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Abstract This paper studies stability properties of linear optimization problems with
finitely many variables and an arbitrary number of constraints, when only left hand side
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coefficients can be perturbed. The coefficients of the constraints are assumed to be con-
tinuous functions with respect to an index which ranges on certain compact Hausdorff
topological space, and these properties are preserved by the admissible perturbations. More
in detail, the paper analyzes the continuity properties of the feasible set, the optimal set
and the optimal value, as well as the preservation of desirable properties (boundedness,
uniqueness) of the feasible and of the optimal sets, under sufficiently small perturbations.

Keywords Stability · Linear optimization · Semi-infinite optimization

Mathematics Subject Classifications (2010) Primary: 49K40 · 90C34; Secondary:
15A39 · 90C05

1 Introduction

Let T be a compact Hausdorff topological space (a particular instance being a finite set
equipped with the discrete topology), b ∈ C (T ,R) and c ∈ R

n\ {0n}. We consider the
parametric problem

P (a) : inf c′x
s.t. a′

t x ≥ bt , t ∈ T .

To this family of problems, depending on the parameter a = {at }t∈T ranging on C (T ,Rn) ,

equipped with the supremum norm ‖·‖∞ , we attach the following sets/values:

1. The feasible set F (a) , i.e. the set of all x ∈ R
n such that a′

t x ≥ bt , t ∈ T ;
2. The optimal set S (a) , i.e. the set of all x ∈ R

n minimizing c′x on F (a) ;
3. The optimal value v (a) for all a ∈ C (T ,Rn) , with v (a) = +∞ whenever F (a) = ∅,

and v (a) = −∞ if c′x is unbounded below on F (a) .

Thus, F ,S : C (T ,Rn) ⇒ R
n are set-valued mappings whose domains, denoted by

domF and domS , are the sets of those a ∈ C (T ,Rn) such that F(a) and S(a) are
nonempty, respectively. The domain of the ordinary mapping v : C (T ,Rn) → R∪ {±∞},
i.e. the set of those a such that v (a) < +∞, obviously coincides with domF . We shall
also consider the following sets:

1. BF is the set of parameters a such that F (a) is nonempty and bounded;
2. UF is the set of parameters a such that F (a) is a singleton;
3. BS is the set of parameters a such that S (a) is nonempty and bounded;
4. US is the set of parameters a such that S (a) is a singleton.

In this paper we are mainly interested in the description of relevant topological and
continuity properties of F ,S and v. In particular, about the issue of continuity, we focus
on upper/lower semicontinuity properties of F ,S with respect to perturbations. We aim
at characterizing parameters a ∈ C (T ,Rn) for which properties like boundedness of
feasible/optimal set remain invariant under small perturbations. This question can be refor-
mulated in terms of characterizing the topological interior of the sets BF , UF , BS and US .
A more general approach would consist in considering parameters a ranging on a subset �

of C (T ,Rn), that is, restricting the set of allowed perturbations, see Examples 1.1 and 1.2.
In this work we shall only consider the case � = C (T ,Rn).
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Let us also point out that we consider only left-hand side perturbations, in the sense that
vectors c (objective function) and b (right-hand side coefficients) are kept fixed in this set-
ting. This ostensibly innocent detail eventually increases the difficulty of the study. The
same phenomenon arises in sensitivity analysis in linear programming, whose objective
consists in estimating the impact on the optimal value of perturbing the data: there exists a
wide literature on perturbations of b and c (see for instance [16] for right-hand side pertur-
bations), but few works are devoted to analyze only left-hand side perturbations; the interest
of the latter is illustrated by the following examples.

Example 1.1 (finite zero-sum game) This first example comes from game theory, more
precisely the setting of two person, finite, zero sum games. They are described by a real
valued matrix P , player I chooses a row i player II chooses a column j and the resulting
pay-off pij is what the second player pays (in algebraic sense) to the first. Thus player I
in a sense tries to get the maximum possible, while the second one wishes to minimize
payments. The celebrated minimax theorem of von Neumann states that such games have
(Nash) equilibria in mixed strategies. Furthermore, Player II can select an optimal strategy
by solving the auxiliary problem (by assuming, without loss of generality pij > 0 for all
i, j )

P(a) : inf 1′x
s.t. P ′x ≥ 1,x ≥ 0n,

where 1 in the cost function and in the right hand side are the vectors of the right dimensions
made by all 1’s. Then x is a solution of P (a) with optimal value v∗ if and only if x/v∗ is
an optimal strategy for Player I.

It is clear that, when translating the game theory problem in this form, and when consid-
ering approximating games, we can only vary the matrix P , while the cost, the right hand
side vector 1 and the sign constraints are fixed.

Example 1.2 (approximation of a function) Let f, v1, ..., vn ∈ C([α, β]), α < β. We are
interested in approximating a function f by a linear combination of our data functions
v1, ..., vn. We consider this approximation problem under two criteria:

(a) One-sided L1 approximation.

Let x ∈ R
n be such that

n∑

i=1

vi(t)xi ≥ f (t), for all t ∈ [α, β].

Then ∥∥f − ∑n
i=1 xivi

∥∥
1 = ∫ β

α

[∑n
i=1 vi(t)xi − f (t)

]
dt

= ∑n
i=1

(∫ β

α
vi(t)dt

)
xi − ∫ β

α
f (t)dt.

Setting

ci =
∫ β

α

vi(t)dt, i = 1, ..., n, (1)

we obtain readily that the best L1-approximation from above to f is
∑n

i=1 xivi, where
x ∈ R

n is an optimal solution of the semi-infinite problem

P1 : inf c′x
s.t.

∑n
i=1 vi(t)xi ≥ f (t), t ∈ [α, β].
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The feasible set of the problem P1 coincides with the feasible set of P (a) by taking T =
[α, β], at = (v1(t), ..., vn(t)) , and bt = f (t). Notice however that (1) links left-hand side
perturbations with perturbations of the objective function.

(b) Two-sided L∞ uniform approximation.

In this case, a best uniform approximation to f is
∑n

i=1 xivi, where x ∈ R
n+1 is an

optimal solution of

P2 : inf xn+1
s.t. −xn+1 ≤ f (s) − ∑n

i=1 vi(s)xi ≤ xn+1, s ∈ [α, β].
The problem P2 can be written in the form P (a), by taking T = [α, β] × {0, 1},

a(s,k) =
(
(−1)k v1(s), ..., (−1)k vn(s), 1

)
, b(s,k) = (−1)k f (s), ∀ (s, k) ∈ T ,

and c = (0, ..., 0, 1) ∈ R
n+1, but the perturbations of a are subject to certain constraints

� ⊂ C([α, β]) (e.g., the last component of a(s,k) cannot be perturbed). In this case, only suf-
ficient conditions for the continuity properties of F ,S and v could apply for the admissible
perturbations.

There are antecedents to this paper, dealing with various perturbations of groups of data,
but not all of them at the same time. Among them, we quote [14], dealing with the problem
of generic uniqueness of solution of linear programming problems under perturbations of
the matrix of the constraints, and [7] dealing with lower semicontinuity of the feasible set.
Other examples are [6] and [8]. Our present work continues the analysis of [7].

The rest of this paper is organized as follows. Section 2 characterizes the sets domF ,

BF , UF , domS, BS , and US and their interiors in terms of the data (in this case
a ∈ C (T ,Rn)). Section 3 deals with conditions for F to be lower semicontinuous (lsc) or
upper semicontinuous (usc) at a given a ∈ domF (observe that F is always closed graph).
Section 4 tackles similar problems regarding S and v (for which lower and upper semi-
continuities must be understood in the sense of real extended functions). It is important to
note that the conditions guaranteeing continuity properties of F , S and v at a given a are
frequently expressed in terms of the membership of a to the above sets and their interiors.
Finally, Section 5 compares the results in this paper (left-hand side perturbations) with those
corresponding to the classical case of arbitrary perturbations.

