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(Received 17 August 2015; revised manuscript received 30 October 2015; published 17 December 2015)

We describe the features of magnonic crystals based upon antiferromagnetic elements. Our main results are
that with a periodic modulation of either magnetic fields or system characteristics, such as the anisotropy, it is
possible to tailor the spin-wave spectra of antiferromagnetic systems into a band-like organization that displays
a segregation of allowed and forbidden bands. The main features of the band structure, such as bandwidths and
band gaps, can be readily manipulated. Our results provide a natural link between two steadily growing fields of
spintronics: antiferromagnetic spintronics and magnonics.
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I. INTRODUCTION

Small deviations in the local magnetization of a mag-
netic system can propagate coherently in the form of spin
waves (SWs) whose associated quantum fields are known
as magnons. Due to the lack of Joule heating associated
with their transport they stand out as promising candidates
for application in the context of information processing [1].
The field of solid-state physics concerning the manipulation,
detection, and dynamics of SWs in a magnetic system has been
dubbed magnonics [2]. The field of magnonics has grown into
a well-established realm of magnetism and opened new paths
in the understanding of magnetization dynamics of complex
structures. Most of the research in magnetism has focused on
SWs propagating across systems with an overall ferromagnetic
order. For example, one of the most studied systems is
ytrium-iron-garnet [2], which, being ferrimagnetic, displays a
net magnetic moment in each unit cell. A central theme in the
field of magnonics is the implementation of magnonic crystals,
the SW analog of photonic and plasmonic crystals, structures
with magnetic properties spatially modulated in a periodic
fashion. In a magnonic crystal the SW spectrum is organized in
the form of bands with associated band gaps that can be tailored
by proper adjustment of the magnonic crystal properties. A
variety of magnonic devices has been proposed, which profit
from SWs as information carriers [3,4], signal filters, phase
shifters, isolators, and signal processing elements [2].

In this work we propose using antiferromagnets (AFs) as
the basic background material in magnonics devices [5]. To
highlight the potential of the use of antiferromagnetic materials
we illustrate two examples of magnonic crystals that can
be implemented using antiferromagnetic elements. Among
the main results we highlight the possibility of tailoring the
magnonic bands by the use of modulations in the magnetic field
or the anisotropy of the elements or simply by manipulation
of the geometry of the system. Our results point towards an
effective engineering of the magnonic bands.

Antiferromagnetic-based spintronics is a rapidly develop-
ing new field due to its promising and unique properties
for future spintronic devices in magnetism. Despite their
lack of macroscopic magnetization, AFs interact with spin-
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polarized currents and can give rise to spintronic effects
such as magnetoresistance and spin transfer torques [6–9],
the piezospintronic effect [10], and skyrmion textures [11].
Antiferromagnetic systems present a number of advantages
over ferromagnetic ones regarding potential applications.
The lack of stray fields, rapid frequency switching in the
terahertz range, and diverse functionalities to be integrated
with ferromagnets are among the best qualities of AFs [5,7].
The first one relates to the already mentioned lack of net
magnetization. Due to this, they do not create magnetic
fields, which renders local all the interactions involved in
their manipulation. The second is that the typical time scale
associated with changes in the magnetic structure is several
orders of magnitude shorter than the one associated with
ferromagnetic systems [12]. This opens the possibility of
implemening high-speed effects operating in the terahertz
range. Finally, antiferromagnetism is observed more often
and under much softer conditions than ferromagnetism, being
found even in semiconductors at room temperature [13]. This
allows us to envision hybrid devices that display features of
both electronic and spintronic characteristics. Among the large
assortment of antiferromagnetic materials, we have in mind
antiferromagnetic insulators with uniaxial anisotropy, such as
NiO [14], MnF2 [15,16], and FeF2 [17]. SWs in AF have
been studied since the dawn of quantum mechanics, both from
the theoretical point of view [18] and from the experimental
[19]. There is a great deal of knowledge accumulated over
decades involving the spectra of SWs in a variety of AFs. This
opens a window of opportunity for effective control of the SW
degrees of freedom. In this paper, we work out, based on the
phenomenological theory of spin dynamics in AFs developed
by Hals et al. [9], how to account for the SW physics in
spatially modulated AFs.

The structure of this paper is the following. In Sec. II, the
phenomenological model for AFs is presented and the basic
physics of SWs in AFs is discussed. An enquiry into antiferro-
magnetic magnonic bands, in Sec. III, is considered under two
scenarios, modulating periodically either the anisotropy or the
external magnetic field.

