Contents lists available at ScienceDirect

Chemical Geology

journal homepage: www.elsevier.com/locate/chemgeo

Chemical and isotopic features of cold and thermal fluids discharged in the Southern Volcanic Zone between 32.5°S and 36°S: Insights into the physical and chemical processes controlling fluid geochemistry in geothermal systems of Central Chile

O. Benavente ^{a,b,*}, F. Tassi ^{c,d}, M. Reich ^{a,b}, F. Aguilera ^e, F. Capecchiacci ^{d,e}, F. Gutiérrez ^{a,b}, O. Vaselli ^{c,d}, A. Rizzo ^f

^a Departamento de Geología, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile

^b Centro de Excelencia en Geotermia de los Andes (CEGA), Universidad de Chile, Plaza Ercilla 803, 8370450, Santiago, Chile

^c Dipartimento di Scienze della Terra, Via G. La Pira 4, 50121 Firenze, Italy

^d CNR-IGG Istituto di Geoscienze e Georisorse, Via G. La Pira 4, 50121, Firenze, Italy

^e Servicio Nacional de Geología y Minería, Av. Santa María Chaina 0104, Santiago, Chile

^f Istituto Nazionale Geofisica e Vulcanologia INGV, Sez. di Palermo, Via U. La Malfa 153, 90145 Palermo, Italy

ARTICLE INFO

Article history: Received 6 August 2015 Received in revised form 3 November 2015 Accepted 9 November 2015 Available online 15 November 2015

Keywords:

Fluid geochemistry Central Chile Water-gas-rock interaction Hydrothermal reservoir Geothermal resource Volcanoes

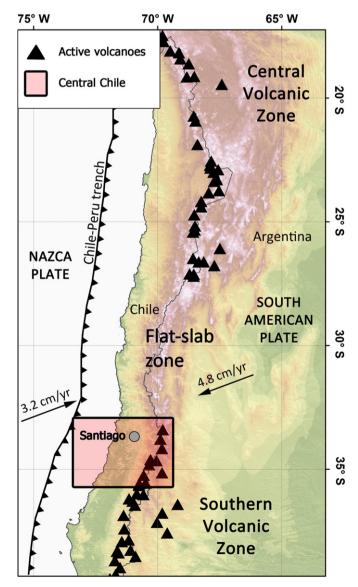
ABSTRACT

The Principal Cordillera of Central Chile is characterized by two belts of different ages and lithologies: (i) an eastern Mesozoic belt, consisting of limestone- and gypsum-rich sedimentary rocks at the border between Central Chile and Argentina, where the active volcanic arc occurs; and (ii) a western belt of Cenozoic age containing basaltic to andesitic volcanic and volcanoclastic sequences. This distinctive geological setting controls water chemistry of cold and thermal springs in the region, which are fed by meteoric water that circulates through deep regional structures. In the western sector of Principal Cordillera, water-rock interaction processes produce low TDS, slightly alkaline HCO₃⁻ dominated waters, although dissolution of underlying Mesozoic evaporitic rocks occasionally causes SO_4^2 and Cl^- enrichments. In this area, few Na⁺-HCO₃ and Na⁺-SO₄²⁻ waters occurred, being likely produced by a $Ca^{2+}-Na^+$ exchange during water-rock interactions. Differently, the chemical features of $Ca^{2+}-Cl^{-}$ waters was likely related to an albitization-chloritization process affecting basaltic to andesitic rocks outcropping in this area. Addition of Na⁺-Cl⁻ brines uprising from the eastern sector through the westverging thrust faults cannot be excluded, as suggested by the occurrence of mantle He (~19%) in dissolved gases. In contrast, in the eastern sector of the study region, mainly characterized by the occurrence of evaporitic sequences and relatively high heat flow, mature Na⁺–Cl⁻ waters were recognized, the latter being likely related to promising geothermal reservoirs, as supported by the chemical composition of the associated bubbling and fumarolic gases. Their relatively low ³He/⁴He ratios (up to 3.9 Ra) measured in the fumaroles on this area evidenced a significant crustal contamination by radiogenic ⁴He. The latter was likely due to (i) degassing from ⁴He-rich magma batches residing in the crust, and/or (ii) addition of fluids interacting with sedimentary rocks. This interpretation is consistent with the measured δ^{13} C-CO₂ values (from -13.2 to -5.72% vs. V-PDB) and the CO₂/³He ratios (up to 14.6×10^{10}), which suggest that CO₂ mostly originates from the limestone-rich basement and recycling of subducted sediments, with an important addition of sedimentary (organic-derived) carbon, whereas mantle degassing contributes at a minor extent. According to geothermometric estimations based on the Na⁺, K^+ , Mg^{2+} and Ca^{2+} contents, the mature Na^+-Cl^- rich waters approached a chemical equilibrium with calcite, dolomite, anhydrite, fluorite, albite, K-feldspar and Ca- and Mg-saponites at a broad range of temperatures (up to ~300 °C) In the associated gas phase, equilibria of chemical reactions characterized by slow kinetics (e.g. sabatier reaction) suggested significant contributions from hot and oxidizing magmatic gases. This hypothesis is consistent with the δ^{13} C-CO₂, Rc/Ra, CO₂/³He values of the fumarolic gases. Accordingly, the isotopic signatures of the fumarolic steam is similar to that of fluids discharged from the summit craters of the two active volcanoes in the study area (Tupungatito and Planchón-Peteroa). These results encourage the development of further geochemical and geophysical surveys aimed to provide an exhaustive evaluation of the geothermal potential of these volcanic-hydrothermal systems.

© 2015 Elsevier B.V. All rights reserved.

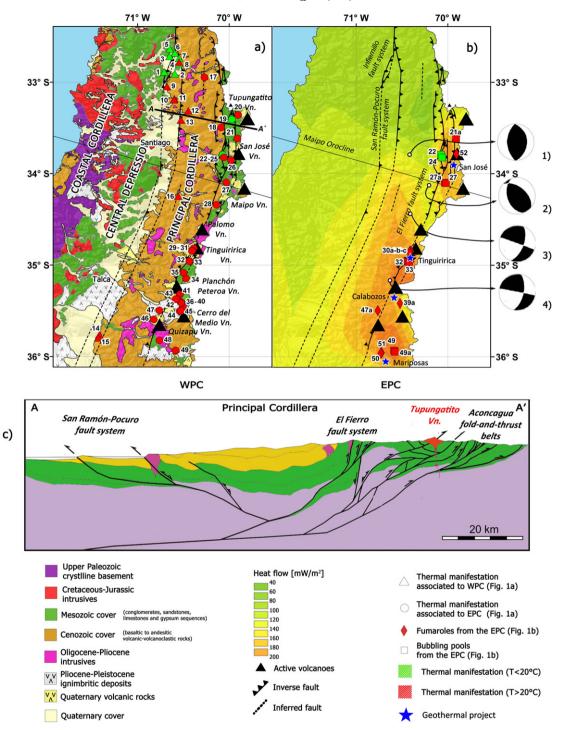
* Corresponding author at: Departamento de Geología, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile. *E-mail address:* obenaven@ing.uchile.cl (O. Benavente).