2 Characterizations and Stability Properties

We begin this section by introducing the necessary notation. We denote by 0n the vector of
zeros and by ‖·‖ the Euclidean norm in R

n. The closed unit ball and the distance associ-
ated to the above norm are denoted by B (0n; 1) and d, respectively. Given A ⊂ R

n, int A,
cl A, bd A, span A, aff A and conv A denote the interior, the closure, the boundary, the lin-
ear subspace spanned by A, the affine manifold spanned by A, and the convex hull of A,
respectively, whereas cone A := R+ conv A denotes the convex conical hull of A ∪ {0n}.
We also define the normal cone of a nonempty closed set A ⊂ R

n at x̄ ∈ A by

NA(x̄) = {y ∈ R
n : y′(x − x̄) ≤ 0, ∀x ∈ A}.

The dimension of a convex set A is denoted by dim A and the epigraph (respectively, hypo-
graph) of a function f : Rn → R∪ {±∞} by epi f (respectively, hypo f ). We recall that f
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is a lower semicontinuous convex function if and only if epi f is a closed convex set. In this
case, the subdifferential of f at a point x̄ ∈ dom f is given by the formula

∂f (x̄) = {
y ∈ R

n : (y,−1) ∈ Nepi f (x̄, f (x̄))
}

= {y ∈ R
n : f (x) − f (x̄) ≥ y′(x − x̄), ∀x ∈ R

n}. (2)

Given a nonempty closed convex set F we define the positively homogeneous functions

σF (q) = sup
x∈F

q ′x and τF (q) = inf
x∈F

q ′x. (3)

Notice that hypo τF = − epi σF and that both sets are closed convex cones of Rn+1. Further,
given a cone C we denote by

C◦ = {q ∈ R
n : q ′x ≥ 0, ∀x ∈ C}

its polar. It is known that C ⊂ C◦◦ with equality whenever the cone C is closed and convex.
Given a convex set A, another cone attached to it plays an important role in convexity. It

is the recession cone of A and it is defined as

A∞ = {x : a + tx ∈ A ∀a ∈ A,∀t ≥ 0}.
Two convex cones associated with each a ∈ C (T ,Rn) play an important role in this

paper. They are the moment and the characteristic cones of a, and are defined as follows:

M (a) := cone {at : t ∈ T }
and

K (a) := cone {(at , bt ) : t ∈ T } + R+ (0n,−1) , (4)

respectively.
It follows readily from (4) that

F(a) = {
x ∈ R

n : a′
t x � bt , ∀t ∈ T

} = {
x ∈ R

n : (x,−1) ∈ K(a)◦
}
. (5)

In a similar manner, in case F(a) �= ∅ we also get

F(a)∞ = {
u ∈ R

n : a′
t u � 0, ∀t ∈ T

} = {
u ∈ R

n : (u, 0) ∈ K(a)◦
}
. (6)

The following characterization of K(a) and its polar K(a)◦ will be used in the sequel.
We include a proof for completeness.

Proposition 2.1 (Characterization of cl K(a) and K(a)◦) Assume F(a) �= ∅. Then

cl K(a) = hypo τF(a) = − epi σF(a) (7)

and
K(a)◦ = cl cone {(x,−1), (u, 0), x ∈ F(a), u ∈ F(a)∞} . (8)

Proof Let (u, γ ) ∈ K(a)◦. If γ = 0, then a′
t u � 0, ∀t ∈ T , that is u ∈ F(a)∞. If γ �= 0,

then since R+ (0n, −1) ⊂ K(a) we deduce that γ < 0. It follows by (5) that

(u, γ ) = |γ | (
u

|γ | , −1) ∈ R+ (F(a) × {−1}) .

This shows that K(a)◦ is contained in the closed convex cone generated by (F(a) × {−1})∪
(F(a)∞ × {0}), while (5), (6) yield the opposite inclusion. Thus (8) holds.

Let us now notice that

F(a) = {
x ∈ R

n : q ′x � τF(a)(q), ∀q ∈ R
n
}

(9)

= {x ∈ R
n : σF(a)(p) ≥ p′x, ∀p ∈ R

n} .
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Indeed, ”⊃” in (9) follows directly from the definition of τ in (3), while ”⊂” follows
from the Hahn-Banach theorem (F(a) is closed and convex). To establish (7), let (q, ξ) ∈
hypo τF(a) (i.e. τF(a)(q) ≥ ξ ) and notice that for any x ∈ F(a) we have

(x,−1)′(q, ξ) = q ′x − ξ ≥ q ′x − τF(a)(q) ≥ 0. (10)

Similarly, for any u ∈ F(a)∞ we have

(u, 0)′(q, ξ) = q ′u ≥ 0. (11)

Indeed, if the above relation (11) were not true, since R+u ⊂ F(a) we would have
τF(a)(q) = −∞ which contradicts the definition of ξ.

In view of (8), relations (10) and (11) show that hypo τF(a) ⊂ [K(a)◦]◦ = cl K(a). For
the opposite inclusion, let (q, ξ) ∈ cl K(a) = [K(a)◦]◦ . Then in view of (5) for any x ∈
F(a) we have (q, ξ)′(x,−1) ≥ 0, that is, q ′x ≥ ξ or equivalently (q, ξ) ∈ hypo τF(a).

Let us now fix a ∈ domF and denote by Ha the set of all hyperplanes in R
n+1 support-

ing cl K (a). Notice that every such hyperplane H ∈ Ha should pass through 0n+1 and is
determined by a normal vector (u, s) ∈ R

n+1 as follows:

H = {(q, ξ) ∈ R
n+1 : (u, s)′(q, ξ) = 0}. (12)

Choosing adequately the normal vector —namely, s < 0 or s = 0 and u ∈ F(a)∞�{0n}—
we may always assume that

cl K (a) ⊂ H+ := {(q, ξ) ∈ R
n+1 : (u, s)′(q, ξ) ≥ 0}. (13)

Notice in particular that the above yields

(u, s) ∈ K (a)◦ . (14)

The following proposition describes more precisely the set Ha .

Proposition 2.2 (Characterization of Ha) Assume F(a) �= ∅. Then the elements ofHa are
exactly the hyperplanesH that are determined, in the sense of (12)–(13), by a normal vector
which is either of the form

(x̂,−1), x̂ ∈ ∂σF(a)(0n) ⊂ F(a), (15)

or of the form
(u, 0), u ∈ F(a)∞�{0n}. (16)

Proof Let H be determined by the normal vector (u, s) ∈ R
n+1

�{0n+1}. Then since
(0n, −1) ∈ cl K (a), relation (13) yields s ≤ 0. If s = 0, then by (13) again we get
a′
t u ≥ 0 for all t ∈ T , thus u ∈ F(a)∞�{0n}. If s < 0, then setting x̂ = |s|−1 u we

deduce that H is also determined by the vector (x̂,−1). By (7) and (13) we obtain that
(x̂, −1) ∈ Nepi σF(a)

(0n, 0), that is, x̂ ∈ −∂σF(a)(0n). This yields σF(a)(p) ≥ p′x̂, for all
p ∈ R

n, thus by (9) x̂ ∈ F(a). Conversely, one easily verifies that (13) holds true for all
hyperplanes H determined by vectors of the form (15) or (16).

We say that x̂ ∈ R
n is a Slater point of a whenever a′

t x̂ > bt for all t ∈ T . In that case
we say that a satisfies the Slater condition (SC in short). If x̂ ∈ R

n is a Slater point of a,
then x̂ ∈ intF (a) and the converse holds whenever the constraint system

{
a′
t x ≥ bt , t ∈ T

}

does not contain the trivial inequality 0′
nx ≥ 0. The following are known facts about the

connections among the Slater condition, the characteristic cone K (a) and the optimal value
v (a):
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1. If a satisfies SC, then K (a) is closed [10, Theorem 5.3];
2. a satisfies SC if and only if there exists a hyperplane H in R

n+1 supporting K (a) at
the unique point 0n+1;

3. Since, by [10, Theorem 8.1(ii)],

v (a) = sup {γ : (c, γ ) ∈ cl K (a)} = τF(a)(c),

it follows that v (a) ∈ R if and only if ({c} × R) ∩ cl K (a) is a proper half-line.

