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AN ELASTIC ELECTRONIC VOTING SYSTEM

En los últimos años, organizaciones y movimientos sociales han aparecido demandando
más participación en políticas públicas. En éstas organizaciones, los miembros demandan ser
parte del proceso de toma de decisiones el cual generalmente se realiza mediante iniciativas de
voto directo entre los miembros. Además utilizan Internet intensamente como la plataforma
principal de comunicación y tienden a confundir sistemas de encuestas con herramientas de
votación electrónica. Por otra parte, no es claro que software se debe utilizar, y la debilidad
de la mayoría de éstos que tienen con respecto a la robustez (capacidad de computar bien el
resultado) más que con la privacidad del voto, además de la facilidad de uso.

Como una forma de mejorar la participación, nosotros proponemos un sistema de votación
electrónica para ese segmento, que incluye organizaciones sociales, federaciones de estudi-
antes, colegios, sindicatos, sociedades profesionales, etc. El problema de votación electrónica
ha sido ampliamente estudiado por criptógrafos, y hoy en día, existen varios protocolos para
resolver problemas específicos a votación electrónica. Nosotros proponemos una solución
que toma en consideración esas soluciones existentes combinadas con protocolos de sistemas
distribuidos para introducir un sistema de votación electrónica remota elástica. El sistema
utiliza la tecnología elastic computing de Amazon que permite escalar en términos de capaci-
dad de computación y alta disponibilidad junto al anonimato de los votantes y la garantía
que el voto fue correctamente contado. Concretamente, el sistema está pensado sobre cinco
principios: i) Computación elástica, ii) Internet iii) Facilidad de uso, iv) Anonimato y com-
putación verificable, v) Cliente liviano.

El objetivo de esta tesis no es solamente resolver el problema abierto descrito anterior-
mente, sino también establecer una base sólida para plataformas de votación electrónicas
a través de Internet. De este modo, nosotros creamos un nuevo sistema de votación elec-
trónica en donde el votante no realiza ninguna computación grande, sino que la trasladamos
al servidor, que idealmente está en una plataforma de Cloud Computing como Amazon Web
Services. Esta técnica previene ataques de denegación de servicio, robo de identidad y accesos
no autorizados, al mismo tiempo preserva la privacidad y la verificabilidad.

La plataforma se probó en un caso real, concretamente en una experiencia de votación
electrónica en donde los chilenos demandando su derecho a voto en el extranjero, pudieron
votar en una elección simbólica. Se presenta la experiencia, los problemas y las soluciones
que encontramos utilizando un sistema de identificación simple. Esta proyecto nos permitió
estudiar de forma técnica, política y práctica aplicaciones de votación electrónica en América
Latina.
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Abstract

Over recent years, social organizations and movements have increased, demanding more
participation in public policy issues. Within these organizations, members demand to be
part of the decision making process, usually exercised via direct voting of the initiatives.
These new organizations use internet intensively as the main communication platform and
tend to confuse survey or poll systems with an e-voting tool. For this kind of organizations
it is not clear which voting system should be used: privacy is not the weakest point of
most existing and publicly available e-voting software, but rather soundness – being able to
correctly compute the result – as well as flexibility and ease of use.

To improve participation we propose an electronic voting system for that kind of organi-
zations, which includes social rights organizations, student federations, schools, professional
associations, etc. The e-voting problem has been studied by cryptographers for a long time
so that today, several protocols exist to solve specific issues. We propose a solution that uses
some of these known protocols together with some distributed system techniques to introduce
an elastic e-voting system. The system combines elastic computing and high availability with
anonymity of the voters and the guarantee that the vote is correctly counted. Concretely,
the system is designed under five principles: i) Elastic Computing ii) Open Network iii) Ease
of use iv) Ballot privacy and tally correctness, and v) Lightweight client.

The goal of this thesis is not only to solve the open problem described above, but also
to establish solid grounds for e-voting platforms using Internet. Thus, we create a new e-
voting system where the client performs nothing but a small computation, and the heavy
computation is on the server side, ideally deployed in a Cloud Computing platform like
Amazon Web Services. This technique prevents attacks such as: denial-of-service, spoofing,
and unauthorized intrusion while preserving privacy and verifiability.

We deployed our implementation in a real-world electronic voting experience where Chileans
who demanding their right to vote from abroad were able to vote for presidential elections in
Chile in a non-binding (symbolic) election. We present our experience, explain the problems,
provide some solutions, and document the results of a real e-vote with simple identity vali-
dation. This project allowed us to study the technical, political and practical applications of
electronic voting in Latin America.
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Chapter 1

Introduction

Elections are among the most important processes in modern democracies. Even current
monarchies still use elections to choose their prime minister or members of the parliament.
Each nation has its own system to select their representatives by popular vote. Paper-
based voting systems are the most commonly used, in this type of systems voters mark their
preference on paper, seal it and put it in a box to be counted at the end of the election.

The development of modern cryptography has driven improvements in different areas,
changing aspects of our lives in many ways. We can communicate instantly and securely
send photos and videos from one part of the world to another. We can pay using our
credit cards remotely or control nuclear power plants from a distance. Even with all the
new development, the electronic voting problem is still open and we are far from reaching a
consensus.

The electronic voting (e-voting) could be seen as the modernization of the current paper-
based voting, but opinion on this topic is divided. Some believe that it is not possible to
achieve privacy and confidence with the current technology, while others feel that e-voting
should already be in use. Currently, there are three ways to cast a vote electronically:
supervised precinct based on local tally, supervised precinct based on remote tally and a
remotely based (unsupervised). The first option tries to capture the idea of traditional
voting but uses a machine instead of paper. The remotely based version casts a vote from
anywhere, in particular from houses using a personal computer or from anywhere using a
mobile smartphone.

The introduction of electronic voting produces benefits in the usability; adding more
information to help voters, reducing the paper-vote logistics, and introducing a new tally
method which can reduce errors in the sum. These errors in the tally process might be
intentional or not, like counting a vote for a different preference than is marked on the
ballot, counting blank votes (or marking them) for a particular preference and marking more
than one preference in order to spoil it. This misbehavior is likely to occur in isolated
voting precincts or when the judges of the election are colluded for one candidate. But the
introduction of technology also faces some cons like computational security concerns.
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1.1 Motivation

Nowadays, there is a worldwide demand for more participation in national politics from
society associations that reach across formal institutions of decisions (political parties, as-
semblies, commissions etc.). Some examples of this are the so-called “Arab Spring” in the
Middle East, North Africa and Central Asia [SW12], “Los Indignados”[Alc11][Rai11], “Yo soy
132” [Mat12] or “Occupy Wall Street”[Gab11][BBC11].

The same phenomenon has been occurring in Chile since the “Revolución Pingüina”
[Sca06] [Del11] [Bar11] that triggers mass population demands. Since then, several or-
ganizations have or have had a significant increase in participation. Some of them are
“Voto Ciudadano”[Vot14], “Ciudadano Inteligente”[Ciu14], “Revolución Democrática”[Rev14]
or “Fundación Iguales”[Fun14]. In all those organizations, members demand to be part of the
decision making process, usually exercised via direct voting of the initiatives.

This new democracy is highly participative, with a variable voting universe, made up
of a few people to hundreds of thousands. To stimulate participation, the organizations
themselves use new communication platforms and technologies such as Twitter, Facebook,
WhatsApp, etc.[Tay11] [Man12] [Jur12] [Pas12]. Their members use new social media and
Internet communication platforms to enable the assembling of people with diverse interests
but a common goal.

Most of these organizations regularly call for a vote on the decisions and actions they plan
to take. In October 2014, the City of Santiago conducted a communal consultation on local
topics. In that consultation more than 19, 000 votes were received only via Internet, whereby
several problems occurred. First, the consultation had no kind of privacy properties, the
vote was not encrypted and to vote, only the ID number was required to cast a ballot. A
redundancy platform was not created, and at peak hours the consultation was down because
of a denial-of-service caused by the good turnout and interest in vote.

In this attempt at electronic voting they intended to achieve a binding vote through a
in-house development, mainly because most of the available electronic voting platforms are
not easy to use and deploy for non-experts in security or cryptography.

1.1.1 Design criteria

In this work, we propose a voting system considering the previous experience of multiple
organizations to satisfy their multiple requirements. From our experience, the most important
requirement is to assure that voters cast a ballot during the period of time while the voting
is open. Any downtime of the voting system for any reason will generate people’s a mistrust,
and the entire election could be in jeopardy. Based on this, we define five fundamental
principles, which we detail next.

We implement High Reliability through an Elastic Computing architecture allowing
linear scale on demand without later configuration. A computer architecture is said elastic
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if the computational power can be increased or decreased on demand. Maintaining a zero-
downtime is critical to a voting process, to ensure that every voter who wants to participate
in an election casting their vote can do so without problems. Outsourcing the infrastructure
is a convenient alternative for organizations that do not have the required hardware and want
to call an election for two or three days. Distributing the servers between one or more clouds
prevents a single point of failure as well as Denial-of-Service (DOS) attacks. Since we do
not control the hardware, the next requirement becomes a key issue that must be taken into
consideration.

