describe grains of pollen. These descriptors were combined with SVM,
neural networks and minimum distance classifiers. Using texture features, the proposed
method achieved 88% of correct classification, while using shape features reached 80% of
correct classification evaluated on the same dataset.

Allen et al. developed an automatic system for localization and classification of three
species of pollen grains [Allen et al., 2008]. The authors used geometric and texture features
to characterize grains of pollen. The chosen classifier was neural networks, achieving 90% of
correct classification.

Punyasena et al. developed a supervised, layered, instance-based classification system for
pollen grains [Punyasena et al., 2012]. The features used to describe pollen grains include
shape, size and texture. For the classification stage, the authors proposed to use a kNN
classifier with leave-one-out bias optimization. The method was evaluated on two datasets
(with two and three types of pollen grains, respectively) achieving a similar rate around 93%
of correct classification in both cases.

Chica proposed a method for authenticating pollen grains in bright-field microscopic im-
ages [Chica, 2012]. The author proposed to combine one-class classification techniques to
reject unkown pollen grain objects, after a comparison of five models: Gaussian estimator,
support vector data description, and three variants of the k−NN. The features used to de-
scribe pollen grains included shape, color and textural features as well as the features for
describing the exine of the pollen grain. The overall accuracy of classification reached 92%.

Kaya et al. presented a method for pollen classification in honey [Kaya et al., 2013].
GLCM (grey level co-occurrence matrix) texture features and neural networks were used for
the identification of pollen grains in honey. GLCM has been calculated in four different angles
and offsets for the pollen of the plant and the honey samples. The method was evaluated
using ten different species of pollen grains achieving a classification accuracy of 88%.

Redondo et al. developed a novel method for automatic pollen classification in bright-field
microscopy [Redondo et al., 2015]. The authors used morphological, textural and statistical
features for charaterizing pollen grains. In addition, they proposed a new descriptor to
measure contour profile. For classification purposes, the use of random forest, Fisher classifier
and SVM was evaluated. The results showed that combining descriptors could improve overall
classification accuracy up to 99%.
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3.3 Commercial Applications for Computer-Aided Sperm

Analysis

In the context of commercial applications, companies in the interface of research and de-
velopment offer computer assisted systems for semen analysis, usually referred to as CASA
(Computer Aided/Assisted Sperm Analysis). CASA technology was developed in the late
1980s for analyzing sperm movement characteristics or kinematics and has been highly suc-
cessful in enabling this field of research [Davis et al., 1992,Kruger et al., 1993]. CASA has also
been used with great success for measuring semen characteristics such as sperm concentration
and proportions of progressive motility in many animal species, including wide application in
domesticated animal production laboratories and reproductive toxicology. However, the same
is not yet for human clinical laboratories due to biological and technical limitations [Mortimer
et al., 2015].

Despite many unresolved problems, the state-of-the-art in CASA has progressed greatly
in the last decade so that several modern CASA systems are no longer black boxes but
embody additional (and often user-adjustable) operational parameter settings that address
many of the problems that constrained earlier systems [Mortimer et al., 2015]. Furthermore,
CASA products offer solutions for sperm concentration, motility, morphology, vitality and
fragmentation with different degrees of accuracy. Specifically, in the case of sperm morphol-
ogy assessment, the repeatability and validity of CASA systems could be higher than any
subjective morphological evaluation, but it is required that the quality of the preparation,
choice and quality of fixing, thickness of the preparation, choice of dyes, type of light and ad-
justment of optics are carefully chosen [Wang et al., 1991,Davis and Gravance, 1993,Lacquet
et al., 1996,Coetzee et al., 1999,Auger, 2010].

Common CASA systems that offer morphological analysis tools of human sperm are IVOS
- Integrated Visual Optic System (Hamilton-Thorne Biosciences, Beverly, MA, USA) 1 and
SCA - Sperm Class Analyzer (Microptic Automatic Diagnostic Systems SL, Barcelona, Spain)
2.

3.3.1 IVOS - Integrated Visual Optic System

Hamilton-Thorne IVOS-II features improved integrated phase contrast optics. It offers oper-
ational settings such as frame rate, number of images to be captured, interactive/automated
illumination and focus control to optimize tail detection, as well as user-adjustable settings
to control more aspects of cell detection and static/ non-progressive/progressive motility
differentiation. Options for sperm morphology include the research-orientated Metrix sys-
tem 3 that learns from user interaction for improving classification of sperm head morphology
(normal and abnormal), reporting sperm head parameters such as elongation and area. How-
ever, this system can not analyze either the sperm mid-piece or tail morphology, and hence

1http://www.origio.com/en/products/all-products/ivos-sperm-analyzer
2http://www.micropticsl.com/products/sperm-class-analyzer-casa-system/
3http://www.hamiltonthorne.com/index.php/products/sperm-analyzer-options/metrix-morphology
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only provides a classification of normal sperm cells based on sperm head morphology [Mor-
timer et al., 2015]. This CASA system has been used for research purposes in a number of
published works [Douglas-Hamilton, 1995,Coetzee et al., 1999,Atkins et al., 2003,Phetudom-
sinsuk et al., 2008].

3.3.2 SCA - Sperm Class Analyzer

The Sperm Class Analyzer (SCA) comprises four modules (concentration and motility, mor-
phology, vitality, and fragmentation) that are fully integrated and associated with an exten-
sive database that will allow results imported and exported in many of the formats used by
hospitals. With respect to sperm morphology, SCA needs to be better elaborated in humans
and different animal species by including the entire cell, especially tail characteristics, and
also using polychromatic stains. SCA already employs adaptive thresholding to visualize the
entire spermatozoon and then measure all its components, at least in ram spermatozoa [Mor-
timer et al., 2015]. SCA has been used in several research studies [Soler et al., 2003,Hidalgo
et al., 2008,Hidalgo and Dorado, 2009,Maree and van der Horst, 2013,Dearing et al., 2014].

3.4 Summary

In this chapter we have reviewed relevant research and commercial works related to the main
topic of this thesis. In this sense, we have reviewed four segmentation approaches for human
sperm cells (Section 3.1.1), two of which used images from bright-field microscopy achieving
from 90% to 96% of correct segmentation. We also reviewed four segmentation methods tested
with other eukaryotic cells different from sperm cells (Section 3.1.2) with correct segmentation
range between 75% to 92%. For the case of characterization and classification related work,
our review was focused on sperm cells and grain kernels, due to the similar problematic issues
in both research areas. In the sperm cells scenario (Section 3.2.1), we have reviewed three
proposals for characterizing animal sperm cells using morphological parameters. We discussed
only one research work related to human sperm classification regarding two classes: normal
and abnormal, achieving from 60% to 75% of correct classification depending on which kind
of features are used. The remaining five publications commented in this section are related
to vitality assessment, by means of membrane integrity validation, achieving from from 80%
to 99% of correct classification. In this case, the main goal is to discriminate between live
and dead sperm cells (or intact and damaged membrane). With respect to grain kernels, we
presented an up-to-date review of research works focused on food grains (mainly rice and corn
kernel classification with correct classification range between 85% and 98%) as well as pollen
grains achieving up to 99% of correct classification in different numbers of species of pollen.
Computer aided sperm analysis technology (Section 3.3) has enormous potential as a research
tool, in reproductive toxicology, in animal production, and for human clinical analyses (sperm
concentration and motility). However, urgent improvements in CASA technology need to
address sperm morphology analysis.
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Chapter 4

Gold-Standard Generation

A ground-truth represents the absolute truth for a certain application. For instance, in cancer
detection from medical images, a suspicious region is malignant or benign. The absolute
truth (whether it is cancer or not) can be obtained from biopsies. The biopsy results form
the ground-truth for those medical images [Raykar et al., 2009]. Unfortunately, for many
applications, especially in biomedicine, such as morphological analisis of sperm cells, it is
impossible to count with a ground-truth because of the subjectivity of the task [Yan et al.,
2010]. A valid alternative consists in asking many experts in the field for their opinion about
punctual cases, in order to generate a gold-standard [Fuchs and Buhmann, 2011].

This chapter presents the design and construction of a segmentation gold-standard, re-
garding the opinion of one expert, as well as a classification gold-standard, regarding the
opinion of three referent experts in the field.

In this sense, we describe in detail the staining method, the features of the equipment we
used to capture the images and specific details about images and manual methods in our
both gold-standards.

This represents a significant contribution of our work, because at present there is no
segmentation neither a classification public gold-standard, so the few existing methods cannot
be properly evaluated.

4.1 Sample Preparation

Sperm samples were stained with a modified Hematoxylin/Eosin assay, in order to distinguish
different parts of sperm morphology (Figure 2.1). First, the sperm smear was fixed with
ethanol 70% and immersed in Harris’ Hematoxylin for ten seconds for nuclear staining. Slides
were washed with tap water for ten minutes to remove residual staining. Later, slides were
immersed in 1% Eosin for two minutes to stain the acrosome, mid-piece and tail in a pink-
orange color. Finally, the sample was washed with distilled water for one minute. Samples
were then air dried and fixed. This staining procedure allows samples to be used for more
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than one year.

4.2 Image Acquisition

Digital images were acquired using an optical microscope (Axiostar Plus, Carl Zeiss Inc,
Wetzlar, Germany), a 63x objective (oil, NA 1.4) with an adapter of 0.63x and a digital
camera (scA780-54gc, Basler AG, Ahrensburg, Germany).

4.3 Source of Sperm Smears

We obtained the sperm smears from:

• Laboratory of Spermiogram, Program of Anatomy and Developmental Biology (ICBM),
Faculty of Medicine, University of Chile, Santiago, Chile

• Maternal Child Research Institute (IDIMI), San Borja Arriarán Hospital, Santiago,
Chile

• Reproductive Medicine Unit, Cĺınica Las Condes, Santiago, Chile.

In both cases, we obtained sperm smears from males between 28 and 35 years old, with
children of less than one year old.

4.4 Segmentation Gold-Standard

The segmentation gold-standard consists of 20 images with 264 sperm cells, where 210 are
valid sperm cells (not at the border of image, without containing noise, etc). Each image has
780× 580 pixels (see Figure 4.4a). All images were obtained only from one patient.

For each of these images, hand-made segmentation masks have been generated under
supervision of a referent expert in the field. The manual segmentation masks include the
whole sperm cell, head, mid-piece, and tail (see Figure 4.4b) as well as acrosome and nucleus
(see Figure 4.4c).

4.5 Classification Gold-Standard

For the classification gold-standard, we collected smears from four patients (named p1, p3,
p4 and p5). For each patient, we had one or two smears (pl1 and pl2), with a total of six
smears, as is detailed in Table 4.1.
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a)

b)

c)

Figure 4.1: Segmentation gold-standard. (a) Bright field image: 780 × 580 pixels ≈
163×121 µm. (b) Overlay with masks from manual segmentation for head (blue), mid-piece
(red) and tail (yellow). (c) Overlay with masks from manual segmentation for acrosome
(red) and nucleus (yellow).
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Patient Smear Sperm cells

p1 pl1 399

pl2 319

p3 pl1 213

p4 pl1 253

pl2 157

p5 pl1 187

Table 4.1: Sample source details

We obtained 1, 872 sperm head images that could be classified according to 11 head defects
as WHO stablishes [WHO, 2010b]. We decided to build a classification gold-standard of
human sperm head, considering only the five most representative classes among the obtained
smears. Finally, the gold-standard contains 1, 854 observable and evaluable sperm cells whose
class is one of the following: normal, tapered, pyriform, small, and amorphous. In Figure
4.2, representative sperm cells from each class are showed. The manual classification process
has been performed independently, per patient/smear, by three referent experts with vast
experience in morphological sperm analysis.

A very important aspect in the analysis of the gold-standard is the discussion on the inter-
expert agreement distribution. As this gold-standard was built with the cooperation of three
experts, there are three different agreement scenarios: one (basis set), two experts (partial
agreement - PA), or three experts agree on the same label for a given sperm head (total
agreement - TA). The first set contains 1, 854 sperm head labels, but a sperm head can be
classified into three different classes by the three different experts. The second set contains
1, 132 sperm heads, meaning that there are 1, 132 sperm heads with partial agreement and
without overlapping. The third set contains only 384 sperm heads, with total agreement
between the three expert technicians.

Table 4.2 shows the number of sperm cells per class for each agreement scenario. Con-
sidering the manual classification agreement by at least one, two, or three experts, the class
Amorphous is the largest class in all cases, concentrating over 68% in the total agreement
scenario (see Figure 4.3). The class Tapered is the second largest class, slightly decreasing
assignment percentage as agreement among experts increases and concentrating around the
fifth part of the samples. The Pyriform and Small classes decrease their assignment per-
centage while increasing agreement among experts (from 188 to 7 and from 152 to 11 sperm
cells, respectively). It is important to note that in the case of class Pyriform, there is less
than 2% of the samples with total agreement of experts (only 7 sperm cells). The only class
that maintains its assignment percentage is the class Normal, regardless if one considers the
label agreement of at least one, two, or three experts, and consisting of less than 10% of the
samples, but ranging from 175 to only 35 sperm cells with total agreement among experts.

The underlying complexity in the sperm head classification task can be studied by eval-
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Figure 4.2: Classification gold-standard. Representative examples of normal, tapered,
pyriform, small and amorphous sperm cells (Image size: 35× 35 pixels ≈ 7× 7 µm).

Agreement among experts Normal Tapered Pyriform Small Amorphous

At least one (Basis set) 175 420 188 152 919

Partial agreement (PA) 100 228 76 72 656

Total agreement (TA) 35 69 7 11 262

Table 4.2: Inter-expert agreement

uating the degree of agreement between different experts. Figure 4.4 shows the inter-expert
agreement per class. Considering the number of heads that have been classified into a certain
class by at least one expert as the size of the basis set, figure 4.4 shows the percentage of
partial agreement and total agreement. There are some classes in which it is really difficult
to reach an agreement, for example, class Pyriform. There is only 40% of sperm heads that
were classified as Pyriform by at least one expert that reach partial agreement and less than
2% that reach total agreement. It seems to be the most difficult class to get agreement among
experts, even seems to be the most morphologically defined class by theory. While the most
morphologically ambiguous class in theory, Amorphous, turns out to be the class that has the
greatest rate of agreement among experts. For this class, this trend is the same for whether
partial agreement as in total agreement analysis.

To demonstrate the subjectivity of morphological analysis and dependence of the specialist
who performs it, Figure 4.5 shows inter-expert variability per class. Pyriform and Small are
the most defined classes according to their morphological features, and both show a high
degree of agreement between two out of the three experts, while the discrepancy with the
third expert is really significant. In the case of classes Normal and Tapered, a high degree of
agreement is reached between two technicians, whereas the discrepancy with the remaining
expert is very high in the case of class Tapered. Class Amorphous shows a high degree of
discrepancy among all experts. In general, the inter-expert variability analysis shows 60%
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a) b) c)

Figure 4.3: Inter-expert agreement. (a) Manual classification by at least one expert
assigning a class label Amorphous covers almost 50% with similar presence of classes Normal,
Pyriform and Small (around 10%). (b) For partial agreement, the class Amorphous is the
biggest class (almost 60%), while classes Tapered, Small and Pyriform sightly decrease. (c)
For total agreement, the class Amorphous covers almost 70%, while Pyriform covers almost
2%. The only class that maintains its assignment percentage is the class Normal, and maybe
Tapered, regardless if one considers the label agreement of at least one, two, or three experts.
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Figure 4.4: Partial and total inter-expert agreement. For each class, we show the
percentage ± SE of partial and total agreement among experts normalized by the size of the
basis set.

of pairwise expert agreement. We calculate Fleiss’ Kappa coefficient [Fleiss, 1971] as a way
to measure the inter-expert agreement, and it shows and a fair degree of agreement with
a coefficient of 0.36 (α = 0.05). Furthermore, assuming that a semen analysis would show
the percentage of sperm heads in each of the five selected classes, Table 4.3 shows how the
spermiogram would be quantified by each expert considered in this study, working with the
partial agreement data set.