In the sequel of this section we want to identify the interior points of the sets UF ⊂ BF ⊂
domF and US ⊂ BS ⊂ domS , which are those parameters for which the corresponding
property (uniqueness of the feasible solution, boundedness of the feasible set, consistency,
uniqueness of the optimal solution, boundedness of the optimal set, and solvability, respec-
tively) is preserved by sufficiently small perturbations. To this aim, we collect below the
known characterizations of four of the above sets in terms of either M (a) or K (a), namely:

domF = {a ∈ C (T ,Rn) : (0n, 1) /∈ cl K (a)} [10, Corollary 3.1.1],
BF = {a ∈ domF : M (a) = R

n} [10, Theorem 9.3],
BS = {a ∈ domF : c ∈ int M (a)} [10, Theorem 8.1(vi)],
UF = {a ∈ domF : cl K (a) is half-space} [10, Theorem 5.13(iii)].

Concerning domF , the following facts are also known [7, Proposition 4.1]:

1. domF = C (T ,Rn) if and only if bt ≤ 0 for all t ∈ T ;
2. domF is an open proper subset of C (T ,Rn) if and only if mint∈T bt > 0;
3. domF is closed in C (T ,Rn) if and only if domF = C (T ,Rn).

The next two propositions provide characterizations of the above sets in terms of Ha .

Proposition 2.3 (Characterization of domF , BF , UF )

(A) The following are equivalent:

(i) F(a) �= ∅ (i.e. a ∈ domF );
(ii) (0n, 1) /∈ cl K (a);

(iii) there exists H ∈ Ha such that (0n, 1) /∈ H.

(B) The following are equivalent:

(i) F(a) �= ∅ and bounded (i.e. a ∈ BF );
(ii) (0n, 1) /∈ cl K (a) and (0n,−1) ∈ int K(a);

(iii) Ha �= ∅ and for all H ∈ Ha we have (0n, 1) /∈ H.

(C) The following are equivalent:

(i) F(a) is singleton (i.e. a ∈ UF );
(ii) Ha = {Ĥ } (singleton) and (0n, 1) /∈ Ĥ .

Proof (A) Assume (i) holds. Pick any x ∈ F(a). Then by (5) we deduce that (x,−1) ∈
K(a)◦, which readily yields (0n, 1) /∈ cl K (a) . Thus (i) implies (ii).

Now assume (ii), i.e. (0n, 1) /∈ cl K (a). Then by the Hahn-Banach theorem, there exists
a hyperplane H of Rn+1 determined by a normal vector (u, s) ∈ R

n+1
� {0n+1} that sep-

arates strictly the singleton {(0n, 1)} from the closed convex cone cl K (a). This yields in
particular that s �= 0. With no loss of generality s < 0, that is, relations (12), (13) hold and
(0n, 1) /∈ H+. Thus, H ∈ Ha and (0n, 1) /∈ H. Thus (ii) implies (iii).
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Assume now (iii) holds, that is, there exists H ∈ Ha determined by the vector
(u, s) ∈ R

n+1
� {0n+1} such that (0n, 1) /∈ H. The latter yields s �= 0. By (13), (0n,−1) ∈

cl K (a) ⊂ H+, whence s < 0. It follows that the vector (|s|−1 u, −1) = |s|−1 (u, s) also
determines H and (|s|−1 u, −1) ∈ K(a)◦, thus by (5) |s|−1 u ∈ F(a).

[NB. For the equivalence (i) ⇐⇒ (ii) see also [10, Cor. 3.11].]
(B) Assume (i) holds. Then by (A)[(i) =⇒ (iii)] we have Ha �= ∅. Pick any H ∈ Ha

(determined by a normal vector (u, s) ∈ R
n+1

� {0n+1} so that (12), (13) hold) and assume,
towards a contradiction, that (0n, 1) ∈ H ⊂ H+. Since (0n,−1) ∈ cl K (a) ⊂ H+ we
have (0n, 1) , (0n, −1) ∈ H+ that is, s = 0 and (u, 0) ∈ K(a)◦, see (14). By (5) u ∈
F(a)∞� {0n} that is, F(a) is unbounded, a contradiction. Thus (iii) holds.

Let us now assume (iii). Then by (A)[(iii) =⇒ (ii)] we have (0n, 1) /∈ cl K (a). If
(0n, −1) ∈ cl K (a)�int K(a), then there exists H ∈ Ha containing the line R (0n,−1) =
R (0n, 1) a contradiction. Thus (ii) holds.

Finally, if (ii) holds, then by (A)[(ii) =⇒ (i)] we have F(a) �= ∅. Further, since cl K (a)

contains a small ball around (0n,−1) , it cannot admit a ”vertical” supporting hyperplane,
that is, if (u, s) determines a hyperplane H ∈ Ha then s �= 0. In view of (6), F(a)∞ = {0n}
and (i) holds.

[NB. For the equivalence (i) ⇐⇒ (ii) see also [10, Theorem 9.3].]
(C) By [10, Theorem 5.13(iii)] we have |F (a)| = 1 if and only if cl K (a) is a half-

space. The latter is equivalent to |Ha | = 1 and since F (a) �= ∅ the unique element Ĥ ∈ Ha

should satisfy (0n, 1) /∈ H .

Proposition 2.4 (Characterization of domS , BS , US ) .

(A) The following are equivalent:

(i) S(a) �= ∅ (i.e. a ∈ domS);
(ii) there exists H ∈ Ha with (c, v (a)) ∈ H and (0n, 1) /∈ H ;

(B) The following are equivalent:

(i) S(a) �= ∅, bounded (i.e. a ∈ BS );
(ii) a ∈ domS and (0n, 1) /∈ H for all H ∈ Ha such that (c, v (a)) ∈ H.

(C) The following are equivalent:

(i) S(a) is singleton (i.e. a ∈ US );
(ii) there exists a unique H ∈ Ha such that (c, v (a)) ∈ H and (0n, 1) /∈ H.

Proof (A) [(i) =⇒ (ii)] Recall that v (a) = τF(a)(c). Let x̄ ∈ S(a), i.e. c′x̄ = τF(a)(c) or
equivalently

(x̄, −1)′(c, τF(a)(c)) = 0. (17)

Since for all (q, γ ) = hypo τF(a) we have q ′x̄ ≥ τF(a)(q) ≥ γ , it follows that

(x̄,−1)′(q, γ ) ≥ 0. (18)

Let H̄ be the hyperplane determined by (x̄,−1). Then (17) yields (c, τF(a)(c)) =
(c, v (a)) ∈ H̄ and (7) yields cl K (a) ⊂ H̄+, that is H̄ ∈ Ha. Obviously (0n, 1) /∈ H̄

(since (x̄,−1)′ (0n, 1) = −1 �= 0) and (ii) follows.
[(ii) =⇒ (i)] Let H ∈ Ha be determined by a vector (u, s) ∈ R

n+1
� {0n+1} such that

cl K (a) ⊂ H+, (c, v (a)) = (c, τF(a)(c)) ∈ H and (0n, 1) /∈ H.
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It follows that s < 0, and H is also determined by the vector (x̂,−1) where x̂ = |s|−1 u.

It follows that
(x̂,−1)′(c, τF(a)(c)) = 0

or equivalently, x̂ ∈ S(a).
(B) Notice that (18) is equivalent to

(x̄, −1)′(p, β) ≤ 0, for all (p, β) ∈ epi σF(a) (19)

and holds true for every x̄ ∈ F(a). Further, x̄ ∈ S(a) if and only if (17) holds, that is,

(x̄,−1)′(−c, σF(a)(−c)) = 0.

Combining with (19) we deduce

x̄ ∈ S(a) ⇐⇒ (x̄,−1) ∈ Nepi σF(a)
(−c, σF(a)(−c)).

We deduce, in view of (2), that S(a) coincides with the subdifferential of the lower
semicontinuous convex function σF(a) at −c, namely,

S(a) = ∂σF(a)(−c).

Thus S (a) = ∂σF(a) (−c) is bounded if and only if −c ∈ int dom σF(a), if and only if
it does not exist a ”vertical” hyperplane supporting epi σF(a) = − cl K (a) at the point(−c, σF(a) (−c)

) = (−c,−τF(a)(c)
)

(see (7)), or equivalently, it does not exist a ”vertical”
hyperplane supporting cl K (a) at

(
c, τF(a)(c)) = (c, v (a)

)
. Thus, any H ∈ Ha such that

(c, v (a)) ∈ H is determined by a vector (u, s) with s �= 0 (in fact, s > 0). In particular
(0n, 1) /∈ H .