In the requirement Secrecy and Tally correctness we focus on an integral model against
an active adversary. The platform maintains ballot privacy and verifiability (open-audit) us-
ing cryptographic techniques such as vote encryption, signatures and distributed authorities.
To preserve the secrecy of the vote we rely on homomorphic encryption to securely compute
the tally as the sum of the cast votes, meaning that only the result gets decrypted while
all the votes remain encrypted. The Decryption key is securely generated and distributed
among n authorities. In order to decrypt the result, t out of n shares are needed (preventing
collusion and no-cooperation of a small part of the authorities).

As we introduce a remote voting platform, an Open Network requirement is compulsory.
We explore the possibility of using the Internet with no specific infrastructure for electronic
voting. Voters and authorities only need to use a standard SSL/TLS connection. The
voter authentication mechanism simple: user/password or pseudo-secret information already
existent on the national identity document. Open Network reduces the entrance barriers of
implementing a VPN for every node that wants to vote.

The requirement Easy to Use means providing a voting platform for people who are
not IT specialists. This platform is intended to be easy to use and for that reason, it has
a friendly-user web portal for all the participants involved in the election. Anyone can use
the platform without technical knowledge. It is possible to deploy the entire architecture
with just a few interactions. Though this might obvious, a voter just has to mark the option
and cast the vote, but underneath there is a lot more things to take care. For the electoral
committee that supervises the complete process, this criterion means that they can create an
election in three simple steps. Each authority has a digital key that allows him to proceed
with the count and opening of the votes. The authorities receive their respective key in an
off-line way by using a USB stick or similar, and shortly after the platform is ready to cast
ballots. Once the election is finished, the authorities upload their share of the key and wait
while the system collects all shares and performs the decryption of the tally. Setting up an
election requires only three decisions to make. First, selecting the basic information such
as the election title, the questions, and opening and closing dates. Second, selecting the
electoral roll or participants and, selecting the judges (authorities). For voters this is also
easy. A voter first encrypts the vote on one of our many encryption servers and then the
votes himself casts it. The voter only authenticates for ballot casting, in this way, the ballot
does not contain any personal information from the voter.

The last goal is to use a Lightweight client. We move all the heavy computation to the
server-side, moving cryptography from the client to the elastic cloud. Encryption, verification
and tally are performed in the cloud.

3



1.2 Organization of the thesis

In Chapter 2, we present the background of our work, related work, current security models
and implementations. In Chapter 3, we explain all the cryptographic tools used, the basis
and the mathematics involved in our work. In Chapter 4, we introduce our remote electronic
voting system, defining the entities and the different steps involved in the complete process. In
Chapter 5, we explain the implementation and technical decisions considered. In Chapter 6,
we explain all our technical, practical and cryptographic assumptions. Finally in Chapter 7
we present in detail our experience using this work in a real-world election.
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Chapter 2

Background

2.1 Related Work

Theoretical results from the past 30 years generated by a significant number of computer
scientists and mathematicians led to the development of multiple protocols like encryption
schemes, signature schemes and zero knowledge proofs, among many others. These have
allowed secure communication protocols like SSL, VPN and so on. With all of those protocols
created, electronic voting emerges in order to modernize the current paper based voting
process.

Electronic voting research began in the late 80’s when researchers like Josh Cohen (Be-
naloh) [Ben87] and David Chaum [Cha88] proposed the first provably secure schemes for
electronic voting. These voting systems preserve the ballot secrecy, and privacy. That means
that no other participant than the voter himself should be able to determine the value of
the vote cast (ballot) by this voter. The intuition is that the ballot has to be encrypted or
ravelled.

In [Ben87] Josh Benaloh developed one of the earliest practical voting schemes, fully im-
plementable, preserving ballot secrecy and incorporating verifiability for all the participants
and mere observers who are all convinced that the tally is correct. As far as we know, this
scheme was the first to use the secret sharing [Sha79] (threshold) concept, allowing direct
computation on the shares altogether to prevent the corruption of a small set of authorities.

David Chaum in [Cha88] proposes an election protocol that ensures an unconditionally-
secret ballot and correctly ballots count based on the low probability to learn the dth roots
modulo N . Moreover, Chaum claims that it is untraceable to disrupt the election, based on
the RSA [RSA78] assumption.

Later, in the 1994, Benaloh and Tunistra in [BT94] present a new idea eliminating any kind
of receipts which can be used to prove to others how a specific person voted. This concept
is called Receipt-Freeness. Benaloh et al. propose the use of a beacon which produces an
unlimited supply of unpredictable bits and a homomorphic encryption scheme. The authority
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sends some values to the voter over a private channel and the voter emits the vote over a
public channel. Later, Hirt and Sako [HS00a] show that this scheme in fact is not receipt-free.

One year later, Niemi and Renvall [NR94] publish the same concept in an independent
work, satisfying both properties: Each voter can verify the tally and the voter cannot prove
the vote. In 1996, Okamoto [Oka96] proposes a practical large scaled secret voting scheme
which satisfies the property that there is no receipt of a vote, to buy a vote or coerce a voter.
One year after that, the same Okamoto in [Oka97] himself proves that his previous work was
not receipt-free indeed. In these subsequent works Okamoto uses blind signatures in order
to achieve receipt-freeness.

Sako and Kilian in [SK95] make an advance in order to implement receipt-freeness in a
more practical manner. They attack the problem of the voting booth, using one physical
assumption: The existence of an untappable private channel that cannot be achieved as a
cryptographic implementation must be physical. This assumption is strong for a practical
solution. In this scheme, Sako et al. propose a distributed authority (making it more difficult
to disrupt the entire election) and an efficient tally based on homomorphic encryption. Fur-
ther, it is the first work that uses a mixed network introduced in [Cha81] to achieve universal
verifiability. The work of Sako and Kilian was used by Hirt and Sako [HS00b] in order to
accomplish one of the most efficient and correct receipt-free voting schemes.

Mixnet was used in Park’s et al. previous work [PIK94] and Fujioka et al. [FOO92]. These
schemes introduce optimizations. However, they just achieve individual verifiability.

The authors who rely in these assumptions generally claim that their schemes are practical,
but in reality they are not. The idea behind it is to provide perfect secrecy in an information-
theoretic sense, while in a large-scale or national scope voting it is difficult to cover all the
polling booths.

Jules, Catalano and Jakobsson in [JCJ05] introduce a new security model for e-voting
which is more powerful than what can be found in previous work. They include new threats
like vote buying which only requires an anonymous channel and avoids using an untappable
channel. In order to achieve this new strong security model, Jules et al. introduce a credential
which is a secret value that is unique to the voter to ensure that the ballots are cast by
legitimate voters. They also introduce a fake credential to impede vote-buying and to defraud
any coercer.

The work of Benaloh [Ben06] introduces a detailed e-voting protocol which offers a verifi-
able election system that is far simpler than other such systems previously proposed. Benaloh
divides the different processes involved in a election into parts and mixes them with cryp-
tographic protocols without proposing any implementation. Gardner, Garera and Rubin in
[GGR09] extend the Benaloh scheme and present a new definition of coercion which is more
likely to resist cryptographic security games for end-to-end voting. Using the Benaloh scheme,
Gardner et al. implement the whole protocol with formal and provable secure definitions.

A new game-based security model using formal methods (symbolic model), was presented
by Küsters, Truderung and Vogt in [KTV10]. In this model Küsters et al. define objectives
(or goals) and the probability of achieving these goals with one or more strategies. In par-
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ticular, the objective is to avoid coercion. Using this technique it is also possible to measure
the “level of coercion" by the different schemes.

Electronic voting has developed gradually, from the first scheme presented by Benaloh
and Chaum to the model of Küsters. All the security models presented here try to capture
the ideas of paper-based voting model, using cryptographic assumptions. The experience of
implementing electronic voting in the real world seems distant from the academic world since
the voters have different concerns. For example, voters are more interested in ballot secrecy
than coercion. Having mechanisms to avoid coercion like having two pairs of keys with the
aim of cheating on the coercer are usually complicated to implement and might induce errors
on behalf of the voter who does not necessarily understand how it works.

In practice voters do not have (and they do not want to have) a key pair to vote or
remember cryptographically strong passwords. In fast, having this pair of keys often creates
more problems than it solves [And01]. In real life, voters are not computer specialists and it
is difficult for them to manage their private keys and certificates [BWB05]. In this work, we
intend to relax some of these security properties to create a usable electronic voting system.

In the next section we present the definition of voting schemes similarly to [BCP+11]. We
define a general syntax for the major voting schemes.

2.2 Generic voting scheme

An election system may consist of several sets of entities as presented in [JCJ05] :

1. Registrars: Denoted by R = R1, R2, . . . , RnR, this is a set of nR entities responsible
for jointly issuing keying material.

2. Authorities: Denoted by T = T1, T2, . . . , TnT , this is a set of nT authorities responsi-
ble for processing ballots, jointly counting votes and publishing a final tally.

3. Voters: The set of nV voters, denoted by V = V1, V2, . . . , VnV are the entities partici-
pating in a given election administrated by R.

A Bulletin Board BB is defined as a piece of universally accessible memory to which all
players have append-write access. In this memory, any player can write data to BB but can-
not overwrite or erase the existing data. This is used to publish all the ballots cast by voters.
Also, a candidate slate C is published which contains all possible candidates or voting options.

A voting scheme can be defined by the five generic algorithms Setup, Registering, Vote,
Tally, Verifying, where each one encapsulates one function of the scheme.