Normal % Tapered % Pyriform % Small % Amorphous % Other %

Expert1 6.2 ± 0.7 32.4 ± 1.7 11.3 ± 1.0 9.5 ± 0.9 39.6 ± 1.9 1.1 ± 0.3

Expert2 10.1 ± 1.0 16.3 ± 1.2 11.0 ± 1.0 9.0 ± 0.9 52.6 ± 2.1 1.1 ± 0.3

Expert3 11.1 ± 1.0 14.6 ± 1.1 1.7 ± 0.4 2.3 ± 0.4 70.1 ± 2.5 0.2 ± 0.1

Table 4.3: Inter-expert variability (including standard error)

However, a more promising situation is observed while regarding a rough classification

43



Normal Tapered Pyriform Small Amorphous
0

100

200

300

400

500

600

700

800

900

N
u
m

b
e
r 

o
f 
s
p
e
rm

 h
e
a
d
s

 

 
Expert1
Expert2
Expert3

Figure 4.5: Inter-expert variability in five-class classification. For research purposes,
the expert classifies sperm heads in a number of classes (five in our case: normal, tapered,
pyriform, small and amorphous). We show the number of sperm heads ± SE that belongs
to each class according to each of the three experts. The expert manual classification shows
a fair agreement among experts with Fleiss’ Kappa coefficient of 0.36 (α = 0.05).
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Figure 4.6: Inter-expert variability in two-class classification. For normal clinical
purposes, the expert only classifies between normal and abnormal. We show the number of
sperm heads ± SE that are considered as normal or abnormal by each of the three experts.
The expert manual classification shows a substantial agreement among experts with Fleiss’
Kappa coefficient of 0.61 (α = 0.05).

(two-class classification problem), used for clinical purposes. Instead of considering five
clases, we only regard two categories of sperm heads as normal and abnormal, and the
classification rates have a substantial degree of agreement among three experts achieving
0.61 of Fleiss’ Kappa coefficient [Fleiss, 1971] (α = 0.05), as shown in Figure 4.6. In general,
in the two-class classification problem, the inter-expert variability analysis shows almost 94%
of pairwise expert agreement.
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4.6 Summary

In this chapter we have introduced two gold-standards: a segmentation gold-standard and a
classification gold-standard. Both of our gold-standards where built from images captured
with the same equipment and following the same tinction protocol using Hematoxylin/Eosin.
Another common feature for both gold-standards is the source of the sperm smears. With
respect to the segmentation gold-standard, it was built with the cooperation of one domain
expert and consists of 20 images with 264 sperm cells. For each sperm cell, there are five
hand-segmented masks: head, acrosome, nucleus, mid-piece and tail. With respect to the
classification gold-standard, it was built with the cooperation of three domain experts and
consists of 1, 854 sperm head images. Each sperm head was manually classified by each
expert in one of the following classes: normal, tapered, pyriform, small or amorphous.
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Chapter 5

Sperm Head Segmentation

This chapter presents an improved framework for detecting and segmenting human sperm
heads as a reliable detection and segmentation presents the first step for all posterior classifi-
cation algorithms. This fully automatic approach is based on a clustering method as well as
on image processing techniques especially adapted for this application. In addition, we pro-
pose to combine different color spaces, instead of using only RGB color space. The proposed
framework consists of two stages. In the first, our goal is to identify the ROIs of sperm heads
(Figure 5.1a). In the second stage, we work on each ROI to accurately segment the sperm
head as well as the nucleus and acrosome.

Our main contribution is the application of a clustering algorithm for detecting sperm
heads and combining different color spaces. Another contribution is the proposal of a novel
algorithm to determine which direction the sperm head points. This is a very important issue
for posterior stages in the quest for an accurate morphological analysis.

Our experimental evaluation shows that our proposed method outperforms the state-of-
the-art and is supported by the results of different evaluation metrics. Our results achieve
notable improvement, yielding above 98% in the sperm head detection process at the expense
of having significantly fewer false positives obtained by the state-of-the-art method. Our
results also show an accurate head, acrosome and nucleus segmentation achieving over 80%
overlapping against the hand-segmented gold-standard. Our method achieves a higher Dice
coefficient, lower Hausdorff distance and less dispersion with respect to the results achieved
by the state-of-the-art method.

5.1 Detection of Sperm Head

First, we transform the RGB color space to L*a*b*. We choose RGB and L*a*b* after
experimental evaluation of the impact of different color spaces such as RGB, L*a*b*, YCbCr,
and YQM (Algorithm 1, step 2). We evaluate Hausdorff distance and Dice coefficient values
for each color space combination against hand-segmented masks. We then apply the k-
means clustering algorithm looking for separation of the sperm cells from the background
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(Figure 5.1b). We separate the pixels belonging to sperm cells (heads, mid-piece and/or
residual cytoplasm, and tails) in one cluster, and the pixels belonging other structures and
background in a second cluster (Algorithm 2, step 3). The resulting image contains, in the
cluster of a smaller area, the ROIs that we need for the second stage (Algorithm 2, step 4).

Considering that our detection and segmentation algorithm aims for an accurate morpho-
logical analysis, there are some conditions that we must meet. Therefore, these regions need
to be refined. This refinement includes eliminating sperm cells which touch the border of the
image (Algorithm 2, step 5).

In order to eliminate most of the pixels that are not part of sperm heads, we use a binary
morphology-based idea. We propose a convolution process with a disk-shaped kernel of size
r and unitary weight (Algorithm 2, step 6). After convolution, we remove all pixels with a
resulting value below a threshold sumV . We refer to this procedure as eraseTails (Figure
5.1c).

a)

b)

c)

d)

1

Figure 5.1: Detection of sperm heads. (a) Original image in RGB color space with
resulting ROIs marked on it. (b) Blue color represents ROIs after applying k-means in RGB
and L*a*b* color spaces. (c) Red color represents ROIs after erasing tails and sperm cells
at border. (d) Yellow color represents ROIs after erasing by size. Yellow pixels constitute
the final ROIs of this stage. Image size: 780× 580 pixels ≈ 164× 122µm.

In the next section, we present our approach to segment sperm heads. After the ROI
detection, we individualize each sperm head and work separately with each one. We segment
the whole head and then process it to identify the regions of nucleus and acrosome. Afterward,
we describe the algorithm that we propose for each step.
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Algorithm 2 Detection of sperm heads
imRgb: original image
r: size of neighborhood for eraseTails
sumV: threshold value for sum inside neighborhood in eraseTails

1: imLab ← transformRGBtoLAB(imRgb)
2: data ← [imRgb(1) imRgb(2) imRgb(3) imLab(1) imLab(2) imLab(3)]
3: [cluster1,cluster2] ← kmeans(data,2)
4: cluster ← chooseMinorCluster(cluster1,cluster2)
5: noBorderImage ← eraseBorderSperms(cluster)
6: finalImage ← eraseTails(noBorderImage,r,sumV)
7: return finalImage

5.2 Segmentation of Sperm Head

For each individual sperm head (Figure 5.2a), we first refine the detected candidate head by
means of applying morphological opening and discarding objects whose size are out of range
between minTs1 and maxTs1 (Algorithm 3, step 2). We work with the color-opponent
dimensions of L*a*b* color space and with the Cr component of the YCbCr color space
(Algorithm 3, step 3). We then apply k-means only in the particular ROI (Figure 5.2b) to
separate the darkest part of the head from the rest (that could be acrosome and residual
cytoplasm). As this portion of the head is smaller than the real head (Figure 5.2c), we need
to enlarge it, up to the region of interest, but without residual cytoplasm or mid-piece. Thus,
it is important to determine the front direction of the head (Algorithm 3, step 7). We use
maxTc as a maximum size threshold (Algorithm 3, step 6) to consider a set of pixels as a
candidate head whose pointing direction is important.

.

a) b) c)

.

.

d) e) f)

.

1

Figure 5.2: Segmentation of sperm heads. (a) Detection of sperm head (as returned
from Algorithm 2). (b) ROI after applying k-means in L*a*b* and YCbCr color spaces. (c)
smallHead detected as the smallest cluster (this constitutes the darkest part of the head). (d)
Fitness of (a) with an ellipse (red) to indicate in which direction the head points. (e) small-
Head detected in (c) grows according to growing mask up to (a). (f) Contour superposition
of sperm head segmentation.

To determine the direction in which the head points, we propose a two-step method
(Algorithm 4). First, we determine the orientation of the sperm head as the angle between
the X axis and the major axis of the ROI, and using this angle, we rotate the head to a
horizontal position in which the major axis of the fitted ellipse is parallel to the X axis
(Algorithm 4, step 2). We then divide this major axis in three similar portions (Figure
5.2d) and calculate a fitness value [Yao et al., 2005] of the two extreme portions with the
fitted ellipse (Algorithm 4, steps 10/11). The portion corresponding to the lowest fitness
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value indicates the direction to where the head points. The pointing direction allows us to
build a growing mask for segmenting the whole head, and not only the darkest part of the
head (Algorithm 3, step 8). The next step consists in setting a growing mask according to
head pointing direction and angle ∈ [0, 2π) and apply it to the part of the head previously
segmented (Algorithm 3, step 9). As a final refinement, we eliminate the small and big
objects according to minTs2 and maxTs2 threshold values (Figure 5.2e).

Algorithm 3 Segmentation of one sperm head.
white: binary image with a candidate sperm detected
minTs1: minimum number of pixels of a sperm head before k-means
maxTs1: maximum number of pixels of a sperm head before k-means
maxTc: maximum number of pixels of a candidate head after kmeans
minTs2: minimum number of pixels of a sperm head after growing
maxTs2: maximum number of pixels of a sperm head after growing

1: white ← opening(white)
2: white ← eraseBySize(white,minTs1,maxTs1)
3: data ← [imLab(2) imLab(3) imYCbCr(3)]
4: [cluster1,cluster2] ← kmeans(data,2)
5: smallHead ← chooseMinorCluster(cluster1,cluster2)
6: smallHead ← eraseBySize(smallHead,0,maxTc)
7: [angle,direction] ← getPointingDirection(white,smallHead)
8: mask ← generateGrowingMask(white,angle,direction)
9: head ← makeHeadBigger(white,mask,smallHead)

10: finalImage ← eraseBySize(head,minTs2,maxTs2)
11: return finalImage

Algorithm 4 Sperm head direction.
white: binary image with a candidate sperm detected

1: angle ← getOrientation(white)
2: whiteRot ← rotateImage(white,angle)
3: imgBorder ← getPerimeter(whiteRot)
4: maximum ← number of columns of imgBorder
5: x1 ← ceil(maximum/3)
6: x2 ← 2*x1
7: [xc,yc] ← getCentroid(whiteRot)
8: majorAxis ← getMajorAxis(whiteRot)
9: minorAxis ← getMinorAxis(whiteRot)

10: value1 ← fitnessFunction([xc,yc,majorAxis,minorAxis,0],imgBorder,1,x1)
11: value2 ← fitnessFunction([xc,yc,majorAxis,minorAxis,0],imgBorder,x2,maximum)
12: if value1 < value2 then
13: direction ← 0
14: else
15: direction ← 1
16: end if
17: return angle and direction

The parameters returned by Algorithm 4 can be used to generate eight different growing
masks, according to all the possible orientations that a sperm head could present. The grow-
ing mask is created using angle and direction, as in the following. 1 0 0

1 0 0
1 0 0

  0 0 1
0 0 1
0 0 1

  0 0 0
1 0 0
1 1 0

  0 1 1
0 0 1
0 0 0


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Angle = 0 Angle = π
2 1 1 1

0 0 0
0 0 0

  0 0 0
0 0 0
1 1 1

  1 1 0
1 0 0
0 0 0

  0 0 0
0 0 1
0 1 1


Angle = π Angle = 3π

2

5.3 Segmentation of Sperm Nucleus and Acrosome

The segmented sperm head is used for the posterior segmentation of nucleus and acrosome.
To this end, we performed a statistical analysis to determine the intensity characteristics of
both head components, working on the red channel of RGB color space. We use the R channel
of the RGB color space because R offers a better differentiation between sperm nucleus and
acrosome, compared to the G or B channels. The Otsu threshold calculated in this region
allows us to separate pixels of the nucleus from pixels of the acrosome (Algorithm 5, step 2).

Algorithm 5 Segmentation of nucleus and acrosome
white: binary image with a segmented sperm head
imRGB: rgb image with a segmented sperm head
r: size of neighborhood for eraseTails
sumV: threshold value for sum inside neighborhood in eraseTails

1: imRed ← imRGB(:,:,1)
2: threshold ← OtsuThreshold(imRed)
3: acrosome ← pixels in imRed whose value is > threshold
4: acrosome ← eraseTails(acrosome,r,sumV)
5: acrosome ← getBiggestROI(acrosome)
6: nucleus ← imageDifference(white,acrosome)
7: nucleus ← eraseTails(nucleus,r,sumV)
8: return acrosome and nucleus

The nucleus region is darker than the acrosome region because of a staining effect. There-
fore, we pick the biggest ROI in the lighter region as the acrosome (Figure 5.3c). The
segmented regions are obtained as a difference set operation between the pixels in the acro-
some and pixels in the nucleus (Figure 5.3d). We use our proposed procedure eraseTails to
smooth the resulting acrosome and nucleus.

a) b) c) d) e)

1

Figure 5.3: Segmentation of nucleus and acrosome. (a) Segmentation of sperm head
in R channel (as returned by Algorithm 3). (b) Image after applying statistical-defined
threshold (Algorithm 5, step 2). (c) Only the biggest ROI is kept and smoothed. (d)
ROI(a)−ROI(c), (e) Contour superposition of nucleus (green) and acrosome (red).
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5.4 Detection and Segmentation Algorithm

In this section, we present an algorithm that encompass both of detection and segmentation
steps (Algorithm 6), towards a posterior morphological sperm analysis.

Algorithm 6 Detection and segmentation of sperm heads, nucleus and acrosome.
imRgb: original image containing several sperm cells

1: imgDetection ← detectionSpermHeads(imRgb) {Algorithm 2}
2: sperms ← labelRegions(imgDetection)
3: for each sperm i do
4: spermRgb ← imgDetection(sperm i)
5: head(i) ← segmentationSpermHead(spermRgb) {Algorithm 3}
6: [acrosome(i),nucleus(i)] ← segmentationNucleusAcrosome(head(i),spermRgb) {Algorithm 5}
7: end for
8: return head, acrosome, nucleus

5.5 Experimental Results

This section presents the results we achieved using the segmentation gold-standard (see
Chapter 4), aiming to compare our method to previously published methods [Carrillo et al.,
2007b,Carrillo et al., 2007a].

We implemented Carrillo’s method [Carrillo et al., 2007b, Carrillo et al., 2007a], since it
is not available as a source code by the authors to compare our detection and segmentation
precision. A complete review of Carrillo’s method can be found in Appendix A

We have conducted experiments for parameter estimation, and for comparison of our
approach and Carrillo’s method using Matlab1. The proposed method obtains a significant
improvement respect to Carrillo’s method as shown in following pages.

5.5.1 Parameter Optimization

In order to choose the best set of parameters, we have performed different experiments varying
the values of seven parameters that are described as follows. The first two are referred to the
procedure eraseTails, related to the neighborhood size (r) and the threshold value for the
sum in the underlying neighborhood (sumV ). This procedure is called from the Algorithms
2 and 4. The remaining five parameters are used in Algorithm 3 and are related to the
allowed size of sperm heads at different stages of the segmenting process. The parameters
minTs1 and maxTs1 are used for a refinement step before applying kmeans, while maxTc
indicates the maximum size of sperm heads allowed to grow with a growing mask. The last
two parameters, minTs2 and maxTs2 indicate size threshold values for the final segmented
heads. In Table 5.1 the variation of parameters is shown. The final values were chosen
according to the best tradeoff between true positive and false negative values, as well as the
Dice coefficient.

1Matlab R2013a 8.1.0.604
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Parameter name Range Best value

r 2 : 1 : 4 3

sumV 15 : 20 : 55 35

minTs1 70 : 10 : 90 80

maxTs1 800 : 100 : 1000 900

maxTc 1200 : 100 : 1500 1400

minTs2 30 : 10 : 50 40

maxTs2 350 : 50 : 450 400

Table 5.1: Variation of parameters for our pro-
posed method

5.5.2 Sperm Detection

The performance of our detection results was determined by ROC curve. ROC curve takes
into account the area under the curve (AUC) as a quality measure. The higher the AUC,
the better the quality of a method. The ROC curve determines the cost in terms of false
positives when a high correct detection is desired (see Figure 5.4). To create each point of the
ROC curve, we calculated the percentage of correct detection (according our gold-standard)
and the number of false positives for a given instance of the parameter values.
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Figure 5.4: ROC curves for sperm head detection. Detection rate and number of false
positives according to the results of our proposed method (red) and Carrillo’s method (blue),
versus hand-segmented masks.