(C) Let a ∈ domS. Then, S (a) = ∂σF(a) (−c) is a singleton set (i.e., the convex func-
tion σF(a) is differentiable at −c) if and only if there exists a unique nonvertical hyperplane
supporting epi σF(a) = − cl K (a) at (−c,−v (a)) , i.e. there exists a unique hyperplane
supporting cl K (a) at (c, v (a)) with (0n, 1) /∈ H.

We approach now the characterization of int domF , intBF , intUF , int domS , intBS ,
and intUS .

Proposition 2.5 (Characterization of int domF ) Let a ∈ C (T ,Rn) .

(A) If bt ≤ 0 for all t ∈ T , then a ∈ int domF .

(B) If bt > 0 for some t ∈ T , then the following statements are equivalent:

(i) a ∈ int domF;
(ii) a satisfies SC;

(iii) dimF(a) = n;
(iv) 0n+1 /∈ conv {(at , bt ) : t ∈ T }.

Proof If bt ≤ 0 for all t ∈ T , then 0n ∈ F(a) for all a ∈ C (T ,Rn), so that domF =
C (T ,Rn) . If bt > 0 for some t ∈ T , the equivalence among (i), (ii), (iii) and (iv) follows
from [7, Theorems 4.2 and 4.10].

Let us emphasize the interest of conditions like (iv) –which are easy to verify– in contrast
to conditions like (ii) requiring solving a linear semi-infinite program, or (iii) that can only
be verified in very specific cases.
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Proposition 2.6 (Characterization of intBF ) Let a ∈ int domF . Then,

a ∈ intBF ⇐⇒ 0n ∈ int conv {at : t ∈ T } .

Proof Assume that 0n ∈ int conv {at : t ∈ T } . Then there exists ε > 0 such that 0n ∈
int conv {at : t ∈ T } for all a ∈ C (T ,Rn) with ‖a − a‖∞ < ε, in which case

M (a) = cone {at : t ∈ T } = R
n

and a ∈ BF . Hence, a ∈ intBF .

Assume now that 0n /∈ int conv {at : t ∈ T } . Then either 0n ∈ bd conv {at : t ∈ T }
or 0n /∈ conv {at : t ∈ T }. In the first case there exists a hyperplane supporting
conv {at : t ∈ T } at 0n while in the second case there exists a hyperplane which strictly
separates 0n and conv {at : t ∈ T }. So, in both cases, there exists w ∈ R

n
� {0n} such that

w′x ≥ 0 for all x ∈ conv {at : t ∈ T }. Take aε
t := at + εw, t ∈ T , for ε > 0 small enough

to guarantee that aε ∈ domF . We have w′x ≥ ε ‖w‖2 ≥ 0 for all x ∈ conv
{
aε
t : t ∈ T

}
.

So, cone
{
aε
t : t ∈ T

} ⊂ {
x ∈ R

n : w′x ≥ 0
}

and aε /∈ BF . Hence, a /∈ intBF .

In the next result we use the fact that, given a ∈ domF , F (a) = {0n} if and only if
cl K (a) = R

n × R− (see [10, Theorem 5.10(ii)]).

Proposition 2.7 (Characterization of intUF ) Given a ∈ int domF the following statements
are equivalent:

(i) a ∈ intUF ;
(ii) F (a) = {0n} and 0n ∈ int conv {at : bt = 0, t ∈ T };

(iii) F (a) = {0n} in some neighborhood of a.

Proof [(i) ⇒ (ii)] Assume that a ∈ intUF . If there is t ∈ T such that bt > 0, then a

satisfies dimF(a) = n (by Proposition 2.5 (B)), in contradiction with |F (a)| = 1. Thus,
bt ≤ 0 for all t ∈ T and so 0n ∈ F (a) i.e. F (a) = {0n} by the uniqueness assumption.
Since a ∈ intUF , we have F (a) = {0n} for all a belonging to some neighborhood of a.

Hence, for any such a in this neighborhood, cl K (a) = R
n × R−.

Reasoning by contradiction, if 0n /∈ int conv {at : bt = 0, t ∈ T }, following the same
argument as in the proof of Proposition 2.6, we conclude the existence of w ∈ R

n
� {0n}

such that w′x ≥ 0 for all x ∈ conv {at : bt = 0, t ∈ T }. Defining aε
t := at + εw, t ∈ T ,

we have w′x > 0 for all x ∈ conv
{
aε
t : bt = 0, t ∈ T

}
.

It now follows that

0n+1 /∈ conv
{(

aε
t , bt

) : bt = 0, t ∈ T
}
. (20)

Indeed, if 0n+1 ∈ conv
{(

aε
t , bt

) : bt = 0, t ∈ T
}
, we shall write 0n+1 = ∑

i∈I

λi

(
aε
ti
, 0

)
,

∑
i∈I

λi = 1, and λi > 0 for all i ∈ I (a finite subset of T ). Multiplying by w both members

of
∑
i∈I

λia
ε
ti

= 0n we get a contradiction.

Relation (20) entails 0n /∈ conv
{
aε
t : t ∈ T

}
, whence 0n+1 /∈ conv

{(
aε
t , bt

) : t ∈ T
}

and the corresponding convex cone K (aε) is closed (by [15, Corollary 9.6.1]). Observe that
cl K (aε) = K (aε) �= R

n × R− since

K
(
aε

) ∩ {(x, 0) : x ∈ R
n} = cone

{
aε
t : bt = 0, t ∈ T

} �= R
n,

as a consequence of (20), and consequently F (aε) �= {0n} . Thus aε /∈ UF in contradiction
with a ∈ intUF .



Stability in Linear Optimization Under Perturbations 747

[(ii) ⇒ (iii)] Assume now that F (a) = {0n} and 0n ∈ int conv {at : bt = 0, t ∈ T } .

Since 0n ∈ int cone {at : bt = 0, t ∈ T } there exists ε > 0 such that
0n ∈ int cone {at : bt = 0, t ∈ T } for all a ∈ C (T ,Rn) such that ‖a − a‖∞ < ε. In that
case cone {at : bt = 0, t ∈ T } = R

n and cl K (a) = R
n × R−. So, F (a) = {0n} for all

a ∈ domF such that ‖a − a‖∞ < ε and a ∈ int UF .

[(iii) ⇒ (i)] This assertion is trivial.

Remark In general, F (a) = {0n} and 0n ∈ int conv {at : t ∈ T } do not imply a ∈ int UF .

Indeed, consider, e.g. n = 1, and (at , bt ) = (
t, −t2

)
for all t ∈ T = [−1, 1] . The

reader may verify that F (ā) = {0}, and that given ε ∈
]
0, 1

2

[
, if aε

t := at + ε

for t ∈ T , F (aε) ⊃ [0, 4ε] . Nevertheless, for T finite, F (a) = {0n} implies that
0n ∈ int conv {at : bt = 0, t ∈ T } and so a ∈ intUF .

The following result deals with the set of interior points of domS. Before giving the
precise statement, we state a simple result, that will be repeatedly used in the sequel. Its
proof is quite simple and will be omitted.

Proposition 2.8 (A) Suppose F (a) �= ∅. Then u ∈ 0+F if and only if a′
t x ≥ 0 for all

t ∈ T .
(B) Suppose S (a) �= ∅. Then u ∈ S∞ if and only if

a′
t x ≥ 0 for all t ∈ T , and c′u = 0.

In particular
S (a)∞ = [cone {±c; at , t ∈ T }]◦ . (21)

where [cone {±c; at , t ∈ T }]◦ denotes the positive polar of cone {±c; at , t ∈ T } .

Proposition 2.9 (i) If a ∈ int domS then S (a) is a nonempty bounded set.
(ii) If S (a) is a nonempty bounded set, then a is an interior point of domS in the relative

topology of domF .

Proof (i) Let a ∈ int domS and suppose that S (a) is unbounded. Take u ∈ S (a)∞ such
that ‖u‖ = 1. Then from Proposition 2.8 (B) we have that a′

t u ≥ 0, t ∈ T , and c′u = 0.

Let aε
t := at + εu, t ∈ T . By the assumption, aε ∈ domS for ε > 0 sufficiently

small. We observe that
(
aε
t

)′
u = a′

t u + ε ≥ ε > 0 for all t ∈ T . Let μ > 0 be such that∣∣∣
(
aε
t

)′
c

∣∣∣ = ∣∣a′
t c

∣∣ ≤ μ for all t ∈ T .