1. Setup: The setup algorithm takes as input a security parameter 1λ and R, returns a
secret information SKR (may be shared by all registrars) and initializes a new bulletin
board for the election. We write (SKR, BB) ← Setup(1λ, R).
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2. Registering: The registering algorithm assigns the right to vote to the voters V and
selects the authorities T for one particular voting. For each entity, the function Register
creates the credentials to log in or validate oneself depending on the voting protocol,
and also returns the public key of the particular voting created. We write (SKV i, SKT i,
PK) ← Register(V, T , SKR).

3. Vote: The voting algorithm takes a valid option from the candidate slate and the
public information, and creates a ballot which is sent to the bulletin board. We write
(b) ← Vote(v, PK).

4. Tally: The tallying algorithm cleans all the spurious votes, computes the vote tally
with all the valid votes X and creates a non-interactive proof P that the tally was
correctly computed. We write (X ,P) ← Tally(BB, SKT , C).

5. Verifying: The verifying algorithm takes the final tally, the bulletin board and the
non- interactive proof in order to check if the tally was correctly computed. We write
{1, 0} ← Verify(PKT , BB, C, X , P).

In the next section we define some properties of the e-voting protocols presented in the
literature.

2.3 Basic Properties

The verifiability allow voters and election observers to verify that the votes has been recorded,
tallied and declared correctly.

Individual Verifiability: The voter should be able to verify that his intentions were ac-
curately recorded in the cast ballot and check that this ballot was published on the bulletin
board.

Universal Verifiability: Voters should be able to verify that all cast ballots were prop-
erly included in the final tallies and came from legitimate voters. Anyone can check that all
the votes in the election outcome correspond to the ballots published on the bulletin board.

Eligibility: Anyone can check that each ballot published on the bulletin board was cast
by a registered voter and counted at most one time.

Mandatory Privacy: No one should be able to learn how another voter voted with
certainty, even if the voter would like to let that person know.

Fairness; This prohibits the voting system from influencing a voter’s behavior, that is, the
observation of the voting does not leak information.
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Ballot independence: Observing another voter’s interaction with the election system
does not allow a voter to cast a meaningfully related vote.

No early results: A voter cannot change his vote once partial results are available.

Pulling out: Once partial results are available a voter cannot abort.

In the next section we define security models for e-voting protocols:

2.4 Security models

In this section we present the different security models defined by the authors in the literature
starting by the weak model to the currently strongest. The different security models ensure
preventing intimidation of voters and that voters can express their free will without fear of
retribution.

Ballot privacy Introduced by Benaloh and Tunistra [BT94] the intuition is that a voter’s
vote is not revealed to anybody. So, ballot secrecy requires that the adversary is unable to
distinguish between real ballots and fake ballots. In [CS13] they define ballot secrecy as
the assertion that an adversary (controlling an arbitrary number of dishonest voters) cannot
distinguish between a situation in which voter A votes for candidate x and voter B votes
for candidate x′, from another situation in which A votes x′ and B votes x. Cortier et al.
expresses this by the following equivalence:

A(x) |B(x′) ≈l A(x′) |B(x)

Another model to express ballot privacy is presented by Bernhard et al. in [BCP+11]

Receipt freeness The concept was introduced in 1996 and refined by Okamoto in [Oka97].
The intuition is that the voting system generates no receipt of who a voter voted for, because
the receipt of a vote proves that a voter has voted for a candidate and could therefore be
used by another party to coerce the voter.

By this simple concept it is possible to achieve a stronger model that implies the previous
one. Okamoto defines the receipt-freeness based on the following simulation, which can still
be used based on our voting scheme definition in section 2.2:
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Given published information X (public parameters and bulletin board), adversary C in-
teractively communicates with voter Vi to cast C’s favorite vote v∗i to T , and finally C decides
whether to accept V iewC(X : Vi) or not, and T decides whether T accept v∗i or not. Here,
C gets the message xb from the bulletin board BB immediately after xb is put on the board
(C can see it from BB because it is public). V iewC(X : Vi) means C’s view through com-
municating with Vi and getting information from the bulletin board, that is V iewC(X : Vi)
includes published information X, C’s coin flips, v∗i , and the messages that C receives from
Vi.

A voting system is receipt-free, if there exists a voter Vi such that, for any adversary C,
Vi can cast vi(vi 6= v∗i ) which is accepted by T , under the condition that V iewC(X : Vi) is
accepted by C.

Coercion resistant Introduced in [JCJ05], Juels et al. define an adversary that cannot
interact with voters during the election process. In particular, an election is private if such
an adversary cannot guess the vote of any voters better than an adversarial algorithm whose
only input is the election tally. The coercion resistance is a strong form of privacy in which
it is assumed that the adversary may interact with voters. To our knowledge, the coercion
resistance captures the fullest possible range of adversarial behavior in a real-world, Internet-
based voting scheme. It offers receipt-freeness and defines a scheme against randomization,
forced-abstention and simulation attacks all in the face of corruption of a minority of the
tallying authorities.

The current security models of coercion-resistance are tailored to each protocol. Like
[CCM08] we use an informal definition of coercion-resistance. In [JCJ05] and [DKRD06] two
ways are presented to formally define coercion-resistance.

In the next section we present some of the current implementations.

2.5 Implementations

2.5.1 Remote voting solutions

Helios

The work by Ben Adida in [Adi08] has been used by several institutions 1 like universities and
associations like the IACR in order to vote for student governments or committee members.

Helios (version 3) is an open source, web-based, single server platform implemented in
Python with several desirable features for an internet voting system. Helios permits logging-
in with external providers like Google, Twitter or Facebook. There are flexible registration
lists for closed or open elections. It is based on a threshold key authority distribution to

1As it is said in the webpage of the project. http://heliosvoting.org/
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enable a distributed decryption by multiple trustees, and provides yet other features.

The Helios voting scheme is based on Benaloh’s scheme and Sako-Kilian’s mixnet. It
is similar to our generic scheme presented in section 2.2 implemented with the Elgamal
encryption scheme, supporting semantic security, re-encryption, and a non-interactive proof
for the correct mix and a proof of decryption.

Civitas

Michael Clarkson et al. in [CCM08] presents the first electronic voting system that is coercion-
resistant, universally and voter verifiable, and suitable for remote voting. Civitas is a provably
secure voter registration protocol, with distributed trust over a set of authorities and a
scalable design for vote storage that ensures integrity. The implementation of [CCM08] has
coercion-resistant with a ranked voting method.

Civitas uses a publicity available specification of cryptographic protocols to implement
a coercion-resistant, verifiable and remote voting scheme. This implementation is written
in Jit and it is based on the scheme by Juels et al., with some differences. All the voters
have two keys, a registration key and a designation key: The first one for authenticating the
voter and the other to acquire the private credential which must be sent with the vote (both
encrypted).

Cryptographic components used by Civitas are standard protocols, a public key infras-
tructure to encrypt and sign messages, and a variety of zero-knowledge proofs to enforce the
honest execution of the protocols.

Following the generic scheme presented in this work, the Registrars use RSA keys and the
authorities generate a distributed Elgamal key. The Registrars post each voter’s registration
public key and each designation public key.

The voters encrypt their votes using Elgamal which is homomorphic with respect to multi-
plication. To avoid the malleability (inherent in homomorphic encryption) Schnorr signatures
are required. To ensure the honesty of the Authority, zero knowledge proofs are generated
during key generation and decryption. Once the voter is authenticated, a shared AES session
key is established between them. Besides the ballot, two zero-knowledge proofs are generated,
1-out-of-L and proof of knowledge of two values.

2.5.2 Estonia Electronic System Platform

Estonia was a pioneer in the world to use Internet voting nationally, and today more than
30% of its ballots are cast using this platform called I-Voting. Estonia has developed a
national full Public Key Infrastructure which can be used for voting. Each citizen has a key
pair in their own national ID card and to cast a vote, they download a desktop application
that the voter connects to the central system to store the votes into the database. Springall,
Finkenauer, Durumeric, Kitcat, Hursti, MacAlpine, and Halderman[SFD+14] show several
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flaws in the process, focused in how the process was carried out, and the desktop application
than the security of the scheme.

2.5.3 Precinct-based solutions

Puchscan

Kevin Fischer et al. provides a clear definition of the Puchscan concept in [FCS] introduced
by David Chaum. It is a hybrid paper/electronic system. It employs a two-layer ballot
and receipt, and a sophisticated cryptographic tabulation system. This implementation uses
ballots with two layers: The voter marks the option with an ink dauber and separates the
layers.

The system saves information about the two layer ballot and compares it with the cast
ballot in order to reconstruct the option.

Wombat voting

In [BnFL+12], Ben-Nun et al. presents a dual voting system (paper and electronic) designed
to mix current electronic voting techniques with traditional paper based ones. This voting
platform is an adaption of Benaloh’s system [Ben06] to Israel’s paper-based system. The
voter identifies himself at the voting booth and marks a preference in a voting machine with
touch screen. This voting machine prints a divided receipt. On once side it shows the vote
in plaintext and on the other it contains the encrypted and signed vote. The plaintext is
cast in a traditional way, while the other part is scanned and uploaded into the bulletin
board. Using this simple technique it is possible to verify all ballots reading the plaintext
and compute the tally using the homomorphic characteristics.

