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The ability of dendritic cells (DCs) to initiate and modulate antigen-specific immune 
responses has made them attractive targets for immunotherapy. Since DC research 
in humans is limited by the scarcity of DC populations in the blood circulation, most 
of our knowledge about DC biology and function has been obtained in  vitro from 
monocyte-derived DCs (moDCs), which can be readily generated in sufficient numbers 
and are able to differentiate into distinct functional subsets depending on the nature 
of stimulus. In particular, moDCs with tolerogenic properties (tolDCs) possess great 
therapeutic potential for the treatment of autoimmune diseases. Several protocols have 
been developed to generate tolDCs in vitro, able to reinstruct auto-reactive T cells and 
to promote regulatory cells. While ligands and soluble mediators, by which DCs shape 
immune responses, have been vastly studied, the intracellular pathways and transcrip-
tional regulators that govern tolDC differentiation and function are poorly understood. 
Whole-genome microarrays and proteomics provide useful strategies to dissect the 
complex molecular processes that promote tolerogenicity. Only few attempts have been 
made to understand tolDC biology through a global view on “omics” profiles. So far, 
the identification of a common regulator of tolerogenicity has been hampered by the 
fact that each protocol, used for tolDC generation, targets distinct signaling pathways. 
Here, we review the progress in understanding the transcriptional regulation of moDC 
differentiation, with a special focus on tolDCs, and highlight candidate molecules that 
might be associated with DC tolerogenicity.
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inTRODUCTiOn

Dendritic cells (DCs) are professional antigen-presenting cells that direct specific immune responses 
according to the nature of captured antigens and environmental stimuli (1, 2). They form a heteroge-
neous group, comprising plasmacytoid DCs, CD1c+ and CD141+ myeloid DCs, originating from a 
common DC precursor (3), as well as inflammatory DCs, that differentiate from monocytes under 
inflammatory conditions (4).
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Immature DCs continuously sample antigen, but represent 
poor inducers of immune responses (2). Upon recognition of 
pathogen- or danger-associated patterns and integration of 
pro-inflammatory signals from the environment, DCs undergo a 
maturation process, which enables them to migrate toward lym-
phoid tissues and initiate antigen-specific T cell responses (5, 6). 
DCs instruct T cells through the presentation of antigen peptides 
on major histocompatibility complexes (MHC), co-stimulation, 
and the secretion of T cell-attracting chemokines and cytokines 
promoting T cell expansion and differentiation into effector cells 
with a particular cytokine profile (7). DCs are also able to induce 
and maintain tolerance to harmless and self-antigens, through 
deletion of auto-reactive T cells, induction of anergy, and/or 
generation of regulatory T cells (Tregs) (8–11).

In vitro, DCs can be differentiated from human peripheral blood 
monocytes in the presence of granulocyte-macrophage colony-
stimulating factor (GM-CSF) and interleukin (IL)-4 (12). Human 
myeloid and plasmacytoid DC subsets can be obtained from 
CD34+ cord blood progenitors in stromal cell-containing cultures, 
supplemented with Flt3L, stem cell factor, and GM-CSF (13). Here, 
we focus on monocyte-derived DCs (moDCs), which are closely 
related to inflammatory DCs (4), and represent the model of choice 
for studies on human DC biology and function, and the design 
of cell-based immunotherapies targeting antigen-specific immune 
responses (14–17). Autologous moDCs can be easily obtained in 
sufficient numbers from peripheral blood of patients, and either 
matured/activated to induce immunogenic properties (15), or 
modulated to promote immunoregulatory functions (18, 19).

Several protocols have been developed for the in vitro generation 
of human moDCs with tolerogenic properties (tolDCs), able to 
silence or reprogram auto-reactive T cells and induce regulatory 
lymphocytes (18, 20, 21). Their immunoregulatory function has 
been corroborated in vivo in rodent models of autoimmune diseases 
(22–26), and first clinical trials using autoantigen-pulsed tolDCs 
in patients with autoimmune disorders confirmed their safety and 
efficacy (27, 28). Studies on the mechanisms, by which tolDCs modu-
late T cell responses, indicate that cell-contact via co-stimulatory/
co-inhibitory signals (29), and anti-inflammatory cytokines, such as 
IL-10 and TGF-β (30) are required for tolerance induction. However, 
the intracellular molecular processes that govern DC differentiation 
toward a tolerogenic profile are scarcely understood (31).

Microarray technology allows the exploration of genome-wide 
changes during DC differentiation, maturation, and modulation 
(32–34). In some studies, microarray data are complemented by 
proteome-based strategies such as two-dimensional difference 
gel electrophoresis (2D-DIGE) and mass spectrometry (35–37).