Take v := u − β c
‖c‖ , with 0 < β <

ε‖c‖
μ

. Then,

(
aε
t

)′
v = (

aε
t

)′
u − β

(
aε
t

)′
c

‖c‖ ≥ ε − βμ

‖c‖ > 0, for all t ∈ T ,

so that v is a nonzero recession direction of F (aε) such that c′v = −β ‖c‖ . Since v (aε) =
−∞, S (aε) = ∅ (contradiction).

(ii) Now we assume that S (a) �= ∅ is bounded. Then, from Proposition 2.8, we get
R

n = cl cone {±c; at , t ∈ T } , i.e.

0n ∈ int cone {±c; at , t ∈ T } . (22)

From (22), there exists δ > 0 such that 0n ∈ int cone {±c; at , t ∈ T } for any a ∈ domF
such that ‖a − a‖∞ < δ. For such a parameter a we have cone {±c; at , t ∈ T } = R

n,
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so that {0n} = [cone {±c; at , t ∈ T }]◦ . Thus, any nonempty sublevel set of the function
x �→ c′x in F (a) is bounded, i.e. a ∈ domS. This completes the proof.

Proposition 2.10 (Characterization of intBS ) The following holds:

intBS = {a ∈ int domF : c ∈ int M (a)} .

Proof Recall that BS = {a ∈ domF : c ∈ int M (a)} . The conclusion is immediate by
taking into account that, if a ∈ domF satisfies c ∈ int M (a) = int cone {at , t ∈ T } , then
c ∈ int M (a) = int cone {at , t ∈ T } for all a sufficiently close to a.

The characterization of intUS is given in the last section, in Corollary 4.12. We also
refer to [12] for a characterization of those parameters a ∈ C (T ,Rn) such that P (a) has a
strongly unique solution for sufficiently small perturbations of all of the data (not only of
a). This condition is obviously sufficient for a ∈ intUS .

3 Stability of the Feasible Set

In the following sections, we shall study properties of semicontinuity and closedness of the
feasible and optimal set mappings. We recall here the necessary basic definitions. Given two
topological spaces X and Y , a set-valued mapping M : X ⇒ Y is called lower semicontin-
uous at x̄ if for every open set O ⊂ Y such that M(x̄) ∩ O �= ∅, there is a neighborhood I

of x̄ such that for every x ∈ I we have M(x) ∩ O �= ∅. The mapping M is called upper
semicontinuous at x̄ if for every open set O ⊂ Y such that M(x̄) ⊂ O, there is a neighbor-
hood I of x̄ such that for every x ∈ I we have M(x) ⊂ O. Finally, the mapping M is said
to have a closed graph at x̄ if for every xk → x̄ and yk → ȳ such that yk ∈ M(xk), it is
ȳ ∈ M(x̄). Assuming now that X and Y are metric spaces, we shall also use the concepts
of lower (or inner) limit for the set-valued mapping M at x ∈ domM,

Lix→x M (x) :=
⎧
⎨

⎩

y ∈ Y : ∀(xk)
∞
k=1 → x an associated k0 exists

such that (xk)
∞
k=k0

⊂ domM,

and ∃yk ∈ M (xk) ∀k ≥ k0 such that yk → y

⎫
⎬

⎭ ,

and of upper (or outer) limit of M at x ∈ domM,

Lsx→x M (x) :=
{

y ∈ Y : ∃(xk)
∞
k=1 → x and (yk)∞k=1, yk ∈ M (xk) ,

such that yk → y

}
.

Observe that in the context of metric spaces (which is the case in this work), M is lower
semicontinuous at x̄ if and only if M(x̄) ⊂ Lix→x M (x), while M has a closed graph at
x̄ if and only if M(x̄) ⊃ Lsx→x M (x). For more about these concepts see for instance [2,
13].

If bt > 0 for some t ∈ T , then the lower semicontinuity of F at a ∈ domF is equivalent
to any of the conditions (i) − (iv) in Proposition 2.5 (B) (see [7, Theorem 4.2]), and any of
them implies that F|domF is lsc at a. Example 4.11 in [7] shows that the converse statement
does not hold. Forthcoming Proposition 3.2 will show that, if bt ≤ 0 for all t ∈ T , then
SC is still a necessary condition for the lower semicontinuity of F under mild conditions.
This result is already known, even when we relax continuity ([7, Proposition 4.5(ii)]), but
the proof below is much simpler and pops-up as a direct consequence of the following
lemma.
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Lemma 3.1 (Criterium for SC) Let a ∈ domF be such that there exist x ∈ Lia→a F(a)

and x̂ ∈ R
n such that x′x̂ > 0 and aε ∈ domF for aε

t := at − εx̂, t ∈ T , and ε > 0
sufficiently small. Then a satisfies SC.

Proof Assume that a does not satisfy SC. Then, 0n+1 ∈ conv {(at , bt ) : t ∈ T } . Let S ⊂ T ,

S finite, and λt > 0 for all t ∈ S be such that

0n+1 =
∑

t∈S

λt (at , bt ) ,
∑

t∈S

λt = 1. (23)

Let x and x̂ be two points as in the statement. Let ε > 0 be such that aε ∈ domF , with
aε
t := at − εx̂, t ∈ T . From (23), we get

(−εx̂, 0) =
∑

t∈S

λt (at − εx̂, bt ) ∈ K
(
aε

)
,

so that (−εx̂)′ x ≥ 0 for all x ∈ F (aε) by Farkas’ Lemma ([10, Theorem 3.1]). Consider
the half-space H− = {

x ∈ R
n : x̂′x ≤ 0

}
. We have F (aε) ⊂ H− for ε > 0 small enough

while x /∈ H−. This contradicts x ∈ Lia→a F(a).

Proposition 3.2 Let F be lsc at a ∈ int domF . If F (a) �= {0n} , then a satisfies SC.

Proof Under the assumption, there will exist x ∈ F (a) ⊂ Lia→a F(a) such that x �= 0n

and, if aε
t := at − εx, t ∈ T , we have by assumption aε ∈ domF for ε > 0 small enough.

The conclusion is immediate from Lemma 3.1.

We now analyze the connections between the set F(a) and the inner limit and the
outer limit of sequences F(ak), with ak → a, which are represented by Lik→∞ F(ak)

and Lsk→∞ F(ak), respectively. These connections allow us getting deeper results in the
analysis of the lower semicontinuity of the map F .

The next example shows that it is possible to have existence of parameters a ∈ domF
and sequences {ak} ⊂ domF such that ak → a as k → ∞ and Lik→∞ F(ak) = ∅.

Example 3.3 Let a : T = {1, 2, 3, 4, 5} → R
3 be such that a1 = (1, 0, 0), a2 = (−1, 0, 0),

a3 = (1, 1, 0), a4 = (1, 0, 1), a5 = (0, 0, −1), and b = (1, −1, 2, 1, 0). Then F(a) =
{(1, x2, 0) : x2 ≥ 1}. We associate with k ∈ N the perturbed parameter ak such that ak

1 =
(1 − 1

k
, 1

k2 , 0), ak
2 = (−1, 0, 0), ak

3 = (1, 1, 0), ak
4 = (1, 0, 1), and ak

5 = (0, 0, −1).

Since F(ak) = {(1, x2, 0) : x2 ≥ k} for all k ∈ N, we get Lik→∞ F(ak) = ∅. Observe
that, according to [7, Proposition 4.12], F|domF is not lsc at a (this is also obvious from
F (a) � Lia→a F(a) = ∅).

Proposition 3.4 Let a ∈ bd domF be such that a and b do not vanish simultane-
ously and suppose there exists a sequence

(
ak

)∞
k=1 ⊂ domF converging to a such that

Lsk→∞ F(ak) = ∅. Then one of the following alternatives holds:

(i) a /∈ domF ;
(ii) F(a) is an unbounded set and intF(a) = ∅.