2.5.4 Others

There are other implementations such as ThreeBallot, Scantegrity II, Prêt à Voter, among
others, which are not purely designed for remote voting. Those implementations mix paper
based with electronic voting protocols. Most of them use the paper part to generate security
properties which are used in the security of the model.
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Chapter 3

Cryptographic tools

Modern Cryptography is concerned with the construction of efficient schemes for which it
is infeasible to violate the security feature. In electronic voting, several cryptographic and
mathematical concepts are used to achieve security properties such as ballot privacy, anti
collusion, high availability and verifiability. In this chapter we define the cryptographic tools
used in this work, their roles and the technical terminology for a better understanding.

3.1 Basic Cryptographic Primitives

The basic setup for an encryption scheme is a sender who intends to transfer information to
a receiver over an insecure channel that may be tapped by an adversary. The receiver must
be capable of correctly obtaining the secret information meanwhile the adversary can not.

We define the information which the sender will send as plaintext and the ravelled infor-
mation as ciphertext. The plaintext is private and only meant for sender and receiver, while
the ciphertext is public. Sender and receiver have an algorithm to transform the plaintext
into ciphertext, they both must be different and it should be difficult to convert the cipher-
text into the plaintext without some secret information which is called the decryption key.
An encryption scheme is defined as an algorithm that can perform the transformations of the
plaintext into the ciphertext and the contrary using adequate keys.

The encryption algorithm takes the plaintext and the encryption key as input and
returns the ciphertext. The decryption algorithm takes the ciphertext and the decryption
key as input and return the plaintext. In order to create adequate keys for both algorithms
a third algorithm key generation algorithm takes the size of the key and returns the
secret/public key pair (encryption key, decryption key).

These three algorithms are called encryption schemes and are public for all participants
including the adversary. The idea behind it is that the adversary does not know the de-
cryption key. Those encryption schemes enable secure communication without the use of a
physically secure channel.
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3.1.1 Private-Key Cryptography

There are two types of this encryption scheme, depending on the encryption-key and decryption-
key. If both are equal, the scheme is called symmetric or Private-Key. In this scheme, both
parties have the same private-key (securely exchanged before the data transmission). The
sender encrypts the plaintext using this key and sends it through a public channel. Then the
receiver decrypts the ciphertext using the same key in order to recover the plaintext.

AES

The Advanced Encryption Standard (AES) is the encryption standard specification approved
in 2001, proposed to protect electronic data. The AES algorithm is a symmetric block cipher
that can encrypt and decrypt information. It is based on several substitutions, permutations
and linear transformations, each executed on data blocks of 16 bytes. Those operations are
called rounds and repeated several times. During each round, a unique roundkey is calculated
and used in the operations. Even if only a single bit is different in the input, the resulting
ciphertext will be completely different. To encrypt messages whose length is longer than 128
bits, a block cipher must be used repeatedly following a procedure called mode of operation
[FIP01].

3.1.2 Public-Key Cryptography

In the Public-Key Cryptography (also called asymmetric) the Key Generation Algorithm
produces two different keys, a public key (PK) and a secret key (SK). An important property
is that given the public key it is infeasible to forge the secret key. In this scheme, the receiver
sends his public key to the sender over an insecure channel, who then encrypts the plaintext
using that key and transmits the resulting ciphertext. Finally, the receiver can decrypt the
ciphertext using his secret-key. In Public Key Cryptosystems both users exchange their
public-keys publicly to encrypt a plaintext that can be decrypted only with the secret-key
associated with each public-key. By publicly revealing PK one does not reveal an easy way
to compute SK.

RSA

RSA is the first practicable public key cryptosystem proposed. It was designed by Rivest et
al. in [RSA78]. based on Diffie and Hellman’s previous work [DH76].

• Key Generation On input k as security parameter, choose two distinct primes p and q
at random with 2(n−1/2) ≤ p, q ≤ 2n/2. Calculate n = pq such that N is a k-bit number
and φ(n) = (p− 1)(q − 1) is the Euler’s φ function. Choose e such that 1 ≤ e ≤ φ(n)
and gcd(e, φ(n)) = 1 (coprimes). Determine d as d−1 = e(modφ(n)). The public key
consists of the modulus n and the public exponent e. The private key consists of the
modulus n and the private exponent d.
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• Encryption On input x ∈ Zn and PK = (n, e) perform y = xe mod n to get the
cipher text.
• Decryption On input y ∈ Zn and SK = (n, d) calculate x = yd mod n to recover the

plaintext.

Paillier Cryptosystem

In particular, the voting scheme presented in this work is based on Paillier’s Cryptosys-
tem [Pai99] taking into consideration the optimizations made by Damgård et al. [DJN10].
Concretely, we use the encryption scheme CS which works as follows:

• Key Generation On input k as security parameter, choose an admissible RSA mod-
ulus n = pq of length k bits. The public key is n and the secret key λ is the least
common multiple of (p− 1)(q − 1).
• Encryption Given i ∈ Zns , a plaintext is represented as a non-negative integer such

that i < n and r ∈ Z∗n a random value. The ciphertext is defined as E(i, r) = (1 +n)irn

mod n2

• Decryption Given a ciphertext c = E(i, r) and d = 0 mod λ, to retrieve the message
m compute: m = d−1 (cd−1)

n
mod n.

3.1.3 Hashing

A cryptographic hash function is a function that takes a variable-size input and returns a
fixed-sized output. Ideally, the hash functions can easily compute the hash value for a given
message and it should impossible to generate a message given the hash nor to modify it
without changing the hash. It can be seen as a one way function that produces a unique
result, that means, it should be infeasible to find two different messages with the same hash.

3.1.4 Digital Signatures

The signature scheme is a method for authenticating data, this is, verifying that the data was
approved or created by a certain party (or set of parties). Public-key signature schemes are
universally verifiable. Each user can efficiently produce his/her signature on any document,
and every other user can efficiently verify that signature, and it is infeasible to produce
signatures for messages that other users did not sign.

The main idea of digital signatures is to provide assurance to the receiver that the data
received was actually sent by the sender, and it has not been modified by someone else.

The authentication process consists of two main steps: i) signing and ii) verification.

A digital signature scheme DS = (K, Sign, V F ) consists of three algorithms, as follows:
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• Key generation algorithm K that returns a pair (pk, sk) of keys

• signing algorithm Sign takes the secret key sk and a message M to return a signature

• verification algorithm VF takes a public key pk, a messageM , and a candidate signature
σ to return true or false depending on whether the signature is correct or not.

RSA

The RSA signature scheme uses the same technique as described in 3.1.2 with slight modifi-
cations. In order to sign a document, the creator first produces a hash value of the message,
then applies the signing algorithm to the hash, this returns the signature. To verify the sig-
nature, the receiver takes the signature, applies the verification algorithm on it and compares
the output with the message’s actual hash value.

The Key Generation is the same, but we replace the algorithms decrypt and encrypt by
signature and verification respectively as shown:

• Sign: On input x ∈ Zn and SK = (n, d) output y = xd mod n.

• Verify: On input y ∈ Zn and PK = (n, e) calculate x = ye mod n.

3.2 More advanced Cryptographic Protocols

In this section we describe some protocols and methods to enable parties to run protocols
securely, which includes jointly computing a function over their inputs while at the same time
keeping these inputs private, sharing a secret among different participants, and computing a
proof of knowledge of a secret.

3.2.1 Secret Sharing

Adi Shamir in [Sha79] introduced a method for distributing a secret among a group of par-
ticipants. The secret is divided into parts, giving each participant its own unique part, where
either some of the parts or all of them are needed in order to reconstruct the secret. The
essential idea of Adi Shamir’s threshold scheme is based on polynomial interpolation: First,
choose k − 1 coefficients a0 . . . ak−1 at random and let a0 be the secret to share. Then the
polynomial is build as f(x) = a0 + a1x + a2x

2 . . . ak−1x
k−1. Then every participant is given

a point (a pair consisting of input to the polynomial and the corresponding output). Given
a subset of k of these parts, it is possible to find the secret value a0.
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3.2.2 Zero Knowledge Proofs

Zero-Knowledge proofs, introduced by Goldwasser, Micali and Rackoff in 1985 [GMR85], are
proofs that assure a certain fact and yet yield nothing beyond the validity of the assertion
being proved. That is, a verifier obtaining such a proof only gains conviction in the validity
of the assertion. The notion of zero-knowledge proofs is a (multi-round) randomized protocol
for two parties, called verifier and prover, in which the prover wishes to convince the verifier
of the validity of a given assertion, whereas no prover strategy may fool the verifier to accept
false assertions.

3.2.3 Non-Interactive Zero Knowledge

This model introduced by Blum, Feldman and Micali in [BFM88] is a variant of Zero Knowl-
edge Proofs in which no interaction between the prover and the verifier is necessary. Non-
Interactive Zero Knowledge consist of three entities: a prover, a verifier, and a string. Both
verifier and prover can read the string. The interaction consist of a single message sent from
the prover to the verifier, who is then left with the final decision (whether to accept or not).