II. PHENOMENOLOGICAL THEORY

We start off our discussion by stating the basic features
of our model. We study the dynamics of the staggered
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magnetization field in a spatially modulated AF [9,20,21]. In
terms of the microscopic exchange energy J , lattice constant
�, coordination number z, and uniaxial anisotropy D, the free
energy density F for this system can be expressed [9] as a
functional of the staggered magnetization and magnetization
fields, n and m, respectively,

F =
[
a

2
m2 + A

2

∑
i

(∂in)2 − Kz

2
(n · ẑ)2 − H · m

]
, (1)

where a = 4zJS2/�3, the homogeneous exchange energy;
A = zJS2/2�, the exchange stiffness; Kz = 2DS2/�3, the
anisotropy (easy axis); and H = gμBB/�3, the external mag-
netic field. These parameters have spatial dependencies whose
specific form is specified later on. In F the fields are further
constrained to obey n · m = 0 and n2 = 1 at every instant and
everywhere within the system. The equations of motion can be
obtained from a variation of the action where the constraints
are enforced with the aid of suitable Lagrange’s multipliers.
The resulting dynamics is ruled by

ṅ = γ fm × n, (2)

ṁ = γ (fn × n + fm × m), (3)

where fm = −am + n × (H × n), fn = An × (∇2n × n) +
Kz(n · ẑ)n × (ẑ × n) − (n · H) m, and γ is the effective gy-
romagnetic ratio.

To determine the SWs we consider small variations around
the staggered magnetization (or Néel) vector and the canting
field. The canting field m is small with respect to the local
magnetic moment, which allows us to keep only the first-
order term. Considering n = n0 + δn(x,t) and m = m(x,t)
we expand up to first order the equations of motion [Eqs. (2)
and (3)] as

δṅ
γ

= −am × n0 − (n0 · H)δn × n0, (4)

ṁ
γ

= A∇2δn × n0 − Kz(n0 · ẑ)2δn × n0

− (n0 · H)m × n0. (5)

To solve these equations let us look for monochromatic
waves in the form

δn(x,t) = (ε1n1 + ε2n2)eik·x−iωt , (6)

m(x,t) = (ε1m1 + ε2m2)eik·x−iωt . (7)

In this representation we have used the constraints to express
both fluctuating fields in the plane perpendicular to n0, which is
spanned by the mutually orthogonal (but otherwise arbitrary)
vectors ε1 and ε2. In this expression n1,2 and m1,2 are
complex coefficients. Starting from Eqs. (4)–(7) in a direct
way we can assess the problem of SWs in a homogeneous
AF. The results are, naturally, consistent with the well-known
dispersion relation [21]

(ω ± γH )2 = aγ 2(Ak2 + Kz). (8)

As shown in Fig. 1 there are two independent solutions. One
has a phase difference between n1 and n2 equal to π/2,

FIG. 1. (Color online) (a) Spin-wave dispersion relation for the
homogeneous antiferromagnet. Without anisotropy the relation is
dispersionless (dashed line). The addition of anisotropy raises a gap
and changes the dispersion relation to the Klein-Gordon form (solid
line). In both cases the dispersion relation is doubly degenerated,
reflecting the two possible polarizations of the spin wave. (b) The
addition of a homogeneous magnetic field splits the degeneracy
and creates different dispersion relations (ω� and ω�) for the two
opposite polarizations. (c, d) Illustration of the two polarizations for
the spin wave. The disturbance is perpendicular to the equilibrium
staggered magnetization vector (n0) and precesses in a clockwise or
counterclockwise sense.

while the other has a phase difference equal to −π/2. These
solutions correspond, therefore, to SWs circularly polarized
to the left and to the right. In the absence of a magnetic field
both branches are degenerated. This degeneracy is split by
the magnetic field, which shifts the dispersion relation of the
right-polarized waves upward and the dispersion relation of the
left-polarized waves downward by an equal amount, γH . An
important aspect of the SW spectra that is encoded by Eqs. (4)
and (5) is that oscillations in the staggered magnetization order
parameter δn are linked to oscillations in the magnetization.
In fact, a quick look at Eqs. (4) and (5) allows us to write

m = −1

a

(
1

γ
n0 × δṅ + (n0 · H)δn

)
. (9)

This simple result is of great importance since it provides a
way to excite and measure antiferromagnetic SWs by coupling
them to the oscillation in the magnetization field that they carry.
This coupling to the magnetic degrees of freedom has been
used for decades to characterize the SW spectra of AFs [22].
In this way it is possible to use magnetization probes, such as
Faraday’s and Kerr’s effects or Brillouin light scattering [2], of
widespread use in the field of magnonics, to control and study
antiferromanetic SWs.