Proof Assume that (i) does not hold, i.e. that a ∈ domF . Notice that Lik→∞ F(ak) = ∅
since Lik→∞ F(ak) ⊂ Lsk→∞ F(ak) = ∅. Hence, F|domF is not lsc at a, so that
intF(a) = ∅ by [7, Theorem 4.10]. Now consider xk ∈ F(ak), k = 1, 2, .... Then the
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sequence (xk)∞k=1 cannot have bounded subsequences, and thus we can assume (by passing

possibly to a subsequence kr ) the existence of u = limr→∞ xkr

‖xkr ‖ . Since (a
kr
t )′xkr ≥ bt , it

follows that a′
t u ≥ 0. Thus u ∈ F(a)∞� {0n} , and the set F(a) is unbounded.

Proposition 3.5 Let a ∈ bd domF and suppose that Lik→∞ F(ak) = ∅ for each sequence(
ak

)∞
k=1 ⊂ domF converging to a, with ak �= a for all k. Then a /∈ domF .

Proof Suppose that a ∈ domF and let x ∈ F(a). Then x �= 0n (otherwise, domF =
C (T ,Rn) in contradiction with a ∈ bd domF ). Taking ak := a + 1

k
x, k = 1, 2, ..., we get

x ∈ F(ak) for all k, so that Lik→∞ F(ak) �= ∅.

In contrast with lower semicontinuity, the upper semicontinuity of F has a neat
characterization.

Theorem 3.6 (Characterization of usc of F ) F is usc at a ∈ domF if and only if F(a) is
either bounded or the whole of Rn.

Proof Thanks to [11, Corollary 5.1.1], it suffices to prove that if F is usc at a ∈ domF
and F(a) �= R

n, then F(a) is bounded.
Reasoning by contradiction, suppose that F(a) is unbounded. Then, there will exist u �=

0n such that the set

U := {
x ∈ bdF (a) : u′x ≥ 1

}

is unbounded. In fact, if we consider a sequence (xk)∞k=1 ⊂ bdF(a) such that
∥∥xk

∥∥ → ∞
as k → ∞, and w.l.o.g. we suppose that xk/

∥∥xk
∥∥ → u, then we shall write

lim
k→∞ u′xk = lim

k→∞

∥∥∥xk
∥∥∥ = +∞,

and this shows that U is unbounded.
Now we take a sequence (zk)∞k=1 ⊂ U without any accumulation point.
It is clear that (

at + 1

k
u

)′
zk ≥ bt + 1

k
> bt , for all t ∈ T ,

and there must exist a neighborhood Vk of zk such that Vk ⊂ B
(
zk; 1

k

)
and

Vk ⊂ F(ak), k = 1, 2, ...

where ak
t := at + 1

k
u, k = 1, 2, ... On the other hand, as zk ∈ bdF(a), there will exist

yk ∈ Vk�F(a), k = 1, 2, ...

The sequence (yk)∞k=1 neither has accumulation points because
∥∥yk − zk

∥∥ ≤ 1/k, k =
1, 2, ... and therefore

W := R
n
�{y1, y2, ...}

is an open set such that

F(a) ⊂ W and F(ak) � W.

This contradicts the upper semicontinuity of F as ak → a for k → ∞.
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Corollary 3.7 Let a ∈ int domF non-identically zero. Then, a ∈ intBF if and only if F is
usc on some neighborhood of a.

Proof Since a ∈ domF is not identically zero in some neighborhood of a, F is usc at a if
and only if a ∈ BF .

4 Stability of the Optimal Set and the Optimal Value

This section is devoted to analyze the semicontinuity of the optimal set mapping S and of
the optimal value function v.

Proposition 4.1 (Continuity properties of the value function) Given a ∈ C (T ,Rn) the
following statements hold:

(i) If F is lsc at a, then v is usc at a;
(ii) if v is usc at a ∈ domF , then a ∈ int domF . If, additionally, bt > 0 for some t ∈ T ,

then F is lsc at a.

Proof (i) We can assume that a ∈ domF (otherwise v is trivially usc at a). Thus, v (a) ∈
R∪ {−∞} . Take an arbitrary μ > v (a).

Let
(
ak

)∞
k=1 be a sequence in C (T ,Rn) such that ak → a as k → ∞. Let x ∈ F (a) be

such that c′x < μ. Since the open set V = {
x ∈ R

n : c′x < μ
}

satisfies F (a) ∩ V �= ∅,

we have F
(
ak

) ∩ V �= ∅ for k large enough. For each xk ∈ F
(
ak

) ∩ V we have v
(
ak

) ≤
c′xk < μ. Thus, v is usc at a.

(ii) Let μ > v (a) . Then there exists δ > 0 such that v (a) < μ for all a ∈ C (T ,Rn)

such that ‖a − a‖∞ < δ. This implies that a ∈ int domF which is equivalent to the
lower semicontinuity of F at a under the assumption that bt > 0 for some t ∈ T (by
Proposition 2.5).

Remark 1) Statement (i) is a particular case of so-called Maximum Theorem, which is
due to C. Berge [3, pp. 115-116] (see, also, [1, Theorem 4.2.2. (1)]). We include the
proof for the sake of completeness.

2) The same proof of Proposition 4.1 shows that the lower semicontinuity ofF|domF entails
the upper semicontinuity of v|domF . The converse is not true. The necessity of the addi-
tional condition bt > 0 for some t , in Proposition 4.1(ii), follows from Example 4.7
below.

The following proposition provides a sufficient condition for the graph closedness of S
at a ∈ domS.

Proposition 4.2 (Closed graph of S) Given a ∈ C (T ,Rn), any of the following conditions
guarantees that S is closed graph at a:

(i) v is usc at a and v (a) ∈ R;
(ii) S(a) = F(a).

Proof (i) Suppose that v is usc at a. This implies that for every sequence
(
ak

)∞
k=1 ⊂

C(T ,Rn) converging to a, we have

lim supk→∞v(ak) ≤ v(a).
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If Lsk→∞ S(ak) = ∅, the inclusion Lsk→∞ S(ak) ⊂ S(a) holds trivially. Alternatively,
if x0 ∈ Lsk→∞ S(ak), there will exist subsequences

(
akr

)∞
r=1 and xkr ∈ S(akr ), r =

1, 2, ..., such that limr→∞ xkr = x0. This means

(a
kr
t )′xkr ≥ bt , t ∈ T , r = 1, 2, ... (24)

and
c′xkr = v(akr ), r = 1, 2, ... (25)

By taking limits in (24), we conclude that x0 ∈ F(a). Taking limits now in (25) one has

c′x0 = lim
r→∞ c′xkr = lim

r→∞ v(akr ) ≤ lim supk→∞v(ak) ≤ v(a)

and necessarily x0 ∈ S(a). Consequently,

Lsa→a S(a) ⊂ S(a) ,

i.e. S is closed graph at a.

(ii) Assume that S(a) = F(a). Take sequences
(
ak

)∞
k=1 in domS and xk ∈ S(ak),

k = 1, 2, ..., converging to a and x0 respectively. Since S(ak) ⊂ F(ak), k = 1, 2, ..., and
F is always closed graph, one has x0 ∈ F(a) = S(a), and we are done.

Remark Proposition 4.2 (i), is a particular case of Theorem 4.2.1 (3) in [1].

Corollary 4.3 If a ∈ domS and either F is lsc at a or S(a) = F(a), then S is closed
graph at a.

Proof It is a straightforward consequence of Propositions 4.1 and 4.2.

Proposition 4.4 (Characterization of lsc of the value function) Let a ∈ C (T ,Rn) be such
that v (a) ∈ R. Then, v is lsc at a if and only if S(a) is a nonempty bounded set.

Proof Suppose that S(a) is either empty or unbounded. Then the sublevel sets

{x ∈ R
n : a′

t x ≥ bt , t ∈ T : c′x ≤ v (a) + ρ}, ρ > 0,

are unbounded, yielding the existence of u ∈ R
n such that ‖u‖ = 1 and a′

t u ≥ 0 for all
t ∈ T and c′u = 0 (remember that v (a) ∈ R). Then, following the same argument that
in the proof of Proposition 2.9, we establish the existence of parameters aε → a as ε ↓ 0
with v (aε) = −∞, so that v is not lsc at a. The converse statement is straightforward
consequence of [10, Theorem 10.1].

Observe also that v is lsc at a ∈ domF if and only if v|domF is lsc at a because v is
identically +∞ outside domF .