1. Introduction


The Andes of Central Chile (32.5-36°S) is an active subductionrelated mountain belt that hosts a number of hydrothermal systems feeding dozens thermal fluid discharges (Fig. 1; Hauser, 1997). In this region, the interplay between magmatism and hydrothermal fluid circulation has produced some of the world's largest mineral deposits, including Cu-porphyry, Au-Cu veins, Cu-skarn, and epithermal Au deposits (Maksaev et al., 2007; Stern et al., 2007). Nowadays, heat flow anomalies, active volcanoes and geothermal systems (Fig. 2a, b) seem related to the regional tectono-magmatic setting dominated by N-S- and NE-SW-trending thrust faults (Hamza and Muñoz, 1996; Hauser, 1997). According to preliminary surveys carried out by ENAP (Chilean National Oil Company), four promising areas, with an estimated geothermal potential ranging between 400 and 1300 MW_e (Soffia, 2004), were recognized in this sector of the Andes: (i) San José, (ii) Tinguiririca, (iii) Calabozos, and (iv) Mariposas. At Mariposas, measured temperatures in boreholes drilled at 659, 897 and 1074 m depth ranged from 190 to 204 °C (Hickson et al., 2011), whereas at Tinguiririca temperatures up to 235 °C were measured at ~800 m depth (Clavero et al., 2011; Droguett et al., 2012). Despite their significant potential, the geothermal exploitation is still a challenge in Chile, mainly due to social, political and economic reasons (Hall et al., 2009; Dufey, 2010; Barnett, 2012; Hodgson, 2013; Sanchez-Alfaro et al., 2015).

A preliminary survey of the chemical characteristics of the thermal springs in the study area was carried out by Hauser (1997), who proposed the occurrence of two main fluid domains. The first domain refers to the north-western sector of Principal Cordillera (PC) from 32.5°S to 34°S (Fig. 2a), where a heat flow up to ~60 mW/m² was estimated (Hamza and Muñoz, 1996). Cold and thermal waters, mostly located along the San Ramón-Pocuro fault system (Fig. 2b), showed relatively low values of total dissolved solids (TDS <2000 mg/L). The second domain, corresponding to the south-eastern sector of PC from 35°S to 36°S (Fig. 2a), is marked by an anomalously high heat flow (up to 220 mW/m²; Hamza and Muñoz, 1996), and hosts thermal springs with relatively high TDS values (up to 20,000 mg/L). A geochemical study focused on the He isotope ratios from geothermal fluids and rocks from a wide region of the Andes (Hilton et al., 1993) reported two relatively low Rc/Ra values for gases from this domain (2.16 and 1.56 for Baños Morales and Termas Cauquenes, respectively). To the best of our knowledge, more detailed information on the geochemical features of these fluid discharges is currently not available. The present study is thus aimed to fill this gap by presenting and discussing original chemical and isotopic (${}^{3}\text{He}/{}^{4}\text{He}, \delta^{18}\text{O}-\text{H}_{2}\text{O}, \delta\text{D}-\text{H}_{2}\text{O}, \delta^{13}\text{C}-\text{CO}_{2}$) data of water and gas samples collected from 49 cold and thermal springs, including bubbling pools and fumarolic vents, from different areas of this sector of PC. The main aims are to i) constrain the main source region(s) and the physico-chemical processes controlling the chemistry of the discharged fluids, ii) discuss the role played by the regional geotectonic setting, and iii) produce a geochemical dataset of hydrothermal-magmatic fluids in order to provide indication useful for the future exploitation of the geothermal resources of Central Chile.

2. Tectonic, geological and volcanological setting


The geodynamic setting of the Andes in Central Chile is controlled by the subduction of the oceanic Nazca plate below the continental lithosphere of the western side of South America (Fig. 1; Farías et al., 2010). The sector of the Andes range in the study area includes the northern region (33–36°S) of the Southern Volcanic Zone (SVZ; 33– 46°S), showing a slab dip >25°. This area is bounded to the north (32.5°S) by the Pampean flat-slab segment (28–32.5°S), where the slab dip is <10° at depths from 100 to 150 km (Barazangi and Isacks, 1976; Tassara et al., 2006; Stern et al., 2007). This flat-slab segment, where volcanic activity has not occurred in the last 9 My, was interpreted as the result of buoyancy force exerted by the subduction of the Juan Fernández ridge (Pilger, 1981; Yáñez et al., 2001; Tassara et al., 2006). According to Farías et al. (2010), other distinctive geotectonic features related to the subduction of the Juan Fernández ridge are, as follows: i) the northward increase of the maximum elevations along the Andean chain from ~3500 to <7000 m a.s.l., ii) an increase from south to north of the crustal thickness from <40 km to ~60 km, and iii) a decrease, in the same direction, of the asthenospheric mantle wedge thickness from ~70 to 20 km (Tassara et al., 2006).

The Maipo orocline, i.e. the arcuate shape of the Andean orogen at 34.5°S (Fig. 2a), marks a volcano-tectonic limit between the northern (32.5–34.5°S) and the southern (34.5–36°S) zones (Cembrano and Lara, 2009; Farías et al., 2010; Arriagada et al., 2013). The former is characterized by a compressional regime and N–S-oriented tectonic structures, whereas the latter shows a dextral transpressional regime and NNE–SSW-oriented tectonic structures (Cembrano and Lara, 2009). In both zones, three-parallel morphostructural units can be recognized from west to east (Farías et al., 2010), as follows: (i) Coastal Cordillera, (ii) Central Depression, and (iii) Principal Cordillera (PC) (Fig. 2a). Cenozoic deposits (basaltic to andesitic volcanic–volcanoclastic rocks) occur between the eastern side of the Central Depression and the western PC (WPC), where the structural assessment is controlled by the

Fig. 1. Map of Central Chile with the location of the Holocene volcanoes along the Central and Southern Volcanic Zones.

The reported absolute plate motion velocity is from Gripp and Gordon (2002).

Fig. 2. (a) Geological and morphological map of Central Chile (Farías et al., 2007, 2010). Symbols are, as follows: red triangle: thermal springs from the Western Principal Cordillera (WPC); green triangle: cold springs from the WPC; red circle: thermal springs from the Eastern Principal Cordillera (EPC); green circle: cold springs from the EPC; black triangle: active volcanoes. (b) Tectonic assessment and heat flow pattern (Giambiagi et al., 2014). Symbols are, as follows: red diamond: fumaroles; green square: cold bubbling pool; red square: hot bubbling pools. (c) Regional geological-structural cross section of Central Chile through the Tupungatito volcano (modified from Giambiagi et al., 2014).

W-vergent Infiernillo and San Ramón–Pocuro thrust faults (Fig. 2b). Along the eastern zone of PC (EPC), W-vergent folds and faults subtly deform the 5500 m thick basaltic to andesitic volcanic–volcanoclastic Cenozoic sequences (Fig. 2c; Charrier et al., 2002). East of the highangle reverse El Fierro fault system (EPC), where E-verging fold-andthrust belts occur (Fig. 2c; Giambiagi et al., 2003), Mesozoic conglomerates, sandstones, limestones and gypsum sequences outcrop (Fig. 2c).

