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Most of the small eruptive centers of the Andean Southern Volcanic Zone are built over the Liquiñe-Ofqui Fault
Zone (LOFZ), a NS strike-slip (N1000 km length) major structure, and close to large stratovolcanoes. This contri-
bution compares textural features, compositional parameters, and pre- and syn-eruptive P,T conditions, between
basaltic lavas of the Caburgua-Huelemolle Small Eruptive Centers (CHSEC) and the 1971 basaltic andesite lava of
the Villarrica Volcano located 10 km south of the CHSEC. Olivines and clinopyroxenes occur as phenocrysts and
forming crystal clots of the studied lavas. They do not markedly show compositional differences, except for the
more scattered composition of the CHSEC clinopyroxenes. Plagioclase in CHSEC lavas mainly occur as pheno-
crysts or as microlites in a glass-free matrix. Two groups of plagioclase phenocrysts were identified in the 1971
Villarrica lava based on crystal size, disequilibrium features and zonation patterns. Most of the CHSEC samples
exhibit higher LaN/YbN and more scattered Sr–Nd values than 1971 Villarrica lava samples, which are clustered
at higher 143Nd/144Nd values. Pre-eruptive temperatures of the CHSEC-type reservoir between 1162 and
1165± 6 °C and pressures between 10.8 and 11.4± 1.7 kb consistent with a deep-seated reservoir were obtain-
ed from olivine–augite phenocrysts. Conversely, olivine–augite phenocrysts of 1971 Villarrica lava samples re-
cord pre-eruptive conditions of two stages or pauses in the magma ascent to the surface: 1208 ± 6 °C and 6.3–
8.1 kb ± 1.7 kb (deep-seated reservoir) and 1164–1175 ± 6 °C and ≤1.4 kb (shallow reservoir). At shallow res-
ervoir conditions a magma heating prior to the 1971 Villarrica eruption is recorded in plagioclase phenocrysts.
Syn-eruptive temperatures of 1081–1133 ± 6 °C and 1123–1148 ± 6 °C were obtained in CHSEC and 1971
Villarrica lava, respectively using equilibrium olivine–augite microlite pairs. The LOFZ could facilitate a direct
transport to the surface of the CHSECmagmas and explain the observed differences with the pre-eruptive condi-
tions of the 1971 Villarrica lava.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Small eruptive centers are present in different tectonic settings and
are associated with products of different compositions, although they
commonly are basaltic (Valentine and Gregg, 2008; Németh, 2010;
McGee et al., 2011). For example, the Jeju Island Quaternary intraplate
volcanic field in Korea, is composed of alkali and sub-alkali basaltic
monogenetic centers clustered on a few kilometers scale (Park et al.,
1999) that were derived from a heterogeneousmantle source and inde-
pendent reservoirs (Brenna et al., 2012). In the western Mexican trans-
eotermia de los Andes (CEGA),
y Matemáticas, Universidad de

), maparada@cec.uchile.cl
uc@ing.uchile.cl (A. Castruccio),
e.cl (L.E. McGee).
arc, the Tequila volcanic field has a bimodal composition probably
caused by the emplacement of basalts that trigger partial melting of
upper crustal rocks (Lewis-Kenedi et al., 2005). Many field of small
eruptive centers consist of aligned volcanic cones clustered along
regional structures (e.g. Connor et al., 1992, 2000; López-Escobar et al.,
1995a; Condit and Connor, 1996; Conway et al., 1998; Valentine and
Perry, 2006) and they commonly were formed by short-lived multiple
eruption phases (e.g. Houghton and Schmincke, 1989; Brand and
White, 2007).

Many attempts to explain the reasons why small eruptive centers
and polygenetic volcanism can co-exist have been focused on explana-
tions considering structural aspects and magmatic rates. For example,
crack interaction theory indicates that both high regional differential
stress and lowmagma supply rate allow the development of small vol-
cano fields because they prevent to generate crack coalescence, to from
large polygenetic volcanoes (Takada, 1994). Conversely, Cañón-Tapia
and Walker (2004) suggest that the most important controlling factor
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for the small eruptive center formation with respect to stratovolcanoes
is the degree of melt interconnection through coalescing conduits
where the magma ascends. On the other hand, Pinel and Jaupart
(2000) proposed that for a given edifice dimension there is a critical
magma density threshold over which the magma cannot reach the sur-
face. The stalled magmas could evacuate by horizontally propagating
dykes that feed small centers (Pinel and Jaupart, 2004).

Small eruptive centers of the Chilean Southern Andes are the most
primitive volcanoes of the Southern Volcanic Zone (SVZ; Hildreth and
Moorbath, 1988) and are commonly built over of the dextral strike-
slip Liquiñe-Ofqui Fault Zone (LOFZ) and close to large stratovolcanoes
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Fig. 1. a) Location of the Villarrica and Quetrupillán Stratovolcanoes and the Liquiñe Ofqui Fau
includes Villarrica, Quetrupillán and Lanín stratovolcanoes is represented by white-dashed line
with the NNE-striking faults and NE-striking tension cracks (Cembrano and Lara, 2009) associa
(Gutiérrez et al., 2005; Lara et al., 2006a; Cembrano and Lara, 2009). Re-
gional structural studies concluded that some Andean SECs are spatially
associated with NE–SW tension fractures, along which a rapid magma
ascent is facilitated (e.g. López-Escobar et al., 1995a; Lara et al., 2006a;
Cembrano and Lara, 2009). Geochemical and isotopic studies allowed
constraining the nature of the magma source (Hickey-Vargas et al.,
1989; 2002) and indicated that Andean stratovolcanoes and SECs had
similar asthenospheric sources, but different melting degrees (López-
Escobar et al., 1995a) and ascent pathways (Lara et al., 2006a,2006b).
They also concluded that differences between the Villarrica volcano
and CHSEC could be explained by independent origins from
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Table 1
Main features of CHSEC (cones of each SEC were ordened from north to south).

Eruptive
center/cone

Max. height
(m.a.s.l.)