Here, we review recent findings in gene expression analysis of 
moDCs, with special focus on approaches to unveil the molecular 
basis of DC tolerogenicity.

TRAnSCRiPTiOnAL CHAnGeS DURinG 
DenDRiTiC CeLL DiFFeRenTiATiOn 
FROM MOnOCYTeS

Gene expression studies of monocytes and moDCs revealed that 
differentiation of monocytes into DCs leads to the downregulation 

of genes encoding monocyte markers like CD14 and CD163, 
genes associated with cell adhesion and motility (E-cadherin, 
galectin-2, PECAM1/CD31, ICAM1/CD54), and signal trans-
duction/growth control (JAK3, GBP2, DUSP6, MAP3K8), as 
well as genes encoding the chemokines CXCL8/IL-8, CXCL3/
MIP-2β, and CCL4/MIP-1β, the cytokines and cytokine recep-
tors tumor necrosis factor (TNF)-α, IL-15, IL-6, IL-6R, IL13RA1, 
IL10RA, and TGFBR3, and the transcriptional regulators IRF7A, 
ERF2, FOSB, KLF9, GATA2, JUNB, and NFKBIA (32, 35, 36). 
By contrast, genes encoding proteins related to pattern recogni-
tion and antigen uptake (MRC1, FcγRII/CD32, NOD1), antigen 
processing and presentation (LAMP1, HLA-DPA1, HLA-DQA2, 
CD1a), and co-stimulation (CD83, CD86) were upregulated, 
together with genes encoding growth factors (TGF-β1, CSF1), 
cytokines and their receptors (IL-1β, TNFR2, IL1R1), lympho-
cyte attracting chemokines (CCL13/MCP-4, CCL17/TARC, 
CCL18/PARC, CCL22/MDC) and chemokine receptors (CCR5, 
CCRL2), enzymes and carriers of lipid metabolism (ALOX15, 
LIPA, CYP27A1), adenosine receptors (ADORA1, ADORA2B), 
signaling molecules (RAP1GAP, IP3KB, TRAF3), and transcrip-
tion factors IRF4, C/EBP–α, PPAR-γ, p53, and c-myc (32, 35, 36).

At protein level, the chaperones HSP27 and GRP78, as well 
as proteins involved in Ca2+-binding (S100A9/MRP14, S100A8/
MRP8), fatty acid binding (FABP4, FABP5, acyl-CoA-binding 
protein), cell signaling (GNAI2, ANXA2), oxidative stress 
(PRDX3, SOD2), and cell structure (vimentin) were found to be 
upregulated in DCs (35, 36).

CHAnGeS in Gene eXPReSSiOn 
PROFiLeS UPOn DenDRiTiC CeLL 
MATURATiOn

Several stimuli are used to induce maturation of DCs in  vitro, 
including pro-inflammatory cytokines and microbial products, 
leading to morphological changes, upregulation of MHC, and 
co-stimulatory molecules, as well as characteristic chemokine 
and cytokine profiles (38–42).

Gene expression studies confirmed that previously 
described markers of mature DCs, such as the co-stimulatory/
co-activating molecules CD86, CD83, and CD40, the cell adhe-
sion molecules ICAM1/CD54 and CD49d, the lymph node 
homing-mediating chemokine receptors CCR7 and CXCR4, and 
the pro- inflammatory cytokines TNF-α, IL-1β, and IL-6 were 
upregulated at transcriptional level, too, regardless of whether 
maturation was induced by cytokines or pathogen-derived stimuli 
(38–42). Similarly, transcriptome studies revealed a characteristic 
chemokine pattern in mature DCs, including the upregulation 
of CCL2/MIP-1α, CCL8/PARC, CCL17/TARC, CCL22/MDC, 
CXCL8/IL-8, CXCL9/MIG, CXCL10/IP-10, and CXCL11/I-TAC 
transcripts (38–42). The global view on gene expression profiles 
uncovered also differences in transcriptional patterns of moDCs 
matured with distinct stimuli, despite comparable morphology 
and phenotype (43). For example, TNF-α-matured DCs exhibit 
a transcriptional profile similar to immature DCs, character-
ized by the upregulation of transcripts associated with pattern 
recognition and phagocytosis (CD209, CD205, FCGRIIB, FCAR, 
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FCER2, C1QA), cell adhesion (CD97, integrin β2/CD18, CD11b), 
transcriptional regulation (NFKBIA, EGR1), and tryptophan 
catabolism (IDO) (35, 36). Interferon (IFN)-α-matured DCs, in 
contrast, display an upregulation of genes encoding maturation-
associated proteins (several HLA molecules, LAMP3), transcrip-
tion factors of the IFN pathway (STAT1, IRF7), components of 
the antiviral response (PKR, Mx1, TRAIL, granzyme, caspase 
1), as well as proteins related to TLR signaling (TLR2, TLR3, 
MyD88) (43, 44).