In the northern area, active volcanoes occur on the top of the Mesozoic basement, whereas south of 34.5°S they are located at the

Meso-Cenozoic boundary (Fig. 2a). Volcanic products from the Quaternary volcanic chain are tholeiitic basalts to high-K rhyolites (Stern et al., 2007). Andesites are the most abundant products, although basalts increase southward (Hildreth and Moorbath, 1988). Volcanic rocks north of the Maipo orocline are characterized by (i) higher contents of incompatible trace elements with respect to those measured in the rocks from south of 34.5°S, (ii) ⁸⁷Sr/⁸⁶Sr and ¹⁴³Nd/¹⁴⁴Nd ratios up to 0.70566 and 0.5129, respectively, and (iii) K/Rb < 200 (Hildreth and Moorbath, 1988). These petrochemical features indicate an N–S

Table	1

ID	Name	type	Date	zone	Coord N	Coord E	Altitude	Т	pH TI	DS	Ca^{2+}	K^+	${\rm Mg}^{2+}$	Na^+	Li ⁺	F^{-}	Cl^{-}	Br	NO_3^-	SO_4^2	HCO_3^-	CO_{3}^{2-}	В	$\delta D - H_2 O$	δ^{18} O-H ₂ O
1	Auco	Spring	1/15/2011	WPC	6359740	340130	846	18.7	7.7	416	65	0.2	10	30	0.01	0.14	5.5	0.04	15	80	180		0.17	-72.0	-9.6
2	El Barro	Spring	1/15/2011	WPC	6376500	355078	1060	15.4	7.3	551	80	0.2	20	30	0.03	0.10	3.3	0.04	20	75	290		0.09	-82.1	-10.7
3	El Corazon	Spring	1/14/2011	WPC	6369980	355075	940	19.0	7.8	365	50	0.2	12	30	0.03	0.11	8.3	0.05	8.0	38	189		0.05	-76.0	-9.7
4	El Lobo	Spring	1/16/2011	WPC	6371960	355194	938	20.1	7.0	696	115	0.5	35	30	0.03	0.34	3.0	0.04	4.0	300	170		0.06	-72.9	-9.3
5	El Parrón	Spring	1/14/2011	WPC	6387650	345420	1910	12.8	7.5	295	42	0.5	4.0	22	0.01	0.05	2.5	0.03	9.6	11	170		0.07	-80.0	-10.9
6	Jahuel	Spring	1/14/2011	WPC	6382649	350698	1127	16.8	7.4	537	75	1.9	23	34	0.02	0.35	5.0	0.05	5.1	200	160		0.10	-83.9	-11.0
7	La Higuera	Spring	1/16/2011	WPC	6378760	345286	794	11.0	7.6	466	73	0.5	13	15	0.03	0.10	4.5	0.04	3.9	46	260		0.07	-71.5	-9.5
8	La Totora	Spring	1/16/2011	WPC	6357715	350908	1010	12.0	7.5	419	66	0.4	8.0	24	0.02	0.20	13	0.02	5.6	92	180		0.07	-91.9	-12.8
9	Baños de Chacabuco	Spring	1/17/2011	WPC	6341956	343311	741	23.5	7.6	338	24	0.8	0.9	80	0.13	0.11	29	1.3	7.8	87	90		0.60		
10	Termas de Colina	Spring	1/17/2011	WPC	6327245	351014	948	29.0	7.8	449	50	0.9	1.2	83	0.04	0.12	100	0.27	7.9	120	60		1.3	-67.2	-9.0
11	Baños el Carvajalino	Spring	1/17/2011	WPC	6326085	350565	819	24.9	7.9	420	53	0.7	2.2	68	0.10	0.02	87	1.40	4.9	115	68		0.16		
12	Termas de la Cal	Spring	1/18/2011	WPC	6312927	365418	1167	20.0	8.1	209	28	0.3	3.5	24	0.18	0.01	14	0.05	8.4	21	87		2.1	-68.2	-9.3
13	Baños de Apoquindo	Spring	1/18/2011	WPC	6301705	358122	857	21.1	7.7	1704	375	1.3	2.6	232	0.03	0.01	870	4.1	4.8	100	93		0.07		
14	Termas Panimávida	Spring	3/20/2010	WPC	6,09,846	281,522	970	33.7	9.3	339	30	1.3	0.33	57	0.09	0.34	53	2.2	1.5	152	5.5	3.6	1.57	- 58.6	-9.0
15	Termas Quinamávida	Spring	3/20/2010	WPC	603588	280284	970	23.3	9.2	296	18	1.5	0.2	54	0.15	0.22	3.5	0.03	1.6	8.7	156	13	0.42	- 50.9	-7.8
16	Cauquenes	Spring	1/10/2013	WPC	6209276	356744	756	45.7	6.3	3382	778	9.3	0.3	464	1.2	0.01	1977	8.6	7.7	62	30		6.3	-58.8	-8.6
17	Saladillo	Spring	1/9/2013	EPC	6353643	381298	1716	21.9	7.6 13	3,485	728	121	44	3793	6.1	0.03	7844	14	8.2	713	162		7.2	-100	-13.8
18	Salinilla	Spring	2/21/2011	EPC	6293034	399001	1680	22.7	7.1 1	1,710	461	39	46	3985	5.8	0.26	6386	12	1.1	480	244		1.3		
19	Baños Azules	Spring	2/21/2011	EPC	6302976	409612	2504	17.8	5.1	2749	612	6.4	62	62	0.50	2.2	69	0.09	0.50	1063	828		0.14	-95.2	-13.1
20	Termas Tupungato	Spring	2/21/2011	EPC	6308503	415987	2975	24.2	5.1	4094	684	37	126	319	1.1	2.0	381	0.50	2.5	1762	710		4.1		
21	Termas del Plomo 1	Bubbling pool	2/10/2013	EPC	6279865	415546	2978	26.8	7.1	8892	518	14	91	2707	3.97	0.01	3763	7.4	4.9	1610	142		0.83	-104	-15.6
22	Monumento Morado 1	Bubbling pool	2/13/2013	EPC	6260255	400543	2265	9.1	7.3	3335	633	7.7	94	39	0.68	0.02	20	0.01	1.8	440	2056		0.21	-95.0	-13.0
23	Monumento Morado 2	Bubbling pool	2/13/2013	EPC	6260176	400649	2264	10.4	7.5	4990	1094	6.6	92	42	0.44	0.02	21	0.02	1.5	807	2863		2.3	-101	-13.5
24	Baños Morales P1	Bubbling pool	1/11/2013	EPC	6256821	401927	1812	15.2	6.2	7457	461	83	72	2024	3.67	0.30	3785	7.6	5.1	427	540		1.8	- 105	-13.6
	Baños Morales P2 Baños Colina	Spring Spring	1/20/2011 1/17/2011		6256821 6253744		1812 2545	28.2 51.3	6.2 28 6.4 3			279 342	231 314	9125 9950		0.41	15,184 15,283	45 51	5.7 3.3	1016 2964	1420 992		3.3 19	- 96.3	_134