Cone height
(m)

Cone volumea

(km3)
Alignment
(of the SEC)

Caburgua SEC N50E
Caburgua 1 680 152 0.033
Caburgua 2 751 244 0.104
Caburgua 3 980 414 0.308
Caburgua 4 755 331 0.135
Caburgua 5 490 380 –
Huelemolle SEC N15E
Huelemolle 1 560 102 0.013
Huelemolle 2 820 450 1.91
Huelemolle 3 859 489 2.076
La Barda SEC N10E
La Barda 1 678 271 0.054
La Barda 2 941 444 0.203
La Barda 3 1209 696 4.69
Relicura SEC N70E
Relicura 1 1537 98 0.002
Relicura 2 1648 287 0.011
Relicura 3 1571 263 0.005
Relicura 4 1598 290 0.005
Relicura 5 1507 176 0.003
Cordillera Cañi N45E
Cordillera Cañi 1 1302 69 0.0004
Cordillera Cañi 1 1324 91 0.0009
Other SECs
Cañi cone 1462 152 0.004
Redondo cone 1483 153 0.006
San Jorge cone 1120 150 0.004

a The procedures for volume estimation were identical to those described by Aravena
and Lahsen (2012).
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heterogeneous sources, probably associated to variable effects of slab-
derived fluids. Differences in major and trace elements and isotopic ra-
tios have been observed between San Jorge cone and the rest of the
CHSEC. However, San Jorge rocks are similar to those obtained in the
Villarrica lavas, which let to suggest a geochemical connection between
Villarrica volcano and at least one of the CHSEC (Hickey-Vargas et al.,
2002).

The present study focuses on lavas of the Caburgua-Huelemolle
Small Eruptive Centers (CHSEC) and the 1971 lava of the neighboring
Villarrica Volcano of the SVZ. The latter lavawas selected because it cor-
responds to a large and the best preserved Holocene lava of the
Villarrica Volcano. CHSEC are composed of 21 pyroclastic cones with
associated lava flows of basaltic composition that are assembled into 8
volcanic centers: Caburgua, Huelemolle, La Barda, Relicura, Cañi,
Redondo, Cordillera Cañi and San Jorge (Fig. 1). Four lavas from cones
of Caburgua, three lavas from each cone of Huelemolle, one lava sample
from the San Jorge cone and 5 samples from the 1971 Villarrica lava
were selected to study the pre-eruptive conditions from themagma res-
ervoirs up to the surface usingwhole-rock geochemistry,mineral chem-
istry, and thermobarometric tools. Particular emphasis is placed on the
existence of reservoirs at different depths in both volcanic complexes
and deciphering the plumbing system to the surface of the respective
magmas.We attempt to test the hypothesis that the Villarrica stratovol-
cano has an upper-crustal reservoir from which successive eruptions
were supplied, whereas CHSEC magma directly rises from depth along
the LOFZ.

1.1. Caburgua-Huelemolle Small Eruptive Centers (CHSEC)

CHSEC are located at the south of Caburgua Lake (Fig. 1), 10 km
north of Villarrica Volcano. Some of the small eruptive centers corre-
spond to volcanic cone clusters: Caburgua (five cones), Huelemolle
(three cones), La Barda (three cones), Relicura (five cones), and Cordil-
lera Cañi (two cones). Cañi, Redondo and San Jorge are volcanic centers
formed by a single cone (Fig. 1). Two directions of cone alignments are
recognized (Fig. 1): NNE that coincides with the dextral Liquiñe-Ofqui
Fault (LOFZ) and NE that coincides with tension cracks (duplex) of the
LOFZ (Cembrano et al., 1996; Cembrano and Lara, 2009). Themain char-
acteristics of CHSEC cones are provided in Table 1.

The CHSEC lavas are basalts (49–52 wt.%; Table 2) that contain
plagioclase, olivine and clinopyroxene pheonocrysts with glomeropor-
phiric, traquitic and intergranular textures. Most of the CHSEC lavas
are phenocryst-poor (3–10 vol.%), with the exception of the San Jorge
lava, which has phenocryst content of 13–18 vol.%. The percentage of
vesicles in CHSEC varies between 4 and 14 vol.%.

The age of the Huelemolle volcanic activity was estimated as at least
9000 years old by a 14C dating of carbonized wood collected into pyro-
clastic deposits (Moreno and Clavero, 2006; Moreno and Lara, 2008).
The ages for the other small eruptive centers are not well-constrained
but the absence of glacial erosion suggests being post-glacial Holocene.

1.2. Summary of Villarrica Volcano and its 1971 eruption

Villarrica Volcano is one of the most active volcanic centers of the
Southern Andean Volcanic Zone. Its height is 2828 m.a.s.l., with an esti-
mated volume of 250 km3 that covers an area of 400 km2. It is located at
the westernmost position of the NW–SE volcanic chain that also in-
cludes Quetrupillán and Lanín stratovolcanoes (López-Escobar et al.,
1995b; Stern et al., 2007). Villarrica Volcano, which started its activity
at least 600 ky ago (Moreno and Clavero, 2006) and has produced ba-
salts and basaltic andesite lava flows and pyroclastic deposits, which
are divided into three units (Clavero and Moreno, 2004; Moreno and
Clavero, 2006): Villarrica I (Middle to Upper Pleistocene), Villarrica II
(Holocene, between 13.9 and 3.7 ky) and Villarrica III (b3.7 ky). Unit
Villarrica III has a historical record of eruptions; some of them corre-
spond to lavas of the following eruptions: 1787, 1921, 1948, 1963,
1964, 1971 and 1984. Two major explosive events of mafic to interme-
diate composition have been significant in the Holocene development
of Villarrica Volcano: the ~13 ky Licán Ignimbrite (~10 km3, non-
Dense Rock Equivalent; Clavero and Moreno, 1994; Lohmar et al.,
2007) and the ~3.5 ky Pucón Ignimbrite (~3 km3, non-Dense Rock
Equivalent; Clavero and Moreno, 1994; Silva et al., 2004).

Currently, the volcano is characterized by a lava lake and constant
degassing and seismicity (Calder et al., 2004). The 1971 Villarrica erup-
tion generated two Aa-type lavas. The eruption began in October
with strombolian explosions and lava effusions along the Challupén
Valley (SW flank). In November, two pyroclastic cones grew inside
the crater simultaneously with lava effusion. During the night of the De-
cember 30th, the eruption reached its paroxysmal phase, with a lava
fountain N 500 m high and effusion rates ~ 500m3/s, generating two
lava flows of 6 and 16.5 km that flowed along the Pedregoso and
Challupén valleys, respectively and were emplaced in less than 48 h.
The total erupted volume is ~ 0.03 km3 (Moreno, 1993; Moreno
and Clavero, 2006 and references therein). The studied lava has pheno-
crysts (14–17 vol.%) of plagioclase, olivine and clinopyroxenes, and
vesicles that reach up to 13 vol.%. The most common textures are
glomeroporphiric, traquitic, poikilitic, ophitic and subophitic.