Our approach achieves an AUC value of 0.88 while Carrillo’s method accomplishes 0.81.
In addition, our proposal achieves a correct detection rate over 97% at the expense of having
only 23 false positives. To achieve a comparable result with a correct detection rate over
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97%, Carrillo’s method achieves 41 false positives. Carrillo’s method reports a correct rate
over 95% [Carrillo et al., 2007b,Bijar and Mikaeili, 2011]. According to our experiments, this
rate is achieved with 39 false positives. In Table 5.2 the relationship between false positives
and correct detection is shown for both evaluated methods.

Our proposed method Carrillo’s method

Precision 97, 6% 95, 7%

True Positives (TP) 205 201

False Positives (FP) 23 39

Table 5.2: Detection accuracy

5.5.3 Sperm Head Segmentation

We performed different experiments to assess segmentation of sperm head, acrosome and
nucleus. In each case, we calculate two quality measures for our results: the Dice Coefficient
to assess the accuracy of our results with hand-segmented masks and the Hausdorff Distance
(considering d as Euclidian distance) to assess the disagreement of segmentation against
hand-segmented mask.

As mentioned before, we compare our segmentation results with the results obtained
by implementation of Carrillo’s method. We also calculate Dice Coefficient and Hausdorff
Distance, using the same testing images to compare the results.

Figure 5.5 shows an image gallery with some segmentation results, considering head,
acrosome and nucleus segmentation. For each segmentation (head, acrosome and nucleus),
we present our best, average and worst result, in terms of Dice coefficient. For each image,
we show the result of applying Carrillo’s method to the same sperm head.

Figure 5.6 shows Dice coefficients for both segmentation results (our proposed method and
Carrillo’s method). The Dice coefficient assesses quality of sperm head segmentation as well
as acrosome and nucleus segmentation, by means of measuring the overlap with ground-truth.
We applied our proposed method to the testing images and calculated Dice’s coefficients for
each segmented sperm head. The same procedure was followed in the case of acrosome and
nucleus. We then applied Carrillo’s method to the same data set and calculated the Dice
coefficient for each segmented sperm head, acrosome and nucleus. For every component
(head, acrosome and nucleus), the Dice coefficients of our proposed method are significantly
better than those achieved by Carrillo’s method. Our average results have more than 80% of
overlapping against hand-segmented masks, with average Dice coefficients of 0.88, 0.83 and
0.82 for head, acrosome and nucleus segmentation, respectively.

Figure 5.7 shows a graphical representation of the probability density function (PDF) for
Dice coefficients, corresponding to acrosome, nucleus and sperm head segmentation, together.
This is a comparison between the PDF corresponding to our results and the one corresponding
to the results achieved by Carrillo’s method. As we can observe, the distribution of values
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Head Acrosome Nucleus

Best (Dice=0.946) Best (Dice=0.961) Best (Dice=0.934)

Average (Dice=0.882) Average (Dice=0.831) Average (Dice=0.818)

Worst (Dice=0.814) Worst (Dice=0.667) Worst (Dice=0.646)

Original Our result
Carrillo’s
result

Original Our result
Carrillo’s
result

Original Our result
Carrillo’s
result

Figure 5.5: Results of head, acrosome and nucleus segmentation. The upper row
shows representatives for best results, the middle row for average results, and the last row
for worst results. For each part (head, acrosome and nucleus), we present the original (first
column), our result (second column) and Carrillo’s method result (third column). The blue
color represents the gold-standard, red presents our proposed/Carrillo’s method and yellow
the overlap between gold-standard and our proposed/Carrillo’s method.
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Figure 5.6: Dice coefficient for head, acrosome and nucleus. On each box, the edges
are the 25th and 75th percentiles and the whiskers extend to the most extreme data points
that are not outliers. For each box, we show the median value (horizontal line) and the
sample mean (◦). Statistically significant differences between our proposal (red) and Carrillo’s
method (blue) using Wilcoxon rank sum test are indicated (∗p < 0.05).

for the Dice coefficient achieved by our method (with σ = 0.06) is shifted to higher Dice
coefficients and provides smaller variance than that of Carrillo’s method (with σ = 0.08).

Our average results have less than 25% of disagreement with segmentation gold-standard,
with average Hausdorff distance values of 0.15, 0.20 and 0.24 for head, acrosome and nucleus
segmentation, respectively. Additionally, we present a comparison of Hausdorff distance
corresponding to our proposed framework and results of Carrillo’s method, in Figure 5.8.
As in the previous case, our aim is to assess quality of segmentation of sperm heads and
sperm head parts (acrosome and nucleus), but now by means of measuring the disagreement
with segmentation gold-standard. We followed the same procedure as in the Dice coefficient
case. For every component (head, acrosome and nucleus), the Hausdorff distance values
of our proposed framework are better than those achieved by Carrillo’s method, because
ours show a smaller distance (on average) between perimeters of segmentation gold-standard
and segmentation results. Our average results have less than 25% of disagreement with
segmentation gold-standard, with average Hausdorff distance values of 0.15, 0.20 and 0.24
for head, acrosome and nucleus segmentation, respectively.

5.6 Discussion

In this chapter we have presented a framework for sperm cell segmentation achieving sig-
nificant improvement with respect to Carrillo’s method. Our approach is different from the
sperm segmentation approaches so far known (Chapter 3) in three different aspects:
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Figure 5.7: Probability density function for Dice coefficient. Acrosome, nucleus
and sperm head segmentation results are showed together, considering the Dice coefficients
achieved by our proposed method (continuous line, µ = 0.85 ± 0.0026, s2 = 0.0036) and by
Carrillo’s method (dotted line, µ = 0.79± 0.0035, s2 = 0.0065).

1. Use of color space combinations. Choices of color space have significant influences
on the result of image segmentation. Cheng et al. [Cheng et al., 2001] compared several
color spaces including RGB and L*a*b* for color image segmentation purposes, and
they stated that the selection of a color space for image processing is image/application
dependent. All the research works cited in Chapter 3 use RGB color space to seg-
ment sperm cells, including Carrillo’s method. However, RGB is not suitable for color
segmentation and analysis because of the high correlation among the R, G, B compo-
nents [Pietikainen et al., 1996,Littmann and Ritter, 1997]. Besides, it is impossible to
evaluate the similarity of two colors from their distance in RGB space because RGB
space does not represent color differences in a uniform scale.
We choose to work with a hybrid color space combining RGB, YCbCr and L*a*b* color
spaces. Therefore, for the detection stage (Section 5.1) we used six redundant color
features in RGB and L*a*b* color spaces. L*a*b* color space represents perceptual
uniformity, and it is especially efficient in the measurement of small color difference,
that can be calculated as the Euclidian distance between two color points [Cheng et al.,
2001]. For us, it was important that L*a*b* space controls color and intensity informa-
tion more independently and simply than RGB. Also, it has been shown that L*a*b*
color space gives better results than others in color segmentation [Ohta et al., 1980].
We decided to keep RGB along with L*a*b* color space after intensive experimental
evaluation, and regarding related work techniques. In addition, for segmentation stage
(Section 5.2) we choose to combine L*a*b* and YCbCr color spaces. A chromatic
component of YCbCr was introduced for two reasons: (a) the color difference of human
perception can be directly expressed by a Euclidean distance in the color space, and (b)
the intensity and chromatic components can be easily and independently controlled. In
general, YCbCr color space has been extensively used for skin color segmentation [Hsu
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Figure 5.8: Hausdorff distance for head, acrosome and nucleus. On each box, the
edges are the 25th and 75th percentiles and the whiskers extend to the most extreme data
points that are not outliers. For each box, we show the median value (horizontal line) and
the sample mean (◦). Statistically significant differences between our proposal (red) and
Carrillo’s method (blue) using Wilcoxon rank sum test are indicated (∗p < 0.05).

et al., 2002,Garcia and Tziritas, 1999].

2. Use of clustering method. All the existing color image segmentation approaches are
ad hoc, because they are strongly application-dependent. Among several segmentation
methods, clustering has been widely used for color image segmentation [Celenk, 1990,
Hall et al., 1992, Jurio et al., 2009, Isa et al., 2009]. This is due to the fact that
for color images, a color space is a natural feature space, and colors tend to form
clusters in the color space. From the viewpoint of color clustering, the desired image is
represented by color features which constitute a space possessing uniform characteristics
such as the L*a*b* color space [Celenk, 1990]. We choose to apply k-means clustering
in both stages of our proposal: detection and segmentation of sperm heads. As a
traditional clustering algorithm, k-means is popular for its simplicity of implementation.
it can also be adopted to solve the illumination variation problem. This, combined
with YCbCr and L*a*b* color spaces, provide us an exceptional tool for illumination
invariant segmentation approach, outperforming the state-of-the-art technique.

3. Identification of sperm head direction. One of the key contribution of our work is
the proposal of a novel algorithm to determine which direction the sperm head points.
This has not been considered before in any of the research works reviewed in Chapter 3.
Proper identification of the head front direction could serve to accurately segment the
sperm head and to discard mid-piece regions or residual cytoplasm areas that may have
been included in the result of the detection. Related works [Park et al., 1997,Yi et al.,
1998,Nafisi et al., 2005,Sánchez and Petkov, 2009], observe that authors proposed ellipse
fitting for head morphological analysis and experimental evaluation, but they have not
used it to refine the segmentation itself. Our proposal generates eight types of different
growing masks, regarding all possible positions in which a sperm head may appear.
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To our knowledge, none of the proposed approaches (including Carrillo’s method) have
taken into account the head front direction, however, it is a very important issue that
could help in many other stages in the quest for an accurate morphological analysis.

Our results have shown that our approach, based on those aspects described above, out-
performs the results achieved by Carrillo’s method. In fact, we showed that our method
achieves a higher Dice coefficient, lower Hausdorff distance and less dispersion with respect
to the results achieved by Carrillo’s method. This is clearly shown in the gallery presented in
Figure 5.5. We believe that this outperforming occurs mainly because of the results of the first
stage of our proposed method (Algorithm 2), combining RGB and L*a*b* color spaces. This
stage result is extremely accurate at segmenting sperm heads. However, as part of the heads,
we also segmented mid-piece areas, residual cytoplasm areas, and even tails. This pixel sep-
aration is probably due to the higher Euclidean distance between color pixels corresponding
to the cells and background, incorporating L*a*b* color space. It is important to note that
non-coiled tails are removed (though not all of their extension) by the procedure eraseTails
(Figure 5.1). In addition, when including a YCbCr chromatic component for separating the
sperm nucleus, our proposed approach removes mid-piece and residual cytoplasm areas, as
well as rests of coils and coiled tails (Figure 5.5, first row of nucleus segmentation). This
is a substantial difference against Carrillo’s that discards such cells because they overcome
size threshold. It should be noted that individualizing each sperm head for a more accurate
segmentation makes it possible to work with spatially close cells and we obtain significantly
better results than Carrillo’s method (Figure 5.5, first row of head segmentation). We believe
that this contributes by having an average Dice coefficient greater than the state-of-the-art
method (Figure 5.7), observing that most of our Dice coefficients are greater than the average
Dice coefficient obtained by the Carrillo’s method.

There is the expectation that no detection method can achieve a detection rate of 100%.
Our method is able to correctly detect up to 206 sperm cells (98%), while the method
proposed by Carrillo et al. is able to correctly detect 208 sperm cells (99%) (Figure 5.4).
There are specific situations in test images that are affecting our detection rate (Figure 5.9).
We observe few sperm cells with an excessive residual cytoplasm area, whose front head
direction is erroneously detected (because the cytoplasm area fits better with an ideal ellipse
than a frontal region of its head). Then, in size validation of the candidate head, the head is
removed by having a larger area than maxTs2 threshold (Section 5.5.1). Also, we observed a
particular sperm cell overlapping an incomplete tail of another sperm cell. Thus, as they both
are connected, the eraseTails procedure would remove both (overlapped head and incomplete
tail) as if it were only one tail.

a) b) c) d)

1

Figure 5.9: Non-detected sperm cells. (a-c) Sperm heads are not detected because of
excessive residual cytoplasm area. (d) Sperm head is not detected because head overlaps
incomplete tail of another sperm cell.
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There is a tradeoff between correct detection rate and number of false positives. Our
method provides 25 false positives with detection rate of 98%, while the method proposed
by Carrillo et al. provides 49 false positives with detection rate of 99% (Figure 5.4). It
is a very significant difference, in terms of false positives that we believe is due to three
factors. First, we validate pixels of the object/background using the Euclidean distance to
not include objects with a darker intensity than that of a sperm head, and combining RGB,
L*a*b*, and YCbCr color spaces (Algorithms 2 and 3), rather than using only RGB space
color, as Carrillo’s method does. Second, our method removes objects according to their size
and roundness, after applying k-means (Algorithm 3), while Carrillo’s method only regards
size validation. Therefore, Carrillo’s method is more likely to report strangely shaped objects
but with a size similar to a sperm head. Third, our method removes incomplete sperm cells
which touch the border of the image (Algorithm 2). Carrillo’s method does not take this
into account, and reports heads of incomplete sperm cells as correctly detected heads. It is
important to note that all the false positives reported by our approach are actually sperm
heads, however they are not drawn in the gold-standard because they do not present a
complete tail in the image.

5.7 Summary

In this chapter, we have presented a two-stage improved framework for detection and seg-
mentation of human sperm head, acrosome and nucleus. The first stage was aimed to detect
sperm heads, while the second stage was devoted to segment sperm head, acrosome and
nucleus from detected sperm heads in previous stage. The main idea beyond our framework
was a fusion of color space combinations, k− means approach and mathematical morphology
operations. In addition, our method proposed an ellipse fitting based algorithm to iden-
tify the head front direction. Experimental evaluation shows that our proposed framework
outperforms the state-of-the-art, with a higher Dice coefficient, lower Hausdorff distance
and less dispersion with respect to the results achieved by Carrillos method [Carrillo et al.,
2007b,Carrillo et al., 2007a].
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Chapter 6

Sperm Head Characterization

After properly segmenting the sperm head, the next task is to characterize each head, esti-
mating features to differentiate samples of one class from samples of another class. In this
work, special emphasis was given to a continuous representation of the curve defining the
outline of a head rather than a discrete representation based on pixels.

In order to have a reliable continuous representation, it is necessary to preprocess the
image corresponding to each segmented head (regarded as a ROI in this thesis) according
to the previous chapter (Section 6.1). For characterizing each one of the objects defined by
ROIs, we used shape descriptors that can be found in the literature as well as one designed
particularly with this application in mind (Section 6.2). An important goal is to get a feature
vector as compact (low dimensionality) as possible, according to the objective of the next
stage (classification of sperm heads). Therefore, it is imperative to select the best combination
of feature spaces and Section 6.3 explains the strategies available to select feature spaces.

6.1 Shape Representation

The aim of this part of the work is to obtain a reliable representation of the closed curve
constituting the contour of the head, given a 35 × 35 gray level image containing a sperm
head (see Figure 6.1(a)). To do this, first we need to remove as much present noise as possible
from the image. We propose using anisotropic diffusion (see Section 2.2.3) to preserve the
border while the image is simplified, greatly reducing the noise in it (see Figure 6.1(b)). We
apply 40 iterations, with λ = 0.25 and κ = 7.

From an image as presented in Figure 6.1(b)), now we need to generate a continuous
representation of the curve that defines the sperm head. For this, we use active contours (see
Section 2.2.4) regarding as initial curve the result of the segmentation approach presented
in Chapter 5 (see Figure 6.1(c)). An example of how the outline for a given head would
look after applying active contours, considering elasticity α = 0.1, rigidity β = 0.01, ballon
force γ = 0.05 and external force weight κ = 0.42 is shown in Figure 6.1(d). Finally, each
sperm head is represented by a sequence B of n real coordinates (pi, qi) (and not in terms of
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pixels), where (p1, q1) = (pn, qn). The number of points that form each contour is variable and
depends exclusively on the perimeter of the curve. In this sense, a contour with a perimeter
around 35 will be represented by 41 points approximately, while another with a perimeter
around 64 will need approximately 73 points for its representation.

(a) (b) (c) (d)

Figure 6.1: Shape representation of sperm heads. (a) Original gray level image (Image
size: 35 × 35 pixels ≈ 7 × 7 µm). (b) Original image filtered using anisotropic diffusion.
(c) Segmentation of sperm head (as returned from Algorithm 3) used as the initial curve for
active contours. (d) Shape contour after applying active contours.