27	Puente de Tierra 1	Bubbling pool	2/1/2013	EPC	6226554	404731	2148	45.0	6.5	56,743	1626	343	263	18,324	44	0.02	31,806	58	47	2848	1305		19.4	-107	-13.6	
28	Baños Las Calerías	Spring	1/11/2013	EPC	6199348	395156	2190	61.0	6.3	9514	730	203	39	2360	10	0.20	3590	9.2	0.30	1620	830		42	-106	-13.3	
29	Termas Azufre	Spring	1/27/2013	EPC	6146230	373120	3157	27.5	2.9	922	74	2.1	24	54	0.16	2.8	98	0.11	0.13	567			0.03	-93.0	-12.9	
30	Baños Los Humos 1	Bubbling	1/25/2013	EPC	6143023	371798	2974	24.0	1.8	435	60	1.1	11	21	0.16	0.29	9.3	0.03	0.19	311			0.03	-63.0	-5.7	
		pool																								
31	Campamento Humos	Spring	1/25/2013	EPC	6142895	371250	2726	59.7	6.8	584	61	1.5	10	50	0.21	0.22	9.2	0.02	0.13	37	394		1.6	-90.0	-12.8	
32	Termas del Flaco 1	Bubbling pool	3/25/2012	EPC	6130555	368978	1806	63.7	6.9	3888	139	128	5.9	1182	3.9	1.8	1801	3.2	1.8	288	170		14	-95.1	-12.2	
33	Termas del Flaco 2		3/25/2012	EPC	6130555	368996	1732	89.4	6.9	3624	135	119	5.2	1135	4.3	7.7	1652	2.7	1.5	287	183		16	-91.1	-11.5	
34	Termas de San Pedro	Spring	3/19/2011	EPC	6109783	365777	1732	24.0	7.1	15,542	768	729	25	3698	3.1	7.1	8390	128	11	1177	564		9.9	-96.8	-13.3	
35	Termas Romeral	Spring	3/19/2011	EPC	6116454	363400	1433	60.0	8.6	1784	141	25	7.3	464	0.75	0.12	911	1.7	2.8	119	96	1.1	1.7	-92.3	-13.7	
36	Termas del Tigre Naciente	Spring	3/14/2011	EPC	6073577	362754	2563	64.9	7.2	718	21	3.1	1.1	146	0.44	4.6	95	0.15	1.5	110	275		4.6	-95.1	-13.3	
37	Termas Potrerillo	Spring	3/14/2011	EPC	6075560	363420	2343	46.0	7.4	930	65	5.4	5.4	180	0.27	3.0	53	0.13	1.5	265	295		0.66	-96.1	-13.5	
38	Termas del Pellejo	Spring	3/14/2011	EPC	6081288	360694	2129	48.9	6.7	1648	125	21	32	194	0.45	2.6	195	0.56	1.5	135	813		2.5	-96.3	-13.4	
39	Barro Colorado 1	Spring	3/14/2011	EPC	6080029	361881	2154	75.0	7.4	2767	80	67	6.3	860	1.9	1.7	1244	12	1.5	106	245		5.5	-94.4	-12.8	
40	Termas de la Quebrada de los Colores	Spring	3/15/2010	EPC	6080040	361386	2185	30.2	6.8	2550	292	8.5	94	220	0.68	1.4	40	0.09	1.5	375	1434		1.0	- 95.5	-13.6	
41	Fumaroles del Azufre	Spring	3/15/2010	EPC	6090191	360011	2738	70.0	5.4	823	63	11	24	60	0.15	0.25	3.7	0.02	1.6	2.5	485			-91.2	-11.1	
42	Termas Baños de la Yegua	Spring	3/15/2010	EPC	6084620	357295	1995	54.0	6.7	3039	314	53	15	605	1.2	2.1	724	0.85	1.5	498	680		7.8	-94.8	-13.0	
43	Fumarolas de Llolli	Spring	3/15/2010	EPC	6084260	356196	2002	94.5	2.0	2071	49	15	28	37	0.16	0.17	1.7	0.15	1.3	1657			0.03	-60.7	-4.2	
44	Termas de Aguas Calientes 1	Spring	3/14/2010	EPC	6069989	360200	2569	38.9	6.9	622	44	4.0	5.9	114	0.36	2.1	61	0.12	1.9	80	262		0.89			
45	Termas de Aguas Calientes 2	Spring	3/14/2010	EPC	6070203	361680	2563	37.9	7.0	671	45	3.7	5.5	98	0.31	1.7	71	0.15	1.6	84	315		1.2	-86.6	-13.3	
46	Termas del Descabezado Grande	Spring	1/14/2012	EPC	6059316	334606	1880	29.8	5.8	1248	54	24	101	111	0.25	0.35	101	0.16	1.5	137	612		5.4	-87.3	- 13.3	
47	Estero del Volcán 1	Spring	1/15/2012	EPC	6070460	340000	1954	79.5	6.0	926	81	3.9	23	94	0.17	3.1	2.4	0.02	1.5	65	497		0.60	-83.5	-11.7	
	Termas del	Spring	2/15/2013		6034171	340794	988	29.5	6.6	939	104	7.9	5.1	134	0.56	0.67	331	0.79	1.5	266	37		10		-12.4	
	Medano																									
49	Termas del Campanario 1	Bubbling pool	2/15/2013	EPC	6022199	356881	1545	45.7	6.3	20,897	1925	340	85	5335	17	0.03	12,061	37	1.2	508	517		3.0	-101	-13.6	

increasing trend of continental crust assimilation by magmas (Hildreth and Moorbath, 1988; Cembrano and Lara, 2009). This would imply that the magma batches north of the Maipo orocline have relatively long residence times in the crust. According to Cembrano and Lara (2009), this is related to the fact that the thrust faults that serve as magma conduits are severely misoriented (dipping >45°) with respect to the prevailing compressive stress field (Sibson, 1996, 2007; Cox, 2010). On the other hand, south of the Maipo orocline (Fig. 2b) the occurrence of a thinner crust and NNE-striking thrust faults favorably oriented for strike-slip deformation (Sibson, 1996, 2007; Cox, 2010) favors the magma ascent through NE-striking fractures, which explains the relatively low residence time of magmas in the crust (Cembrano and Lara, 2009).

3. Sampling and analytical methods

3.1. Waters

Temperature and pH were measured in situ with portable instruments (uncertainties: ± 0.1 °C and ± 0.05 , respectively). Main anions (HCO₃⁻, Cl⁻, SO₄²⁻, F⁻, Br⁻ and NO₃⁻) and B were analyzed in filtered (0.45 µm) samples, whereas cations (Na⁺, K⁺, Ca²⁺, Mg²⁺ and Li⁺) were analyzed in filtered-acidified (with ultrapure HCl) samples. Total alkalinity (expressed as HCO₃⁻) was determined by acid titration (AT) using HCl 0.01 N and methyl-orange as the indicator. The CO₃²⁻ concentrations in waters with pH > 8.3 were calculated stoichiometrically. Anions and cations were analyzed by ion-chromatography (IC) using a Metrohm 861 and a Metrohm 761, respectively. Boron was analyzed using the Azomethine-H method (AH, Bencini, 1985) by molecular spectrophotometry (Philips UNICAM). The analytical errors for AT, IC and AH analyses were ≤5%.

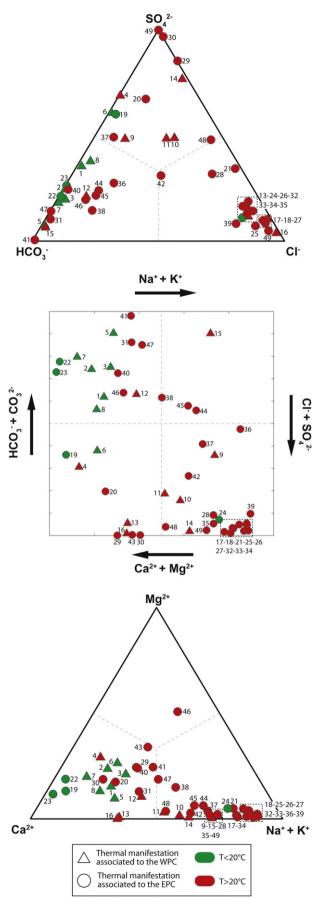
The $^{18}\text{O}/^{16}\text{O}$ and $^2\text{H}/^1\text{H}$ ratios in water (expressed as $\delta^{18}\text{O}\text{-H}_2\text{O}$ and $\delta\text{D}\text{-H}_2\text{O}$ % vs. V-SMOW, respectively) were analyzed in samples collected in 50 mL sterile opaque glass bottles by using a Finnigan MAT 252 and an Europa Scientific GEO2020 mass spectrometers, respectively. Oxygen isotopic ratios were analyzed in CO₂ added to the water samples using the CO₂-H₂O equilibration method proposed by Epstein and Mayeda (1953). Hydrogen isotopic ratios were measured on H₂ after the reaction of water (10 μL) with of metallic magnesium (1.6 g) at 440 °C. The analytical uncertainties for $\delta^{18}\text{O}\text{-H}_2\text{O}$ and $\delta\text{D}\text{-H}_2\text{O}$ ratios were 0.1‰ and 1‰, respectively.