2. Analytical procedure

Sixteen samples from CHSEC lavas and five from the 1971 Villarrica
lava were studied for geochemical, isotopic and mineralogical analysis.
The CHSEC samples were collected from three Pahoehoe lavas of
Caburgua, three Aa lavas of Huelemolle, and one of each Aa lava of San
Jorge, La Barda, Relicura, Cañi, Redondo and Cordillera Cañi. Five sam-
pleswere collected along the 1971 Villarrica lava.Whole-rock composi-
tions were analyzed by XRF (major elements) and ICP-MS (trace
elements) at ACT-Labs using BIR-1a, DNC-1,W-2a andDNC-1 standards.
The precision was b9% 2σ and accuracy was mostly better than 3%. The
Sr and Nd isotope data were obtained for 8 samples (one sample for
each CHSEC) with a Triton multi-collector mass-spectrometer at
ACT-Labs using the standards JNd-1 (for Nd isotopes) and NBS 987



Table 2
Whole rock analyses of samples from CHSEC and the 1971 Villarrica eruption. Only Caburgua, San Jorge, and Huelemolle data were used in diagrams (Figs. 2 and 3). All available isotopic
data were used in Fig. 4.

Caburgua

Detection limit Cab1-1 Cab1-2 Cab2-1 Cab2-2 Cab3-1

SiO2 0.01 (%) 50.26 49.88 50.24 51.31 50.78
Al2O3 0.01 (%) 17.48 17.5 17.5 17.45 17.56
TiO2 0.001 (%) 1.116 1.108 1.144 1.13 1.14
FeO 0.1 (%) 6.6 5.7 7.2 5.8 7.4
Fe2O3 0.01 (%) 2.97 3.72 2.45 4.33 2.38
MnO 0.001 (%) 0.149 0.149 0.15 0.156 0.154
MgO 0.01 (%) 6.8 6.71 6.33 7.45 7.06
CaO 0.01 (%) 8.68 8.92 8.79 8.84 8.72
Na2O 0.01 (%) 3.3 3.22 3.34 3.33 3.37
K2O 0.01 (%) 0.75 0.68 0.82 0.75 0.8
P2O5 0.01 (%) 0.29 0.31 0.34 0.33 0.34
LOI −0.09 0.09 −0.34 0.03 −0.22
Rb 2 (ppm) 10 9 12 9 11
Sr 2 (ppm) 798 779 753 773 773
Zr 4 (ppm) 79 81 92 85 89
Y 2 (ppm) 17 18 17 18 18
Nb 1 (ppm) 5 5 6 4 5
Ta 0.1 (ppm) 0.2 0.2 0.2 0.5 0.5
Ba 3 (ppm) 266 263 285 270 280
U 0.1 (ppm) 0.7 0.7 0.7 0.6 0.7
Th 0.1 (ppm) 2.7 2.7 3.3 2.5 2.7
Pb 5 (ppm) 7 7 8 10 8
La 0.1 (ppm) 14.4 16.3 17.7 14.4 17.6
Ce 0.1 (ppm) 31.5 35.1 39 31.7 37.1
Pr 0.05 (ppm) 4.14 4.65 5.03 4.24 4.71
Nd 0.1 (ppm) 17.6 19.3 21 18 20
Sm 0.1 (ppm) 3.9 4.3 4.6 4 4.4
Eu 0.05 (ppm) 1.2 1.25 1.41 1.26 1.3
Gd 0.1 (ppm) 3.8 3.9 4.3 4 3.9
Tb 0.1 (ppm) 0.6 0.6 0.7 0.6 0.6
Dy 0.1 (ppm) 3.2 3.5 3.7 3.4 3.4
Ho 0.1 (ppm) 0.6 0.7 0.7 0.7 0.7
Er 0.1 (ppm) 1.8 2 2 1.9 2
Tm 0.05 (ppm) 0.26 0.28 0.29 0.26 0.29
Yb 0.1 (ppm) 1.7 1.9 1.9 1.7 1.9
Lu 0.04 (ppm) 0.28 0.32 0.31 0.28 0.33
87Sr/86Sr 0.703762 ± 4
143Nd/144Nd 0.512849 ± 2

San Jorge Huelemolle

Sanj-1 Sanj-3 Huel-1 Huel-3 Huel-4 Huel-6

SiO2 50.29 49.37 49.96 50.95 51.77 50.12
Al2O3 15.63 15.51 17.73 18.22 17.76 18.19
TiO2 0.804 0.763 1.106 1.129 1.194 1.139
FeO 6.3 7.7 7.7 6.6 7.3 6
Fe2O3 3.57 2.23 2.18 3.53 2.88 3.74
MnO 0.157 0.155 0.156 0.161 0.159 0.153
MgO 9.83 10.8 5.66 5.67 4.6 4.74
CaO 9.88 9.57 9.4 9.55 8.91 9
Na2O 2.5 2.46 3.17 3.23 3.56 3.33
K2O 0.41 0.41 0.82 0.83 0.93 0.83
P2O5 0.13 0.1 0.41 0.4 0.43 0.43
LOI −0.12 −0.44 −0.16 −0.09 −0.23 0.44
Rb 7 7 13 13 14 13
Sr 375 361 593 613 627 633
Zr 54 46 132 137 143 136
Y 14 13 21 21 21 20
Nb b1 b1 7 7 7 7
Ta b0.1 0.8 0.4 0.3 0.4 0.3
Ba 140 132 305 315 343 314
U 0.2 0.2 0.6 0.6 0.6 0.6
Th 0.7 1.1 2 2.8 2.2 2.2
Pb b5 5 9 10 10 10
La 6 6.5 22.7 23.1 23.1 22.6
Ce 13.5 14.6 48.1 49.3 49.7 47.9
Pr 1.8 2.04 5.87 6.13 6.03 5.92
Nd 8.3 8.9 24 24.9 24.5 23.6
Sm 2.1 2.2 5.1 5.2 5.2 5
Eu 0.75 0.77 1.49 1.49 1.53 1.45
Gd 2.6 2.6 4.7 4.6 4.9 4.7
Tb 0.4 0.4 0.7 0.7 0.7 0.7
Dy 2.5 2.4 4.2 4 4.1 4
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Table 2 (continued)