6.2 Feature Extraction

There are many shape-based descriptors in the literature, e.g. geometric moments [Hu,
1962], Fourier descriptors [Zahn and Roskies, 1972], and Zernike moments [Teague, 1980].
This section reviews different shape descriptors. These types of approaches have been proven
to be effective in some applications, although a drawback is that their values are often not
easily understable. In many applications it is preferable if the shape-based measures can
be analysed by the domain experts, as this aids validation of the whole proposed scheme.
This section presents a detailed review of common shape-based measures and descriptors.
In addition, a morphological descriptor is proposed, combining and adapting some single
shape-based measures.

6.2.1 Global Shape-based Measures

Global shape-based measures are a convenient way to describe ROIs. They are generally
simple and efficient to extract, and provide an easy means for high level tasks such as clas-
sification. Although global shape-based measures have direct intuitive meaning, they can
only discriminate shapes with large differences. Therefore, they are usually used as filters
to eliminate false hits or combined with other shape-based measures and/or descriptors to
discriminate shapes. In this section a selection of global shape-based measures for a ROI S
are described. S is defined as the set of m points {(x1, y1), . . . , (xm, ym)} that are enclosed
by curve B (see Section 6.1 for details).
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Area

The simplest and most natural property of a ROI S is its area. The area of ROI S is given
by m, regarding that a set of m points {(x1, y1), . . . , (xm, ym)} defines S.

Perimeter

The arc length of a spacially sampled curve (of contour) can be estimated suming up the
Euclidian distance between each pair of adjacent points in the contour B of ROI S, i.e.:

n−1∑
i=0

d (piqi, pi+1qi+1)

Eccentricity

Eccentricity measures the aspect ratio of ROI S. Principal axes of S can be uniquely defined
as the segments of lines that cross each other orthogonally in the centroid of S and represent
the directions with zero cross-correlation [Peura and Iivarinen, 1997]. A common and con-
venient measure uses the central moments µpq (see Section 6.2.2 for a detailed explanation
on geometric moments), and is computed as the ratio of the lengths of the axes of the image
ellipse [Rosin, 2005]: √

(µ20 − µ02)2 + 4µ2
11

µ20 + µ02

=
majorAxis(S)

minorAxis(S)

Regularity

The common approach to compute regularity of ROI S [Maree et al., 2010] is to compute

π ∗majorAxis(S) ∗minorAxis(S)

4 ∗ area(S)

Ellipticity

Sometimes a shape should be compared against a template. Clearly, a circle must be one
of the simplest and most general possible choices. However, a natural choice to increase the
degrees of freedom is to allow elongation, i.e., to fit an ellipse and measure the mapping
mean-squared error. In this sense, ellipticity measures how close the contour B is to an
ellipse with the same centroid, major axis, minor axis and orientation. A fitness value given
a contour against a perfect ellipse is calculated as the shortest Manhattan distance between
them [Saavedra and Bustos, 2014].
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Circularity

The common approach to compute circularity (also called compactness, roundness and shape
factor) is to compute

perimeter(S)2

area(S)

This quantity measures how much a given ROI S differs from a perfect circular disk, which is
understood as the most round shape [Rosin, 2005]. Low values correspond to circular shapes
(4π in the limit).

Rectangularity

The standard approach to measuring rectangularity is to use the ratio of the area of ROI S
to the area of its minimum bounding rectangle (MBR) [Rosin, 2003], i.e.

area(S)

area(MBR(S))

Maxima and minima curvature

The fact that not all points along a contour are equally important (in the sense of conveying
information about the shape) motivates the analysis of dominant points such as those points
where the curvature is either a positive maximum, or a negative minimum. The position
along the curve of such points and the curvature values of them can be used as shape-based
measures.

Convexity

Convexity of ROI S can be measured with respect to its convex hull [Zunić and Rosin,
2004,Rosin and Mumford, 2006]. If we denote the convex hull of ROI S by CH(S) then the
standard convexity measure is defined as:

area(S)

area(CH(S))

Symmetry

There are many approaches for detecting and quantifying symmetry [Atallah, 1985,Leou and
Tsai, 1987,Masuda et al., 1993]. A simple scheme for measuring n−fold rotation symmetric
is to measure the amount of overlap between S and the rotated versions of itself [Rosin,
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2005]. This can be averaged over n − 1 rotations by increments of 2π
n

radians. If the result
of rotating S by α is T (S, α) then the symmetry measure is:

1

n ∗ area(S)

n−1∑
i=1

area

(
S ∩ T

(
S,

2πi

n

))

6.2.2 Shape-based Descriptors

Fourier Boundary Descriptor

Fourier descriptor has been successfully applied to many shape representation applications
because of its simple derivation, simple normalization and its robustness to noise [Zhang and
Lu, 2002]. Let B be a closed curve (boundary of ROI S) represented as the sequence of
coordinates (pi, qi), for i = 0 . . . n − 1. Each point in the curve can be treated as a complex
number ri = pi + jqi. The Discrete Fourier Transform (DFT) of ri is

au =
1

n

n−1∑
i=0

rie
(− j2πuin )

where u = 0 . . . n−1. The coefficients au are called Fourier Descriptors (FDs), which represent
the discrete contour of ROI S in the spectral domain [Zahn and Roskies, 1972]. The Fourier
descriptor method uses a series of circles with different sizes and frequencies to build up a
2D plot of the boundary. Each coefficient is the frequency representation of a circle in the
2D plane [Sonka et al., 2008]. This descriptor contributes with 15 values to the whole feature
vector.

Geometric Moment Descriptor

Moment based techniques are popular and useful in shape-based description. They were first
applied as a way to describe images by Hu [Hu, 1962]. Hu proved that each image (expressed
as a function) f(x, y) has a one-to-one correspondence to a unique set of moments and vice
versa [Vorobyov, 2011]. For a given ROI S, its geometric moment mp,q(S) is defined as

mp,q(S) =

∫∫
S

xpyq dx dy

where p and q are non-negative integers and r = p+ q is called the order of the moment.

Trivially, m00(S) equals the area of S. The position of a given ROI S is described by the
ROI centroid (xc(S), yc(S)) defined as

xc(S) =
m10

m00

, yc(S) =
m01

m00

Since moments mp,q(S) are not translation invariant, it is suitable to consider the central
moments m̄p,q(S) defined as

m̄p,q(S) =

∫∫
S

(x− xc(S))p (y − yc(S))q dx dy
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A normalized moment µp,q(S) is also scale invariant and it is defined as

µp,q(S) =
m̄p,q(S)

m0,0(S)1+ p+q
2

For the application of geometrical moments in recognition schemes, Hu introduced a set of 7
moment invariants using geometric moments, which are invariant under translation, scaling
and rotation. These invariants are listed below:

I1 = µ20 + µ02

I2 = (µ20 − µ02)2 + 4(µ2
11)

I3 = (µ30 − 3µ12)2 + (3µ21 − µ03)2

I4 = (µ30 + µ12)2 + (µ21 + µ03)2

I5 = (µ30 − 3µ12)(µ30 + µ12)((µ30 + µ12)2 − 3(µ21 + µ03)2)
+(3µ21 − µ03)(µ21 + µ03)(3(µ30 + µ12)2 − (µ21 + µ03)2)

I6 = (µ20 − µ02)((µ30 + µ12)2 − (µ21 + µ03)2)
+4µ11(µ30 + µ12)(µ21 + µ03)

I7 = (3µ21 − µ03)(µ30 + µ12)((µ30 + µ12)2 − 3(µ21 + µ03)2)
+(µ30 − 3µ12)(µ21 + µ03)(3(µ30 + µ12)2 − (µ21 + µ03)2)

Therefore, this descriptor contributes with 7 values to the whole feature vector.

Zernike Moment Descriptor

Zernike-moment descriptor (ZMD) is one of the best shape-based descriptors as many re-
searchers report promising results of ZMD [Kim and Kim, 2000,Zhang and Lu, 2001]. ZMD
is obtained by using all the pixel information within a ROI, because it does not assume
boundary information. ZMD is esentially a transform-based descriptor which is derived from
2D transform of shape in polar space [Zhang and Lu, 2002]. The complex Zernike moments
are derived from Zernike polinomials [Teague, 1980],

Vab(x, y) = Vab(r cos θ, r sin θ) = Rab(r)e
(jbθ)

and

Rab(r) =

(a−|b|)/2∑
s=0

(−1)s
(a− s)!

s!
(
a+|b|

2
− s
)

!
(
a−|b|

2
− s
)

!
ra−2s

where r is the radius from (x, y) to the shape centroid, θ is the angle between r and x-axis, a
and b are integers, and subject to a− |b| =even, |b| ≤ a. Zernike polynomials are a complete
set of complex-valued function orthogonal over the unit disk, i.e., x2 + y2 = 1. The complex
Zernike moments of order a with repetition b [Teague, 1980] are defined as

Aab = a+1
π

∑
x

∑
y f(x, y)V ∗ab(x, y)

= a+1
π

∑
r

∑
θ f(r cos θ, r sin θ)Rab(r)× e(jbθ), r ≤ 1

where f(x, y) is a binary shape function and V ∗(x, y) is the complex conjugate of V (x, y).
The magnitudes of the acquired Zernike moments normalized by the mass of the ROI are
used as shape-based descriptors [Zhang and Lu, 2002].
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For our particular case, we decided to work with the first 36 Zernike moments up to order
10. Therefore, this descriptor contributes with 36 values to the whole feature vector.

Convexity Measure Descriptor

There are many proposals of convexity measures that have been applied in object classification
and recognition [Rahtu et al., 2006,Zunić and Rosin, 2004,Rosin and Mumford, 2006]. Here
we review a region-based convexity measure developed in [Rahtu et al., 2006]. For a given
ROI S, the convexity measure is based on the simple idea of generating pairs of points from
S and then checking if certain points on the corresponding line segments belong to S. In this
sense, the convexity measure is defined as

Cα(S) = P (αX + (1− α)Y ∈ S)

where X and Y are independent random variables drawn uniformly from S. The parameter
α determines the location of the point on the line segment between two random points from
S. By varying α, it is possible to obtain many different measures [Rahtu et al., 2006].

In this particular case, we vary α = 1/2b where b = 1 . . . 5. In this sense, this descriptor
contributes with 5 values to the whole feature vector.

Ellipticity Measure Descriptor

When one needs to assess how much a given ROI S differs from a perfect ellipse, the ROI
ellipticity is a key feature that can be quantified. There are many studies in the literature that
address this issue, using different techniques [Aktas and Žunić, 2011, Schleicher and Zagar,
2008, Aktas and Žunić, 2013, Aktas and Žunić, 2012]. In this section, we review a family
of ellipticity measures developed in [Aktas and Žunić, 2012] that is invariant to translation,
scaling and rotation, with values in the range (0, 1] where 1 indicates that the ROI S is an
ellipse.

Let S be a ROI defined by the points (x, y). The auxiliary ellipse E(S) is defined for a
given ROI S as follows

E(S) =

{
(x, y) | π

ρ(S)
x2 + (π ρ(S)) y2 ≤ 1

}
where ρ(S) denotes the ratio between the major axis and the minor axis of S. The area of
E(S) is 1.

Let λ > 0 and let the function Φλ(x, y) be defined as

Φλ(x, y) =

(
π

ρ(S)
x2 + (π ρ(S)) y2

)λ
the ellipse E(S) can then be expressed as

E(S) = {(x, y) |Φλ(x, y) ≤ 1}, for all λ > 0
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Let a given ROI S and let λ > 0. The ellipticity ελ(S) of S is defined as

ελ(S) =
1

1 + λ

Area(S)1+λ

minα∈[0,2π]

∫∫
S(α)

Φλ(x, y) dx dy

where Φλ(x, y) is defined as before and S(α) denotes the ROI S rotated around the origin
for an angle α.

For our case, we vary λ from 0.5 to 5, with step size of 0.5. In this sense, this descriptor
contributes with 10 values to the whole feature vector.

6.2.3 Proposed Morphological Descriptor

It is a good idea to start designing a descriptor by considering how experts in the field would
describe objects of study (ROIs in our case). Thus, rather than build a general theory of
shape, a popular approach is to design shape-based descriptors sensitive to various aspects
of shape. The importance of finding shape-based measures that are simple to compute, with
intuitive meanings, has already been noted by Peura and Iivarinen [Peura and Iivarinen, 1997].
Common simple global shape-based measures are area, diameter, perimeter, and eccentricity,
among others (see Section 6.2.1 for a detailed list). The majority of these measures not only
have linear computational complexity in the number of (boundary or region) points, but also
tend to be designed to be invariant to rotation, translation, and uniform scaling, and often
have an intuitive meaning since they describe a single aspect of the object of study. If a ROI
is described by a combination of shape-based measures, this should be sufficient to provide
discrimination between different classes of shapes. Deciding on the most appropiate measures
depends on their suitability for a particular application.

In this section, we introduce a morphological descriptor designed as a combination of sim-
ple global shape-based measures. Although no single shape-based measure in the combination
is descriptive enough to distinguish sperm heads from different classes, they contain enough
information when combining with other shape-based descriptors to discriminate sperm head
classes. All these measures that are calculated from the boundary obtained after applying
active contours, ignoring intensity information, are sumarized in Table 6.1.

It is important to point out specific comments for two measures. First, quadrant fitness
measures how close each quadrant of the ROI defined by contour B is to the corresponding
quadrant of an ellipse with the same centroid, major and minor axis length, and orientation
(see Figure 6.2 for a graphical explanation). We are interested not only in keeping the
absolute fitness in each quadrant, but also in the relationships between them. In this sense,
let cf1 be the fitness value in the first quadrant, cf2 the fitness value in the second quadrant
and so on. We include the following feature values in the descriptor: cf1, cf2, cf3, cf4, cf1

cf2
,

cf2
cf4

, cf1
cf3

and cf3
cf4

. For instance, for normal sperm heads, cf1
cf2

, cf2
cf4

, cf1
cf3

and cf3
cf4

should have values

close to 1, while for pyriform sperm heads only cf1
cf3

and cf2
cf4

should have values close to 1.

Second, bilateral symmetry measures the normalized area of overlap between the ROI
defined by contour B and a reflected version of itself, in both directions, horizontal and
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Shape Measure Discriminative class Number of features

area small 1

perimeter small 1

eccentricity tapered and pyriform 1

regularity amorphous 1

circularity pyriform 1

rectangularity tapered 1

maximum & minimum curvature pyriform 2

ellipticity normal 1

quadrant fitness normal, tapered, pyriform, amorphous 8

bilateral symmetry pyriform 2

Table 6.1: Summary of shape-based measures included in the proposed morphological
descriptor

Figure 6.2: Quadrant fitness. We show an overlay of the contour shape (black) with an
ellipse with the same centroid, axis length and orientation (red). In each quadrant i = 1 . . . 4,
the fitness cfi is calculated.

vertical with respect to its centroid (see Figure 6.3 for a graphical explanation). Let RV

be a vertical reflected version of ROI S and RH be a horizontal reflected version of ROI
S, then, the feature values that we propose to include in the descriptor are: area(S

⋂
RH)

area(S)

and area(S
⋂
RV )

area(S)
. For instance, for pyriform sperm heads, the value of bilateral symmetry in

horizontal and vertical directions should be quite different, while in the case of tapered or
normal sperm heads, both directions should yield similar values.

The morphological descriptor contributes with 19 values to the whole feature vector.

6.3 Feature Selection

It is important to know how to constructively utilize all the information provided by all the
features from the descriptors reviewed in Section 6.2. Concatenating all the features into
a single feature vector does not guarantee an optimum performance and it exacerbates the
curse of dimensionality problem [Damoulas and Girolami, 2009]. In Table 6.2, a summary
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a) b)

Figure 6.3: Bilateral symmetry. We show an overlay between a ROI defined by contour B
(black) and a reflected version of itself (red), in both directions, horizontal (a) and vertical
(b) with respect to its centroid.

of all used descriptors is presented.

Shape Descriptor Type Dimensionality

1 Morphological Contour and region based 19

2 Fourier Contour based 15

3 Geometric moments Region based 7

4 Zernike moments Region based 36

5 Convexity measures Region based 5

6 Ellipticity measures Region based 10

Table 6.2: Summary of used shape-based descriptors

Feature selection is an important stage in many applications where it is critical to find a
small subset of features that maximizes the performance of the classification model. Feature
selection could be done following one of two approaches: feature ranking and feature subset
selection. Feature ranking calculates the score of each feature and then sorts them according
to their scores. Feature subset selection selects a subset of features which collectively increases
the performance of the model. Our work emphasis is on feature subset selection.

