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Flat bands and PT symmetry in quasi-one-dimensional lattices
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We examine the effect of addingPT -symmetric gain and loss terms to quasi-one-dimensional lattices (ribbons)
that possess flat bands. We focus on three representative cases: the Lieb ribbon, the kagome ribbon, and the stub
ribbon. In general, we find that the effect on the flat band depends strongly on the geometrical details of the
lattice being examined. One interesting result that emerges from an analytical calculation of the band structure
of the Lieb ribbon including gain and loss is that its flat band survives the addition of PT symmetry for any
amount of gain and loss and also survives the presence of anisotropic couplings. For the other two lattices, any
presence of gain and loss destroys their flat bands. For all three ribbons, there are finite stability windows whose
size decreases with the strength of the gain and loss parameter. For the Lieb and kagome cases, the size of this
window converges to a finite value. The existence of finite stability windows plus the constancy of the Lieb flat
band are in marked contrast to the behavior of a pure one-dimensional lattice.
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I. INTRODUCTION

The concept of parity-time (PT ) symmetry has gained
considerable attention in recent years. It started with the
seminal work of Bender et al. [1,2], who demonstrated
that non-Hermitian Hamiltonians are capable of displaying
a purely real eigenvalue spectrum when the system is invariant
with respect to the combined operations of parity and time-
reversal symmetry. When applied to one-dimensional systems,
the PT symmetry requires that the imaginary part of the
potential term in the Hamiltonian be an odd function and its
real part be even. In aPT -symmetric system, the effects of loss
and gain can balance each other and as a result give rise to a
bounded dynamics. The system thus described can experience
a spontaneous symmetry breaking from a PT -symmetric
phase (all eigenvalues real) to a broken phase (at least two
complex eigenvalues) as the imaginary part of the potential is
increased.

In the case of optics, the paraxial wave equation is formally
identical to a Schrödinger equation and as a consequence the
potential is proportional to the index of refraction. In this
context, the PT -symmetry requirements translates into the
condition that the real part of the refractive index be an even
function and the imaginary part be an odd function in space.

To date, numerous PT -symmetric systems have been
explored in several fields, including optics [3–8], electronic
circuits [9], solid-state and atomic physics [10,11], and
magnetic metamaterials [12]. The PT -symmetry-breaking
phenomenon has also been observed in several experiments
[6,7,13,14]. It has been shown that a one-dimensional simple
periodic lattice with homogeneous couplings and endowed
with gain and loss obeying PT symmetry is always in the
broken phase of this symmetry and does not have a stable
parameter window [15]. However, for finite PT -symmetrical
lattices with homogeneous couplings, it has been shown that
PT symmetry is preserved inside a parameter window whose
size shrinks with the number of lattice sites [16]. Considering
an infinite binary lattice, if one breaks the homogeneity of the
couplings, it was shown that there is a well-defined parameter
window where PT symmetry is preserved [17].

On the other hand, Hermitian systems that exhibit flat
bands have attracted considerable interest, including optical
[18,19] and photonic lattices [20–22], graphene [23,24],
superconductors [25–28], fractional quantum Hall systems
[29–31], and exciton-polariton condensates [32,33]. The pres-
ence of a flat band in the spectrum of a Hermitian lattice
implies the existence of a set of entirely degenerate states
whose superposition displays no dynamical evolution. This
allows the formation of compactonlike structures that are
completely localized in space, constituting a different form
of localized state in the continuum. Such states have been
recently observed experimentally in an optical waveguide
array forming a Lieb lattice in the transversal direction [21,22].
This raises the possibility that a judicious superposition of
these compactonlike states can be used to generate a whole
set of diffraction-free modes that can carry information for
long distances in an optical waveguide array. It becomes
interesting then to examine the robustness of these localized
modes under the presence of balanced loss and gain, obeying
PT symmetry. The simplest optical lattice that is not strictly
one dimensional and where one can have PT symmetry is a
quasi-one-dimensional one with homogeneous couplings, i.e.,
a ribbon [34].