San Jorge Huelemolle

Sanj-1 Sanj-3 Huel-1 Huel-3 Huel-4 Huel-6

Ho 0.5 0.5 0.8 0.8 0.8 0.8
Er 1.5 1.5 2.5 2.3 2.5 2.4
Tm 0.23 0.23 0.36 0.34 0.36 0.35
Yb 1.5 1.5 2.3 2.2 2.4 2.2
Lu 0.25 0.25 0.36 0.37 0.37 0.35
87Sr/86Sr 0.703935 ± 4 0.703935 ± 4
143Nd/144Nd 0.512848 ± 2 0.512848 ± 2

Other SECs

Barda1-2 Rel1-2 Cañi-5 Red-5 Cord2-2

SiO2 50.45 51.22 50.49 50.87 49.85
Al2O3 16.82 17.55 17.32 17.24 17.28
TiO2 1.077 1.167 1.023 0.994 1.165
FeO 6.9 8.4 7.3 7.9 4.8
Fe2O3 3.09 2.61 2.61 2.01 4.72
MnO 0.154 0.163 0.148 0.153 0.152
MgO 7.59 5.79 6.65 7.35 6.42
CaO 9.07 8.46 8.45 9.07 8.19
Na2O 3.13 3.29 3.17 3.08 3.28
K2O 0.74 1.11 0.85 0.79 1.23
P2O5 0.33 0.41 0.32 0.29 0.44
LOI −0.08 −0.33 −0.18 −0.23 0.5
Rb 10 21 14 13 24
Sr 672 614 582 13 652
Zr 91 154 118 106 157
Y 18 21 18 18 21
Nb 3 6 4 4 10
Ta 0.1 0.4 0.2 0.3 0.6
Ba 260 397 305 280 440
U 0.6 0.8 0.5 0.5 0.9
Th 2.2 3.3 1.8 2 3.3
Pb 7 9 8 7 9
La 15 24.4 17.7 17.1 26.4
Ce 33 50.8 37 35.8 54.1
Pr 4.33 6.13 4.59 4.46 6.58
Nd 18.2 25.3 18.4 18.1 26.6
Sm 4 5.3 4.1 4.1 5.4
Eu 1.18 1.48 1.21 1.17 1.62
Gd 3.5 4.8 3.8 3.7 4.9
Tb 0.6 0.7 0.6 0.6 0.7
Dy 3.2 4.2 3.3 3.3 4.1
Ho 0.6 0.8 0.6 0.7 0.8
Er 1.9 2.4 1.8 1.9 2.3
Tm 0.27 0.34 0.27 0.28 0.35
Yb 1.7 2.1 1.7 1.8 2.2
Lu 0.28 0.34 0.27 0.29 0.34
87Sr/86Sr 0.703837 ± 4 0.704005 ± 4 0.703978 ± 4 0.703963 ± 4 0.703973 ± 4
143Nd/144Nd 0.512873 ± 2 0.512814 ± 2 0.512913 ± 2 0.512821 ± 2 0.512801 ± 2

1971 Villarrica lava

1971 N6 1971 10 M1 1971 09 1971 30 R1971 DV

SiO2 52.85 51.92 52.47 52.93 51.76
Al2O3 16.76 16.68 16.71 16.77 16.59
TiO2 1.105 1.117 1.113 1.132 1.13
FeO 7.2 6.6 6.7 7.1 5.5
Fe2O3 3.05 3.17 3.31 2.83 4.55
MnO 0.157 0.154 0.154 0.154 0.154
MgO 6.39 5.95 6.1 6.02 6.1
CaO 9.76 9.57 9.61 9.63 9.55
Na2O 3.06 3.01 3.06 3.08 2.98
K2O 0.64 0.64 0.65 0.65 0.63
P2O5 0.21 0.23 0.23 0.18 0.2
LOI −0.61 −0.47 −0.51 −0.55 −0.41
Rb 14 14 15 15 14
Sr 414 420 420 428 417
Zr 85 86 87 87 85
Y 22 22 22 22 21
Nb 1 1 1 2 1
Ta b0.1 b0.1 0.1 b0.1 b0.1
Ba 201 199 200 198 197
U 0.4 0.4 0.4 0.5 0.4

(continued on next page)
(continued on next page)
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Table 2 (continued)

1971 Villarrica lava

1971 N6 1971 10 M1 1971 09 1971 30 R1971 DV

Th 1.2 1.2 1.2 1.3 1.2
Pb 6 7 7 8 6
La 6.9 7.2 7.3 8 7
Ce 17.5 17.8 17.8 19.7 17.3
Pr 2.56 2.67 2.64 2.72 2.62
Nd 12 12.3 12.5 13.3 12.5
Sm 3.4 3.5 3.6 3.6 3.2
Eu 0.97 0.99 1.02 1.03 0.93
Gd 3.6 3.7 3.9 3.7 3.5
Tb 0.6 0.6 0.7 0.7 0.6
Dy 3.7 3.8 3.8 3.9 3.6
Ho 0.8 0.8 0.8 0.8 0.8
Er 2.3 2.3 2.3 2.3 2.4
Tm 0.37 0.36 0.35 0.35 0.37
Yb 2.4 2.3 2.3 2.2 2.3
Lu 0.34 0.33 0.35 0.35 0.32
87Sr/86Sr
143Nd/144Nd
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(for Sr isotopes). The mineralogical studies were carried out with a
Scanning Electron Microscope (SEM) at the University of Chile (FEI
Quanta 250) and electronmicroprobe at the School of Geosciences, Uni-
versity of Edinburgh (Cameca SX100; nine samples) and at LAMARX-
National University of Cordoba (JEOL JXA-8230; six samples). The ana-
lytical conditions for the eight CHSEC samples analyzed by the Cameca
SX100 consisted of an accelerating potential of 15 kV and electron
beam current of 4 nA for major elements and 100 nA for minor and
trace elements. Counting times for major elements were 20 s on peak
and 10 s on background. The mineral composition of the two samples
from CHSEC and four from 1971 Villarrica lava measured by the JEOL
JXA 8230 were obtained with an accelerating potential of 15 kV and
electron beam current of 20 nA (10 nA for plagioclase). Counting
times were 10 s for peak and 5 s at each background position for
major and minor elements.
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Fig. 2. a) Total alkali vs. silica (Le Bas et al., 1986) plots of CHSEC basalts and the 1971
Villarrica basaltic andesite lavas. Boundary dashed-line between alkaline and subalkaline
rocks is taken from Irvine and Baragar (1971); b) AFM diagram (Irvine and Baragar,
1971) showing calc-alkaline trend formost of the CHSEC and the 1971 Villarrica lava sam-
ples. Lavas of San Jorge cone exhibit tholeiitic affinities.
3. Geochemical and isotopic data