Oligonucleotide microarrays of human moDCs, matured by 
the exposure to bacteria, fungi, viruses, or their components, 
revealed not only pathogen-specific maturation programs but 
also a common core response to all pathogens (45, 46). This 
core response comprises the downregulation of genes encod-
ing pathogen recognition and phagocytosis receptors (MMR, 
AP2M1), and the upregulation of genes involved in antigen pro-
cessing and presentation (HLA, LMP2, TAP1, TAP2), signaling 
(MyD88, lyn), and migration (fascin), as well as those encoding 
transcription factors (IRF1, IRF7, STAT1), chemokines required 
for the recruitment of innate immune cells (CCL3/MIP-1α, 
CCL4/MIP-1β, CCL5/RANTES), and molecules involved in the 
killing of invasive microorganisms (SOD2, thioredoxin) (45, 46). 
Serial analysis of gene expression (SAGE) in lipopolysaccharide 
(LPS)-matured DCs vs. immature DCs additionally revealed an 
upregulation of genes encoding the chemokines CCL18/PARC 
and CCL19/MIP-3β/ELC, LAMP3, related to antigen processing 
and presentation, as well as genes associated with cytokine sign-
aling pathways (IL27B/EBI3, IFI27, ISG20), and protein serine/
threonine kinase activity (MAP4K3, STK4) (47).

Kinetic analysis of global gene expression during human 
DC maturation, induced by bacterial lipopolysaccharide (LPS) 
and IFN-γ, or CD40 ligation, revealed a temporally coordinated 
transcriptional program: transcripts encoding pro-inflammatory 
cytokines and chemokines that guide immune cells to the sites 
of inflammation (CCL4/MIP-1β, CXCL2/MIP-2α) were early 
induced upon maturation, followed by an increase of transcripts 
encoding T cell-attracting chemokines (CCL5/RANTES, CCL15/
MIP-1δ), and late upregulation of genes related to survival (CLU, 
IAP-C, GADD45A), lysosomal function (LAMP3) and response 
to chemical stimuli (MT1E, MT1G) (33, 48). By contrast, genes 
encoding the aforementioned maturation markers, proteins 
involved in antigen processing and presentation (MHCI, TAP1, 
TAP2), the transcription factors IRF4 and IRF8, and the oxidative 
stress-associated molecules SOD2 and MT2A were upregulated 
at a constant level throughout maturation (33, 48).

Maturation induced by a standard cytokine cocktail contain-
ing TNF-α, IL-1β, prostaglandin E2 (PGE2) and IL-6, or an 
alternative cocktail, containing TNF-α, IL-1β, IFN-α, IFN-γ, 
and poly (I:C), increases the transcription of the co-inhibitor 
PD-L1, cell adhesion molecules (LFA3/CD58, PSGL1/CD162), 
cytokine receptors (IL-6Rβ/gp130, IL-2Rγ/CD132, IL4RA/
CD124, IL7RA/CD127, IL15RA), transcriptional regulators 
(RelB, NFKBIA, IRF1, RUNX3), apoptosis regulators (TNFAIP3, 
TNFAIP6, CFLAR), and enzymes SOD2 and IDO (49, 50). An 
integrated transcriptomic and proteomic analysis of cytokine-
matured DCs identified five major pathways that were differen-
tially regulated during DC maturation, at both RNA and protein 

levels, comprising cell adhesion, TLR signaling, PPAR signaling 
and lipid metabolism (PIK3R1, ACSL4, GK, DBI), migration, 
and cytokine-cytokine receptor interaction (CSF2RA, PTK2B), 
accompanied by the upregulation of transcription factors NFKB1, 
NFKB2, and RELA (37).

SeARCHinG MOLeCULAR ReGULATORS 
OF DenDRiTiC CeLL TOLeROGeniCiTY

Generation of Human Tolerogenic 
Dendritic Cells
Several protocols have been established to obtain human tolDCs 
with stable tolerogenic features from peripheral blood monocytes, 
differing in culture duration and nature of modulating agents. 
Common strategies are the modulation with anti-inflammatory 
cytokines, such as IL-10 (51) or TGF-β (52), immunosuppres-
sive drugs, including dexamethasone (53), rapamycin (54), 
aspirin (55), the PPAR-γ inhibitor rosiglitazone (56), tacrolimus 
(57), and the JAK inhibitor tofacitinib (58); natural compounds 
such as resveratrol (59), curcumine (60), 9-cis-retinoic acid 
(56), 1,25-dihydroxyvitamin D3 (vitD3), either alone (61) or in 
combination with dexamethasone (62); the HO-1 inducer cobalt 
protoporphyrin (63), and the NF-κB inhibitor BAY11-7082 (27).