Feature selection needs to be combined with a classification model in order to get an
estimate of the performance of the feature selection - classification combination. We propose
to use an ensemble feature selection strategy defined as follows. As we have six feature
families, we will combine them in every possible way and choose the combination with the
best performance according to a particular evaluation criteria.

To perform this task, we can choose any base classifier (see Section 2.3.3). The k-NN
classifier is a simple one, that not require parameter optimization: we only need to set the
value of k [Okun and Valentini, 2008]. Furthermore, with this classifier is possible to use the
leave-one-out (LOO) technique if we count with a limited dataset [Arlot and Celisse, 2010].
In this sense, for each feature family we will have a k-NN classifier using the LOO technique
because of the limited data, creating a set of different k-NN classifiers, each providing their
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output. Thus, for example, for the combination of feature families < 2, 4, 5, 6 >, we will have
four k-NN classifiers; one for Fourier descriptor, one for Zernike moment descriptor, one for
convexity measure descriptor and, finally, one for ellipticity measure descriptor.

Being k-NN LOO, each of the classifiers will return the k nearest neighbors to each element
of the dataset. Aggregating the different classifiers results can be done by majority vote,
unanimity voting, among others [Kuncheva, 2004]. In Chapter 7, we present the feature
families selected for our classification scheme.

6.4 Summary

In this chapter, we have presented a proposal for representing a sperm head in terms of
a curve, and describing it in terms of a feature vector. Special emphasis was given to a
continuous representation of the curve defining the outline of a head rather than a discrete
representation based on pixels. We have also reviewed common shape-based measures and
descriptors and discussed the characterization of sperm heads using them. In this sense,
we have introduced a new sperm head descriptor, named morphological descriptor. In addi-
tion, we have discussed about approaches for selecting the best combination of shape-based
descriptors, according to their impact in discriminating each of the specific classes in study.
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Chapter 7

Sperm Head Classification

This chapter is devoted to introduce and discuss the design and validation of a framework for
morphological human sperm classification. Classification is the process of assigning objects
into classes. There are many approaches used for classification purposes and are categorized
as supervised and unsupervised methods.

Supervised classification techniques involve the participation of an expert who is respon-
sible for teaching the classifier with examples. After training, the classifier is expected to
classify similar objects, that are previously unseen, to the correct classes.

A classification paradigm uses a set of training examples of the form {(x1, y1), . . . ,
(xm, ym)} for the projection of the function f(x). The values x are usually vectors of real or
discrete values of the form < xi1, xi2, . . . , xin >. The values y are the expected outputs for
given x values, and usually obtained from a discrete set of classes. Consequently, the task of
a learning paradigm involves the approximation of a function f(x) to produce a classifier.

It has been experimentally observed that creating a perfect monolithic classifier for a
particular application is somewhat unfeasible for various reasons [Ranawana and Palade,
2006, Britto Jr. et al., 2014], for instance; the presence of noise within the dataset and the
variability inherent to most pattern recognition problems. In particular, in this thesis we have
trained several monolithic classifiers that demonstrate poor performace results (see Apendix
B for details). Therefore, it is a good idea to use more classifiers and paradigms that provide
close approximations to the function of the global classifier. Intuitively, it makes sense that
a combination of classifiers provide better results than a single classifier. In order to design
the proposed classification scheme, we tried with different cascade schemes, using different
base learners and combination rules (see Appendix B). During this process, the results show
that to separate amorphous sperm heads from the rest contributes to minimize the whole
classification error. A detailed justification of design decisions of the classification scheme is
presented in Appendix B.

In this chapter we propose a two-stage classification scheme. The basic idea beyond our
scheme is a cascade ensemble of SVMs. We designed a two-stage approach following two
main goals: a) discard many amorphous sperm heads as possible (it was shown in Chapter 4
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that it is the most noisy class), and b) maximize the correct classification in the other four
classes. We explain in detail both stages of our classification scheme in Section 7.1, while
in Section 7.2 we present the results of applying each stage and the whole scheme to the
classification gold-standard presented in Chapter 4.

7.1 Classification Scheme

As mentioned above, the key for automatic classification of sperm heads consists of separating
amorphous sperm heads because this contributes to maximize the whole classification rate.
This is due to the high level of noise (or heterogeneity) present in the amorphous class. With
this in mind, we designed a classification scheme with two stages. The first stage acts as
a filter for amorphous sperm heads, as well as a prior four-class classifier. In this sense,
the second stage acts only as a confirmation step. In Figure 7.1 we show the high-level
architecture of the proposed classification approach.

Figure 7.1: High-level architecture of the proposed classification approach. fv stands
for input feature vector, N stands for normal, T stands for tapered, P stands for pyriform
and S stands for small. Stage 1 is devoted to separate amorphous sperm heads and to assign
a potential class label to fv (different from amorphous). Stage 2 is aimed to accept (confirm)
or reject the assigned class label. In case of rejection, fv is regarded as an amorphous spem
head.

7.1.1 Stage 1: Separation of amorphous sperm heads

The first stage of the classification scheme aims to separate amorphous sperm heads (dis-
carding and regarding them as rejected) from sperm heads labeled as other classes (regarded
them as accepted), as well as to identify the potential class of accepted sperm heads.

To do this, it is necessary to select which feature families are more suitable to reach
the two goals introduced in the paragraph above. As we are interested in identifying the
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potencial class of sperm heads that are not amorphous, we set as the objective function of
the process of feature selection in this stage, the minimization of confussion rate between the
four remaining classes discarding amorphous (normal, tapered, pyriform and small). With
that said, what we need to do is to assemble a feature selection strategy combining the six
descriptors presented in Section 6.2 and using 1−NN LOO technique for each descriptor, and
any of different combination rules (see Chapter 2) to evaluate our objective function. The
best combination of descriptors will be the feature families that will be used in the first stage
of the classification scheme.

Let DSC1, DSC2, . . . , DSCM be the best combination of descriptors selected in the previ-
ous step. For the classification process, we propose to use an independent SVM for each one
of these descriptors. Therefore, we will have one SVM that receives features from descriptor
DSC1, another SVM that receives features from descriptor DSC2, and so on. Each one of
these SVMs will be trained using only four out of five classes (normal, tapered, pyriform
and small), but they will be tested using five classes (including amorphous). To combine the
outputs of all SVMs, we could use different combination rules designed for this purpose, such
as unanimity, plurality, and majority voting, as well as one that considers the probability of
the output from each classifier. It is important to realize that, for the latter kind of com-
bination rule, it would be necessary to tune a threshold value (see Chapter 2 for a detailed
explanation).

Figure 7.2: First stage of the classification scheme. fv stands for input feature vector,
DS1 stands for Dataset 1 DS2 stands for Dataset 2, DSCi i = 1 . . .M stand for the best
combination of descriptors, SVMi i = 1 . . .M stand for SVM trained with DSCi, N stands
for normal, T stands for tapered, P stands for pyriform, S stands for small and A stands for
amorphous. Stage 1 is devoted to separate amorphous sperm heads (rejecting them) and to
assign a potential class label to fv (different from amorphous).

See Figure 7.2 for a schematic explanation of the first stage of the classification approach.
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7.1.2 Stage 2: Verification of potential classes

In the second stage of the classification scheme, the goal is to verify the potential class of
the sperm heads, returned by the first stage. Thus, the model of classification is focused on
combining the outputs of four verifiers. Each verifier is associated with to each of four classes
(discarding amorphous). We will have four verifiers: V1 verifies only normal sperm heads;
V2 verifies only tapered sperm heads; V3 verifies only pyriform sperm heads; V4 verifies only
small sperm heads. If a certain sperm head with a given potential class in {normal, tapered,
pyriform, small} does not verify its potential class, it will be rejected and could be considered
as amorphous.

To do this, the descriptors that are most suitable for each class (normal, tapered, pyriform
and small) need to be selected. We are interested in verifying the potencial class of sperm
heads returned by the previous stage. Thus, the objective function of the process of feature
selection in this stage is the maximization of mean precision rate between each of the four
remaining classes discarting amorphous (normal, tapered, pyriform and small) versus amor-
phous (in all cases). What we need to do is to assemble a feature selection strategy combining
the six descriptors presented in Section 6.2 and using 1−NN LOO technique for each descrip-
tor, and any of different combination rule (see Section 2) to evaluate our objective function
in four scenaries (normal vs amorphous, tapered vs amorphous, pyriform vs amorphous, and
small vs amorphous). The best combination of descriptors will be the feature families that
will be used in each verifier of the second stage of the classification scheme.

Let FSi = {FSAi, FSBi, . . . , FSM i} be the best combination of feature families selected
in the previous step for verifier Vi. For the verification process, we use an independent SVM
for each one of these descriptors. Therefore, we will have one SVM that receives features
from descriptor FSAi, another SVM that receives features from descriptor FSBi, and so on.
Each one of these SVMs will be trained using only two out of five classes (normal, tapered,
pyriform or small, and amorphous). They will be tested using the same two classes used
for training. To combine the outputs of all SVMs, we could use different combination rules
designed for this purpose, such as unanimity, majority voting, etc.

Having the four verifiers Vi, i = 1 . . . 4, we do not need any combination rule in this stage,
because only one verifier should be used, and its output should be considered as the output
of the whole stage. See Figure 7.3 for a schematic explanation of the second stage of the
classification scheme.

7.2 Experimental Results

7.2.1 Dataset

For the experimental results that we show in this section, we have used the classification gold-
standard introduced in Chapter 4. We choose to work with the partial agreement dataset
(further referenced only as dataset) with 1, 132 sperm heads with partial agreement among
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Figure 7.3: Second stage of the classification scheme. fv stands for input feature
vector, DS1 stands for Dataset 1, DS2 stands for Dataset 2, FSi i = 1 . . . 4 stand for the
best combination of descriptors for verifier Vi, N stands for normal, T stands for tapered,
P stands for pyriform, S stands for small and A stands for amorphous. Stage 2 is aimed to
accept (confirm) or reject the assigned class label. In case of rejection, fv is regarded as an
amorphous spem head.

experts and without overlapping, distributed in five classes.

The dataset has been partitioned in three subsets, named Dataset 1 (DS1), Dataset 2
(DS2) and Dataset 3 (DS3), aiming to have a training (60% of the whole dataset), validating
(20%) and testing (20%) dataset, respectively.

In addition, we have an extra testing dataset. Special Testing Dataset (DST) is a subset
of the whole classification gold-standard, but with a particular feature: all the sperm heads
that are contained in DST have been manually classified within the same class by all experts
(total agreement between experts).

In Table 7.1, the size and distribution of classes in each partition and extra testing dataset
are presented.

7.2.2 Stage 1: Separation of amorphous sperm heads

For each stage, the initial result consists of the selected features. As mentioned earlier, we
had 6 different descriptors, and we needed to evaluate 63 different combinations.

To this end, we used 1-NN LOO for each descriptor looking to minimize the confusion rate
among four classes (discarding amorphous). We evaluated two different combination rules:
majority and unanimity. We used Dataset1 for selecting the best combination of descriptors.
As we were using 1-NN LOO, we only need a single dataset. In Table 7.2, we show the
best five combinations of descriptors with confusion rates using majority and unanimity as
combination rule.
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Dataset DS1 DS2 DS3 DST

Number of normal sperm heads 100 60 20 20 35

Number of tapered sperm heads 228 137 46 45 69

Number of pyriform sperm heads 76 44 15 16 7

Number of small sperm heads 72 45 14 14 11

Number of amorphous sperm heads 656 394 131 131 262

Total number of sperm heads 1132 680 226 226 384

Table 7.1: Dataset partition. Dataset = DS1 ∪ DS2 ∪ DS3. DST
is a special dataset for testing purposes with total agreement between
experts (subset of Dataset).

Combination of descriptors Confusion rate Confusion rate
using majority using unanimity

MorphoD,FourierD,ZernikeD 1.76 3.13

MorphoD,GeomD,ZernikeD 1.84 3.07

MorphoD,FourierD,GeomD 1.85 3.07

MorphoD,FourierD,GeomD,ZernikeD,ConvD 1.88 3.69

MorphoD,ZernikeD,ConvD 1.88 3.24

Table 7.2: Ranking of descriptor combinations for stage 1. In column
Combination of descriptors, MorphoD stands for morphological descriptor,
FourierD stands for Fourier descriptor, GeomD stands for geometric moments
descriptor, ZernikeD stands for Zernike moments descriptor, ConvD stands
for convexity measures descriptor, and EllipD stands for ellipticity measures
descriptor.

From Table 7.2, we made two decisions: 1) to use majority voting to combine the outputs
of each 1-NN classifier as it achieved the lowest confusion rate, and 2) the best descriptor com-
bination for this stage is the one that includes morphological descriptor, Fourier descriptor
and Zernike moment descriptor.

Using these three selected descriptors, we apply the first stage of the classification process
to our dataset. We used Dataset1 (DS1) for training and Dataset2 (DS2) for validating
purposes. We did 10 runs and in each we balanced the training data at first. Let minNoE be
the minimun number of elements per class. Let c0 be a random subset of minNoE normal
sperm heads. Let c1 be a random subset of minNoE tapered sperm heads. Let c2 be a
random subset of minNoE pyriform sperm heads. Let c3 be a random subset of minNoE
small sperm heads. We create a balanced training set (trBag) in each run, containing sperm
heads from four classes, as {c0 ∪ c1 ∪ c2 ∪ c3}.
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After creating trBag, for each selected descriptor (Morphological, Fourier and Zernike mo-
ments), we standardized the data and apply cross-validation to choose the best parameters
for individual SVM. We trained SVM using trBag and tested using Dataset2. We used differ-
ent combination rules for this stage (majority voting, unanimity voting, maximun probability
using threshold 0.4, 0.5 and 0.6). As a final result, we calculated the mean value of 10 runs
of True Positive Rate (tpr) of four classes: normal, tapered, pyriform and small. According
to these datasets and applying only the first stage of our classification scheme, we get some
interesting results (see Table 7.3). Due to the fact that the best compromise between the
accuracy rate (mean of TPR of the four classes) and the rejection rate (percentage of amor-
phous sperm heads that are discarded) was reached using the maximum probability with a
threshold of 0.4, we decided to use it as the combination rule of the outputs for our three
different SVMs in this stage.

tpr(N) tpr(T) tpr(P) tpr(S) acc rr combination rule

0.59 0.69 0.75 0.83 0.71 0.11 majority voting

0.28 0.47 0.41 0.49 0.41 0.62 unanimity voting

0.50 0.63 0.69 0.75 0.64 0.22 max probability (thr: 0.4)

0.22 0.47 0.40 0.60 0.42 0.52 max probability (thr: 0.5)

0.04 0.33 0.21 0.40 0.25 0.73 max probability (thr: 0.6)

Table 7.3: Results of the first stage of the classification scheme. tpr
stands for True Positive Rate, N stands for normal, T stands for tapered, P
stands for pyriform, and S stands for small. acc stands for accuracy while rr
stands for amorphous rejection rate. In bold face, we show the best compro-
mise between accuracy and rejection rate.

7.2.3 Stage 2: Verification of potential classes

As in the previous case, the initial result consists of the selected features. However, in
this stage, we need to perform four feature selection processes as we have four different
verifiers (one for each class, different from amorphous). Thus, in each case, we had 6 different
descriptors, and we needed to evaluate 63 different combinations of these descriptors.

To this end, we used 1-NN LOO for each descriptor looking to maximize the mean True
Positive Rate of both classes (amorphous and one of {normal, tapered, pyriform, small}).
We evaluated different combination rules, and decided to use majority voting to combine the
outputs of each SVM. We used Dataset1 for selecting the best combination of descriptors
in each case. As we were using 1-NN LOO, we only need a single dataset. We performed
10 runs for each experiment, and selected the most frequent descriptors that appear in the
results of these 10 run results (disregarding descriptor combinations as a whole).

The best descriptor combination differs from one verifier to another, because the main
goal of this section is to take advantage of the different features of classes versus amorphous
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(See Table 7.4 for a summary).