The analyzed CHSEC lavas are basalts (49.37–51.77%) and have
lower SiO2 contents than the 1971 Villarrica basaltic–andesite samples
(51.76–52.93%) (Fig. 2a). All the CHSEC and Villarrica samples corre-
spond to the calcalkaline series, except for San Jorge samples, which
have tholeiitic affinities (Fig. 2b). The CHSEC have Mg# values between
0.48 and 0.69, whereas 1971 Villarrica samples have Mg# values be-
tween 0.56 and 0.59. For a given MgO composition, the CHSEC basalts
have higher Al2O3, K2O and P2O5 and lower Ni, Cr, Sc, V contents than
Villarrica samples (Hickey-Vargas et al., 1989). Most CHSEC samples
have similar trace element contents (Fig. 3) and LaN/YbN (5.94–8.34).
The exceptions are the San Jorge samples, which have lower trace ele-
ment contents and LaN/YbN (2.87–3.11). Villarrica rocks display LaN/
YbN ratios between 2.06 and 2.67. All the samples display negative
Nb–Ta (with the exception of the sample SANJ-3 that only shows nega-
tiveNb anomaly), Ti and Zr anomalies and positive Pb anomaly (Fig. 3a).
CHSEC and Villarrica samples have small negative Eu anomalies
(Fig. 3b). Most CHSEC samples have DyN/YbN (cf. Davidson et al., 2013)
values between 1.07 and 1.34, similar to those values of the 1971
Villarrica lava samples (1.03 and 1.18).

Available and new data of Sr and Nd ratios of CHSEC and Villarrica
are listed in Table 3 and plotted in Fig. 4. CHSEC samples have
87Sr/86Sr ratios in the range from 0.703762 ± 4 (Caburgua) to
0.704028 (San Jorge), whereas the 87Sr/86Sr ratios of the Villarrica
samples are higher but within a narrower range from 0.70398 ± 3
(Unit Villarrica III) to 0.70410 ± 3 (Unit Villarrica I) (Hickey-Vargas
et al., 1989). 143Nd/144Nd ratios of the CHSEC samples range from
0.512801 ± 2 (C. Cañi) to 0.512913± 4 (San Jorge), the Villarrica sam-
ples range from 0.512866± 22 (Unit Villarrica I) to 0.512903± 3 (Unit
Villarrica III) (Hickey-Vargas et al., 1989). San Jorge and Cañi cones have
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similar Sr–Nd isotopic values to those of Villarrica volcano and differ
from those of the remainder CHSEC samples (Fig. 4).

4. Mineral chemistry

4.1. CHSEC plagioclases

Plagioclase phenocrysts are 0.7–2.0 mm in size and some of them
have disequilibrium features in the form of patch and sieve textures.
Plagioclase crystals of similar size also occur as clots with olivine, but
unlike phenocrysts they do not exhibit disequilibrium features.
The core compositions of plagioclase phenocrysts are fairly constant
of An73–80 (Fig. 5a) and are similar in composition to the core
Table 3
Pressure and temperatures obtained from clots of crystals, oikocryst–chadacryst and
microlites.

Eruptive
center

T (±6 °C;
Loucks, 1996)

P (±1.7 kb;
Köhler and
Brey, 1990)

Depth
(km)

Villarrica Clot of crystals 1208 6.3–8.1 19–35
Oikocryst–chadacryst 1164–1175 0–0.7 0–9.8
Microlites 1123–1148 –

CHSEC Phenocrysts
(in contact)

1162–1165 10.8–11.4 32–44

Microlites 1081–1133 –
plagioclase-forming clots. A thin rim (b40 μm) An45–65 is commonly
found in plagioclase phenocrysts as well as in plagioclase-forming
clots, but in the latter case only around crystal faces in contact with
the matrix. CHSEC lavas have glass-free matrices with abundant
microlites commonly forming part of a traquitic or intergranular
87Sr/86Sr
0.7030 0.7040

14
3 N

0.5127

SVZ
36º-41ºS

0.5128

0.70450.7035

Fig. 4. 143Nd/144Nd versus 87Sr/86Sr plots, for CHSEC and Villarrica Volcano samples. Field
of SVZ between 37 and 41°S are shown for comparison (data from López-Escobar et al.,
1995a, 1995b and references therein). Data of Villarrica and CHSEC samples obtained by
Hickey-Vargas et al. (1989) are included.
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textures. The plagioclase microlite compositions are An45–58 (Fig. 5b).
Some plagioclase microlites are hosted in plagioclase phenocryst rims
indicating that, at least a portion of those rims grew coevally with
microlites.
4.2. CHSEC mafic minerals and spinels

In CHSEC samples the olivine phenocrysts occur as isolated crystals
or forming part of crystal clots together with plagioclase and commonly
show disequilibrium features such as resorption and thin compositional
rims. The core compositions of olivine phenocrysts and olivine-forming
clots vary between Fo81 and Fo87 (Fig. 6a), and exhibit thin rims
with compositions that vary between Fo73 and Fo80. As with the
plagioclase-forming clots, olivine-forming clots show rims only around
non-armored faces. The olivine microlites occur as intergranular grains
of 40–100 μm size with compositions in the Fo59–77 range (Fig. 6b).
Clinopyroxene phenocrysts are very scarce and have compositions in
the range of Wo44–46, En45–47, and Fs7–9 (Fig. 6c). Clinopyroxene
microlites occur as small crystals of 5 and 92 μm and exhibit composi-
tions in the range of Wo8–40, En37–63, and Fs13–31 (Fig. 6d).
Chromian-spinel inclusions are abundant in olivine phenocrysts and
very scarce in plagioclase phenocrysts. They also occur as isolated crys-
tals of 5–65 μm size or forming crystal clots. The composition of
chromian-spinel inclusions are: #Cr = 25–39 and #Mg = 33–59.
Titanomagnetites (Mt35–42, Usp58–65) were found as euhedral crystals
or with skeletal features in the studied CHSEC samples except in San
Jorge samples, where hematites were found. The size of the Fe–Ti
oxide minerals vary between 5 and 30 μm.