Alternative or partial activation of DCs has been considered 
as essential for the efficacy of tolDC-based immunotherapy and 
can be achieved by adding LPS (10, 64, 65), its non-toxic analog 
monophosphoryl lipid A (66), CD40L (66), or the standard 
cytokine cocktail for DC maturation (67). This endows tolDCs 
with enhanced IL-10 production, antigen presentation, and 
lymph node homing capacity, while preserving a stable tolero-
genic profile upon exposure to activating stimuli (68).

Despite the diversity of stimuli used to obtain tolDCs, and 
although some properties vary amongst protocols, there is a 
consensus about fundamental features that tolDCs must pos-
sess, including low expression of co-stimulatory molecules, high 
production of anti-inflammatory cytokines, mainly IL-10, and 
low levels of pro-inflammatory cytokines, as well as the ability to 
induce T cell hyporesponsiveness or Tregs (67, 69, 70).

Global Gene expression Profiling of 
Tolerogenic Dendritic Cells
To date, few studies have attempted to unravel the molecular 
basis of DC tolerogenicity through transcriptome and proteome 
profiling (Table 1).

Transcriptome analysis of human tolDCs, obtained by 
modulation with IL-10 alone or in combination with TGF-β or 
IL-6, and compared to LPS-matured DCs, revealed an upregula-
tion of 36 common genes in all three tolDC types, belonging to 
the functional categories of defense response (CD37, CXCL8/
IL-8, CXCL1), antigen processing and presentation (CTSB, 
CTSL, HLA-DOB), TGF-β signaling (TGFB, SMAD3), cell 
adhesion (THBS1), complement and coagulation cascades 
(C2), transcription (HOXB5, TRRAP), and lipid metabolism 
(TBXA2R), while 34 genes were downregulated, including 
CD48, IL-1A, CCL17/TARC, CD74, CREM, and PRDX5 (69). 
Upregulation of ENTPD1/CD39 and TRAF6 was specific to 
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TABLe 1 | Upregulated genes and proteins in human tolerized DCs.

Stimulus Technique Functional categories Upregulated genes or proteins Reference

Tolerogenic DCs
IL-10 Microarray vs. 

immature DCs
Defense response/immune 
response

CD37, IL8, CXCL1, FCGR2B, IL7, IL7R, CTSB, CTSL, CST3, 
HLADOB, C2, PLAUR

(69, 71)

Lymphocyte activation IL7, IL7R, IL4RA, PBEF
Signaling TFGB, SMAD3, ID4, FSHR, FZD7, FZD2, VCAN, VDR, RELB
Cell adhesion THBS1, SPARC, HAPLN1, HAS1, EFEMP2
Metabolism TBXA2R, PTGDS, LYPLA3, ADHD4, LENG4, PLTP, RBP4, 

CHSY1, SIAT4A, GK, NUPL1
Stress response SOD2, HSP70
Metal ion binding FTH1, LTF, ENPP2, GLI2, CD71
Transcription KLF2, TRRAP, TCF15, DNMT3B, HIRA, FOXB1, SCAND1, DTX1

TGF-β + IL-10 Microarray vs. 
immature DCs

Defense response/immune 
response

CD37, IL8, CXCL1, ENTPD, CTSB, CTSL, CST3, HLADOB, C2, 
C1QA

(69)

Signaling TFGB, SMAD3, FSHR, FZD7
Cell adhesion THBS1, SPARC, HAPLN1, HAS1, EFEMP2
Metabolism TBXA2R, APOA4, PTGDS, LASS4, RBP4
Stress response SOD2
Metal ion binding FTH1, LTF
Transcription TRRAP, DNMT3B, HIRA, SCAND1, DTX1, HOXB5, RBM9

IL-6 + IL-10 Microarray vs. 
immature DCs

Defense response/immune 
response

CD37, IL8, CXCL1, FCGR2B, CTSB, C2, CTSL, CST3, HLADOB, 
C1QA, F13A1, PLAUR

(69)

Lymphocyte activation IL7R
Signaling TGFB, SMAD3, FSHR, FZD7, RELB
Cell adhesion THBS1, SPARC, HAPLN1, HAS1, EGFR EFEMP2,
Metabolism TBXA2R, APOA4, PRKAG1, LYPLA3, ABHD4, LASS4, RBP4
Stress response SOD2
Metal ion binding FTH1, LTF, GLI2
Transcription KLF2, TRRAP, HOXB5, TCF15, FOXB1, DNMT3B, RBM9, 