Verifier MorphoD FourierD GeomD ZernikeD ConvD EllipD

Normal vs. Amorphous X X X X

Tapered vs. Amorphous X X X X

Pyriform vs. Amorphous X X X

Small vs. Amorphous X X X

Table 7.4: Selected descriptors for four verifiers in stage 2

Using these four selected descriptor combinations, we apply the second stage of the clas-
sification process to our dataset. We used Dataset1 (DS1) for training and Dataset2 (DS2)
for validating purposes, considering only two classes in both situations. We need to train
four verifiers, and the procedure to do this is the same in the four cases, changing only the
composition of the training and testing dataset in order to consider only the two relevant
classes in each case. For each verifier, we did 10 runs and in each of those runs, we balanced
the training data at first. For a verifier Vn, let minNoE be the minimun number of elements
per class (amorphous and class n). Let c0 be a random subset of minNoE sperm heads
with label n. Let c1 be a random subset of minNoE amorphous sperm heads. We create
a balanced training set (trBag) in each run, containing sperm heads from two classes, as
{c0 ∪ c1}.

After creating trBag, for each selected descriptor for verifier Vn, we standardized the
data and apply cross-validation to choose the best parameters for individual SVM. We train
SVM using trBag and test using Dataset2 considering only sperm heads with label n and
amorphous. We use different combination rules for this stage (majority voting, unanimity
voting, maximun probability using threshold 0.6, 0.7 and 0.8). As final result, we calculate
the mean value of 10 runs of True Positive Rate (tpr) of two classes: amorphous and one of
{normal, tapered, pyriform, small}.

Normal Amorphous Accuracy Combination rule

0.81 0.60 0.70 majority voting

0.54 0.85 0.70 unanimity voting

0.25 0.56 0.40 max probability (thr: 0.6)

0.04 0.86 0.45 max probability (thr: 0.7)

0.00 0.97 0.48 max probability (thr: 0.8)

Table 7.5: Results of verifier 1 : normal vs. amor-
phous. True positive rate for normal and amorphous sperm
heads classification is shown, as well as the accuracy reached
using different combination rules.

According to these datasets and applying only the second stage of our classification scheme,
we get performance results for each verifier (see Tables 7.5, 7.6, 7.7 and 7.8). Due to the
fact that the best accuracy rate (mean of TPR of the two classes) is reached using majority
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voting in almost all cases, we decided to use it as the combination rule of the outputs for the
different SVMs of each verifier in this stage.

Tapered Amorphous Accuracy Combination rule

0.63 0.81 0.72 majority voting

0.45 0.86 0.65 unanimity voting

0.59 0.17 0.38 max probability (thr: 0.6)

0.37 0.36 0.37 max probability (thr: 0.7)

0.23 0.59 0.41 max probability (thr: 0.8)

Table 7.6: Results of verifier 2 : tapered vs. amor-
phous. True positive rate for tapered and amorphous sperm
heads classification is shown, as well as the accuracy reached
using different combination rules.

Pyriform Amorphous Accuracy Combination rule

0.83 0.64 0.73 majority voting

0.67 0.83 0.75 unanimity voting

0.41 0.51 0.46 max probability (thr: 0.6)

0.12 0.91 0.51 max probability (thr: 0.7)

0.01 0.99 0.50 max probability (thr: 0.8)

Table 7.7: Results of verifier 3 : pyriform vs. amor-
phous. True positive rate for pyriform and amorphous sperm
heads classification is shown, as well as the accuracy reached
using different combination rules.

Small Amorphous Accuracy Combination rule

0.81 0.71 0.76 majority voting

0.44 0.89 0.66 unanimity voting

0.46 0.31 0.39 max probability (thr: 0.6)

0.15 0.65 0.40 max probability (thr: 0.7)

0.01 0.90 0.46 max probability (thr: 0.8)

Table 7.8: Results of verifier 4 : small vs. amor-
phous. True positive rate for small and amorphous sperm
heads classification is shown, as well as the accuracy
reached using different combination rules.
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7.2.4 Complete Classification Scheme

Regarding the selected features for each stage, we apply the whole classification scheme in a
cascade approach.

To this end, we trained using DS1, and as a result of training we obtain five combined
classifiers. One called svm1 as the combination of three SVMs of Stage 1, each one for
one descriptor (Morphological, Fourier and Zernike). The one called v1 consists of the
combination of four SVMs, each for one descriptor (see first row of Table 7.4), looking to
distinguish between normal from amorphous sperm heads. The one called v2 consists of the
combination of four SVMs too, each for one descriptor (see second row of Table 7.4), looking
to distinguish between tapered from amorphous sperm heads. The one called v3 consists of
the combination of three SVMs, each for one descriptor (see third row of Table 7.4), looking
to distinguish between pyriform from amorphous sperm heads. Finally, the one called v4
consists of the combination of three SVMs too, each for one descriptor (see last row of Table
7.4), looking to distinguish between small from amorphous sperm heads.

For testing purposes, we evaluated sperm by sperm in the cascade approach (See Algorithm
7). Let si be a given sperm head. We tested svm1 with si as input (Algorithm 7, step 2).
If si is rejected, then the testing process is finished and we considered sperm si classified as
an amorphous sperm head (Algorithm 7, step 4). Otherwise, if si is accepted, we continued
with Stage 2 considering the output label1 as following. If label1 is class label normal, then
we tested v1 with si as input (Algorithm 7, step 8). Analogously, we tested v2 if label1 is
class label tapered (Algorithm 7, step 12), v3 if label1 is pyriform (Algorithm 7, step 16),
and v4 if label1 is small (Algorithm 7, step 20). In any case, we considered the output of the
corresponding verifier (v1, v2, v3, v4 ) as the final output of the whole scheme (Algorithm 7,
step 22). That is, suppose that label1 is class label tapered, thus, we tested only verifier v2.
If si is accepted, then we considered sperm si classified as a tapered sperm head, otherwise
si is classified as an amorphous one.

We performed two different experiments to evaluate the performance of our approach. In
both scenarios, we used the same configuration of classification scheme, the same training
dataset (DS1), the same selected features and the same combination rules. We only varied
the testing dataset.

In the first case, we used Dataset3 (DS3) for testing purposes. In the second case, we
used a special testing dataset (DST). It is important to realize that in the first scenario, the
testing dataset has only partial agreement between experts, while in the last case, the testing
dataset has total agreement among experts.

According to these datasets and applying the whole classification scheme, we calculated
performance results (see Tables 7.9 and 7.10). We did 30 runs for each testing dataset. We
presented the mean of the True Positive Rate (tpr) for each class in the 30 runs.

In order to evaluate the experimental results, we defined two classification problems: the
five-class and he two-class classification problems. As the primary study goal of this thesis,
we are going to analyze the five-class classification. In 7.9, we can see that the correct
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Algorithm 7 Testing procedure of the whole classification scheme.
MorphoD: morphological descriptor calculated for a sperm head{Section 6.2.3}
FourierD: Fourier descriptor calculated for a sperm head{Section 6.2.2}
GeomD: Geometric moments descriptor calculated for a sperm head{Section 6.2.2}
ZernikeD: Zernike moments descriptor calculated for a sperm head {Section 6.2.2}
ConvD: Convexity measure descriptor calculated for a sperm head {Section 6.2.2}
EllipD: Ellipticity measure descriptor calculated for a sperm head {Section 6.2.2}
svm1: combination of three trained SVMs of Stage 1 {Section 7.1.1}
v1: trained verifier for normal and amorphous {Section 7.1.2}
v2: trained verifier for tapered and amorphous {Section 7.1.2}
v3: trained verifier for pyriform and amorphous {Section 7.1.2}
v4: trained verifier for small and amorphous {Section 7.1.2}

1: fv1 ← [MorphoD FourierD ZernikeD]
2: label1 ← testingSVMensembled(svm1,fv1)
3: if label1 = amorphous then
4: label ← amorphous
5: else
6: if label1 = normal then
7: fv2 ← [FourierD ZernikeD ConvD EllipD]
8: label2 ← testingSVMensembled(v1,fv2)
9: end if

10: if label1 = tapered then
11: fv2 ← [MorphoD FourierD GeomD ZernikeD]
12: label2 ← testingSVMensembled(v2,fv2)
13: end if
14: if label1 = pyriform then
15: fv2 ← [FourierD GeomD EllipD]
16: label2 ← testingSVMensembled(v3,fv2)
17: end if
18: if label1 = small then
19: fv2 ← [MorphoD ZernikeD ConvD]
20: label2 ← testingSVMensembled(v4,fv2)
21: end if
22: label=label2
23: end if
24: return label

Testing dataset tpr(N) tpr(T) tpr(P) tpr(S) tpr(A) acc

DS3 0.62 0.64 0.50 0.82 0.30 0.58

DST 0.76 0.72 0.95 0.93 0.32 0.74

Table 7.9: Results of the whole classification scheme for
five-class classification. tpr stands for True Positive Rate, N
means normal, T means tapered, P means pyriform, S means
small, and A means amorphous. acc stands for accuracy under-
stood as mean of tpr of five classes.

classification for normal sperm heads reaches 62% if we use DS3 as the testing dataset. This
increases to 76% if we use DST as the testing dataset. A similar situation occurs with tapered
and small sperm heads. In the case of tapered sperm heads, the correct classification ranges
from 64% to 72%, using DS3 and DST, respectively. For small sperm heads, our proposed
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method achieves the best compromise between DS3 and DST testing datatsets, reaching 82%
and 93%, respectively. The situation is kind of different with pyriform sperm heads, because
achieving around 50% of correct classification using DS3 becomes 95% when using DST. The
last case is about amorphous sperm heads, where our proposal achieves around 30%, with
no regard as to which testing dataset is used, showing the complexity of correctly identifying
this type of sperm head. In Figure 7.4 we show a graphical representation of this comparison.
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Figure 7.4: Impact of testing datasets. We compare the results obtained using two
different datasets for testing: DS3 (Dataset 3 with partial agreement among experts) and
DST (Special Testing Dataset with total agreement among experts). The percentage of
correct classification ± SE for each class is shown.

If we consider only the two-class classification, regarding only normal and abnormal (in-
cluding tapered, pyriform, small and amorphous sperm heads), the results are summarized
in Table 7.10. In this case, we can see that the correct classification as normal sperm heads
reaches 62% while for abnormal sperm heads reaches 57% when using DS3 as the testing
dataset. The results are much better if we use DST as the testing dataset, getting 76% for
normal sperm heads and 72% for abnormal ones.

Testing dataset tpr(N) tpr(Ab) acc

DS3 0.62 0.57 0.60

DST 0.76 0.72 0.74

Table 7.10: Results of the whole clas-
sification scheme for two-class clas-
sification. tpr stands for True Positive
Rate, N means normal, and Ab means
abnormal. acc stands for accuracy un-
derstood as mean of tpr of two classes.

Our classification scheme outperforms a number of monolithic classifiers as 1−NN, SVM,
naive Bayes and decision trees (Tables B.1 and B.2). In Figures 7.5 and 7.6 we show a
graphical comparison of achieved classification accuracy rates per class, using DS3 and DST
as testing datasets, respectively. The feature vector representing each sperm head in training
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and testing datasets consisted in the concatenation of all descriptors (Morphological, Fourier,
Geometric moments, Zernike moments, Convexity and Ellipticity measures) for all monolithic
classifiers.
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Figure 7.5: Comparison of accuracy per class using DS3 achieved with the proposed
classification scheme and different monolithic classifiers. We compare four classic
monolithic classifiers (1−NN, naive Bayes, decision trees and SVM) against the classification
scheme proposed in this chapter (Chang). The classification accuracy rate ± SE for each
class is shown.
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Figure 7.6: Comparison of accuracy per class using DST achieved with the pro-
posed classification scheme and different monolithic classifiers. We compare four
classic monolithic classifiers (1−NN, naive Bayes, decision trees and SVM) against the clas-
sification scheme proposed in this chapter (Chang). The classification accuracy rate ± SE
for each class is shown.
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In case of using DS3 as the testing dataset, our scheme achieves a mean accuracy rate of
0.58, while the best monolithic classifier (naive Bayes) achieves 0.47. For DST, the scenario
remains similar: our scheme achieves a mean accuracy rate of 0.74, while the best monolithic
classifiers for this case (SVM and 1−NN) achieve 0.65. In both scenarios, the class amorphous
is the most difficult class to identify. Using DS3, decision tree classifier achieves 0.24 versus
0.30 achieved by our scheme. While using DST, decision tree classifier achieves 0.29 versus
0.32 achieved by our scheme. Our experimental evaluation also shows that our proposed
scheme outperforms different cascade classification schemes designed in the context of this
research (See Appendix B for details). These comparisons are show in Figures B.1 and B.2.

Analyzing the case of five-class classification, Figure 7.7 shows the close results of our
automatic approach compared against those classification by experts but not in all classes.
The near results appear in pyriform and tapered classes, in which our proposal could be con-
fused with a human expert. The confusing classes are normal, small and amorphous. These
three classes have slight inter-class variations. For instance, the main difference between a
small and a normal sperm head is often only the size, but the difference is poorly related
to shape. Comparing normal against amorphous sperm heads, the slight shape variations
are very notorious in a visual analysis. Furthermore, the intra-class variation in amorphous
class is actually high, with many possibilities of confusion among experts (see Figure 4.5).
In the case of two-class classification, the observable situation is expected, as the variability
of experts is low. Our proposal results also show variability among experts (see Figue 7.8).
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Figure 7.7: Inter-expert and automatic classification variability in five-class classi-
fication. For each class, the number of sperm heads ± SE for each class is shown.according
to each expert and our approach is shown, using DS3 as testing dataset. One can observe
that for certain classes (such as pyriform and tapered) our approach could be easily confused
with a human expert. But it is not the case for classes such as amorphous.

Trying to show how difficult the discrimination of five classes is, we have performed some
experiments to evaluate dimensionality reduction (DR) techniques. These experiments were
conducted following two goals: a) evaluate the impact of using different feature spaces (ac-
cording to DR technique), and b) identify the most discriminant features (no feature families)
according to MLE instrinsic dimension. We worked with the selected features according to
DR techniques for each stage of our classification scheme, using DS1 for training and DS3 for
testing purposes. We have run 100 iterations in each case, using different dimension reduc-
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Figure 7.8: Inter-expert and automatic classification variability in two-class clas-
sification. For each class, the number of sperm heads ± SE according to each expert and
our approach is shown, using DS3 as testing dataset. One can observe that as the variability
of experts is low, our proposal results also demonstrate low variability against to experts.

tion techniques: PCA (Principal Components Analysis), MDS (Multidimensional Scaling),
Kernel PCA and Diffusion Maps. The conclusion: The introduction of dimension reduction
techniques has not yielded improved results. However these experiments allow us to confirm
that even without DR technique, the problem is really difficult. Around 50 − 65% can be
reached for classes normal and pyriform, around 65− 80% for classes tapered and small, and
around 30% for class amorphous. And with DR technique, around 25− 30% can be reached
for classes normal and pyriform, around 65− 90% for classes tapered and small, and around
8% for class amorphous. In Tables 7.11 and 7.12, we present the True Positive Rate for each
class and the mean accuracy using MLE intrinsic dimension and using the best number of
dimensions (according to DR technique), respectively.

DR Technique tpr(N) tpr(T) tpr(P) tpr(S) tpr(A) acc

PCA 0.62 0.45 0.19 0.16 0.16 0.32

MDS 0.00 0.17 0.00 0.00 0.12 0.06

Kernel PCA 0.00 0.90 0.00 0.00 0.10 0.20

DiffusionMaps 0.00 0.60 0.20 0.00 0.20 0.20

Table 7.11: Results of applying dimensionality reduction
techniques using MLE intrinsic dimension. tpr stands for
True Positive Rate, N means normal, T means tapered, P means
pyriform, S means small, and A means amorphous. acc stands for
accuracy understood as mean of True Positive Rates of five classes.
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DR Technique nDims tpr(N) tpr(T) tpr(P) tpr(S) tpr(A) acc

PCA 46 0.21 0.67 0.30 0.93 0.08 0.44

MDS 35 0.35 0.54 0.25 0.86 0.06 0.43

Kernel PCA 46 0.36 0.05 0.00 0.04 0.67 0.23

DiffusionMaps 10 0.00 0.60 0.20 0.00 0.20 0.20

Table 7.12: Results of applying dimensionality reduction techniques
using the best number of dimensions. nDims means number of dimen-
sions, tpr stands for True Positive Rate, N means normal, T means tapered,
P means pyriform, S means small, and A means amorphous. acc stands for
accuracy understood as mean of True Positive Rates of five classes.