Example 4.5 Consider the problem in R
2

P (a) : inf x2 s.t. t2x1 + x2 ≥ 2t, t ∈ [0, 1] .

It can be realized that F (a) = epi h, where h (x1) = −x1 + 2 if x1 ≤ 1, and h (x1) = 1
x1

if x > 1. Then, v (a) = 0 and S(a) = ∅. Since a satisfies SC (take, e.g., x̂ = (2, 2)), F is
lsc at a and a ∈ int domF . Let

ak
t =

⎧
⎨

⎩

(
1
k2 , 1

)
, t ∈

[
0, 1

k

]
,

(
t2, 1

)
, t ∈

[
1
k
, 1

]
,
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for each k ∈ N. We have ak ∈ C ([0, 1] ,Rn) and ak → a as k → ∞. Since v
(
ak

) = −∞
for all k ∈ N, v is usc but not lsc at a.

Theorem 4.6 (Characterization of continuity of the value function) Assume the existence
of t ∈ T such that bt > 0. Let a ∈ C (T ,Rn) be such that v (a) ∈ R. Then

v is continuous at a ⇔ S(a) �= ∅ is bounded and a ∈ int domF .

Proof If v is continuous at a, then a ∈ int domF and F is lsc at a by Proposition 4.1.
Moreover, S(a) is a bounded set by Proposition 4.4. The argument is reversible.

Example 4.7 Let T = {1, 2, 3, 4}, n = 2, let a1 = (1, 0), a2 = (1, −1), a3 = (−1, 1), a4 =
(2, −2). Finally, let c = (0, 1) and b = (0, 0, 0, 0). Then v(a) = 0 and F(a) = {(x, x) :
x ≥ 0}. Let aε

1 = (1, 0), aε
2 = (1, −1), aε

3 = (−1, 1), aε
4 = (2, −2(1 + ε)). Then v(aε) =

0 and F(aε) = {(0, 0)}, and this shows that F is not lsc at a, even with v continuous
at a.

Corollary 4.8 Assume that v is finite-valued in a neighborhood of a ∈ C (T ,Rn) . Then,
a ∈ intBS if and only if v is lsc on some neighborhood of a. If, additionally, there exists
t ∈ T such that bt > 0, then, a ∈ intBS if and only if v is continuous on some neighborhood
of a.

Proof It is straightforward from Proposition 4.4 and Theorem 4.6.

Observe that Example 4.7 also shows that the converse of Corollary 4.3 fails, since S is
constant in a neighborhood of a but F is not lsc at a and S(a) �= F(a).

Proposition 4.9 Let a ∈ int domF be such that S(a) is a nonempty bounded set. If there
exists t ∈ T such that bt > 0, then S is usc at a.

Proof Suppose that S is not equibounded around a. Let S(a) ⊂ B (0n; k0), k0 ∈ N. Then
for each k ≥ k0 there exists ak ∈ C (T ,Rn) such that

∥∥ak − a
∥∥∞ < 1

k
and xk ∈ S(ak) such

that
∥∥xk

∥∥ ≥ k. Due to the continuity of v at a (Theorem 4.6), v
(
ak

) → v (a) .

We can assume w.l.o.g. that xk

‖xk‖ → u, with ‖u‖ = 1. Since
(
ak
t

)′
xk ≥ bt for all t ∈ T ,

dividing by
∥∥xk

∥∥ and taking limits as k → ∞ we get a′
t u ≥ 0 for all t ∈ T . So, on the

one hand, u ∈ F(a)∞. On the other hand, from c′xk = v
(
ak

)
, dividing again by

∥∥xk
∥∥ and

taking limits as k → ∞, we get c′u = 0. Thus u ∈ S(a)∞ (contradiction).
Moreover S is closed graph at a as a consequence of applying consecutively Propositions

4.1(i) and 4.2(i), taking into account that the assumptions imply that F is lsc at a. Since S

is equibounded around a and S is closed graph at a, we conclude that S is usc at a (apply,
for instance, Lemma 6.3.2 in [2]).

Corollary 4.10 Assume there exists t ∈ T such that bt > 0. If a ∈ intBS , then S is usc on
some neighborhood of a.

The last result in this paper characterizes continuity (and lower semicontinuity) of
S|domF through the uniqueness of optimal solution of the nominal problem. So, this
uniqueness is a necessary condition for the lower semicontinuity of S.
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Theorem 4.11 (Characterization of continuity of S|domF ) Given a ∈ C (T ,Rn) , the
following statements are equivalent:

(i) S|domF is continuous at a ∈ domF ;
(ii) S|domS is lsc at a ∈ domS;

(iii) S (a) is a singleton set.

Proof The implication (i) ⇒ (ii) is trivial. Let us prove (iii) ⇒ (i). If S (a) is a sin-
gleton and W is an open set such that S (a) ∩ W �= ∅, obviously S (a) ⊂ W. Now we
have that F|domF is lsc at a by applying Proposition 4.5(i) in [7]. The remark after Proposi-
tion 4.1 establishes the upper semicontinuity of v|domF , which itself implies that S|domF is
closed graph at a following the same argument that in the proof of Proposition 4.2 (i). By
Theorem 10.1(ii) in [10], the boundedness of S (a) entails the lower semicontinuity of v,

and so of v|domF , at a. Reasoning as in Proposition 4.9, it is easy to see that S|domF is equi-
bounded around a, and we conclude that S|domF is usc at a by applying Lemma 6.3.2 in
[2]. Therefore, S (a) ⊂ W for every a ∈ domF close enough to a. By Proposition 2.9(ii),
and since S (a) is a nonempty bounded set, a is an interior point of domS in the relative
topology of domF , entailing that S (a) �= ∅ if a ∈ domF is close enough to a; hence,
S (a) ∩ W = S (a) �= ∅ and S|domF is also lsc at a.

We now prove that (ii) ⇒ (iii) by contradiction. Let a ∈ domS, with S (a) being a
nonsingleton closed convex set. We discuss two possible cases:

Case 1: there exist x1, x2 ∈ S (a) such that dim span
{
x1, x2

} = 2.

In this case take u ∈ R
n such that u′x1 = 0 and u′x2 < 0. Setting aε

t := at + εu

for t ∈ T , we have x1 ∈ F (aε) for all ε > 0. Pick any x3 ∈ S (aε) if S (aε) �= ∅, or
alternatively, take x3 ∈ F (aε) such that c′x3 < c′x1, otherwise.

Let us prove by contradiction that u′x3 ≥ 0. Indeed, assume u′x3 < 0. Since x3 ∈
F (aε) ,

(
aε
t

)′
x3 = a′

t x
3 + εu′x3 ≥ bt for all t ∈ T ,

so that x3 is a Slater point of a. Since x3 ∈ F(a), the possibility c′x3 < c′x1 is excluded
and, consequently, c′x3 = c′x1. But this is impossible as the optimal value of a would be
attained at a Slater point (which is an interior point). Thus

S
(
aε

) ⊂ H+ :=
{
x ∈ R

n : u′x3 ≥ 0
}

while x2 /∈ H+. Since x2 ∈ S (a) we conclude that S|domS is not lsc at a.

Case 2: We now assume dimS (a) = 1 with 0n ∈ affS (a) . We consider two subcases,
either 0n ∈ S (a) or 0n /∈ S (a) .

If 0n ∈ S (a) , the previous argument applies taking x1 = 0n and u = x2 ∈ S (a) , with
x2 �= 0n. It remains to consider the case x1 ∈ S(a), x1 �= 0n and for some λ > 1 we have
λx1 ∈ S(a). In this case we define

cε := αε(c + εx1) with αε := ‖c‖∥∥c + εx1
∥∥

for ε ∈ I :=
[
0,

‖c‖
‖x1‖

[
, where c + εx1 �= 0n. It is evident that the functions ε �→ αε and

ε �→ cε are continuous on I, where we set c := c0.
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Let Tε be an n × n orthogonal matrix whose entries are continuous functions of ε on I

and such that Tεcε = c. Obviously, T0 is the identity n × n matrix. Associated with this
transformation we introduce the parameter aε ∈ C (T ,Rn) defined as follows,

aε
t = Tεat ∀t ∈ T ,

and its corresponding perturbed problem

P
(
aε

) : inf c′y s.t. (aε
t )

′y ≥ bt , t ∈ T ,

where we have replaced, for our convenience, the usual variable x by y.