SCAND1, HIRA, DTX1

Dexamethasone DIGE and label-free 
mass spectrometry 
vs. immature DCs

Defense response/immune 
response

C1QB, C1QC, F13A, CATC (72)

Signaling STAB1, OSTF1, TPP1, CLIC2, MRC1
Metabolism FKBP5, ANXA1, IMPDH2
Stress response GPX1

TX527 (vitD3 analog) 2D-DIGE and 
MALDI-TOF/TOF vs. 
immature DCs

Defense response/immune 
response

NCF2, IL1RN (73)

Signaling EFHD2, ANXA2, EHD4
Metabolism CA2, FBP1, G6PD, ACO1, AKR7A2, AKR7A1, ECHS1, LDHB, 

TGM2, ACOT7, IDH3B, MGLL, NAMPT
Stress response PDCD6IP
Cytoskeleton/cell growth LSP1, TUBB4, TUBB5, LMNA, FSCN1 CAP1, RhoGDI
Protein biosynthesis/proteolysis CTSD, SERPINB6, CCT1, CACYBP, IF4H EEF1G, EEF2, TUFM, 

HSP90B1, EIF3S3

vitD3 Microarray vs. early 
DCs

Defense response/immune 
response

IL1RN, CCL22, CD14 (34)

Metabolism CA2, GLU3, HK3, PFKFB4, PIK3CG, CMYC, PDHA1, AMPK, 
LDHA, ACC, FBP1

Signaling NFKB2, RELB
Transcription PRR5, PDK4, CEBP
Oxidation-reduction ATP5A1, SOD2

Dexamethasone +  
vitD3

Microarray vs. 
immature DC and 
LPS-matured DCs

Metabolism ACADM, ACADVL, ACO2, ACO2, ACOX2, ACSS1, ALDH2, 
DHRS9, GAPDH, IDH3A, IDH3B, LDHB, MDH2, ME1, ME3, 
PCK2, PKM2, SLC27A5, SUCLG1, SUCLG2, TPI1

(74)

Oxidation–reduction SDHA, ATP5G3, ATP5J, ATP5O, COX6A1, COX7A2, COX11, 
CYC1, NDUFS1, NDUFS8, NDUFB9, PDHA1, PRDX3, SNCA, 
UQCRB, UQCRC11

Signaling EIF3B, EIF3C/EIF3CL, EIF4A3, PIK3R1, RPS19, RPS21, 
RPS6KA1, RPS6KA2, NOS3, RPS12, SLC2A5, SLC2A1, PIK3R1

Transcription TP53, TCEB1
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Stimulus Technique Functional categories Upregulated genes or proteins Reference

Activated tolerogenic dendritic cells
IL-10 + LPS Microarray vs. 

immature DCs and 
LPS-matured DCs

Defense response/immune 
response

CCL19, CXCL13, TNFR2, DR6, FCGR1A, CASP5 (71)

Signaling JAK1, RHO6, ITPKC, RGS16, ACPP, MUC1
Cell adhesion ITGB3
Metabolism GK, CHSY1, BMP2, CHI3L2, NNMT, PAM, ASM3A, MAOA
Metal ion binding CD71, ENPP2, SCL31A2
Transcription VAV1, ARNT2, CEBPD, FOXO3

TX527 (vitD3 
analog) +  
LPS + IFNγ

2D-DIGE and MALDI-
TOF/TOF vs. LPS +  
IFN-γ-matured DCs

Defense response/immune 
response

NCF2, ANXA6, PSME2, SERPINB9 (73)

Signaling EFHD2, GDI1, PPP2R1A, SUMF2, ANXA2, SDCBP
Metabolism CA2, G6PD, FBP1, PCK2, PKM2, IDH3A, ACO2, ACOX1, CES1, 

TGM2, GM2A, GANAB, OGDH, HADHA, PRDX3, DLD, ACADVL
Stress response ORP150, LTA4H, TXNDC4
Cytoskeleton/cell growth ACTB, ACTG1, ACTR2, ARHGDI1, FSCN1, IMMT, LASP1, LCP1, 

PHB, TWF2, VIM, WDR1
Protein biosynthesis/proteolysis CTSD, HSPD1, HSPH1, LAP3, SERPINB6, CTSS
Oxidation–reduction ATP5A1, SOD2

Dexamethasone +  
CD40L

2D-DIGE and  
MALDI-TOF/TOF vs. 
CD40L-matured DCs

Defense response/immune 
response

IL1RN, SAMHD1 (75)

Signaling HNRNPK, DPYSL2
Metabolism FAH, GALK1, GLO1, PPA1, ECHS1, TPII, GSTO1, GSTP1, G6PD, 