3.2. Gases

Gas samples from fumarolic vents and bubbling pools were collected using pre-evacuated, 60 mL Giggenbach-type flasks (Giggenbach, 1975) filled with 20 mL of 4 N NaOH and a 0.15 M Cd(OH)₂ suspension (Montegrossi et al., 2001; Vaselli et al., 2006). Gas samples from fumarolic vents were conveyed into the sampling flasks using a 1-m-long titanium tube ($\emptyset = 2.5 \text{ cm}$) that was inserted into the fumarolic vent and connected through glass dewar tubes. Gas samples from bubbling pools were collected using a plastic funnel connected to the sampling flasks through tygon tubes. At each sampling site, a 60 mL glass preevacuated vial was used to collect a sample for the analysis of carbon isotopes in CO₂ using the same sampling apparatus adopted for the soda flasks. Gases dissolved in waters were sampled using preevacuated 250 mL glass vials equipped with a Teflon stopcock. Sampling flasks were filled with water up to 34 of the flasks inner volume (Caliro et al., 2008). Gases (CO₂, N₂, Ar, O₂, CH₄, H₂, and He) in the headspace of both the Giggenbach-type flasks and those used for the collection of dissolved gases were analyzed at the Department of Earth Sciences of the University of Florence (Italy) by gas-chromatography (GC) using a Shimadzu 15A equipped with a 10 m long 5A-molecular sieve column and a thermal conductivity detector (TCD) (Vaselli et al., 2006). Argon and O₂ were analyzed using a Thermo Focus gas chromatograph equipped with a 30 m long capillary molecular sieve column and a TCD. The liquid and the solid precipitate in the alkaline suspension were separated by centrifugation at 4000 rpm for 30 min. The liquid phase was used to analyze CO_2 , as CO_3^{2-} by AT (Metrohm Basic Titrino) with a 0.5 N HCl solution. CdS in the solid precipitate was oxidized to SO_4^{2-} using H_2O_2 and analyzed by IC (Methrom 761) for determining the H_2S concentrations. The analytical errors for AT, GC and IC analyses were $\leq 7\%$.

The analysis of ${}^{13}C/{}^{12}C$ ratios of CO₂ (expressed as $\delta^{13}C-CO_2\%$ vs. V-PDB) was carried out with a Finnigan MAT 252 mass spectrometer after standard extraction and purification procedures of the gas mixtures by using liquid N₂ and a solid–liquid mixture of liquid N₂ and trichloroethylene (Evans et al., 1988; Vaselli et al., 2006). Internal (Carrara and San Vincenzo marbles) and international (NBS18 and NBS19) standards were used for estimation of external precision. The analytical error and the reproducibility were $\pm 0.05\%$ and $\pm 0.1\%$, respectively.

The He isotopic ratios (expressed as R/Ra, where R is the ³He/⁴He measured ratio and Ra is the ³He/⁴He ratio in the air: 1.39×10^{-6} ; Mamyrin and Tolstikhin, 1984), and the ⁴He/²⁰Ne ratio were analyzed by separately introducing He and Ne into a split-flight-tube mass spectrometer (GVI Helix SFT) after performing standard purification procedures (e.g., Rizzo et al., 2015). The analytical error was $\pm 1\%$. In order to minimize isotope fractionation due to He diffusion through the glass flasks (Sano and Fischer, 2013), the He isotope measurements were carried out within a few weeks after sampling. The R/Ra values were corrected for atmospheric contamination based on the ⁴He/²⁰Ne ratio (Poreda and Craig, 1989), as follows:


$$Rc/Ra = \left[(R/Ra)_{measured} - r \right] / (1 - r)$$
(1)

where r = $({}^{4}\text{He}/{}^{20}\text{Ne})_{Air} / ({}^{4}\text{He}/{}^{20}\text{Ne})_{measured}$, Rc/Ra is the ${}^{3}\text{He}/{}^{4}\text{He}$ ratio normalized to the atmospheric ${}^{3}\text{He}/{}^{4}\text{He}$ (Ra) and corrected for air contamination, (R/Ra)_{measured} is the He isotopic ratio measured in the sample and (${}^{4}\text{He}/{}^{20}\text{Ne}$)_{Air} is the atmospheric ratio (0.318; Ozima and Podosek, 1983), while (${}^{4}\text{He}/{}^{20}\text{Ne}$)_{measured} is the ratio measured in the gas sample. A correction of the R/Ra values for the dissolved gases was applied by modifying the (${}^{4}\text{He}/{}^{20}\text{Ne}$)_{Air} values according to the Bunsen solubility coefficients for He and Ne in water. For this study, the solubility coefficients at the water outlet temperature were used. When (${}^{4}\text{He}/{}^{20}\text{Ne}$)_{measured} ~ 1 (e.g. 21a, 24 and 49a have (${}^{4}\text{He}/{}^{20}\text{Ne}$)_{measured} \leq 1.5; Table 3), Rc/Ra values significantly differ with respect to the R/Ra values, whereas for (${}^{4}\text{He}/{}^{20}\text{Ne}$)_{measured} > 1.5Rc/Ra ~ R/Ra independently on the ${}^{4}\text{He}/{}^{20}\text{Ne}$ value (Air or ASW) used in Eq. (1) (Hilton, 1996).

4. Results

4.1. Chemical and stable isotopic (δ^{18} O and δ D) composition of waters

Outlet temperature, pH, total dissolved solids (TDS) values and concentrations of major and minor compounds of 49 waters discharges sampled for this study are reported in Table 1. Six different chemical facies can be recognized (Fig. 3a, b and c), as follows: Na⁺-Cl⁻, Ca²⁺-Cl⁻, $Ca^{2+}-HCO_{3}^{-}$, $Na^{+}-HCO_{3}^{-}$, $Ca^{2+}-SO_{4}^{2-}$ and $Na^{+}-SO_{4}^{2-}$ (Fig. 3). $Na^{+}-Cl^{-}$ waters from EPC (17, 18, 21, 24, 25, 26, 27, 28, 32, 33, 34, 35, 39, 42, 48 and 49) were characterized by pH values ranging from 6.2 to 8.6, relatively high TDS values (from 988 to 56,743 mg/L), and temperatures from 6 to 89.4 °C. Similar features characterized the two Ca²⁺-Cl⁻ waters from WPC (samples 13 and 16), although their Mg²⁺ contents are lower (<2.6 mg/L) when compared to that of the Na^+ – Cl^- waters with similar Cl⁻ concentrations (samples 35 and 32; Table 1). The $Ca^{2+}-HCO_{3}^{-}$ waters from WPC (1, 2, 3, 5, 7, 8 and 12) were cold (T < 20 °C), had pH >7.3 and relatively low TDS (<551 mg/L; Fig. 4). Differently, the Ca^{2+} -HCO₃⁻ waters from EPC (22, 23, 31, 40 and 41) showed relatively wide ranges of TDS (from 584 to 4990 mg/L), temperatures (from 9.1 to 70 °C) and pH values (from 5.4 to 7.5). The Na⁺- HCO_3^- water (sample 15) from WPC had a low temperature (23.3 °C), TDS (296 mg/L) and high pH (9.2), whereas those from EPC (36, 38,

44, 45, 46 and 47) showed temperatures up to 79.5 °C, slightly acidic to neutral pH (from 5.8 to 7.2), and TDS from 622 to 1648 mg/L (Fig. 4). The Ca²⁺–SO₄²⁻ waters from WPC (samples 4 and 6) had pH ~ 7, relatively low temperatures (<20 °C) and TDS (<698 mg/L), whereas the Ca²⁺–SO₄²⁻ waters from EPC (samples 19, 20, 29, 30 and 43) were acidic (pH \leq 5.1) and showed TDS values from 449 to 4094 mgL⁻¹ and temperatures from 17.8 to 94.5 °C (Fig. 4). The two Na⁺–SO₄²⁻ waters from WPC (samples 9 and 14) had temperatures up to 33.7 °C, different pH (7.6 and 9.3, respectively) and low TDS (\leq 338 mg/L), whereas that from EPC (sample 37), showing a similar pH (7.4), had higher temperature and TDS values (46 °C and 930 mg/L, respectively).