In this work we study analytically and numerically the
spectrum and localization properties of three quasi-one-
dimensional optical lattices with flat bands (Lieb, kagome,
and stub) and how their spectra are affected by the presence
of gain and loss terms that are PT symmetric. As we will see,
the effect depends strongly on the particulars of the topology
of the ribbon being studied. While in the case of the stub and
kagome ribbons the presence of gain and loss destroys the flat
bands, in the case of the Lieb ribbon we show analytically
that its flat band remains unaltered no matter how large the
strength of the gain and loss terms is. It even survives the case
with anisotropic couplings.

II. MODEL

Let us consider a quasi-one-dimensional lattice (ribbon)
representing, for example, a cross section of an optical
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FIG. 1. (a) Lieb, (b) kagome, and (c) stub ribbons, with homo-

geneous coupling and in the absence of PT symmetry. They have
infinite extension along the horizontal direction.

waveguide array (see Fig. 1). In this context and in the
coupled-mode framework, the evolution of the electric field
on guide n is given by [35]

i
d

dz
Cn(z) + iρn + V

∑
m

Cm(z) = 0, (1)

where Cn(z) is proportional to the amplitude of the electric
field at site n, z is the propagation coordinate, ρn is the
gain and loss coefficient on site n, V is the coupling among
waveguides, and the sum in Eq. (1) is restricted to nearest
neighbors only. Stationary modes are obtained from the ansatz
Cn(z) = Cn exp(iλz), where the Cn amplitudes obey

−λCn + iρn + V
∑

m

Cm = 0, (2)

where λ is the propagation constant of the mode. Figure
1 shows three examples of ribbons that will be considered
in this work. The presence of ρn leads, in general, to an
exponential increase or decrease of the amplitude Cn as
the mode evolves in time z. However, as mentioned in the
Introduction, there are special cases where the gain and loss
terms can be balanced so that the dynamics remain bounded.
Such is the case of a PT -symmetric configuration where the
value of ρn is an odd function in space. The gain and loss
terms of the three ribbons shown in Fig. 1 can be set up to
obey this condition. What we want to know is the effect of
adding PT symmetry to those ribbons that originally possess
flat bands. To accomplish this, we examine the spectra of
these ribbons as well as the average participation ratio of the
states 〈P 〉 = 〈(∑n |Cn|2)2/

∑
n |Cn|4〉, where the average is

over all states, for a given ρn distribution. Here 〈P 〉 provides
a rough measure of localization tendency. For a completely
localized state 〈P 〉 = 1, while for a completely delocalized
state 〈P 〉 = N .

A. Lieb ribbon

The Lieb ribbon is shown in Fig. 1(a). It consists essentially
of a depleted square lattice ribbon. Its unitary cell contains five
units. In the absence of gain and loss (ρn = 0), one obtains five

(a)

(b)

(c)

(d)

FIG. 2. Ribbons with PT symmetry: (a) PT -symmetric Lieb
ribbon, (b) PT -symmetric kagome ribbon, (c) PT -symmetric stub
ribbon, and (d) topologically equivalent PT -symmetric stub ribbon.
Black (white) circles denote loss (gain), while the gray circles
represent the absence of gain and loss.

bands

λ = 0,

λ = ±
√

2[1 + cos(2k)]V,

λ = ±
√

4 + 2 cos(2k)V.

(3)

Thus, out of the five bands, we have the flat band λ = 0. The
modes belonging to this band have zero group velocity, which
leads to a sharp transverse localization. These compacton-
like modes are able to propagate along the guide without
diffraction. The reason for this localization is a geometric
phase cancellation among nearby sites. Some examples of
such modes can be found in Ref. [36]. The addition of a small
amount of PT symmetry in a perturbative manner has been
examined in Ref. [37].

Here, however, we incorporate an arbitrary amount of PT -
symmetric gain and loss into the system. There are several
ways to achieve this and we take the simplest one, depicted
in Fig. 2(a). For this configuration the five coupled equations
incorporating PT symmetry lead to the five complex bands

λ = 0,

λ = ±
√

2(1 + cos(2k))V 2 − ρ2, (4)

λ = ±
√

(4 + 2 cos(2k))V 2 − ρ2.