3.3 Network Security Tools

3.3.1 Transport Layer Security (TLS)

The first version of the Transport Layer Security was presented in [DA99] . It was designed
to provide communication privacy over the Internet. It allows client / server applications
to communicate in a way that is designed to prevent eavesdropping, tampering or message
forgery. This protocol uses cryptographic protocols in order to provide the following proper-
ties:

• Privacy: The data is encrypted using symmetric cryptography. The keys for the
encryption are uniquely generated for each connection and are negotiated using asym-
metric cryptography.
• Reliability: In order to assure the content of the message, all the messages are au-

thenticated providing integrity. With hash functions it is possible to detect accidental
or intentional message changes.

TLS is a high level protocol, meaning that it specifies different algorithms to do the
handshake, how to interpret the authentication certificates, the session protocol, etc. TLS
provides interoperability between different technologies and extensibility allowing the use of
new cryptographic blocks. Currently it is the standard for Internet communication, electronic
commerce and secure transactions.

In next chapter we introduce a general electronic voting design, presenting the entities,
participants and procedures which are involved in an e-voting scheme.
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Chapter 4

e-Voting Design

For the design, we formalize the entities involved in the voting protocol based on the generic
scheme presented earlier.

4.1 Entities

1. Registrars: Denoted by R = R1, R2, . . . , RnR, this is a set of nR entities responsible
for setting up the election, selecting the authorities and the electoral roll, configuring
the candidate slate X and verifying the election key generation.

2. Authorities: Denoted by T = T1, T2, . . . , TnT , this is a set of nT authorities responsi-
ble for holding the election key (each one holds be a share) to calculate the sum of the
encrypted votes (tally).

3. Voters: Denoted by V = V1, V2, . . . , VnV , this is a set of nV voters for the election
administrated by R. Each voter Vi has his own credential in order to authenticate
himself.

4. Servers: A set of servers, responsible for receiving the votes and creating the ballots,
verifying them and creating the proofs to enforce the honesty of voters. For each set
of servers, every interested party controls at least one of them, to prevent collusion.
These sets are:
(a) Encryption Servers: Denoted by E = E1, E2, . . . , EnE, a set of nE servers is re-

sponsible to receive plaintext votes and return a ballot with the respective proof
that the vote is well formed.

(b) Verification Servers: Denoted by I = I1, I2, . . . , InI , a set of nI servers is respon-
sible to verify the correctness of the proofs and the signatures.

(c) Re-encryption Servers: Denoted by S = S1, S2, . . . , SnS, a set of nS servers is
responsible to re-encrypt the ciphertext generated by one of E with the corre-
sponding proof that the vote is well formed.

(d) Re-encryption Verification Servers: Denoted by C = C1, C2, . . . , CnC , a set of nC
servers is responsible to verify the re-encryption process.
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(e) Bulletin Board: Denoted by BB = B1, B2, . . . , BnB, a set of nB servers which act
as a piece of universally accessible memory to which all players have appendive-
write access. In this memory any member of V can write data to BB but cannot
overwrite or erase the existing data. This is used to publish all the ballots cast by
voters.

4.2 Cryptographic primitives

Our e-voting platform uses two asymmetric schemes: AEA based on RSA and AEH with
homomorphic properties.

Both schemes consists in three algorithms:

• KeygenAE(k): On input k as security parameter, Keygen outputs a Secret/Public Key
pair.

• EncryptAE(pk,m): On input of the message m and the public-key PK, it outputs the
ciphertext c.

• DecryptAE(sk, c): On input of the ciphertext c and the secret-key SK, it outputs the
original message m.

We also use a symmetric encryption scheme SE to encrypt the secret key of AEA. SE
consists of two algorithms:

• EncryptSE(sk,m): Using an admissible secret key sk, convert the plaintext message m
into ciphertext c.

• DecryptSE(sk, c): Taking the secret key sk, convert the ciphertext c into the original
message m.

4.3 Setup

First, one of the registrars, say R1 ∈ R creates the election and configures the basic pa-
rameters like name of the election, description, start date, finish date and selects the size of
the encryption key. Also R1 configures the slate candidate C with L candidates. The slate
candidate contains all the questions and options. Then R1 selects the list of voters V which
can participate in the election and assign the authorities T . Finally R1 publishes the bulletin
board BB.

At the end of the Setup process, the platform creates the keys for T by invoking the Key
generation algorithm.
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4.4 Key generation

The key generation is an algorithm to create the keys involved in the election. Several keys
are used in order to ensure the ballot privacy of voters and the secure distribution of keys.
The intuition is as follows:

In order to maintain the ballot privacy, the platform creates one secret key sk for the
symmetric encryption scheme SE and two asymmetric pairs of keys: One pair (SKH , PKH)
to encrypt the preference using a homomorphic encryption scheme CSH and the other pair
(SKA, PKA) using an asymmetric encryption scheme AEA to encrypt an optional text in the
vote. In order to preserve privacy of the optional text, the key SKA is encrypted using sk
and afterwards sk is encrypted using PKH . SKH is distributed among the authorities T
using a secret sharing scheme. So, there is no way to open the optional encrypted texts until
the election is finished and all SKH shares were combined.

Formally, the algorithm performs the following steps:

1. Generate a symmetric secret key SKSE admissible for the message space of CSH.
2. Run the KeygenAE algorithm for CSA to create the key pair (SKA, PKA).
3. Run the KeygenAE algorithm for CSH to create the key pair (SKH , PKH).
4. Using SE , encrypt SKA with SKSE as secret key. CSE = EncryptSE(SKSE, SKA).
5. Using CSH encrypt SKSE with PKH as public key. CCSH = EncryptAE(PKH , SKSE).
6. Using a Secret Sharing scheme, distribute SKH among the set of authorities T . Let
S = s1, s2, . . . , snT be the shares of SKH .

7. Output (PKH , PKA, S, CSE, CCSH).

4.5 Share distribution

Each authority receives his share by email as an attachment in our implementation). If Ti

has a PGP key pair, the distribution can be completed using his public key to enforce the
privacy of the share. Otherwise, the Key generation process can be done offline, and the
shares are distributed using usb flash drives.

4.6 Vote preparation

Voting selection takes place before authenticating the voter meaning that no credential is
submitted by the voter during the vote selection process. This technique is aimed to preserve
ballot privacy. An unauthenticated voter Vi sends his preference vi to an Ek Encryption
server controlled by one of the interested parties.

Ek computes a set b of ballots, such that, bj = ((cj, zj), Signk(cj, zj)) for j = 1 to n,
where cj = EncryptAE(vi, PKH) n different encryptions of vi. zj is a zero knowledge proof
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Figure 4.1: Vote preparation

vi  C

Vi

vi

b

cj = EncryptAE(vi, PKH))

zj = Proofknowledge(cj , vi)

bj = ((cj , zj), Signk(cj , zj))

Ek

of knowledge with respect to the encrypted message cj. After the computation, Ek signs
the ballot in order to verify the authenticity of the Ek. The complete process is shown in
Figure 4.1.

4.7 Cut and Choose

The idea in the Cut-and-choose phase is that, after the voter Ek returns the set of ballots
b, Vi can verify if all encryptions were correct requesting from Ek the randomness used to
encrypt some of the bj, 1 ≤ j ≤ n in order to send it to an external verifier. This protocol
can be performed several times until Vi is convinced that the encryption is in fact correct
(with high probability).

Formally:

Vi receives the ballot set b, chooses a random u, 1 ≤ u ≤ n and sends it back to Ek all
the indices j, 1 ≤ j ≤ n | j 6= u. Ek returns each randomness rj used to compute cj and
publishes each cj on the bulletin board to avoid that those bj can be used later.

After having completed the cut-and-choose phase, Vi obtains a set of encrypted votes b,
each signed with their respective zero knowledge proof of knowledge, and the randomness rj
for bj, 1 ≤ j ≤ n | j 6= u.

21



Figure 4.2: Cut and choose
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4.8 Vote verification

Vi might start a protocol in order to verify that the ciphertext is encrypted properly and that
the vote was actually encrypted by an authentic Ek ∈ E . After having received b and rj for
bj, 1 ≤ j ≤ n | j 6= u, Vi can verify that the vote is well formed and that the encryption is in
fact his preference (w.h.p.).

First, Vi sends all bj vi and rj for 1 ≤ j ≤ n | j 6= u to Ik ∈ I. Ik first verifies if
the signature of each bj is correct using Ek’s public key. Then he checks if the vote is
well formed by encrypting the vote using the given randomness. This means Ik checks if
EncryptAE(vi, PKH)

?
= cj using rj.

Figure 4.3: Vote verification

dj
?
= true

dj  V erify(cj , zj)

IkVi

dj

(vi, bj , rj)
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4.9 Re-encryption

After the Vote verification, Vi submits at least one of the ballots bu that Vi did not request
for randomness in the Cut-and-choose phase. All these ballots must be re-encrypted in order
to preserve privacy of Vi.

Vi sends bu to Sk, who computes the re-encryption ḃu = bu ·EncryptAE(0), a zero knowledge
proof of the equality of the plaintexts zu = Proofequality(bu, b

′
u). Finally, Sk signs (ḃu, zu) and

sends it back to Vi.

Figure 4.4: Re-encryption

Vi Sk

bu

b0u

zu = Proofequality(bu, b0u)

b0u = (ḃu, zu, Signk(ḃu, zu))

ḃu = bu · EncryptAE(0)

4.10 Voting

Before casting the ballot, Vi verifies that the re-encryption phase was performed correctly. Vi

sends the ballot b′x = (ḃu, bu, zu) to Ck, and Ck verifies the signature of the ballot and that
the re-encryption is correct.