Boron concentrations in waters from WPC were relatively low ($\leq 0.6 \text{ mg/L}$) with few exceptions (10, 12, 14 and 17), whereas those from EPC were spanning in a wider range (from 0.03 to 42 mg/L). Lithium concentrations were low in the WPC waters (< 1.2 mg/L), whereas those from EPC were strongly enriched (up to 44 mg/L). On the contrary, NO₃⁻ concentrations were higher in the WPC waters (from 1.5 to 20 mg/L) than in most of those from EPC (< 2 mg/L, excepting 17, 20, 21, 24, 25, 26, 27, 34 and 35). Bromide concentrations, ranging from 0.002 to 41 (WPC waters) and from 0.02 to 128 (EPC waters) mg/L, were correlated with those of Cl⁻.

The δ^{18} O-H₂O and δ D-H₂O values of the WPC waters (Fig. 5), ranging from -7.8 to -12.8% and from -50.9 to -91.9% vs. V-SMOW, respectively, were distinctly different with respect to those of the EPC waters, whose isotopic intervals were from -11.5 to -15.6% and from -83.5 to -107% vs. V-SMOW, respectively. Samples 30 (-5.7 and -63% vs. V-SMOW, respectively) and 43 (-4.2 and -60.7% vs. V-SMOW, respectively) were the only waters from EPC with an isotopic signature similar to that of the WPC waters.

4.1. Chemical and stable isotopic (δ^{13} C-CO₂) composition of dissolved gases

Outlet temperatures, as well as chemical and δ^{13} C-CO₂ values of dissolved gases (only from EPC) are reported in Table 2. Carbon dioxide (from 325 to 772 mmol/mol) and N₂ (from 210 to 634 mmol/mol) were the most abundant gas species, whereas O₂ varied in a wide range (between 0.32 and 26 mmol/mol). Argon, CH₄, H₂ and He had concentrations lower than 16, 0.066, 0.039, and 0.0025 mmol/mol, respectively. The δ^{13} C-CO₂ values ranged from -14.3 to -6.03% vs. V-PDB.

4.1. Chemical and stable isotopic (δ^{13} C-CO₂, R/Ra, δ^{18} O-H₂O and δ D-H₂O) composition of gases from bubbling pools and fumaroles

The chemical and isotopic composition of bubbling gases and fumaroles, which exclusively occur in EPC (Fig. 2a and b), is shown in Table 3. The dry gas fraction of the fumaroles, dominated by water vapor (from 785 to 997 mmol/mol), and the bubbling gases mainly consisted of CO₂ (from 628 to 997 mmol/mol) and N₂ (from 1.6 to 355 mmol/mol). Bubbling pools from Termas del Flaco (32 and 33) showed CH₄ concentrations (up to 6.5 mmol/mol) significantly higher than those measured in the remaining gas samples (\leq 1.6 mmol/mol). Fumarolic gases, especially those from Baños los Humos (samples 30a, 30b and 30c) and La Plata (samples 50 and 51), had relatively high H₂ concentrations (up to 46 mmol/mol) with respect to those of the bubbling pools (\leq -0.091 mmol/mol). Hydrogen sulfide was detected in the fumarolic gases (from 0.11 to 39 mmol/mol), whereas the bubbling pools were H₂S-free. Carbon monoxide (up to 0.0028 mmol/mol) was detected in two fumaroles (samples 39a and 47). Argon and O₂ concentrations of the fumaroles (from 0.003 to 0.79 and from 0.003 to 0.16 mmol/mol, respectively) were lower than those of the bubbling pools (from 0.049 to 6.9 and from 0.070 to 9.7 mmol/mol, respectively), whereas the He

Fig. 3. (a) $HCO_3^-Cl^-SO_4^-$ ternary diagram, (b) square diagram (Langelier and Ludwig, 1942), and (c) $Ca^{2+}-(Na^+ + K^+)-Mg^{2+}$ ternary diagram for cold and thermal spring from Central Chile. Data are plotted as meq/L.

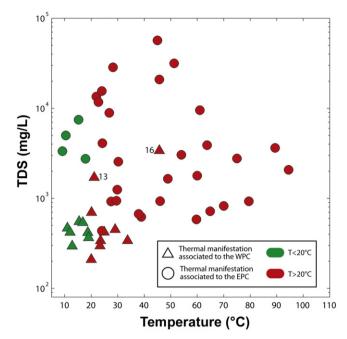


Fig. 4. TDS (mg/L) vs. temperature (°C) binary diagram for cold and thermal springs from Central Chile.

concentrations of the two types of emergences (<0.041 mmol/mol) did not show significant differences.

The δ^{18} O-H₂O and δ D-H₂O values in the fumarolic steam ranged from -11.9 to -9.4% vs. V-SMOW and from -95 to -80% vs. V-SMOW, respectively (Fig. 6).

The Rc/Ra values were spanning from 0.47 to 3.90 Ra (Table 3 and Fig. 7), the highest ratios (3.3–3.9) being found in the southern part of EPC, in proximity of Tinguiririca (samples 30b and 30c) and Planchón–Peteroa (samples 50 and 51) volcanic systems and in the Mariposa geothermal area (samples 39a and 47a). The area of San José volcano (sample 52), in the northeastern sector of EPC is characterized by a slightly lower Rc/Ra value (2.91), while Monumento el Morado (sample 22) and Termas del Campanario (sample 49a) bubbling gases were characterized by the lowest Rc/Ra values (0.47 and 0.55, respectively). The ⁴He/²⁰Ne ratios ranged from 0.8 to 351, i.e. mostly above the atmospheric background (⁴He/²⁰Ne = 0.318).

The CO₂/³He ratios vary from 0.42 to 14.6×10^{10} in the fumaroles, and from 2.9 to 22.2×10^{10} in the bubbling gases (Fig. 8).

5. Discussion

5.1. Processes controlling the chemical and isotopic composition of fluid discharges

5.1.1. Water chemistry

The fluid discharges from the two domains (WPC and EPC; Fig. 2a and b) can clearly be distinguished on the basis of their outlet temperatures and TDS values (Fig. 4). With few exceptions (13 and 16), waters from WPC were colder and had lower TDS values with respect to those from EPC. These differences are not surprising, since the occurrence of active volcanic systems and promising geothermal areas in EPC (Fig. 2a) indicate i) an anomalous geothermal gradient (Fig. 2b) favoring water–rock interactions and ii) possible fluid contribution from hot (possibly magmatic) sources. However, the δD -H₂O vs. δ^{18} O-H₂O diagram in Fig. 5, where the Local Meteoric Water Line (LMWL; Hoke et al., 2013) is also reported, indicates that the aquifers feeding the fluid discharges from both domains had a meteoric origin. Few samples (21, 35, 45 and 46) showed a significant ¹⁸O-depletion likely due to isotopic exchange between liquid water and CO₂ (Epstein and Mayeda,

Fig. 5. δD -H₂O vs. δ^{18} O-H₂O (‰ vs. V-SMOW) binary diagram for cold and thermal spring from Central Chile. The Local Meteoric Water Line (LMWL; Hoke et al., 2013) is reported.