As we can see, the flat band λ = 0 still remains and is therefore
unaltered by the presence of PT -symmetric gain and loss
terms. Two of the other four (dispersive) bands are real for 0 <

ρ <
√

2, while the other two contain imaginary eigenvalues
for any ρ value. Thus, as soon as ρ is different from zero, the
whole system is in the broken-PT -symmetry phase.

The flat band also survives the addition of anisotropic
couplings: If we denote by Vx (Vy) the coupling in the
horizontal (vertical) direction, then the five bands will be given
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FIG. 3. Lieb ribbon. (a) Fraction of stable modes Im[λ] = 0
as a function of the gain and loss parameter. (b) Average of the
participation ration over all stable states, as a function of the gain and
loss parameter. The total number of sites N = 543.

by

λ = 0,

λ = ±
√

2(1 + cos(2k))V 2
x − ρ2, (5)

λ = ±
√

2
(
V 2

x + V 2
y

) + 2V 2
x cos(2k) − ρ2

and the flat band λ = 0 is still there.
Let us now concentrate on the fraction of stable states (i.e.,

Im[λ] = 0), that is, the fraction with purely real eigenvalues.
We can anticipate that, as the gain and loss parameter ρ is
increased, this fraction will decrease and at large ρ values will
approach a constant value stemming from the flat band states
(which are stable). They constitute 1/5 of the total number of
states. Thus the stable fraction should approach asymptotically
a value of 0.2. Figure 3 shows the stable fraction and the
average (over stable states) of the participation ratio 〈P 〉 as a
function of the gain and loss parameter. While at small values
of ρ the 〈P 〉 stays nearly constant, it begins to decay rapidly
past ρ ∼ 2V accompanied by large oscillations. The steady
decrease of 〈P 〉 with ρ indicates an overall tendency towards
localization as the gain and loss parameter is increased.

B. Kagome ribbon

The kagome ribbon is shown in Fig. 1(b). This geometry has
been used in the past in studies of magnetization in frustrated
quantum lattices [38]. This ribbon has five sites in its unit
cell, which implies five bands. In the absence of gain and loss

a

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Ρ

St
ab
le
Fr
ac
tio
n

b

0 2 4 6 8 10 12
40

60

80

100

120

140

Ρ

Pa
rti
ci
pa
tio
n
R
at
io

FIG. 4. Kagome ribbon. (a) Fraction of stable modes Im[λ] = 0
as a function of the gain and loss parameter. (b) Average of the
participation ratio over all stable states, as a function of the gain and
loss parameter. The total number of sites N = 275.

(ρn = 0) they are given by

λ = −2V,

λ = ±
√

2[1 + cos(2k)]V, (6)

λ = [1 ±
√

3 + 2 cos(2k)]V.

Thus, we have the flat band λ = −2V . When gain and loss are
added, it is no longer possible to extract the bands in closed
form as we did for the Lieb lattice. A numerical examination
of all eigenvalues reveals that as soon as ρn differs from zero,
the flat band is lost and also complex eigenvalues appear, that
is, the system enters the broken-PT -symmetry phase. The
fraction of stable states, that is, those states with Im[λ] = 0,
and their participation ratios 〈P 〉 as a function of the gain and
loss parameter ρ are shown in Fig. 4. The general tendency of
Figs. 3 and 4 is the same. In both cases the stable fraction and
the participation ratio decrease with ρ. Since in this case we no
longer have a flat band, the asymptotic fraction of stable states
is only due to the presence of a finite percentage of states with
Im[λ] = 0.