If at �= 0n, one has

∥∥aε
t − at

∥∥ = ‖(Tεat ) − at‖ = ‖at‖
∥∥∥∥Tε

(
at

‖at‖
)

− at

‖at‖
∥∥∥∥

= ‖at‖
∥∥∥∥Tε

(
cε

‖cε‖
)

− cε

‖cε‖
∥∥∥∥

= ‖at‖
‖c‖ ‖Tε (cε) − cε‖ = ‖at‖

‖c‖ ‖c − cε‖

≤ ‖at‖
‖c‖

(
|1 − αε| ‖c‖ + αεε

∥∥∥x1
∥∥∥
)

≤ μ

‖c‖
(
|1 − αε| ‖c‖ + αεε

∥∥∥x1
∥∥∥
)

,

where μ := maxt∈T ‖at‖. If at = 0n, one has aε
t = 0n, and from the last inequality, it turns

out that aε → a uniformly as ε ↓ 0.

Putting y = Tεx in P (aε) , and observing that

(aε
t )

′y = a′
t T

′
εy = a′

t x, and

c′y = c′
εT

′
εy = c′

εx,

we get an equivalent problem (orthogonal transformations preserve scalar products), with
decision variables x’s,

P̃
(
aε

) : inf c′
εx s.t. a′

t x ≥ bt , t ∈ T ,

whose feasible set and optimal set are F̃ (aε) = T ′
ε (F (aε)) and S̃ (aε) = T ′

ε (S (aε)) ,

respectively.

Consider the open half space H+ =
{
x ∈ R

n : (
x1

)′
x >

∥∥x1
∥∥2

}
. We have

d
(
λx1,Rn

�H+) = (λ − 1)
∥∥x1

∥∥ > 0. So, by the continuity of T ′
ε on I, there exists

ε0 > 0, ε0 <
‖c‖
‖x1‖ , such that d

(
T ′

ε

(
λx1

)
,Rn

�H+)
>

(λ−1)
∥∥x1

∥∥
2 for all ε ∈ [0, ε0[ .

Thus, the ball W := B

(
λx1 ; (λ−1)

∥∥x1
∥∥

2

)
satisfies λx1 ∈ W and T ′

ε (W) = T ′
ε

(
λx1

) +
(λ−1)

∥∥x1
∥∥

2 B (0n; 1) ⊂ H+, i.e.
(
x1

)′
(x − x1) > 0, for all x ∈ T ′

ε (W) , for ε ∈ [0, ε0[ . (26)

If x̃ ∈ T ′
ε (W) ∩ F(a), from c′(x1 − x̃) ≤ 0 (as x1 ∈ S(a)) and (26), one gets

c′
ε(x

1 − x̃) = αε(c + εx1)′(x1 − x̃)

= αε

{
c′(x1 − x̃) − ε

(
x1

)′
(̃x − x1)

}
< 0,
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which shows that x̃ is not optimal for problem P̃ (aε) . So, T ′
ε (W) ∩ S̃(aε) =

T ′
ε (W ∩ S(aε)) = ∅, i.e. W ∩S(aε) = ∅. On the other hand, W ∩S(a) �= ∅ (remember that

λx1 ∈ W ∩ S(a)), and this contradicts the assumption that S|domS is lower semicontinuous
at a.

The proof is complete.

Corollary 4.12 The following equivalence holds: a ∈ intUS if and only if S is continuous
on some neighborhood of a.

5 Left-Hand Side vs. Arbitrary Perturbations

As already mentioned in the introduction, stability properties of a given (nominal) optimiza-
tion problem depend on the type of allowed perturbations and, even in cases where some
results are identical, the corresponding proofs may be quite different. In this section we
compare two models for the same problem:

inf c′x
s.t. a′

t x ≥ bt , t ∈ T ,

where T is a compact Hausdorff topological space T , a ∈ C (T ,Rn) , b ∈ C (T ,R) , and
c ∈ R

n\ {0n} . Model I (developed in this paper) considers left-hand side perturbations while
Model II allows arbitrary perturbations of all the data, always preserving continuity of the
coefficients with respect to the index t ∈ T . The parameters spaces are �1 = C (T ,Rn) ,

and respectively, �2 = C (T ,Rn)×C (T ,R)×R
n. This latter is equipped with the following

metric:

d
((

a1, b1, c1
)
,
(
a2, b2, c2

)) := max
{∥∥c1 − c2

∥∥ , maxt∈T

∥∥(
a1
t , b

1
t

) − (
a2
t , b

2
t

)∥∥}
.

The sets UF , BF , US , BS , and the mappings F ,S : �2 ⇒ R
n and v : �2 → R∪ {±∞}

are defined in an analogous manner for both models.

5.1 Stable Properties

Regarding Model II, almost nothing can be said for the sets domF , domS , BF and UF
considered in Section 2. The only known relevant result is a characterization of int domF ,
see [11, Theorem 5.3.3(i)]:

(
a, b, c

) ∈ int domF ⇔ SC holds.

The same characterization holds true for Model I whenever there exists t ∈ T such that
bt > 0 (Proposition 2.5 (B)). Let us observe that the interior of other sets of parameters (e.g.,
those providing bounded problems, inconsistent problems, etc.) has been characterized for
Model II [11, Theorem 5.3.3] but not for Model I.

5.2 Stability of the Feasible Set

The characterization of the upper semicontinuity of F is exactly the same for both models,
but the argument is much more delicate for Model I (compare proofs of Theorem 3.6 and
[9, Theorem 3.1] or [5, Theorem 2.1(b)], for Models I and II, respectively).

For Model II, lower semicontinuity of F is equivalent to a long list of properties, e.g.,(
a, b, c

) ∈ int domF , SC or full dimension of F
(
a, b, c

)
([10, Theorem 6.9] extends and
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improves [9, Theorem 4.1] and [5, Theorem 2.1(c)]). For Model I, however, the situation
is much more complicated: according to Proposition 3.2, if F is lsc at a ∈ int domF and
F (a) �= {0n} , then a satisfies SC. Fortunately, the weaker property that F|domF is lsc
at a in Model II has a neat characterization whenever

(
at , bt

) �= 0n+1 for all t ∈ T :
dimF (a) ∈ {0, n} ([7, Theorem 2.9]).

5.3 Stability of the Optimal Set

Classical results on Model II establish that, given
(
a, b, c

) ∈ domS, the following
statements hold:

1. S is closed graph at
(
a, b, c

) ⇔ either F is lsc at
(
a, b, c

)
or F

(
a, b, c

) = S
(
a, b, c

)

[9, Theorem 3.2];
2. let

(
a, b, c

)
be such that F

(
a, b, c

)
does not contain lines. Then, S is lsc at

(
a, b, c

) ⇔
F is lsc at

(
a, b, c

)
and

(
a, b, c

) ∈ US [9, Theorem 4.2];
3. if S is usc at

(
a, b, c

)
, then S is closed graph at

(
a, b, c

)
. The converse is true whenever(

a, b, c
) ∈ BS [9, Theorem 3.3].

The corresponding results for Model I are less neat:

1. S is closed graph at a whenever either v is usc at a ∈ v−1 (R) or F (a) = S (a)

(Proposition 4.2);
2. S is lsc at a ⇒ a ∈ US (from Theorem 4.11);
3. If a ∈ BS ∩ int domF and bt > 0 for some t ∈ T , then S is usc at a (Proposition 4.9).

5.4 Stability of the Optimal Value

The stability of the optimal value for Model II is investigated in [5, Section 3] (see also [4]),
which actually deals with the stability of v |v−1(R). On the other hand, Propositions 4.1 and
4.4 herein, as well as Theorem 4.6, on Model I, are concerned with v. Therefore, no direct
comparison is in principle possible.

Moreover, some of our results in Section 4 on semicontinuity properties of v can per-
haps be derived by combining conveniently some results in [1] (e.g. [1, Theorems 3.1.3,
4.2.2(2), 4.2.3(1)] or Dolecki’s Theorem, etc.). In this paper we provide simple and more
direct proofs.
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10. Goberna, M.-A., López, M.A.: Linear Semi-Infinite Optimization. Wiley, Chichester (1998)
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