1953), a process that typically affects CO_2 -rich bubbling pools (Pauwels et al., 1997) and HCO_3^- rich hydrothermal waters (Peiffer et al., 2014). On the contrary, the strong enrichments in both ¹⁸O and ²H shown by samples 30 and 43 were likely due to steam loss through evaporation, favored by the intense bubbling of hot and acidic gases affecting these discharges, as also pointed by the low pH values and SO_4^{2-} dominated composition. A similar process, although occurring at a minor extent, likely caused the isotopic shift shown by other thermal waters from EPC (24, 27, 32, 33 and 41; Fig. 5). However, the relatively high TDS values of these samples (<57,000 mg/L), as well as the elevated heat flow in EPC (<220 mW/m²; Fig. 2b), suggest that their $\delta^{18}O$ enrichment was also produced by prolonged water-rock interactions at temperatures >150 °C (Truesdell and Hulston, 1980).

The WPC waters had higher isotope ratios than those from EPC (Fig. 5) likely due to the difference in altitude of the two domains (Farías et al., 2007), as also highlighted by the altitudes of springs (Table 1). In EPC, both the Ca^{2+} -HCO₃⁻ (31, 40, and 41) and Na⁺- HCO_3^- (36, 38, 44, 45, 46 and 47) waters located close the volcanic systems (Fig. 2b) showed relatively high temperatures (up to 80 °C) and a slightly acidic to neutral pH. These characteristics are commonly shown by the so-called "peripheral waters" (Giggenbach, 1988, 1991), whose chemistry is produced by prolonged water-rock interaction involving meteoric water and CO₂ fed by the deep source. The largely variable Ca^{2+}/Na^{+} ratios of these waters were likely dependent on $Ca^{2+}-Na^{+}$ exchange with Na-bearing silicates (e.g. albite) (Marini et al., 2000; Reves et al., 2010). Relatively large variations of the $HCO_3^-/SO_4^2^-$ ratios (from 2.5 to 194) were instead produced by different CO_2/H_2S ratios in volcanic/hydrothermal gases interacting with the meteoric aquifer. For instance, at a short distance from the volcanic edifice, where gas discharges showed relatively high H₂S concentrations, SO₄²⁻ dominated and low pH waters were produced (Tupungatito, 19 and 20; Tunguirírica, 29 and 30; Planchón-Peteroa, 43). Thermal waters located close to the Tupungatito volcano (19 and 20) were also affected by SO_4^{2-} and Ca^{2+} contribution from dissolution processes of gypsum occurring in the Mesozoic formations (Fig. 2a), as suggested by their $(Ca^{2+} + Mg^{2+} - HCO_3^{-})/SO_4^{2-}$ molar ratios (~1). $Ca^{2+} - Na^+$ exchange between rocks and $Ca^{2+}-SO_4^{2-}$ waters were likely responsible for the anomalous Na^+ - $SO_4^{2-}(HCO_3^-)$ composition of sample 37 from the Planchón-Peteroa volcanic system. A similar process can be invoked

T-	1.	1	2
Ia	D	Ie.	z

 $Chemical and stable isotopic (\delta^{13}C-CO_2; in \% vs. V-PDB) composition of dissolved gases from Central Chile. Concentrations are in mmol/mol.$

ID	Name	Date	CO ₂	N ₂	CH ₄	Ar	02	H ₂	Не	δ^{13} C-CO ₂
18	Salinilla	2/21/2011	466	519	0.066	13	2.3	0.008	0.0025	-12.6
19	Baños Los Azules	2/21/2011	521	467	0.0020	11	0.32	0.039	0.0023	-10.4
20	Termas Tupungato	2/21/2011	772	210	0.0013	4.9	13	0.022	0.0010	-6.03
21	Termas del Plomo 1	2/10/2013	523	444	0.010	11	22	0.016	0.0015	-9.19
26	Baños Colina	1/17/2011	325	634	0.0019	16	26	0.015	0.0018	-7.15
34	Termas de San Pedro	3/19/2011	356	619	0.0035	15	10	0.016	0.0018	-14.3
39	Barro Colorado 1	3/14/2011	456	523	0.0045	12	8.5	0.025	0.0017	-13.4

to explain the Na⁺-HCO₃⁻ waters. The Ca²⁺-HCO₃⁻ composition of samples 22 and 23, characterized by a low outlet temperature, pH > 7 and relatively low HCO₃⁻/SO₄²⁻ ratios (<4.5) was likely related to the interaction between meteoric water enriched in CO₂ (Fig. 5) and the Mesozoic formations outcropping in this area (Fig. 2a). The Na⁺-Cl⁻ waters (Fig. 3a, b, c) of this domain showed the typical features of mature fluids commonly related to geothermal and volcanic systems (Giggenbach, 1988, 1991): i) relatively high TDS values; ii) high Li⁺ concentrations (Table 1), dictated by temperature favoring rock leaching by circulating waters (Brondi et al., 1973); iii) high B concentrations (Table 1), favored by circulation of a vapor phase (Giggenbach, 1988, 1991); iv) slightly acidic to neutral pH (Giggenbach, 1988, 1991); and v) relatively low Cl⁻/Br⁻ ratios (from 66 to 615), consistent with that (<650) typical of residual brines in geothermal reservoirs (Fontes and Matray, 1993; Davis et al., 2001).

In WPC, most springs (1, 2, 3, 5, 7, 8, 12 and 15) showed the typical features of shallow aquifers fed by meteoric water with no significant fluid contribution from depth (i.e. HCO₃⁻ dominated composition, not associated with CO₂-rich gases, low TDS values, outlet temperatures ≤20 °C and slightly alkaline pH). The origin of such water discharges seems to be related to water-rock interaction processes with the rock formations outcropping in this area mostly consisting of volcanicvolcanoclastic Cenozoic sequences (Fig. 2b). The Ca²⁺–SO₄²⁻ waters (samples 4 and 6) likely derived by dissolution of gypsum/anhydriterich layers (Fig. 2a and c), which, coupled with Ca²⁺–Na⁺ exchange, likely controlled the chemistry of the two thermal springs (9 and 14) showing a Na⁺-SO₄²⁻ composition. The two Na⁺-Cl⁻ waters (10 and 11) were likely originated from the interaction of halide sub-layers occurring within the Mesozoic formations. The uncommon Ca²⁺-Cl⁻ composition shown by samples 13 and 16 can be hypothesized as the result of an albitization-chloritization affecting basaltic rocks (Hardie, 1983; Mariner et al., 2003), since basaltic to andesitic hydrothermally altered volcanic outcrops, characterized by a secondary mineral assemblage rich in chlorite, chalcedony/guartz and albite formed by partial or complete replacement of primary An-rich plagioclase, were recognized in this area (Vergara et al., 1993; Muñoz et al., 2010). A similar process was invoked to explain the Ca²⁺–Cl⁻ composition of thermal waters from modern rift zones, oil-field brines and some continental hydrothermal systems (e.g., Reykjanes-Iceland, Salton Sea-USA and Oregon Cascada range–USA; Mariner et al., 2003, and references therein).