PKM2, ENO1, ACO2, PKM1, ENO3, FTH1, PRDX6, MDH1, IDH1 
Stress response HSPA1A, HSPA1B, HSPA8, STIP1
Transcription HNRNPL, EBP1
Cytoskeleton/cell growth ACTB, GSN, LCP1, TUBA1A, ACTB, FSCN1, TUBB, TBCB, 

TWF2
Protein biosynthesis/proteolysis PSMD13, CTSB, CTSZ, EIF3I, WARS, YARS
Oxidation-reduction GLUD1, SOD2, PRDX4

vitD3 + CD40L 2D-DIGE and  
MALDI-TOF/TOF vs. 
CD40L-matured DCs

Defense response/immune 
response

IL1RN (75)

Signaling DPYSL2, GRB2
Metabolism CA2, ALDH2, G6PD, GLO1, PGM1, PPA1, ECHS1, TPII, FBP1, 

PCK2, GSTO1, ENO1, PDHA1, PKM2, ALDOA, PGAM1, 
AKR1A1, LHDB, FTH1, FTL, GPD2, TKT, TALDO1, DLST, IDH3A, 
MDH1, ACO2, CS

Stress response HSPA1A, HSPA1B, HSPA8, HYOU1, STIP1
Transcription EBP1
Cytoskeleton/cell growth ACTB, CAPZA1, GSN, GMFG, LCP1, ARHGDIB, TUBA1A, ACTB, 

FSCN1, ARHGDIA, TWF2
Protein biosynthesis/proteolysis PSMD13, RPLP0, LAP3, WARS, UCHL5, PSMC5, CTSD, CTSH, 

LAP, TGM2, PDXK
Oxidation-reduction GLUD1, SOD2, CAT, PDIA4

Dexamethasone +  
vitD3 + CD40L

2D-DIGE and  
MALDI-TOF/TOF vs.  
CD40L-matured DCs

Defense response/immune 
response

IL1RN, PSMA1, ANXA11, SAMHD1 (75)

Signaling HNRNPK, GRB2
Metabolism FAH, ALDH2, G6PD, GALK1, GLO1, PGM1, ESD, PPA1, ECHS1, 

TPII, FBP1, PCK2, GSTO1, PDHA1, PKM2, ENO1, ALDOA, 
PGAM1, AKR1A1, IDH1, LHDB, FTH1, FTL, UROD, DDAH2, 
DLST, ALOX15, PRDX6, IDH3A, MDH1, ACO2, 

Stress response HSPA1A, HSPA1B, HSPA8, STIP1
Transcription EBP1
cytoskeleton/cell growth ACTB, CORO1A, GSN, CAPZA1, FSCN1, ARHGDIA, ARHGDIB, 

TWF2
protein biosynthesis/proteolysis PSMD13, PSMD7, TUFM, EEF2, CTSB, CTSD, CTSH, CTSZ, 

LAP3, PSMA5, TGM2, PDXK, WARS, PEPD
oxidation/reduction GLUD1, CAT, PRDX4, PDIA4
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Stimulus Technique Functional categories Upregulated genes or proteins Reference

Dexamethasone +  
vitD3 + LPS

Microarray vs.  
LPS-matured DCs

Oxidation–reduction ATP5B, ATP5D, ATP5H, ATP5L, BACE1, COX6B1, COX7B, 
COX8A, COX15, GLRX2, GSR, LHPP, NDUFA3, NDUFA6, 
NDUFA8, NDUFA12, NDUFB5, NDUFB6, NDUFV3, PINK1, 
PSENEN, SDHB, TRAK1, UQCR10,

(74)

Metabolism ACAD8, ACSL5, ALDH3A2, ALDH7A1, ALDH9A1, ALDOA, 
CYP1B1, DHRS4, DHRS9, ECI2, FBP1, GAPDH, GBA2, GPI, 
HADHA, HADHB, HK1, HK3, HPSE, MTAP, PKM2, UGDH,

Signaling ADRB2, ATM, CHRNB4, EGLN1, EIF3E, EIF3M, EIF4A1, EIF4, 
EBP1, MAPK14, MAP2K3, MLYCD, MRAS, MTOR, NAA10, 
PDGFC, PIK3R6, PPAT, PPM1A, P4HTM, PPP2R3A, PRKAR1B, 
PRKCB, PRKD3, RHOT1, RPS6KA2, RPS6KA3, SLC2A3

Transcription APEX1, COP9, COPS5, KAT2B, TCEB1

Genes are displayed in italic and transcription factors are underlined.
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IL-10  +  TGF-β-treated tolDCs, while the transcription factor 
ID4 was exclusively upregulated in IL-10-modulated tolDCs (69).