Once Vi completed the last verification process, Vi submits b′x, s.t. Ek does not reveal the
randomness. After having checked that the signature is valid, the ballot is posted to the
bulletin board BB.

The re-encryption is an important process to preserve the secrecy of the vote, otherwise
the encryption servers might know all votes since they encrypt the plaintext. Based on the
assumption that the re-encryption and encryption servers are not under the control of the
same adversary the secrecy of the ballot is preserved.
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Figure 4.5: Voting
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4.11 Complete voting process

In Figure 4.6 we present the full picture of the voting process, with all entities interacting.

Figure 4.6: Voting
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4.12 Tallying

Using the homomorphic characteristics of the encryption scheme, it is possible to compute
the sum of the all encrypted votes without decrypting them. Once the election is closed, the
authorities sum all votes and create a new encrypted value which is the sum of all votes.
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Anyone can access the bulletin board and calculate the sum by himself in order to verify that
it is the same value that the authority computed and published.

4.13 Decryption

Once the sum was computed, a subset of size t, nT/2+1 ≤ t ≤ nT of T is needed to decrypt
the tally. On our platform, each authority uploads his keys into the system and performs a
partial decryption. After all required authorities completed the partial decryption, all the
pieces are combined in order to publish the result.

4.14 Characteristics

In our remote electronic voting design we achieve some characteristics and properties desirable
for all e-voting platforms. We can ensure that the vote was counted in the final tally. Since all
ballots are public and downloadable by any user, anyone can verify that the encrypted tally is
correct and valid as well as that their vote was included, using the homomorphic properties.
The platform does not give any receipt in order to prove the content of the ballot.

We provide a mark-in option that allows the voter to write something in the ballot. In order
to do so, the text on the ballot is encrypted by using the secret key PKA of the asymmetric
encryption scheme AEA. This option has been used in Chile to vote and express a protest
or comment on something at the same time. By marking the vote, if the ballot is properly
marked (i.e., the text is not over the vote line) the vote is valid and counted. Marking the
ballot is not allowed in other countries because it can be used as a proof of coercing a voter.
In our design, all the mark-in options are removed from the ballots before performing the
sum. As soon as all SKH shares are combined, the symmetric key sk is decrypted allowing
the authorities to decrypt SKA to decrypt all marked votes. In the current implementation
we do provide privacy for the mark-in content, this could be easily added by running the
mark-in content through a mix-net.

Using digital signatures it is possible to avoid ballot injection from the voters. Any ballot
issued by anyone other than the authorities can not be inserted into the bulletin board, since
the impossibility to forge a valid digital signature of any authority. All these characteristics
imply non-repudiation, preventing any voter that cast a ballot to say that he did not.
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Chapter 5

Implementation

5.1 Concrete Instantiation

In this work, we use some cryptographic blocks as we showed in 4.2. The concrete instantia-
tion of the symmetric encryption scheme SE is an AES block cipher in CBC mode operation
with PKCS5 Padding. For the asymmetric scheme AEA we use the RSA encryption scheme
in ECB operation with PKCS1 Padding. Both schemes are very common in literature and
the details can be studied in [Dwo01].

For the asymmetric homomorphic encryption scheme SEH we use Paillier’s Cryptosystem.
[Pai99]. Also we introduce in our work the optimizations and the threshold variant presented
by Damgård et al. [DJN10]. One of the most important blocks for our work is the distribution
of the secret key in order to prevent any collusion of authorities. The intuition is to distribute
the election secret key among all authorities. A smaller subset of at least t such that t ≤ nT
of them is required in order to decrypt the tally efficiently while less than t authorities obtain
no useful information about the tally.

Paillier’s threshold version is based on Victor’s Shoup work presented in [Sho00]. Damgård’s
version is sightly similar with some differences, in particular the election of the secret key in
order to not leak any information.

The formal description of the cryptosystem is as follows:

• KeyGen First generate two primes p and q with p = 2p′+1 and q = 2q′+1 such that p′
and q′ are different than p and q respectively. Set n = pq, m = p′q′ and pick d to satisfy

d = 0 mod m and d = 1 mod n. Then define the polynomial f(X) =
k−1∑
i=0

aiX
i mod nm,

pick ai (for 0 < i < k) as random values from {0, ..., n ∗m − 1} and a0 = d. The idea
is to recover a0 with t authorities. Each authority will be si = f(i) for 1 ≤ i ≤ l. In
order to verify the decryption, a public value v, which is a generator of a cyclic group
of squares in Z∗n2 , is published. For each decryption server a key is generated vi = v∆si

mod n2, where ∆ = l!
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• Encryption Given i ∈ Zns a plaintext is represented as a non-negative integer such
that i < n and r ∈ Z∗n a random value. The ciphertext is defined as E(i, r) = (1 +n)irn

mod n2.

• Share decryption The i’th authority computes ci = c2∆si, where ∆ = l! and c is
the ciphertext. Along with the share, a zero-knowledge proof is computed such that
logc4 = logv(vi) to convince that indeed she raised c to her secret exponent si.

• Share combining After having collected k shares (with their correct proof) it is
possible to combine them by: c′ =

∏
i∈S c

2λS0,i
i mod n2, where λS0,i = ∆

∏
i′∈Si

−i′

i−i′
∈ Z.

The value of c′ will have the form c′ = c4∆2f(0) = c4∆2d = (1 + n)4∆2M mod n2, where
M is the plaintext.

In section 4.6 we mention some zero-knowledge proofs to ensure that the computation has
been done properly. Since our proofs are based on the work by Damgård et al. in [DJN10]
(some of them are taken verbatim from there) we note that the following protocols are not
zero-knowledge, but only honest verifier zero-knowledge. These protocols can be converted
into Non Interactive Zero Knowledge using the Fiat-Shamir transformation this implies that
we cannot obtain zero-knowledge, but are able to obtain security in the random oracle model
and satisfy special soundness. All the proofs for the following protocols can be found in
[DJN10].

Protocol for ns th powers. Input: n, u Private Input for P : v ∈ Z∗n, such that
u = E(0, v).

• P chooses r $← Z∗n such that u = E(0, v).

• V chooses e a random number of t-bit, and sends e to P .

• P sends z = rve mod n to V . V checks that u, a, z are relatively prime to n and that
E(0, z) = aue mod ns+1 and accepts if and only if this is the case.

Using the protocol for ns th powers it is possible to build an efficient proof that an
encryption contains one of two given values, without revealing which one it is, given M a
honest verifier simulator for the ns power protocol:

Protocol 1-out-2 ns th power. Input: n, u1, u2 Private Input for P : v1, such that
u1 = E(0, v1).

• P chooses r1 at random in Z∗n. He invokes M on input n, u2 to get a2, e2, z2. He sends
a1 = (E(0, r1), a2) to V .

• V chooses s a random number of t-bits, and sends s to P .

• P computes e1 = s− e2 mod 2t and z1 = r1v
e1
1 mod n. He then sends (e1, z1, e2, z2) to

V .

• V checks that s = e1 + e2 mod 2t, E(0, z1) = a1u
e1
1 mod ns+1, E(0, z2) = a2u

e2
2 mod

ns+1, and u1, u2, a1, a2, z1, z2 are relatively prime to n.

Protocol Multiplication-mod-ns. Input: n, g, ea, eb, ec Private Input for P : a, b, c, ra, rb, rc,
such that ab = c mod n and ea = E(a, ra), ed = E(b, rb), ec = E(c, rc).
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• P chooses random values d ∈ Zns , rd, rdb ∈ Z∗n and sends the encryptions ed =
E(d, rd), edb = E(db, rdb) to V .
• V chooses e a random number of t-bits, and sends it to P .
• P opens the encryption ee

ard mod n. Finally, P opens the encryption efb (edbe
e
c)
−1 =

E(0, rfb (rdbr
e
c)
−1modn) by sending z2 = rrb(rdbr

e
c)
−1modn.

• V verifies that the opening of encryptions in the previous step were correct, and, that
all values sent by P are relative prime to n.

For the zero-knowledge proof zj mentioned in section 4.6 we use the smaller vote size
variant proposed by Damgård et al. in [DJN10]. To compute the proof correctly, the election
must hold the following relation: L · log2(M) < 2(̇k − 1) where k is a security parameter,
L = 2l+1 is the number of candidates for some k, and M is the number of voters, which is
true in many realistic situations.

Using a proper encoding of the vote, consider a binary representation such that j =
b020 +b121 +· · ·+bl2l, Vi preference is for candidate j, each vote is defined to be an encryption
of the number M j. Clearly, the encryption is either 1 or a power of M . Using this, it is
possible to construct the algorithm for producing the desired proof (P denotes the prover).

Also, it is possible to use the Proof of knowledge of an encrypted message presented in
[BFP+01] by Baudron et al.