4.3. 1971 Villarrica lava plagioclases

Themodal content of plagioclase phenocrysts represents ~12%of the
total rock volume (~60–80 vol.% of phenocrysts). Two groups of plagio-
clase phenocrysts were identified (Fig. 5c) according to crystal size and
disequilibrium features. Group 1 includes 0.4–4.1 mm long phenocrysts
with three zones (Fig. 7a): oscillatory-zoned core (An45–74) normal-
zoned intermediate zone (An38–44) and reverse-zoned rim (An74–46).
The first two zones exhibit disequilibrium features in the form of
patch and sieve textures. Group 2 (Fig. 7b) includes the smallest plagio-
clase phenocrysts (0.3–2.0 mm) that exhibit oscillatory-zoned cores of
An39–49, and thin reverse-zoned rims of An50–73. These rim
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compositions are similar to the rim compositions of the Group 1 plagio-
clase phenocrysts (Fig. 5c). Large plagioclase crystals also occur as part
of clots with olivine and scarce clinopyroxene and have compositions
and sizes (An51–73, 0.4–4.1 mm long) similar to the core of Group 1 pla-
gioclases. Microlites of 1971 Villarrica samples (b300 μm) occupy
~85 vol.% of the glass free matrix and exhibit compositions of An48–75

(Fig. 5b).

4.4. 1971 Villarrica lava mafic minerals and spinels

Themodal content of the olivine phenocryst is between 2 and 4% and
are found as isolated crystals (up to 4 mm long), forming clots (up to
4 mm long) or chadacrysts (~180 μm long). They have commonly re-
sorption features and compositional rims that do not exceed 30 μm.
The core compositions vary between Fo75 and Fo79 (Fig. 6a), and the
rim composition slightly varies between Fo65 and Fo67. The rims of
olivine-forming clots are only developed around non-armored faces.
The scarce olivine microlites (~5% of the groundmass) have sizes
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equation. Temperatures obtained for olivine–augite equilibrium (Loucks, 1996) are show
between 10 and 30 μm and compositions of Fo63–67 (Fig. 6b) similar to
the rimphenocryst composition. Clinopyroxenes of variable composition
(Wo37–40, En47–49, Fs 12–13; Fig. 6c) occur as isolated crystals
(0.6–1.5 mm) and oikocrysts within plagioclase and olivine chadacrysts.
Clinopyroxene in the matrix varies between 15 and 40 μm long with
compositions of Wo8–17, En57–65, and Fs25–31 (Fig. 6d).

Chromian-spinel are found as inclusions of 15–50 μm in olivine phe-
nocrysts and have compositions of #Cr = 53–62 and #Mg = 26–30.
Titanomagnetite crystals of 5–20 μm and compositions of (Mt33–44,
Usp56–67) were found as euhedral isolated crystals or exhibiting skeletal
features in the matrix.

5. Results and discussion

5.1. Implications of the compositional signatures of the studied lavas

All the studied samples exhibit similar arc-related geochemical sig-
natures such as calc-alkaline affinities (Fig. 2b) and negative Nb–Ta
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anomalies (Fig. 3a). The presence of a slight negative Eu-anomaly in
CHSEC and the 1971 Villarrica REE patterns suggest plagioclase as a re-
sidual phase in the studied lavas (Fig. 3b). Additionally, the wide range
of Sr–Nd isotope ratios observed in CHSEC (Fig. 4), despite the proximity
between centers, could indicate local-scale mantle source heterogene-
ities. The mantle is known to be heterogeneous beneath the SVZ
(Jacques et al., 2013); many reasons have been suggested to explain
these heterogeneities in detail related to other external factors such as
Table 4
Representative chemical analyses of minerals from CHSEC and the 1971 Villarrica eruption.

Plagioclases

HU-plph3 HU-plph5 SJ-plph3

SiO2 47.27 46.988 47.728 SiO2
Na2O 1.935 1.394 1.561 Al2O3
Al2O3 34.099 34.656 33.46 MgO
K2O 0.053 0.024 0.026 CaO
CaO 17.306 17.89 17.415 MnO
Total 100.663 100.952 100.190 FeO
XAn 90.51 77.258 92.418 Total
XAb 9.15 22.681 7.498 XFo
XOr 0.33 0.06 0.082 XFa

Pyroxenes

VI-pxph5 VI-pxph4 SJ-pxph3

SiO2 51.774 52.154 52.526
Al2O3 2.791 2.666 2.917
MgO 16.804 16.877 16.962
CaO 18.42 19.562 22.641
TiO2 0.574 0.574 0.3
Cr2O3 0.452 0.452 0.381
MnO 0.275 0.204 0.15
FeO 8.626 7.477 4.11
Fe2O3 0.076 0.15 0.961
Total 99.792 100.142 100.948
XEn 48.04 47.80 47.723
XFs 11.94 12.13 6.494
XWo 40.02 39.94 45.784

For these and other clinopyroxenes and chromian-spinel inclusions the values of Cr-spinels Fe
respectively.
the supply of terrigenous sediments (Stern, 1991, 2011; Kay et al.,
2005), altered oceanic crust and upper crustal melts (Holm et al.,
2014) transported by the slab, as well as dehydration of serpentinites
(Jacques et al., 2013). The limited range in isotopic values of Villarrica
volcano that differ from most of the CHSEC data is indicative of a ho-
mogenous mantle source despite its substantially longer history of vol-
canic activity (~600 ky). Differences in magma sources of CHSEC and
Villarrica volcano have also been suggested by Hickey-Vargas et al.
Olivines

VI-olph5 VI-olph4 HU-olph10 HU-olph9

38.864 38.664 38.794 39.526
0.045 0.003 0.006 0.003

39.779 39.709 40.767 43.571
0.236 0.259 0.208 0.159
0.445 0.399 0.026 0.026

21.175 21.892 20.835 17.897
100.544 100.926 100.636 101.182
77 76 78 81
23 23 22 19

Chromian-spinels

CA-opin1 HU-opin1 VI-opin1

Al2O3 27.616 26.98 12.319
MgO 12.833 12.11 7.882
CaO 0.007 0 0
TiO2 0.875 0.21 0.534
Cr2O3 27.605 25.4 33.47
FeO 12.02 35.28 12.83
Fe2O3 18.64 0 32.37
NiO 0.27 0.2 0.087
Total 99.866 100.18 99.49
#Mg 57.44 37.96 27.34
#Cr 33.4 38.71 61.66

2+ and Fe3+ were obtained following Putirka's (2008) and Droop's (1987) propositions,
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(1989), however the cause of the observed isotopic similarities between
Villarrica volcano and Cañi and San Jorge centers (Fig. 4) are still
unknown.