III. ANTIFERROMAGNETIC SPIN-WAVE BANDS

Now we are ready to present the main result of this work,
the study of different ways in which these antiferromagnetic
SWs can be manipulated with the aid of periodic manipulation
of the system parameters. We see how this manipulation gives
rise to magnonic bands that can be tailored with precision.
There are basically two essentially different ways to control
antiferromagnetic SWs. Starting from Eqs. (2) and (3) we
note the possibilities of modulating the system parameters
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(exchange constants, anisotropy, etc.) or the magnetic field.
Both parameters can be modulated to generate magnonic
crystals and in what follows we study the peculiarities of each
particular modulation.

Eliminating m from the equations of motion we are led to
the wave equation

δn̈ = ∇2δn − κ δn + 2h δṅ × n0 + h2δn, (10)

where we have set τ = 1/
√

Kzaγ 2 as the unit of time and λ =√
A/Kz, the domain wall width, as the unit of length. In the last

equation κ and h, the dimensionless anisotropy coefficient and
dimensionless magnetic field [h = γ τ (n0 · H)], respectively,
are regarded as periodically modulated. For common AFs
[15–17,23] the value of τ and λ lie in the range of picoseconds
and a few nanometers, respectively.

The solutions to the wave equation under periodic modu-
lation can be expressed in the form of Bloch wave functions
δn(x,t) = eik·x−ωt (ε1n1(x) + ε1n2(x)), where n1(x) and n2(x)
are periodic functions with the same period as the spatial
modulation. The equation of motion, within the Bloch’s
representation, unfolds into two coupled equations for n1(x)
and n2(x) that can only be fulfilled by choosing a ±π/2
phase shift between them. The waves are, therefore, circularly
polarized as in the homogeneous case. Due to the magnetic
field there is a splitting between the two circular polarizations.
For right-polarized waves we have δṅ × n0 = ωδn, while for
left-polarized waves we have δṅ × n0 = −ωδn. The equation
of motion becomes

−ω2δn = ∇2δn − κδn ± 2ω hδn + h2δn, (11)

where the ± sign is fixed by the polarization of the SW. This
equation, with κ and h regarded as periodic functions of space,
is the main tool to describe an SW crystal within an AF. Let
us give two examples of antiferromagnetic magnonic crystals
that use this equation as the starting point.

A. Periodically modulated anisotropy

We begin our discussion by considering the problem in the
absence of a magnetic field. We focus on a one-dimensional
array with spatially modulated anisotropy as illustrated in
Fig. 2. When modulating the spatial anisotropy one can
expect that the exchange parameters, a and A, will also be
modified. Our theory is capable of handling those modulations
in a straightforward manner. However, to avoid clumping our
discussion with far too many parameters we focus on a model
problem where only the anisotropy is modulated. We have,
then, a series of slabs of width β with different anisotropies
arranged with period α. SWs that propagate along the direction
transverse to the slabs experience a periodic modulation of the
anisotropy parameter, thereby giving rise to magnonic bands.
This situation can be modeled by the equation

δn̈ = ∇2δn − κ(y)δn, (12)

which shows complete degeneracy for the different polariza-
tions. Searching for plane waves along the x direction, with
wave number kx , we find

(
ω2 − k2

x

)
δn± = − d2

dy2
δn± + κ(y)δn±. (13)

FIG. 2. (Color online) (a) Model system for a magnonic crystal,
a heterostructure with changing anisotropy, illustrating the geometric
features. (b) Simple effective potential that represents the effect of
the modulated anisotropy. With the choice of units given in the
text, the potential is characterized by a reference anisotropy equal
to unity and deviations from it equal to δκ . (c) Left: Magnonic
dispersion relation for α = 1.0, β = 0.5, and δκ = 10. Bands are
doubly degenerated to account for the different polarizations. Bands
of forbidden frequencies are highlighted. Right: The same situation,
under the action of a uniform magnetic field h = 0.3. The degeneracy
between the different polarization states is broken. (d) Some features
of the band structure are displayed as a function of β/α. Top: The
bandwidth of the first bands is displayed for different values of the
crystal; solid lines correspond to α = 1 and dashed lines to α = 2.
Solid black and dashed (blue) lines correspond to δκ = −0.5 and
δκ = 3.0, respectively. Bottom: With the same parameters we display
the band gap between the first and the second bands.