7.3 Discussion

In this chapter we have presented a novel clasification scheme for sperm heads. Our pro-
posal is original and novel from those presented previously (see Chapter 3) because of the
combination of ensembled methods for feature selection and classification as pointed below.

1. Usage of ensemble method for feature selection. Instead of selecting features for
building an ensemble, it is possible to use an ensemble methodology to select features
[Kuncheva, 2004]. It was shown that in large feature/small sample size domains several
different feature subsets may yield equally optimal results [Saeys et al., 2008], and
ensemble feature selection may reduce the risk of choosing an unstable subset from
high-dimensional data [Boulesteix and Slawski, 2009]. Applied to mass spectrometry
data, Dutkowski and Gambin [Dutkowski and Gambin, 2007] combined several filtering
algorithms in a cross-validation framework where multiple classification algorithms are
used to evaluate the biomarker selection. Zhang et al. [Zhang et al., 2009] used several
classification and filtering algorithms to improve the accuracy prediction and stability of
the gene ranking results in a genetic algorithm based wrapper procedure. Similar to the
case of supervised ensemble methods for classification, where the idea is to construct a
set of simple models called base learners or classifiers, and use their outcome to predict
new data, the ensemble methods for feature extraction involves the combination of
several feature selectors. That is, ensemble feature selection combines outputs from
several base feature selectors to form a committee with improved performance. There
are two primary approaches to ensemble construction: parallel and serial. We have
chosen a parallel approach that combines independently constructed feature selectors
(1NN) to exploit the small dataset for training purposes (DS1) as much as possible.

2. Usage of a cascade ensemble of SVMs. In ensemble classification, a set of single
classification models is trained, and the output of the ensemble is obtained by aggre-
gating the outputs of the single models, e.g., by majority voting. It was shown that
ensemble methods often outperform any single base learner [Dietterich, 2000]. Gener-
ally, SVM is considered as the best off-the-shelf classifier and the potential improvement
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gain could be significant if it can be successfully used as the base classifier of an ensem-
ble. That is the reason why we choose to use SVM as base learner in our classification
scheme after evaluating the impact of using SVM as a monolithic classifier. SVM has
been used as the base classifier in many research studies, and it was always shown that
the ensemble of SVMs consistently outperformed the single SVM classifier. The most
simple and promising idea is to use a bagging procedure with SVM as the base classifier.
For example, Caragea et al. [Caragea et al., 2007] applied a bagging ensemble using
SVMs for glycosylation site prediction, training each SVM with a re-sampling of the
balanced training set. Similarly, Guan et al. [Guan et al., 2008] applied the bagging
approach to construct a SVM ensemble for gene function prediction.

Now, looking at the accuracy rates that we reached with our classification scheme and
having five classes to consider, we see that the most difficult class is the amorphous one,
using both testing datasets (see Table 7.9). There is some kind of consistency in four out
of five classes (see Figure 7.4), but in class pyriform, the difference between using DS3 and
DST as testing datasets is significant. This could be understood by looking at the large
gap in agreement between experts while identifying pyriform sperm heads (see Chapter 4
for an explanation) if one takes into account total or partial agreement (DS3 has partial
agreement between experts and DST has total agreement). An important fact to note is
that in class small, there is the highest accuracy rate using DS3. While using DST, the best
accuracy rate is reached in class pyriform, but followed very close by class small. Again, this
could be explained according to what really happens with pyriform sperm heads in manual
classification of experts. There are very few pyriform sperm heads in which all experts agree in
manual classification, thus, it is supossed that these sperm heads are very well characterized,
and easy to discriminate by our classification approach.

7.4 Summary

In this chapter, we have introduced a two-stage classification scheme for classifying human
sperm head in five classes (normal, tapered, pyriform, small and amorphous), according to
WHO criteria. The critical issues beyond the proposed classification scheme are: 1) emphasis
on amorphous heads as an early separation of amorphous heads contributes to minimize the
whole classification error, 2) usage of combining classifier approach, and 3) usage of an
ensembled feature selection technique for each stage of our scheme. Experimental evaluation
shows that our proposed scheme outperforms a number of monolithic classifiers, as well as
different cascade classification schemes designed in the context of this research. Our results
achieved more than 70% of classification accuracy on a dataset with total agreement among
domain experts.
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Chapter 8

Conclusions and Future Work

We have presented a two-stage framework for detection and segmentation of human sperm
head characteristics (including acrosome and nucleus). The usage of color space combinations
(RGB, L*a*b* and YCbCr), together with the usage of a clustering method, provides us a
tool for illumination invariant segmentation approach. In addition, our method proposed an
ellipse fitting based algorithm to identify the head front direction. This is a very relevant
issue with regard to increasing the accuracy of the segmentation.

Our experimental evaluation shows that our proposed framework outperforms the state-
of-the-art, with a higher Dice coefficient, lower Hausdorff distance and less dispersion with
respect to the results achieved by Carrillos method [Carrillo et al., 2007b, Carrillo et al.,
2007a]. Our results achieve notable improvement in the detection rate with fewer false
positives and an accurate head, acrosome and nucleus segmentation achieving over 80%
overlapping against hand-segmented mask.

To tackle the problem of lacking a public gold-standard for evaluating sperm head seg-
mentation methods, we have introduced a gold-standard for head sperm parts segmentation,
built with the cooperation of a referent expert in the field. This gold-standard has been used
to evaluate and compare our results with the state-of-the-art method, and can be used to
compare not only known techniques, but also future improvements to present approaches.
This is a very significant contribution to the scientific community.

We have presented a new descriptor for human sperm heads, named morphological de-
scriptor. This descriptor adopts and adapts a number of ROI shape-based measures focusing
on ellipse fitness and symmetry.

We have introduced a two-stage classification scheme for classifying human sperm head
in five classes (normal, tapered, pyriform, small and amorphous), according to WHO cri-
teria. The approach of combining classifiers together with an ensembled feature selection
technique, yields a method for characterizing and classifying sperm heads towards an accu-
rate morphological sperm analysis. Our experimental evaluation shows that our proposed
scheme outperforms a number of monolitic classifiers, as well as different cascade classifica-
tion schemes designed in the context of this research. Our results achieved more than 70%
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of classification accuracy on a dataset with total agreement among domain experts, showing
that the results of our classification scheme could be confused with those of a human expert
for particular classes.

Another significant contribution to the scientific community is the introduction of a gold-
standard for evaluating morphological sperm analysis methods, built with the active col-
laboration of three referent experts in the field. The analysis of the data used to generate
this gold-standard confirmed the high inter-expert variability in the sperm morphological
classification.

Finally, this thesis demostrates the suitability of image processing, image analysis and
machine learning methods for the computer-assisted morphological sperm analysis. We pro-
posed a validated pipeline for detection, segmentation, charaterization and classification of
sperm heads that demostrated very promising results.

8.1 Future Work

While this thesis has demonstrated the potential of image processing and machine learning
techniques for detecting, segmenting, characterizing and classifying sperm heads towards an
accurate morphological sperm analysis, many opportunities for extending the scope of this
thesis remain. This section presents some of these directions.

About segmentation

A high correct segmentation rate is crucial for characterizing and classifying human sperm
heads towards an accurate morphological sperm analysis. It is well known that segmentation
is the hardest task in image processing research and is not difficult to find several up-to-date
research works about novel approches promising to tackle this problem in different domains.
One of the research directions in image segmentation is about the usage of machine learning
methods with outstanding results. In this sense, deep learning techniques seem to be very
suitable to extract high level information from images, to discriminate relevant from irrelevant
regions. It will be interesting to study and explore the usage of deep learning, basically
Convolutional Neural Networks, for segmentation of sperm heads.

About feature selection

One effective approach for generating an accurate combining classifier is the use of different
feature subsets. In this thesis, we decided to select feature families (multivariate feature
selection) instead of independent features (univariate feature selection). It will be interesting
to explore and experiment with feature ranking as a way to select the features for each single
classifier in our proposed classification scheme, instead of ranking whole families of features.
This could be done by means of methods such as Principal Components Analysis, but also
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using Random Subspace and Random Forest.

About base classifiers

A popular method for creating an accurate classifier from a training dataset is to construct
several different classifiers and combine their predictions. The integration of multiple clas-
sifiers to improve classification results, is currently an active research area in the machine
learning community. Therefore, the base classifier choice is a very important decision within
the design of combining classifiers. In this thesis, we proposed SVM as the base classifier in
both stages of our classification scheme. However, it would be interesting to explore the im-
pact in classification rates when using different base classifiers, such as naive-Bayes classifier,
decision tree and neural networks. Furthermore, to use different base classifiers in each stage
would be a fascinating research direction.

About classification scheme

We designed a pipeline for detection, segmentation, characterization and clasification of hu-
man sperm heads. This pipeline was designed on the basis of a two-stage classification scheme
by means of a combined classifier. We showed that the classification accuracy of other clas-
sification schemes designed in the context of this research was outperformed by the proposed
scheme. However, combination of classifiers is not the only valid alternative to cope with a
difficult classification task as morphological sperm analysis.

Future research focused on the applying of Convolutional Neural Networks (CNN) will be
interesting. CNN has demonstrated its suitability in hard classification scenarios with slight
intra-class variability, showing promising experimental results in different domain classifica-
tion problems.

Another approach that will be challenging to apply regarding this kind of data is the
multi-label classification. When there is not an absolute ground-truth (like in the case of
morphological sperm analysis) and a machine learning approach depends on the heteroge-
neous experience of domain experts, combining the knowledge of different experts remains
as an open problem. The multi-label classification approach is aimed to train a classifier
under such variability situations taking into account different training labels from a number
of experts with distinct levels of experience.

90



Bibliography

[Abbiramy and Tamilarasi, 2011] Abbiramy, V. and Tamilarasi, A. (2011). A comparative
study on human spermatozoa images classification with artificial neural network based on
FOS, GLCM and morphological features. In Advances in Digital Image Processing and
Information Technology, volume 205 of Communications in Computer and Information
Science, pages 220–228. Springer Berlin Heidelberg.
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Appendix A

Sperm Segmentation Method by
Carrillo et al.

Carrillo et al. [Carrillo et al., 2007b,Carrillo et al., 2007a] presented a two-stage method for
detection and segmentation of sperm heads and mid-pieces, looking for an objective analysis
of human sperm morphology at future. At the first stage (detection), the main goal is to
detect and extract a sperm cell from a microscopic image with multiple sperm cells. At
the second stage (segmentation), the authors proposed a segmentation method based on an
information fusion technique. We will discuss the whole method in the next section, as well
as implementation details.

It is important to mention that the images used for testing the method poposed by Carrillo
et al. were obtained from semen smears using Hematoxylin/Eosin staining and an adapter
of 600x. The input images had JPG format and size of 3072× 2304 pixels.

A.1 Method Description

A.1.1 Detection and extraction of sperm cells

As an initial step, the RGB image is transformed to a gray scale image followed by image
thresholding using Otsu method [Otsu, 1979]. The objects discriminated after the thresh-
olding process are discarded or not according to their area. The remaining objects are again
discriminated by histogram analysis and only objects that have a specific number of dark
pixels are finally segmented (this leads to complete differentiation between spermatozoa and
artifacts of similar size).
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A.1.2 Segmentation of sperm cells

The main purpose of the segmentation stage is to subdivide a sperm cell into its constituent
regions of interest: acrosome, nucleus and mid-piece. The proposed method is based on nth-
level thresholding of an image (in this case a spermatozoon image) followed by intersection
with n special masks, this leads to some partial results (isolated regions of interest) that
are joined or fusioned to obtain the desired segmentation results. This method is aimed
to segment objects in microscopic images with a prior knowledge of the morphology of the
object.

Image pre-processing

The image of each sperm cell is processed with a power law transformation over each compo-
nent of the RGB cube; the most important components for the transformation were the red
and green. The red component contains most of the information associated with the darkest
color, which domains the head, and with its enhancement is possible to get a better differ-
entiation of the nucleus from the others parts. The transformation of the green component
gives uniformity to the background and allows the spermatozoon’s contour discrimination
from the seminal plasma.

Nth-fusion method

The procedure of the nth-fusion method is as follows:

1. Nth-thresholding segmentation: the input image is modeled as an object formed
by m regions, where n of these regions define the object of interest in the image. In
this sense, n different thresholded images are obtained by applying the same number
of thresholds to the initial image. Each one of these thresholded images represents
correctly at least one region of the object to be segmented. The n different threshold
values are given by the prior knowledge of the object’s morphological structure. The
result of this block is a set of n images each one correctly representing at least one
region of the object to be segmented.

2. Building growing masks: The isolation of the n regions of interest needed for the
fusion process is accomplished by performing morphological operations between the set
of n images and their corresponding growing masks. The growing mask enhances the
regions to be detected and discards those that are not of interest. In other words, is
necessary that the mask only grows over the region of interest and never over other
regions. This block shows the importance of bringing information to the algorithm with
the information fusion technique, because a priori morphological model makes easier
and accurate the construction of the growing masks.

3. Morphological operation: Several morphological operations between each of the nth-
thresholded images and its corresponding growing mask are performed. This process
leads to n isolated objects representing the details of interest of the region.
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4. Region Fusion: The last step is to fusion the n isolated regions (from previous step)
into one. This is accomplished by means of morphological operations (opening and
closing procedures, followed by erosions and unions). The final result is the desired
segmented object.

Segmentation procedure

The design of the segmentation procedure was based on the nth-fusion method, discussed
before. This procedure starts with a RBG image containing a single sperm cell (as returned
by the detection stage - Section A.1.1), and applies a transformation from RGB color space
to gray intensities. With this ideal input, the segmentation procedure continue as follows:

1. Getting reference points: This step works with the green component from the
original RGB image. This green component is used because it gives the best contrast
between the background and the spermatozoon’s contour. The Otsu’s thresholding
method is applied and the ROI with the biggest area is selected. The object obtained
represents the complete spermatozoon , while the centroid and points that define the
major axis of the basic rectangle are obtained from this object. The main goals are
getting a point situated in the top part of the head and belonging to its main axis, and
getting a point situated in the bottom of the head and belonging to its main axis. The
idea is to compare the Euclidean distance between this two points and the centroid is
possible to determine which one is situated in the top or bottom part of the head, this
is possible because a prior knowledge of the morphology of the spermatozoon stands
that the mass center of the head is near of its top.

2. Nucleus segmentation: In this step, the authors obtained the first image of the set
of thresholded images for the nth fusion method. In this first image, it is important to
mark the bottom part of the sperm head (nucleus region). The thresholding process in
this region is done by means of the usage of the Euclidian distance with the following
parameters: center of the sphere [10, 0, 100] and radius 100.

3. Building of growing masks: Specifically in this algorithm two growing masks are
used, one used to segment the head and the other for acrosome segmentation. The first
mask, applied to the nucleus, enhances the bottom part of the head. The second mask
is a polygon that encloses the top region of the head and excludes the bottom part;
this is done first by dividing the head in two planes with a line passing through the
mass center of the head and perpendicular to the major axis too. Besides, the polygon
has to include the reference point located in the top of the head and exclude the one
located at the bottom.

4. Head segmentation: The head is segmented following the nth-fusion method for
segmentation and uses two level thresholds: one obtained with the Otsu’s method and
one as a fixed threshold. The first threshold enhances the details of the bottom part of
the head and the second the top part. The masks are obtained in the previous step.