Global gene expression profiles of DCs, treated with IL-10, 
LPS, or a combination of both, unveiled three functional groups 
of genes that were regulated by IL-10 alone or in concert with 
LPS: inhibition of specific immunity and inflammation, tuning 
of cytokine receptor and G protein-coupled receptor (GPCR) 
signaling, and stimulation of B cell development/function and 
lymphoid tissue regeneration (71). Compared to LPS, IL-10 
alone induced a limited set of genes, encoding proteins related to 
B cell differentiation and function (SLAM, IL-7, IL-4Rα, PBEF), 
GPCR signaling (FZD2), and extracellular matrix (versican). In 
combination with LPS, IL-10 suppressed the expression of the 
LPS-inducible genes CD86, CD83, IL12, and CCR7. However, a 
set of genes was uniquely regulated by simultaneous treatment 
with IL-10 and LPS, including transcripts of intracellular signal 
transduction molecules (RGS16, JAK1), transcription factors 
(CEBP, ARNT2, FOXO3), and lymphocyte attracting chemokines 
(CXCL13/BLC, CCL19) (71).

Ferreira and colleagues explored global molecular changes 
induced in human moDCs by vitD3 and its analog TX527 
through transcriptomic and proteomic approaches, and 
assigned differentially regulated genes to three functional 
categories: cytoskeleton structure, protein biosynthesis/prote-
olysis, and metabolism (73, 75). VitD3 and TX527 reduced the 
expression of most cytoskeleton proteins, such as fascin, while 
enhancing the expression of metabolic proteins, e.g., CA2 and 
FBP1 (73, 75). Protein proteolysis/biosynthesis comprised the 
main group of proteins that were upregulated in response to 
TX527, involving translation (eEF1G, eEF2, EIF3S3, EIF4H) 
and the MHCI/II pathway, particularly CTSD and CTSS, which 
mediate the degradation of MHCII invariant chain/CD74 (73). 
Additionally, TX527 treatment increased the expression of 
stress response proteins, including SOD2, ORP150, HSPD1, 
and TXNDC4, and proteins of the cellular defense response, 
such as LTB4 and NCF2 (73).

The comparison of protein profiles of tolDCs, modulated with 
vitD3, dexamethasone, or both, and subsequently activated by 
CD40L, revealed common functional groups that were regulated 
in all three tolDC types, but not in CD40L-matured DCs (75). 
These comprised lipid metabolism, i.e., fatty acid oxidation and 
elongation in mitochondria, glycerophospholipid metabolism and 

phospholipid degradation, as well as NRF2-mediated oxidative 
stress response (75). Protein interaction networks and pathway 
analysis indicated that vitD3, rather than dexamethasone, has a 
strong impact on metabolic pathways involving lipids, glucose, 
and oxidative phosphorylation, as well as on mitochondrial 
processes, including alterations of the mitochondrial transmem-
brane potential (75). By contrast, dexamethasone was shown to 
affect predominantly proteins of the stress response, e.g., HSP71, 
and induced proteins of glutathione metabolism, acute phase 
response signaling, and MHCII antigen presentation pathways, 
including multiple isoforms of CTSB, CTSD, and CTSZ (75). 
Combined treatment with vitD3 and dexamethasone, which 
promotes a strong tolerogenic profile regarding the modulation 
of T cell responses (75), induced a unique protein signature, 
dominated by the metabolic effect of vitD3 (75). When compared 
to treatment with each stimulus alone, combination of vitD3 
and dexamethasone upregulated proteins involved in the anti-
apoptotic response (HSPA9, PYCARD, and ANXA1), protein 
biosynthesis/proteolysis, protein binding/folding, and immune 
response (IL1RN, ANXA11, SAMHD1) (75).

Microarray analysis of intracellular processes, induced early 
during differentiation of monocytes to vitD3-tolDC, revealed an 
upregulation of genes related to glucose metabolism, tricarboxylic 
acid cycle, and oxidative phosphorylation, including GLU3, HK3, 
PFKFB4, PDHA1, LDHA, ATP5A1, and the transcription factor 
C-MYC (34). Glucose availability and glycolysis, controlled by the 
PI3K/Akt/mTOR pathway, were shown to dictate the induction 
and maintenance of the tolerogenic phenotype and function in 
vitD3-modulated tolDCs (34).

Similar results were reported by Malinarich and colleagues, 
who compared transcriptomes of tolDCs modulated by dexa-
methasone and vitD3, with or without activation by LPS, to those 
of immature and LPS-matured DCs (74). This study confirmed 
the upregulation of catabolic pathways, including oxidative 
phosphorylation, fatty acid metabolism, and glycolysis, in vitD3-
modulated tolDCs compared to immature DCs (74). However, 
LPS-induced activation was shown to decrease the metabolic 
plasticity in tolDCs and DCs, mainly by negatively regulating 
oxidative phosphorylation, without affecting mitochondrial 
function (74).