5.2. Reservoirs at the mantle–crust boundary

5.2.1 . P,T conditions
The olivine–augite geothermometer (Loucks, 1996) and olivine–

clinopyroxene geothermobarometer (Köhler and Brey, 1990) were
used in the same olivine–clinopyroxene pairs (isolated phenocrysts or
in crystal clots) of CHSEC and 1971 Villarrica lava (Table 3). The equilib-
rium conditions between olivine and augite pairs were tested using
Grove et al. (1997) equations (Fig. 8) to determine if both minerals
are in equilibrium with the same melt composition in terms of Fe/Mg
values. Olivine–augite pairs of two CHSEC samples (CAB1-1 and SANJ-
1) and two 1971 Villarrica lava samples (1971 10M1 and 1971 N6) sat-
isfied the mentioned equilibrium conditions with melts with Fe/Mg
values of 0.5–0.6 (CHSEC) and 1–1.1 (Villarrica). These values are sub-
stantially different from those of the hosting sample composition, thus
an antecrystic origin is inferred for these olivine and augite crystals.
Equilibrium temperatures of ~1163 °C (1162–1165 °C ± 6 °C; Table 3;
Fig. 8a) and pressures between 10.8 and 11.4 ± 1.7 kb (i.e. lower
crust–upper mantle conditions) were obtained for the CHSEC olivine–
augite antecryst pairs (Table 3). This wide pressure range includes the
estimated pressure of ~10 kb (~35–40 km) for the mantle–crust bound-
ary beneath the Andes at this latitude according to different techniques
such as gravimetry (Folguera et al., 2007), earthquake traveltime tomog-
raphy (Haberland et al., 2006), nearby receiver function profile (Dzierma
et al., 2012a), and location of seismic clusters (Dzierma et al., 2012b). Al-
though lower crust and upper mantle reservoirs cannot be ruled out, we
favor a reservoir at the mantle–crust boundary because it constitutes a
rheological barrier that facilitates mantle-derived magma storage
(Hildreth and Moorbath, 1988). The absence in the CHSEC samples of
thermobarometric evidence of shallow reservoirs or pauses during the
magma ascent to the surface is consistent with a single-reservoir
magma system. For the 1971 Villarrica lava temperatures of 1208 ±
6 °C (Fig. 8b) and pressure of 6.3–8.1 ± 1.7 kb were obtained from oliv-
ine–augite phenocrysts thermometry and barometry (Fig. 9c; Table 3).
As with CHSEC, we favor the highest pressures for the Villarrica volcano
deep reservoir (Fig. 10).

5.3. Shallow reservoir of the 1971 Villarrica lava

Conditions of a shallow magma reservoir for Villarrica volcano have
been provided by Lohmar et al., (2012) from a study of the ~13 ky Licán
Ignimbrite (pressures of b0.67 kb and T of ~900 and ~1100 °C as a con-
sequence of heating). Shallow reservoir conditions of the 1971 Villarrica
lava were also identified using the olivine–augite thermobarometry
(sample 1971 10 M1): pressures up to 2.4 kb and associated tempera-
tures of ~1170 °C (1164–1175 °C± 6 °C; Table 3; Fig. 8)were calculated
in olivine–augite pairs of a single clot (Fig. 9b; Table 4).

Additionally, the shallow reservoir conditions (P, T, fO2 and H2O
content) were calculated using MELTS (Ghiorso and Sack, 1995;
Asimow and Ghiorso, 1998) by reproducing the compositions of
Group 2 plagioclase cores (An39–49) and plagioclase phenocryst rims
(An74). The Group 2 plagioclase core compositions were obtained
under equilibrium at b0.8 kb, temperatures of 915–970 °C, dissolved
H2O content of 1–3.1 wt.% and NNO oxygen fugacities. Plagioclase
rim compositions were also reproduced under equilibrium at similar
pressures (b0.9 kb) and oxygen fugacities (NNO), but at higher tem-
peratures (1120–1180 °C) and lower dissolved H2O content (0.3–
1.2 wt.%) than Group 2 plagioclase cores. By considering the plagio-
clase phenocryst rims as representative of the late stage of plagioclase
formation at the shallow reservoir, these differences would indicate a
heating and subsequent magma degassing prior to the eruption.
Changes in pressure and water content associated with heating were
also calculated by iteration of the empirical model equation for the sol-
ubility of water in basaltic melts (Moore et al., 1998) and the
plagioclase-liquid hygrometer calibrated by Lange et al. (2009) (de-
tails in Appendix I). Using the same parameters (melt and plagioclase
compositions), temperatures of 970 and 1180 °C were used for Group
2 plagioclase core compositions and plagioclase phenocryst rim com-
positions, respectively. The plagioclase anorthitic rim can only be
reproduced as a consequence of temperature increase; it could not
be reproduced using MELTS considering changes in P conditions and
H2O content.
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The heating of the shallow reservoir at a calculated depth equivalent
to 1.4–0.2 kb could be associated with H2O exsolution of 1.7–0.2 wt.%
(Fig. A1). We therefore speculate that heating by new hotter magma
could generate volatile exsolution that triggered the 1971 eruption. A
Villarrica

Villarrica
Deep reservoir

19-35 km
~1,208 ºC

Villarrica
Shallow reservoir

0-5.3 km

Hotter magma

a)

b) c

Fig. 11. a) Schematic representation of the main characteristics of the CHSEC and Villarrica res
boundary, but unlike the Villarrica volcano, CHSEC do not have a shallow reservoir probably by
low reservoir during the arrival of hotter magma. c) Ascending plumes of heated magma in th
similar triggeringmechanism has been invoked for the Licán Ignimbrite
eruption in the Villarrica volcano, where the calculated time-scale for
the reservoir temperature homogenization after the arrival of 200 °C
hotter magma from below, is about few decades (Lohmar et al., 2012).
CHSEC