5. Acrosome segmentation: The acrosome is segmented by intersecting previous seg-
mented objects. The acrosome is obtained by intersecting the segmented head with
the isolated object that defines the bottom part of the head (obtained in the previous
step).
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A.2 Algorithms

Algorithm 8 Sperm detection and segmentation by Carrillo et al.
imRgb: original image
aMin: minimum size in pixels for a sperm head
aMax: maximum size in pixels for a sperm head
gIntensity: maximum intensity (threshold value)
tMin: threshold value for minimum intensity sum
tMax: threshold value for minimum intensity sum

1: imGray ← transformRGBtoGray(imRgb)
2: threshold ← OtsuThreshold(imGray)
3: imBin ← pixels in imGray whose value is > threshold
4: imOpen ← opening(imBin)
5: imArea ← eraseBySize(imOpen,aMin,aMax)
6: regions ← labelRegions(imArea)
7: for each region i do
8: subimg ← regions(i) cropped according to its MBR
9: thr ← sum(pixels in subimg with intensity in [0,gIntensity])

10: if (thr > tMin) AND (thr < tMax) then
11: subimRgb ← imRgb(subimg)
12: subimPro ← transformRGBtoGrayChannel(subimRgb)
13: [head,nucleus,acrosome]=nthFusion(subimRgb,subimPro)
14: end if
15: end for

Algorithm 9 Nth-Fusion Segmentation by Carrillo et al.
imgPro: processed image containing only one sperm cell

1: imGray ← transformRGBtoGray(imgPro)
2: threshold ← OtsuThreshold(imGray)
3: imBin ← pixels in imGray whose value is > threshold
4: region ← chooseBiggerRegion(imBin)
5: [xc,yc] ← getCentroid(region)
6: [pd1,pd2] ← getMajorAxisPoints(region,xc,yc)
7: imRad ← pixels with Euclidean distance to fixed-central-point < fixed-radius
8: mask1 ← getGrowingMask1(imRad,xc,yc)
9: mask2 ← getGrowingMask2(imBin,xc,yc,pd1,pd2)

10: imRed ← transformRGBtoGrayChannel(imPro,1)
11: imBinR ← pixels in imRed whose value is > fixed-threshold
12: headUp ← opening(imBin AND mask2)
13: nucleus ← opening(imBinR AND mask1)
14: head ← nucleus OR headUp
15: acrosome ← head - nucleus

A.3 Implementation Details

We implemented Carrillo’s method [Carrillo et al., 2007b,Carrillo et al., 2007a,Carrillo and
Villarreal, 2007,Carrillo, 2013] following the algorithms presented before using Matlab1, since

1Matlab R2013a 8.1.0.604
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it is not available as a source code by the authors to compare our detection and segmentation
precision.

In addition, we evaluated parameter values for Carrillo’s method. There are five free
parameters in our implementation. The first parameter, aMin, is the minimum size in pixels
for a sperm head, while aMax is the maximum size. The parameter gIntensity is used as a
maximum threshold value. The two last parameters, tMin and tMax, represent a range for
sperm cell validation. In this sense, if the sum of pixel values of a candidate sperm cell falls
within the range [tMin, tMax], the candidate is considered a sperm cell, in any other case it
is discarded. In Table A.1, we show the variation of parameters for Carrillo’s method in our
experiments.

Parameter name Range Best value

aMin 50 : 25 : 400 200

aMax 500 : 100 : 1500 500

gIntensity 90 : 10 : 150 120

tMin 2000 : 500 : 6000 5500

tMax 2300 : 500 : 27000 24000

Table A.1: Variation of parameters for Carrillo’s
method.

There some parameters showed in the algorithms presented in the Section A.2 whose value
was kept as set by the authors. In this sense, fixed-central-point = [100100], fixed-radius
= 100, and fixed-threshold = 130.
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Appendix B

Discarded Classification Schemes

In this appendix, we aim to describe the classification schemes that were regarded along the
development of this PhD thesis, and to explain the reasons for choosing the classification
scheme introduced in Section 7.1.

It is important to note that we set out to classify sperm heads in five classes: normal,
tapered, pyriform, small and amorphous. We designed the following classification schemes
with this goal in mind, evaluating four base classifiers in each classification scheme: 1−NN,
Bayes classifier, decision trees and SVM.

For training purposes, we used dataset DS1, and for testing purposes we used datasets DS3
and DST (see Section 7.2 for details). The feature vector representing each sperm head in
training and testing datasets consisted in the concatenation of all descriptors (Morphological,
Fourier, Geometric moments, Zernike moments, Convexity and Ellipticity measures).

B.1 Monolithic multi-class classifiers

• Training procedure:

1. To standardize data (mean=0 and std=1 for each feature)

2. To balance training data by randomly taking the same number of samples in each
class

3. To train the base classifier with balanced training data

• Testing procedure: For each feature vector in testing dataset, the predicted class from
the base classifier will be the prediction of the whole scheme

• Classification results: are shown in Table B.1 using DS3 for testing purposes and Table
B.2 using DST for testing purposes.
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Classifier tpr(N) tpr(T) tpr(P) tpr(S) tpr(A) acc

1−NN 0.43 0.55 0.39 0.43 0.18 0.40

Bayes 0.32 0.66 0.42 0.80 0.17 0.47

dTree 0.47 0.51 0.46 0.37 0.24 0.41

SVM 0.23 0.77 0.20 0.69 0.23 0.42

Table B.1: Results of monolithic multi-class classifiers
using testing dataset DS3. tpr means True Positive Rate,
N means Normal, T means Tapered, P means Pyriform, S
means Small, A means Amorphous, and acc means mean ac-
curacy.

Classifier tpr(N) tpr(T) tpr(P) tpr(S) tpr(A) acc

1−NN 0.65 0.65 0.86 0.82 0.25 0.65

Bayes 0.60 0.68 0.77 1.00 0.10 0.63

dTree 0.63 0.67 0.93 0.46 0.29 0.59

SVM 0.68 0.80 0.73 0.78 0.26 0.65

Table B.2: Results of monolithic multi-class classifiers
using testing dataset DST. tpr means True Positive Rate,
N means Normal, T means Tapered, P means Pyriform, S
means Small, A means Amorphous, and acc means mean ac-
curacy.
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B.2 First cascade of two-class classifiers

• Training procedure:

1. To standardize data (mean=0 and std=1 for each feature)

2. To balance training data by randomly taking the same number of samples in each
class

3. To train five base classifiers with balanced training data as follows:

– C1: One classifier to separate normal from abnormal sperm heads

– C2: One classifier to separate tapered from other abnormal sperm heads

– C3: One classifier to separate pyriform from other abnormal sperm heads

– C4: One classifier to separate amorphous from other abnormal sperm heads

– C5: One classifier to separate small from other abnormal sperm heads

• Testing procedure: For each feature vector fv in testing dataset

1. y1 ← predicted class after testing classifier C1 with input fv

2. If y1 =abnormal, to test with the other four classifiers

(a) [y2, score2] ← predicted class and score after testing classifier C2 with input
fv

(b) [y3, score3] ← predicted class and score after testing classifier C3 with input
fv

(c) [y4, score4] ← predicted class and score after testing classifier C4 with input
fv

(d) [y5, score5] ← predicted class and score after testing classifier C5 with input
fv

(e) To choose the predicted class of the whole scheme from y2, y3, y4, and y5 with
the maximum score

3. Otherwise, the predicted class of the whole scheme will be normal.

• Classification results: are showen in Table B.3 using DS3 for testing purposes and Table
B.4 using DST for testing purposes.

Classifier tpr(N) tpr(T) tpr(P) tpr(S) tpr(A) acc

1−NN 0.81 0.58 0.14 0.23 0.08 0.37

Bayes 0.57 0.62 0.39 0.56 0.22 0.47

dTree 0.64 0.33 0.29 0.44 0.21 0.38

SVM 0.68 0.33 0.14 0.29 0.55 0.39

Table B.3: Results of first cascade of two-class classi-
fiers using testing dataset DS3. tpr means True Positive
Rate, N means Normal, T means Tapered, P means Pyri-
form, S means Small, A means Amorphous, and acc means
mean accuracy.
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Classifier tpr(N) tpr(T) tpr(P) tpr(S) tpr(A) acc

1−NN 0.90 0.73 0.21 0.34 0.12 0.46

Bayes 0.97 0.73 0.57 0.51 0.06 0.57

dTree 0.57 0.63 0.44 0.31 0.35 0.46

SVM 0.90 0.73 0.54 0.48 0.71 0.67

Table B.4: Results of first cascade of two-class classi-
fiers using testing dataset DST. tpr means True Positive
Rate, N means Normal, T means Tapered, P means Pyri-
form, S means Small, A means Amorphous, and acc means
mean accuracy.

B.3 Second cascade of two-class classifiers

• Training procedure:

1. To standardize data (mean=0 and std=1 for each feature)

2. To balance training data by randomly taking the same number of samples in each
class

3. To train five base classifiers with balanced training data as follows:

– C1: One classifier to separate normal from abnormal sperm heads

– C2: One classifier to separate small from other abnormal sperm heads

– C3: One classifier to separate tapered from pyriform sperm heads

– C4: One classifier to separate tapered from amorphous sperm heads

– C5: One classifier to separate pyriform from amorphous sperm heads

• Testing procedure: For each feature vector fv in testing dataset

1. y1 ← predicted class after testing classifier C1 with input fv

2. If y1 =abnormal, to test with classifier C2

(a) y2 ← predicted class after testing classifier C2 with input fv

(b) If y2 =small, to test with the other three classifiers

i. [y3, score3] ← predicted class and score after testing classifier C3 with
input fv

ii. [y4, score4] ← predicted class and score after testing classifier C4 with
input fv

iii. [y5, score5] ← predicted class and score after testing classifier C5 with
input fv

iv. To choose the predicted class of the whole scheme from y3, y4, and y5
with the maximum score

(c) Otherwise, the predicted class of the whole scheme will be small.

3. Otherwise, the predicted class of the whole scheme will be normal.
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• Classification results: showed in Table B.5 using DS3 for testing purposes and Table
B.6 using DST for testing purposes.

Classifier tpr(N) tpr(T) tpr(P) tpr(S) tpr(A) acc

1−NN 0.81 0.56 0.29 0.38 0.00 0.41

Bayes 0.62 0.60 0.60 0.51 0.07 0.48

dTree 0.79 0.24 0.24 0.41 0.16 0.37

SVM 0.70 0.54 0.17 0.49 0.42 0.47

Table B.5: Results of second cascade of two-class classi-
fiers using testing dataset DS3. tpr means True Positive
Rate, N means Normal, T means Tapered, P means Pyri-
form, S means Small, A means Amorphous, and acc means
mean accuracy.

Classifier tpr(N) tpr(T) tpr(P) tpr(S) tpr(A) acc

1−NN 0.89 0.68 0.54 0.46 0.00 0.51

Bayes 0.97 0.71 0.51 0.45 0.03 0.53

dTree 0.75 0.45 0.34 0.48 0.17 0.44

SVM 0.90 0.82 0.59 0.64 0.48 0.68

Table B.6: Results of second cascade of two-class classi-
fiers using testing dataset DST. tpr means True Positive
Rate, N means Normal, T means Tapered, P means Pyri-
form, S means Small, A means Amorphous, and acc means
mean accuracy.

B.4 Third cascade of two-class classifiers

• Training procedure:

1. To standardize data (mean=0 and std=1 for each feature)

2. To balance training data by randomly taking the same number of samples in each
class

3. To train four base classifiers with balanced training data as follows:

– C1: One classifier to separate small from other sperm heads

– C2: One classifier to separate normal from abnormal sperm heads (different
from small sperm heads)

– C3: One classifier to separate pyriform from tapered and amorphous sperm
heads
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– C4: One classifier to separate tapered from amorphous sperm heads

• Testing procedure: For each feature vector fv in testing dataset

1. y1 ← predicted class after testing classifier C1 with input fv

2. If y1 =small, to test with classifier C2

(a) y2 ← predicted class after testing classifier C2 with input fv

(b) If y2 =normal, to test with classifier C3

i. y3 ← predicted class after testing classifier C3 with input fv

ii. If y3 =pyriform, to test with classifier C4

A. y4 ← predicted class after testing classifier C4 with input fv

B. If y4 =tapered, the predicted class of the whole scheme will be tapered.

C. Otherwise, the predicted class of the whole scheme will be amorphous.

iii. Otherwise, the predicted class of the whole scheme will be pyriform.

(c) Otherwise, the predicted class of the whole scheme will be normal.

3. Otherwise, the predicted class of the whole scheme will be small.

• Classification results: showed in Table B.7 using DS3 for testing purposes and Table
B.8 using DST for testing purposes.

Classifier tpr(N) tpr(T) tpr(P) tpr(S) tpr(A) acc

1−NN 0.27 0.35 0.28 0.73 0.08 0.34

Bayes 0.12 0.42 0.55 0.89 0.12 0.42

dTree 0.30 0.34 0.28 0.83 0.11 0.37

SVM 0.30 0.47 0.26 0.68 0.42 0.42

Table B.7: Results of third cascade of two-class classi-
fiers using testing dataset DS3. tpr means True Positive
Rate, N means Normal, T means Tapered, P means Pyri-
form, S means Small, A means Amorphous, and acc means
mean accuracy.

B.5 Justification on choosing the classification scheme

There are three basic reasons that justify the choice of the architecture of the classification
scheme proposed in Section 7.1. We will disscuss those reasons in the remainder of this
appendix.

1. With respect to the emphasis on amorphous sperm heads. From the variability
analysis presented in Chapter 4, a valid conclusion is that the class of amorphous sperm
heads shows a high degree of discrepancy among all experts. A natural consequence
is the notorious difficulty in the classification of sperm heads of this class. Formally,
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Classifier tpr(N) tpr(T) tpr(P) tpr(S) tpr(A) acc

1−NN 0.46 0.46 0.53 0.87 0.13 0.49

Bayes 0.25 0.50 0.76 1.00 0.05 0.51

dTree 0.42 0.52 0.61 0.78 0.23 0.51

SVM 0.48 0.70 0.64 0.76 0.48 0.61

Table B.8: Results of third cascade of two-class classi-
fiers using testing dataset DST. tpr means True Positive
Rate, N means Normal, T means Tapered, P means Pyri-
form, S means Small, A means Amorphous, and acc means
mean accuracy.

a way to measure the complexity of a dataset is by means of using a monolitic 1NN
classifier. Looking at Tables B.1 and B.2, we can confirm that class amorphous is, in
fact, the most complex class, achieving only 25% of classification accuracy tested with
a total expert-agreement dataset, against at least 65% of classification accuracy of the
remaining classes. The nature of noisy class observed in class Amorphous, motivated
us to focus on the whole classification scheme in the identification of sperm heads of
this particular class as a main goal. In this sense, the first stage of our proposed scheme
acts as a filter for amorphous sperm heads, as well as a prior four-class classifier. The
second stage acts only as a confirmation step of the potential class versus amorphous
class.

2. With respect to the usage of SVM as base classifier. Among different valid
alternatives of choosing the base classifier for our final proposed scheme, we chose to
use SVM according to the experimental evaluation presented before in this appendix.
For the decision making, we considered three parameters for each base classifier: mean
accuracy, variance of accuracy per class and standard deviation of accuracy per class.
These evaluation metrics were also regarded using both testing datasets (DS3 and
DST). By looking at Tables from B.1 to B.8, one can observe that the base classifier
with the best compromise of the highest mean accuracy and the lowest variance and
standard deviation is SVM.

3. With respect to the composition of feature vector. All the classification schemes
presented in this appendix were tested using a concatenation of all descriptors as feature
vector. None of the discarded classification schemes presented in this appendix reached
classification accuracy rates correlated with the complexity of the data. As mentioned
before, this complexity can be reliably evaluated by means of using a 1NN classifier (see
Tables B.1 and B.2). According to this, the classes with the highest accuracy rate are
expected to be pyriform and small, followed by normal and tapered, while the expected
class with lowest accuracy rate will be amorphous. In this sense, we suspected that
this discrepancy between dataset complexity and classification accuracy rates is due to
the curse of dimensionality. Following this concern, we decided to select a subset of
specialized features for each class in each stage of our proposed classification scheme,
as explained in Section 7.1.
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As a tool to confirm that our decision was sound in proposing the classification scheme
introduced in Section 7.1, we present a comparison of the rates of classification accuracy per
class achieved by the four discarded classification schemes and the proposed classification
scheme in Figures B.1 and B.2. The achieved rates of accuracy per class using the proposed
classification scheme (see Section 7.2) are fully consistent with the complexity of the data in
each class. In addition, the proposed classification scheme outperformed the four discarded
classification schemes presented in this appendix.

Figure B.1: Comparison of accuracy per class using DS3 with different classifi-
cation schemes. We compare the four classification schemes presented in this appendix
(Monolitic SVM, Cascade1, Cascade2 and Cascade3) against the classification scheme pro-
posed in Section 7.1 (Chang) and the complexity of the dataset DS3.

Figure B.2: Comparison of accuracy per class using DST with different classifi-
cation schemes. We compare the four classification schemes presented in this appendix
(Monolitic SVM, Cascade1, Cascade2 and Cascade3) against the classification scheme pro-
posed in Section 7.1 (Chang) and the complexity of the dataset DST.
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