Using a different approach, Zimmer and colleagues ana-
lyzed proteomes of human moDCs, either modulated with 
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dexamethasone or activated with LPS or peptidoglycan, using 
DIGE and label-free mass spectrometry to identify putative 
biomarkers of tolDCs (72). Proteomic analysis uncovered 14 
potential marker candidates that were significantly upregulated 
in tolDCs compared to immature DCs and LPS- or peptidogly-
can-matured DCs, including FKBP5, GPX1, C1QA, and STAB1 
(72). Evaluation of candidate expression in other tolDC types, 
modulated by IL-10, rapamycin, vitD3, TGF-β, or Aspergillus ory-
zae protease, through qPCR and Western blot analysis, revealed 
substantial heterogenicity. Only ANXA1, CATC, and GILZ were 
upregulated in all tolDCs subtypes and therefore suggested as 
tolDC markers (72).

Different tolDC types share main phenotypic and functional 
characteristics, however, transcriptome and proteome studies 
demonstrated that each modulatory agent, used to promote 
tolDCs, induces a distinct transcriptional program in DCs 
(Table 1). While IL-10 mainly affects immunological processes 
(71), vitD3 has a major impact on metabolic pathways, involving 
oxidative phosphorylation, fatty acid, and glucose metabolism 
(34, 74). By contrast, dexamethasone exerts an influence on 
glutathione metabolism and upregulates genes related to stress 
response and redox homeostasis (72, 74, 75). There are only few 
common molecules found to be upregulated in different tolDC 
types, including the cytokine IL-1Ra (IL1RN), complement 
component 1q (C1Q), coagulation factor XIIIa (F13A), throm-
bospondin-1 (THBS1/TSP1), and superoxide dismutase (SOD2). 
IL-1Ra competes with IL-1 for binding to the IL-1 receptor, 
without inducing any intracellular response, and has been shown 
to inhibit DC maturation as well as T cell activation and polariza-
tion (76, 77). C1q was proposed to render DCs tolerogenic, by 
reducing the expression of co-stimulatory molecules and promot-
ing high levels of immunosuppressive IL-10 and TGF-β (78, 79). 
F13A+ DCs were shown to produce retinoic acid and induce 
Foxp3+ Tregs (80). THBS1 is directly associated with tolerance 
induction, by impairing T effector cell proliferation while pro-
moting Treg generation through ligation with its receptor CD47/
IAP (69, 81, 82). Only SOD2 was found to be upregulated in all 
tolDC types described herein, irrespective of subsequent activa-
tion via TLR or CD40 (34, 69, 73, 75). This antioxidative enzyme 
is also expressed by immature and mature DCs (33, 36, 69), and 
is crucial for  oxidative stress resistance and the regulation of 
inflammatory processes by attenuating the activity of NF-κB (83, 
84). Accordingly, in mice with heterozygous SOD2 deficiency, 

DCs accumulate reactive oxygen species under stress conditions, 
secrete higher amounts of IL-6, CXCL1, and CXCL2/MIP-2α, and 
show an impaired antigen-presenting and co-stimulatory capac-
ity, and decreased TNF-α secretion upon activation (85).

It is to be noted that the expression profiles of tolDCs show 
some overlap with those of immature DCs, e.g., upregulation of 
C/EBP, c-myc, p53, and SOD2 transcripts, which might be due 
to the inhibition of maturation/activation (34, 36). However, the 
transcriptome and proteome studies described herein unraveled 
distinctive molecular signatures of tolDCs, indicating that tolero-
genic features emerge from a specific transcriptional program, 
rather than resulting from retention at an immature state.

COnCLUDinG ReMARKS

Knowledge about molecular mechanisms that govern DC dif-
ferentiation and function has increased due to technological 
advances. However, molecular switches that “turn on” tolerogenic 
functions in DCs remain largely unknown. Comparative tran-
scriptome studies confirmed that tolDCs possess a characteristic 
molecular signature rather than being retained at a phenotypic 
and functional immature/semi-mature state. Since diverse 
modulating agents used for the generation of human tolDCs 
target distinct signaling pathways, the identification of master 
regulators of DC tolerogenicity has been challenging. Further 
comparative “omics” studies are required to define which mol-
ecules induce an immunoregulatory profile and thus might be 
used as targets to render DCs tolerogenic and to enhance their 
stability, longevity, and resistance to stress or pro-inflammatory 
stimuli for immunotherapeutic application.
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