LOFZ

CHSEC
Deep reservoirs

32-44 km
~1,163 ºC

0 km

38 km

Mantle-crust boundary

Ascending plume

)

ervoirs. Both studied volcanic complexes would have deep reservoirs at the mantle–crust
role of the LOFZ as an efficient conduit for the ascendingmagma. b) Villarrica volcano shal-
e shallow reservoir prior to eruption of 1971 lava.
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5.4. Syn-eruptive conditions

We estimate syn-eruptive temperatures using equilibrium olivine–
augite (Loucks, 1996) microlite pairs of four samples (Fig. 8) from
both CHSEC (CAB1-1; CAB 1-2) and 1971 Villarrica lavas (1971 N6;
1971 10 M1). The calculated CHSEC temperature values are between
1081 and 1133 ± 6 °C (Fig. 8a), whereas olivine–augite microlite pairs
of 1971 Villarrica lava gave values between 1123 and 1148 ± 6 °C
(Fig. 8b).

Additionally, we reproduce by MELTS the temperature of the plagio-
clase microlite crystallization considering the microlite composition of
the more abundant sizes: 30–60 μm (An59–60) and 60–100 μm (An64–66)
for CHSEC and 1971 Villarrica lava, respectively. The calculated CHSEC
syn-eruptive temperatures are between 1130 and 1137 °C at crystal
content between 45 and 52 vol.%. For the 1971 Villarrica eruption the
calculated temperatures are between 1150 and 1160 °C at crystal content
between 23 and 35 vol.%. It is interesting to note that the 1971Villarrica
lava plagioclase microlites crystallized at slightly lower temperatures
than those of plagioclase phenocryst rims (1180 °C) but higher than
the 970 °C of the Group 2 plagioclase core crystallization, consistent
with the mentioned heating as a triggering mechanism of the eruption.
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Fig. A1. Numerical solution to determine variations of pressure conditions and H2O con-
centration of the shallow reservoir associated with heating. A maximum pressure of
1.4 kb for the shallow reservoir and an exsolution between 1.2 and 0.2 wt.% after 210 °C
heating were calculated. Decompression of up to 1.4 kb was calculated for this heating
event. Red lines represent Lange's et al. (2009) equation and blue lines represent Moore's
et al. (1998) equation. The uncertainties of each equation (Moore's et al., 1998 and Lange's
et al., 2009) are shown as corresponding fields.
Despite the high crystallinity calculated for the selected CHSEC lava, the
effective consistencies determined from the modified Einstein-Roscoe
equation (Castruccio et al., 2010) are between 4 and 16 kPa s, which are
adequate for a basaltic lava to flow (e.g. 1984 Mauna Loa eruption;
Lipman and Banks, 1987).

6. Conclusions

The Caburgua-Huelemolle Small Eruptive Centers (CHSEC) and
Villarrica Volcano are an example of coexistence of small eruptive cen-
ters and stratovolcanoes, a feature very common in the Southern Volca-
nic Zone. There are similarities between the CHSEC and 1971 Villarrica
lavas. In both cases the lavas were fed from deep reservoirs with tem-
perature and pressure conditions coincident with the depth of man-
tle–crust boundary. However, there are significant differences with
respect to pre-eruptive upper crustal magma history. CHSEC magmas
would have migrated directly to the surface from the deep reservoir,
whereas the 1971 Villarrica lavawould have had amore complex histo-
ry consistent with higher rates of magma supply (relative low rates
would be associated with monogenetic volcanism; Takada, 1994) and
with an intermediate reservoir at shallow depth that underwent a
heating episode prior to eruption Fig. 11.

The active LOFZ that controls the distribution of CHSEC could facili-
tate a direct transport to the surface of their magmas ponded at the
base of the crust, whereas the Villarrica Volcano is built over an inactive
NW–SE basement fault (Moreno and Clavero, 2006). This tectonic situ-
ation, together with the overburden exerted by the Villarrica Volcano
edifice, would have hindered the magma ascent (see Pinel and
Jaupart, 2000) and facilitated the shallow reservoir construction.
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Appendix I

We calculated the magma H2O solubility and pressure conditions of
the 1971 Villarrica shallow reservoir from a melt composition equiva-
lent to the R1971 DV sample (Table 2) through an iterative combination
of the following expressions provided by Moore's et al. (1998) and
Lange et al. (2009):

Moore's et al. (1998) expression:

2lnmeltXH2O ¼ a
T
þ
X

biXi
P
T
þ c lnfluid f H2O þ d ðA1Þ

where meltXH2O is the mole fraction of H2O dissolved in the melt, T is
temperature (Kelvin), P is pressure (bar), Xi is the anhydrousmole frac-
tion ofmelt components, and a, b, c and d are the regression coefficients.

Lange's et al., (2009) expression:

meltXH2O ¼ m0xþ a0 þ b0

T
þ
X

d0iXi ðA2Þ

where x is a variable state dependent on enthalpy, entropy, volume,
pressure, temperature and melt and crystallizing plagioclases composi-
tions; m′, a′, b′ and d ′ i are regression coefficients of calibration.
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This approach assumes core/rim Group 2 plagioclase phenocrysts
composition (An49/An74) and temperatures of crystallization of 970/
1180 °C (respectively). A temperature increase of ~200 °C was recog-
nized as the trigger of the eruption of the 13 ky Licán Ignimbrite
(Lohmar et al., 2012). The resulting pressures were between 1.4 and
0.15 kb previous to this heating event (for core plagioclases crystalliza-
tion), whereas after heating the pressure was up to 0.67 kb (for rim pla-
gioclases crystallization). The calculatedH2O content of themelt prior to
heating is between 2 and 1.2 wt.% (for plagioclase core crystallization),
whereas after the heating is between 1 and 0.3% (for plagioclase rim
crystallization). Therefore, the heating is associated with water exsolu-
tion (from0.2 to 1.7wt.%) and could be related to a decompression of up
to 1.4 kb (equivalent to ~5.3 km), probably as a consequence of the as-
cent of magma or the opening of the magmatic system at the beginning
of the eruption.

Appendix II. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.jvolgeores.2015.09.023.
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