C. Stub ribbon

The stub ribbon is shown in Fig. 1(c). Its geometry has been
used in the past in studies on boson and fermion dynamics [19].
Its unitary cell has three sites. In the absence of gain and loss,
this leads to three real bands

λ = 0, λ = ±
√

3 + 2 cos(2k)V, (7)

where, as in the Lieb case, we have a flat band at λ = 0. A
simple PT -symmetric configuration for this lattice is shown
in Fig. 2(c). It is topologically equivalent to the one shown

063813-3



MARIO I. MOLINA PHYSICAL REVIEW A 92, 063813 (2015)

a

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

Ρ

St
ab
le
Fr
ac
tio
n

b

0 1 2 3 4 5 6
0
10
20
30
40
50
60
70

Ρ

Pa
rti
ci
pa
tio
n
R
at
io

FIG. 5. Stub ribbon: (a) Fraction of stable modes Im[λ] = 0
as a function of the gain and loss parameter. (b) Average of the
participation ratio over all stable states, as a function of the gain and
loss parameter. The total number of sites N = 203.

in Fig. 2(d). As we can see, roughly speaking, the lattice
has been split into two halves and a closed-form calculation
of the eigenvalues from Eq. (2) is not possible. Numerical
examination of all eigenvalues for varying ribbon lengths
reveals that the flat band disappears as soon as ρ is different
from zero and complex eigenvalues appear, causing the system
to enter the broken-PT -symmetry phase.

The stable fraction [shown in Fig. 5(a)] has an interesting
behavior: It remains constant until a first critical ρ value is
reached. Then it drops with an increase in ρ reaching the
value 1/N , where N is the total number of sites, at a second
critical value. There the system undergoes a spontaneous PT -
symmetry breaking and the eigenvalues are no longer purely
real (in the limit of an infinite ribbon N → ∞). On the other
hand, the participation ratio [shown in Fig. 5(b)] 〈P 〉 remains
more or less constant with an increase in ρ, until reaching
the second critical ρ value mentioned before, where it drops
abruptly, converging to unity at large gain and loss values. In
this case we see an abrupt transition of the stable modes from
relatively extended (on average) to highly localized.

III. CONCLUSION

In this work we have examined the spectral properties of
several quasi-one-dimensional optical lattices (Lieb, kagome,
and stub) that, in the absence of gain and loss, feature a
flat band. We have incorporated PT -symmetric gain and loss
terms and examined the changes in their spectra. The results
show that while there are common trends for all of them, there
are also features that are present only in each case. Perhaps
the most interesting analytical result is that a Lieb ribbon
maintains its flat band, regardless of the strength of the gain
and loss term and the presence of anisotropic couplings. This
is quite surprising since usually the addition of PT -symmetry
leads to a stability window that shrinks with the strength of
gain and loss. However, for the Lieb lattice, the system not
only remains stable, but keeps its original flat band for any
PT -symmetric gain and loss amount. A common feature for
the three cases is the presence of a finite stable fraction (in the
infinite ribbon length) that decreases with the increase in gain
and loss. While for the Lieb and kagome ribbons this fraction
remain finite at large values of gain and loss, for the stub
lattice it vanishes at a certain ρ value and the system enters the
broken-PT -symmetry regime. The average participation value
of all ribbons also decreases with an increase in gain and loss,
reaching a finite value at high-ρ values. For the stub lattice in
particular, the 〈P 〉 approaches unity. Now, this 〈P 〉 is a rough
estimate and only measures the general tendency towards
localization. As the gain and loss parameter ρ increases, the
stationary wave function seems to concentrate more and more
power (

∑
n |Cn|2) at certain sites causing the decrease in 〈P 〉.

As long as this power concentration is finite, the system will
be dynamically stable.

We conclude that the spectral properties of a given
ribbon depend on its geometry and that the addition of PT
symmetry to a ribbon possessing a flat band will result in
most cases in a complete destruction of its flat band. An
exception to this behavior is the Lieb ribbon, where its flat
band shows a remarkable robustness to PT symmetry. This
feature isolates the Lieb ribbon as a possible candidate for a
stable long-distance image transmission system. Its quasi-one-
dimensional geometry makes its fabrication possible by means
of the laser-written waveguide technique [39].
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