In the physical problem at hand the anisotropy is modulated
in a piecewise constant fashion. The background anisotropy
of the system is chosen as the basis for the dimensionless
anisotropy κ . There are slabs of width b distributed uniformly
with period a, and within these the anisotropy is 1 + δκ . This
problem is equivalent to a Schrödinger equation with periodic
piecewise constant potential, which leads us to the well-known
Kronig-Penney model for electrons. Solutions of this model
can be found in textbooks [24] and consist of the matching
of solutions at each side of the structure and imposing Bloch-
boundary conditions. In Fig. 2 we present the results for a
variety of system parameters. A glance at Fig. 2 allows us to
state the main results: (a) a double-degenerated band structure
to account for different polarizations, (b) the appearance of
forbidden energy bands, and (c) the appearance of bands of
allowed energies with characteristic bandwidths. As shown in
Fig. 2(d) these features can be controlled by the appropriate
selection of the parameters of the magnonic crystal. The band
structure can be further controlled by exposing the system to
the effects of a magnetic, which that results in a splitting of
the degeneracy of the bands. This is shown in Fig. 2(c).
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(b)(a)

(c) (d)

FIG. 3. (Color online) (a) Arrangement of wires on top of a
two-dimensional antiferromagnetic sample. The magnetic field they
generate form a magnonic crystal. (b) The system is characterized
by a spatially modulated magnetic field that oscillates between two
extrema ±h within a period α. (c) Left: Band structure for α = 1,
κ = 1, and h = 0.5. Right: Band structure for h = κ = 1. The lowest
band minimum reaches 0, signaling the spin-flop instability. (d) As a
function of the magnetic-field strength we display the band structure
parameters. Top: Band gap for α = 2, 3, 4, and 5. Bottom: Band width
of the first band for the same parameters.

B. Field-mediated magnonic crystals

We now consider a magnonic crystal mediated by a
magnetic field. In this system a two-dimensional AF is exposed
to a periodically modulated external magnetic field. While the
details of the generation of this magnetic field are irrelevant
for the conclusions we are going to draw, we can picture the
following arrangement: locate the antiferromagnetic system
underneath a periodic array of wires as depicted in Fig. 3(a).
The situation that we propose consists of having a current
propagating across the wires. The magnitude of the current
across each wire is constant, while the direction of the current is
changed between consecutive wires. This type of arrangement
has been proposed and studied experimentally in Ref. [25] for
the design of current-controlled magnonic crystals. In this way

the Oersted field generated by the array of wires acts on the
AF in the form of a spatially periodic magnetic field that enters
into the wave equation [Eqs. (4) and (5)]. To fix ideas on the
nature of this equation we approximate the field by a piecewise
constant behavior with values of ±h. Assuming plane-wave
behavior along the x direction we find

(
ω2 − k2

x + κ + h2
)
δn± = − d2

dy2
δn± ± 2hωδn±. (14)

This problem is solved following the standard procedure
described in Ref. [24], in the same way as in our previous
discussion. The main results are displayed in Fig. 3. The
periodic magnetic field gives rise to a band structure with
characteristic band gaps and bandwidths that are characterized
in Fig. 3(d). As we increase the strength of the magnetic field,
the lowest point in the first band decreases continuously from
the value at zero field. This trend leads to an instability at
h = √

κ when the lowest band touches the bottom of the axis.
For fields greater than this critical value the ground state is
distorted in what is known as the spin-flop transition [16,22].

IV. CONCLUSIONS

We have discussed the possibility of implementing
magnonic crystals in the context of antiferromagnetic spin-
tronics. We propose two complementary methods to achieve
control over the magnonic degrees of freedom: first, by
controlling the anisotropy properties of the SW system and,
second, by exposing the AF to a periodically modulated
magnetic field. In both cases we discuss quantitatively the
properties of the resulting SW spectra and show how it led to
a band-like structure of allowed and forbidden bands whose
quantitative features can be tailored by proper adjustment of
the parameters of the magnonic crystal. This proposal bridges
together the two rapidly developing fields of magnonics and
antiferromagnetic spintronics.
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