1. P computes encryptions e0, . . . , el of (M20)b0 , . . . , (M2l)bl for each i = 0 . . . l. P also
computes ProofP (ei/(1 + n) or ei/(1 + n))M

2i is an encryption of 0.
2. Let Fi = (M20)b0 , . . . , (M2i)bi , for i = 1 . . . l. P computes an encryption fi of Fi for

i = 1 . . . l. We set f0 = e0. Now for i = 1 . . . l, P computes:

ProofP (Plaintext corr. to fi−1, ei, fi satisfy Fi−1 · (M2i)bi = Fi mod n2) (5.1)

For more details we refer to [DJN10].

5.2 System Architecture

Our e-voting platform achieves the desired requirements using to new technologies that we
developed. In particularly our system relies on cloud computing as fundamental principle.
Cloud Computing refers to technical approaches with the term, as well as to a business
model in which core computing and software capabilities are outsourced to third companies
like Amazon EC2, Microsoft Azure and Rack-Space among others.

The availability and characteristics of cloud computing is more than a single application
hosted in a web server over a company network. It encloses multiple servers, multiple networks
and multiple technologies, accessible from anywhere using an Internet connection. Using this
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technology, companies can reduce the time in batch processing, since, nowadays, using 1000
servers for one hour costs no more than using one server for 1000 hours.

From a hardware provisioning point of view, there are four relevant aspects [ASZ+10]:

• The appearance of infinite computing resources available on demand, quick enough to
follow load surges, and eliminating the planing of provisioning.

• Elimination of up-front commitment by cloud users; all users can start with small
resources and increase it depending on their needs.

• The ability to pay for the use of computing resources on a short-term basis and to
release them as needed.

• The opportunity to raise an entire infrastructure in a few minutes without deep under-
standing of all technical details.

Cloud computing was a fundamental part of this work and it was considered in the imple-
mentation design and decisions. We trade off some usability issues with privacy properties
using realistic assumptions to relax both.

5.2.1 Setup

The Setup shown in section 4.3 describes an election initialization by the election admin-
istrator, the creation and configuration is carried out in an intuitive three-step web form
screen: First set, the election name, start and finish date, questions and options.

After setting the desired parameters, the second step is to specify the voters who are
eligible to vote. The web form requires some personal information to individualize each voter,
like name, e-mail address, ID number and an optional secret password. This information is
gathered to verify the identity of the voter. The set of all these voters is called electoral roll
or roaster.

Finally, the election administrator adds the personal information for the election author-
ities to generate all the keys. To start the Key generation algorithm described in 4.4 it
is possible to compute it online or offline depending on the desired confidence level for the
election.

• Online: All keys are generated in one server which is used only for this purpose.
The generation and distribution occurs on an external server without an administrator
intervention. All shares are send to the corresponding authorities by e-mail.

• Offline: Each administrator downloads a small piece of software to generate the keys
on their own computer. All shares are stored locally and are distributed via physical
media.

After all shares have been created and delivered, a configuration file is created and dis-
tributed to the encryption servers to create the voting form.
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5.2.2 Scale on demand

The vote selection web form is implemented as a front end of the Encryption Servers E . These
servers are exposed to the Internet and anyone can reach them. These servers render the vote
with all preferences in blank for any anonymous voter. Voters submit their preference to the
backend application using TLS and the backend will output the ballot as shown in 4.6.

Each election may be completely different from any other. This e-voting platform is
targeted to social organizations, that may show unexpected behavior. If the election is about
a national topic, it might have a high number of voters trying to access the platform. If only
a small group of people are trying to decide their Union’s next president, the interest will
probably be limited.

This application may receive various amounts of requests in a particular timeframe. The
need of servers processing the data may increase or decrease depending on the interest of
people possibly from different parts of the world. Using the Amazon’s Elastic Cloud Com-
puting (EC2) we observe the behavior of each server and add or remove resources in a fine
grain fashion (one server at a time) and with a lead time of minutes.

Real world estimates of average server utilization in data centers range from 5% to 20%
[RCPS08][Sie08] and peak workload exceeds the average by factors of 2 to 10. In order to
always be available, the provision must be at least the expected peak. Thus, resources are
idle at non peak times. It is possible to identify two scaling behaviors, that increase or
decrease the computational capacity of the application by either changing the number of
servers (horizontal scaling) or changing the size of the servers (vertical scaling).

In this work, we use horizontal scaling and increase the number of Encrypt servers de-
pending on the CPU consumption (as soon as 60% of the load is exceeded, a new instance is
activated, while getting below 40% will remove one). We also create a Network Consumption
threshold, which also scale the number of servers depending on the Bandwidth utilization.

5.2.3 High Availability

Before the rise of social networks, social groups were small and communication was personal.
Now it only takes seconds for a webpage link to be spread on social media and gain big popu-
larity. This can happen when the topic of an extremely sensitive election is currently popular,
with the result that a significant portion of users – potentially hundreds of thousands of peo-
ple – visit the webpage within a few hours, causing a Distributed Denial-of-Service (DDoS)
effect. A DDoS is an interruption or suspension of services due to the overconsumption of
resources. It can be unintentional or intentionally motivated by various reasons.

Using Netty, an optimized web server, it is possible to serve up to ∼ 40000 request per
second on a Amazon EC2 large Instance [Tec13]. For all servers, we have same system
configuration: A Netty web server is used in addition to an elastic platform to increase the
number of servers on demand due to its high performance.
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5.2.4 Fast and Reliable Bulletin Board

Every ballot that is submitted to the Bulletin Board passes through a verification process.
First it checks if the signatures are valid, then if the proof of knowledge is valid. If any of
these verifications fail, the ballot is discarded, otherwise the value is marked as valid and it
is persistently stored in a database. Storage has always been a bottle neck because the speed
of a hard disk is slower than RAM (nowadays it is an order of magnitude comparing SATA3
with DDR3).

In order to increase the bulletin board performance, we divide the bulletin board into two
pieces: ballot verification and persistent storage. Decoupling components by implementing a
fast queue as front end bulletin board removes the bottle neck and increases the throughput.

Each voter casts his ballot into this fast queue (push). An unsynchronized second process
will take (pop) the ballots one after the other from the queue, verify them and store them in
a distributed database.

The queue is reliable and stored redundantly and scalably allowing an unlimited number
of reads and writes at any time.

5.2.5 Distributed Database

As persistence storage we use a distributed database across different locations to increase
reliability. Using a distributed database in a cloud enables scaling it at the same time that
the application is scaling. If for any reason one election extensively gets more intense people’s
interest, the database will scale as does the entire application.

We implement a Multi-Zone deployment, in order to endure critical workloads with high
availability and automated fail-over from a primary database to a synchronously replicated
secondary database in the case of failure.
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Chapter 6

Trust Assumptions

Our e-voting platform relies on certain assumptions in order to create a practical electronic
voting system. Taking into consideration the specific segment which is involved in our plat-
form, these assumptions will hold in most cases.

6.1 Cloud computing provider

We trust in the cloud computing provider, we assume that they keep the uptime that they
describe in their service level agreement (SLA), and that they do not cut off the entire
election.

Also we trust that all the software running on their platform is malware-free. All the
code that we upload into the different servers assures integrity, precluding accidental and
intentional changes in the files.

If there is an adversary in the Cloud computing provider, he can view all code (binary
mainly) as well the data stored, but he cannot modify it without forging signatures.

6.2 Voting clients

Our platform is 100% online, and the voters cast the ballots using a standard internet con-
nection over TLS. In most of the cases the voter client (operating system and/or browser)
is clean. This application is very specific and changes from one election to the next. We
trust that the client is clean at least from tailor-made malware. Nevertheless there are easy
countermeasures for this: use another browser or a bootable clean operating system.

This trust assumption does not require that voters trust in one software implementation
that we provide. Voters may even choose which client to trust. In particular, if one voter
wants be completely anonymous, he can even connect using a Tor network [DMS04].
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6.3 Private channel

All voters use a private channel implemented over TLS. We trust the correctness of the
certificate verification chain and that the browser does not have any adversary behavior
accepting fake certificates as valid. An adversary can observe all network traffic, however
all traffic is encrypted and the adversary can learn nothing just from observing. We assume
that the adversary cannot modify any message without breaking the integrity.

6.4 Cryptographic assumptions

We rely on the typical cryptographic assumptions, such as RSA, decisional composite resid-
uosity, and hash functions as a random oracle.

6.5 Mutually distrustful parties

In current democracies, there are at least two parties involved in elections. These parties are
different and both are represented in each election. We assume that different parties involved
will not collude to break the ballot privacy nor act as a unique adversary. We trust that at
least one party is honest, as well as the registrars (responsible for the setup of the election).
We define three different domains with n players in each domain. The first domain is the
Encryption Servers E , the second is Verification Servers I and Re-Encryption Servers S, and
the third one is the Re-encryption servers C. In our trust assumption, we assume that only
one domain can be under total control of the adversary.

6.6 Key Generation

In our system the key generation is done in a single computer which we assume that is
uncorrupted. In practice this computer is offline and the generation process is done in a
ceremony with physically present authorities. It is possible to remove this assumption by
running a fully distributed key generation algorithm.
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Chapter 7

Evaluation

Our implementation is functional alpha-level prototype. We tested our platform in the mainly
used browsers (Internet Explorer, Chrome, Firefox and Safari) and in the most used operating
systems (Windows, OS X, Linux) at this time. We combined existing web programming
techniques and cryptographic protocols to provide an electronic voting system suitable for
cloud computing.

In our first prototype, we model our e-voting platform with one server by entity, discarding
the verification and re-encryption servers. We also discard the cut-and-choose implementa-
tion. We use the Java Virtual Machine (JVM v7) as Virtual Machine, running bytecode
generated by the Scala 2.10 compiler. The source code is mainly written in Scala, with the
exception of some libraries implemented in Java. In this version, we use a threat model in
which an attacker does not have access to any of the servers. In particular, we completely
trust the Encrypt Server, encrypting the actual voter preference and signing the ballot in
order to prevent spurious votes generated by a malicious voter.

Encryption servers were configured in the Amazon Cloud Computing platform as an array
to prevent any kind of distributed denial of service. After the key generation, each share was
distributed to the corresponding authorities using a USB flash drive.

We show the experience and results for a real case e-voting scenario. We concretely
implemented our e-voting platform for an election where Chileans - demanding their right to
vote from abroad - where able to vote for the presidential elections in Chile in a non-binding
(symbolic) election.

7.1 Context

For the occasion of the General Elections in Chile in November 2013, a campaign was launched
encouraging Chileans living abroad to stand up for their voting rights abroad. In this con-
text, the three organizations Voto Ciudadano, Fundación Democracia y Desarrollo and Inria
Chile held a symbolic and electronic presidential election where Chileans living anywhere in
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the world other than Chile were able to participate. Through this gesture, they expressed
themselves through their right to vote. The platform was open between November 10th and
November 17th 2013.

We took into consideration that every Chilean has one ID number RUN (Rol Único Na-
cional), and that all identity documents (ID card and passport) have only one serial number,
which is valid if the document is neither expired nor blocked. Using the public infrastruc-
ture of the national registry service Registro Civil and the national election service Servicio
Electoral we validate the information provided by the voters. We validate that the voter has
a valid national identity document and has the right to vote.

In order to prevent ballots casted from Chile, we filtered the voters by IP address using
a GeoIP webservice. Depending on the origin of the IP we displayed different sites. For
Chilean IPs we encouraged to the voter to go directly their polling station. For all the other
IPs we showed the voting site. Since it is possible to spoof the IP Address using a proxy or
VPN server, we constantly checked if the IPs were listed on public proxy servers and removed
these ballots from the ballot-box.

7.2 Results

In the general election, none of the candidates held more than 50% of votes, and a second
round was held on December 15th. After the success of the first initiative, a symbolic
electronic ballotage also was realized.

In the first election, the platform received 12, 418 ballots from 110 countries, receiving an
average 67 ballots per hour, having a peak of voters in the last hours. We deployed all the
servers in the Amazon Cloud Computing Infrastructure using Amazon Linux as operating
system. For each server (Encrypt server, Ballot-box and Result server) we used a different
virtual machine; each one replicated four times with automatic scaling and load balance in
case of high demand or denial-of-service attacks. The Encrypt server is the most critical server
because performing the cryptographic calculations requires a lot of CPU with a unpredictable
behavior. In our case, the CPU load was under 5% almost all the time, as well as the one of
the ballot box server1. The casting rate was 1.11 ballots per minute, which means that the
server was idle most of the time.

7.3 First Election

In table 7.1 we show the top 7 ballots received by country.

Almost all the voting advertisement was by social networks and Chilean abroad organiza-
tions. Once the election became popular, it also was published in newspapers and television.

1In practice, ballot-box is much CPU consumer than encrypter.
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Country Ballots cast
UNITED STATES 2,180
SPAIN 1,360
ARGENTINA 1,171
CANADA 779
GERMANY 770
FRANCE 769
SWEDEN 676

Table 7.1: Ballots received by countries in first election

The most active communities were in Europe, in particular in Spain, Germany, Sweden and
France.

Figure 7.1: Average number of ballots received per hour for each day that the election was
open.

In Figure 7.1 we present the ballots received per hour during all the days that the election
was open. Voters cast their ballots systematically each day. Since we received ballots from
110 countries with different timezones, the server was not loaded at any hour except at the
end. Close to the end of the election, the servers received a higher number of ballots, partly
because of the publicity inviting people to be part of this election.

It was possible to vote in the election between the 10th and the 17th of November. During
these days, 12, 486 votes were cast, of which 12424 were valid (ballots cast from a foreign IP
address, with voters using a valid identity document and enrolled to vote). In figure 7.2 we
present a compact version of the average received ballots. There was a peak of 180 ballots
by hour cast between 13:00 and 14:00 consistent with the last call to vote using a emailing
platform. The final results for each candidate are summarized in Table 7.2.

Figure 7.3 illustrate the proportion of votes for each candidate. It is possible to see that
there were not a absolute majority, but a strong tendency for one candidate. In the current
Chilean legislation, the president must achieve an absolute majority in the general election,
and since we tried to adjust the most possible to the legislation, a second non-binding election
was held with the two first majorities achieved in the general election.
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Figure 7.2: Average hourly received ballots.

Candidate Votes
MICHELLE BACHELET 4,249
MARCEL CLAUDE 1,951
MARCO ENRIQUEZ-OMINAMI 1,736
EVELYN MATTHEI 1,489
ALFREDO SFEIR 1,318
FRANCO PARISI 704
ROXANA MIRANDA 704
RICARDO ISRAEL 63
TOMAS JOCELYN-HOLT 33

Table 7.2: Election Results

In this election, the social organization Marca tu Voto started a big campaign to initiate
a constituent assembly to reform the Chilean constitution. Part of this initiative marked
their ballot with “AC” to quantify the magnitude of the support. We followed this, and
implemented an anonymous write-in option to mark the ballot. 1, 360 voters used this option
and wrote something, 1, 289 voters marked “AC”.

7.4 Second round (runoff voting)

The second round was held between the 9th and the 15th of December using the same
infrastructure and configuration. In this election, 5, 699 ballots were cast. In Table 7.3 we
show the top 7 ballots received by country.

The voter participation in the second round was less than half of the general election
(45,6%). Figures 7.4 7.5 show that on average the ballots cast were less than in the general
election. In Figure 7.4, there are two peaks of around 100 ballots by hour and one peak in
the last hours of the election achieving 250 ballots by hour. This can be explained by the
advertisement campaign using an emailing platform to send a kind reminder to voters. The
result was 4, 553 votes for Michelle Bachelet and 1, 145 votes for Evelyn Matthei.
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Figure 7.3: Election results

Country Ballots cast
UNITED STATES 974
SPAIN 633
ARGENTINA 422
FRANCE 405
CANADA 365
SWEDEN 342
GERMANY 284

Table 7.3: Ballots received by countries in second round
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Figure 7.4: Average received ballots per hour

Figure 7.5: Average hourly received ballots
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Chapter 8

Conclusion

In this work we present a remote electronic voting design, an implementation and a concrete
election using cloud computing capabilities. Although our cryptographic tools are no new,
provide a practical implementation as well as an example as to where this kind of remote
electronic voting system can be used.

We implemented a concrete electronic voting system which takes the heavy task of per-
forming cryptographic computations off the client. We rather move the encryption, decryp-
tion, proof generation and validation to an elastic cloud computing platform. This is a change
in the actual paradigm, since most of the current remote electronic voting implementations
try to encrypt on the client side. Instead of making the user the high computation, we trans-
fer the trust to well-known entities and organizations such as universities, political parties,
national services, etc. Voters can use any infrastructure based on the reputation or service
level agreement.

We explore this idea of moving all heavy computation from the client side while preserving
privacy and verifiability. The latter two important characteristics can be found in any remote
voting systems. As soon as there are several trusted parties, the probability of changing a
voter’s preference is reduced.

In our work we focus on the client experience, trying to reduce entry barriers and keep
the platform easy to use. To cast a ballot, voters use a standard web browser, using TLS
in order to create a secure channel between the server and the voter browser. The current
tendency is to move from computers with high computational power to smartphones and
portable devices. We believe that the work presented is a step into that direction.

Working with social organizations is different from small clubs or student governments.
Social organizations mainly use social networks to communicate and spread their opinions or
initiatives. This has a direct impact on the design of platforms because of the unpredictabil-
ity of people’s reactions. We can observe this in two practical experiences. A symbolic
runoff voting showed different levels of interest in the different rounds: In the first round,
12, 424 votes were cast, meanwhile in the second round, only 5, 699 were cast, using the same
advertisement campaigns and media coverage.
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An interesting analysis is that the amount of votes of the second round (5, 699) is similar
to the sum of votes of the two first round candidates Michelle Bachelet (4, 249) and Evelyn
Matthei (1, 489). An explanation for this behavior could be that the voters that did not vote
for these candidates in the first round did not transfer their votes to the candidates in the
second round, but rather did not vote at all.

This work is a step towards new applications of cloud computing, in particular with elastic
computing architecture. In the practical experiences presented, it was possible to observe
different behaviors during the elections. In particular, the last hours were the most critical
because of the high interest of people to participate. The Elastic computing alternative is
a better option than trying to estimate the whole infrastructure for an unpredictable load
peak. It helped us to achieve 100% uptime during the elections while reducing costs and
maintenance time.

We provide practical implementations of multiple cryptographic protocols and algorithms
with a strong background in to maintaining ballot privacy and correctness in one of the
most important processes in a democracy – which is voting. We hope that our platform will
generate further interest in creating participative applications.
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