5.1.2. Chemistry and stable isotopic ratios (δ^{13} C-CO₂, R/Ra, δ^{18} O-H₂O and δ D-H₂O) of gases

Fumarolic discharges in EPC (Fig. 2b), located in spatial association with volcanoes (30a, b and c: Tinguiririca; 39a: Planchón–Peteroa; 47a: Descabezado Grande–Cerro Azul; 50 and 51: San Pedro–Pellado; 52: San José), showed the typical chemical features of hydrothermal fluids, such as: i) dominant water vapor, ii) variable concentrations of H₂S, CH₄ and H₂, and iii) lack of magmatic gases (SO₂, HCl and HF). The δ^{18} O-H₂O and δ D-H₂O values of water vapor of fumaroles (red diamonds; Fig. 6) showed a positive δ^{18} O and δ D shift with respect to the LMWL when considering that recharging meteoric water permeates at ~4000 m a.s.l., i.e. the minimum altitude of the Andes at these latitudes. Since the outlet temperatures of these fluids were at (or slightly above) the boiling point of water at their discharge altitude, their positive

isotope shift (Fig. 6) was likely caused by steam condensation at shallow depth (Stevenson, 1993). According to the Rayleigh model, the isotopic fractionation of vapors affected by condensation can be computed, as follows:

$$\delta = (\delta_i + 1000) F^{\alpha - 1} - 1000 \tag{2}$$

where δ is the delta notation of D/H and $^{18}\text{O}/^{16}\text{O}$ of the vapor, F is the vapor fraction after condensation, and α is the liquid–vapor isotope fractionation factor for $^{18}\text{O}-^{16}\text{O}$ (1.00509 and 1.00341 at 100 and 200 °C, respectively) and D-H (1.0283 and 1.00237 at 100 and 200 °C, respectively) (Horita and Wesolowski, 1994). As shown in Fig. 6, the fumarolic condensates plot along the line for steam condensation at 100 °C (S_{100 °C} ~ 4.84), i.e. consistent with the outlet temperatures of these discharges.

The Rc/Ra values of the fumarolic discharges were up to 3.90, indicating a contribution of mantle-derived He up to 48%, assuming a three-component mixing model between atmosphere, mantle and crust components having ³He/⁴He ratios of 1 Ra, 8 Ra and 0.02 Ra, respectively (Hilton et al., 2002). Among these gases, San José (sample 52) showed the lowest Rc/Ra value (2.91), corresponding to ~37% of mantle-derived He (%M; Table 3). Bubbling gases displayed Rc/Ra values systematically lower (0.47-2.13; Table 3) than those of the fumarolic gases, evidencing a contribution of mantle-derived He <27%. As shown in Fig. 7, which includes the hydrothermal systems from SVZ (Hilton et al., 1993; Ray et al., 2009; Dobson et al., 2013), the Rc/Ra values of the EPC gases were lower than those shown by fumarolic fluids from active volcanoes in the SVZ, such as the Tupungatito (Tu) (Benavente et al., 2013), Plachón-Peteroa (PP) (Saltori et al., 2012) and Copahue–Caviahue (CC) (Agusto et al., 2013) volcanoes, the latter depicting an increasing trend toward south. This trend seems to reflect the composition of the local magma reservoirs residing in the crust (magma aging), which in the northern zone have higher contents of crustal-derived components (e.g. lower ³He/⁴He and ¹⁴³Nd/¹⁴⁴Nd and higher ⁸⁷Sr/⁸⁶Sr ratios) with respect to the magma batches from the southern zone, the latter being enriched in mantle-derived components (e.g. higher ³He/⁴He and ¹⁴³Nd/¹⁴⁴Nd and lower ⁸⁷Sr/⁸⁶Sr ratios; Hildreth and Moorbath, 1988). Therefore, the pristine and MORB-like He isotope signature of the mantle source would be lowered by a progressive addition of crust-derived radiogenic ⁴He contamination occurring within magmas residing in the crust to the north. On the basis of these considerations, the low Rc/Ra values measured in EPC gases are related to the mixing, at variable degrees, between a ³He-rich end-member from the local magma reservoirs and ⁴He-rich fluids interacting with crustal rocks.

The δ^{13} C-CO₂ values measured in fumarole and bubbling gases (from -9.03 to -5.72% vs. V-PDB; Table 3) were in the range of mantle CO₂ (Rollinson, 1993; Hoefs, 1997; Ohmoto and Goldhaber, 1997), suggesting a dominant contribution of deep-originated compounds. Nevertheless, the high CO₂/³He ratios (up to 14.6 × 10¹⁰; Table 3 and Fig. 8), i.e. up to two orders of magnitude higher than the typical mantle ratio (1.5×10^9 ; Sano and Marty, 1995) and up to one order of magnitude higher than the global arc average value (1.2×10^{10} ; Sano and Williams, 1996), imply a significant addition of CO₂, which could be produced by both thermometamorphic reactions on limestone and degradation of the organic-rich sedimentary formations of EPC. A

Table 3

Chemical and stable isotopic (δ^{13} C-CO₂, in ∞ vs. V-PDB; Rc/Ra; R/Ra, δ^{18} O-H₂O_V and δ D-H₂O_V, in ∞ vs. V-SMOW) composition of fumaroles and bubbling gases. ⁴He/²⁰Ne, CO₂/³He, and CH₄/³He ratios, as well as %A, %C and %M values are also reported. Concentrations are in mmol/mol. Geographic coordinates (UTM; WGS-84 19S), altitude (m) and outlet temperature (°C) are also reported.

ID	Name	type	Date	Cord N	Cord E	Altitude	T°C	CO_2	H_2S	N_2	CH_4	Ar	02	H ₂	He
21a	Termas del Plomo 2	Bubbling pool	2/10/2013	6279861	415560	2962	25.2	628		355	0.146	6.9	9.7		0.0028
22	Monumento el Morado 1	Bubbling pool	2/13/2013	6260255	400543	2293	9.1	956		41	0.021	0.95	1.8		0.0066
24	Baños Morales P1	Bubbling pool	1/11/2013	6256821	401927	1812	15.2	892		104	0.023	2.4	1.3	0.091	0.0026
27	Puente de Tierra 1	Bubbling pool	2/1/2013	6226554	404731	2148	45	972		26	0.075	0.49	1.1	0.080	0.0009
27a	Puente de Tierra 2	Bubbling pool	2/1/2013	6226548	404754	2140	44.5	965		31	0.072	0.62	3.1	0.060	0.0011
30a	Baños Los Humos 2	Fumarole	1/25/2013	6143073	371828	2981	90.6	925	0.11	35	0.066	0.15	0.090	40	0.0015
30b	Baños Los Humos 3	Fumarole	1/25/2013	6143235	371802	2976	90	929	0.13	26	0.058	0.12	0.050	45	0.0026
30c	Baños Los Humos 4	Fumarole	1/25/2013	6142687	371534	2879	90.7	922	0.14	31	0.047	0.18	0.16	46	0.0017
32	Termas del Flaco 1	Bubbling pool	3/25/2012	6130555	368978	1806	63.7	988		7.7	4.6	0.061	0.095	0.0019	0.014
33	Termas del Flaco 2	Bubbling pool	3/25/2012	6130555	368996	1732	89.4	984		8.9	6.5	0.049	0.11	0.0021	0.012
39a	Barro Colorado 2	Fumarole	3/14/2011	6079574	361772	2282	94.4	997	0.32	1.6	0.57	0.003	0.034	0.11	0.0015
47a	Estero del Volcán 2	Fumarole	1/15/2012	6070452	339996	1960	112	989	4.6	6.2	0.14	0.011	0.025	0.11	0.0058
49	Termas del Campanario 1	Bubbling pool	2/15/2013	6022199	356881	1545	45.7	754		234	0.20	5.2	6.9		0.0049
49a	Termas del Campanario 2	Bubbling pool	2/15/2013	6022198	356923	1544	38.5	734		255	0.26	4.6	5.9		0.0045
50	La Plata 1	Fumarole	2/16/2013	6019525	344668	1953	94.3	901	25	62	1.6	0.79	0.004	9.3	0.041
51	La Plata 2	Fumarole	2/16/2013	6019548	344296	2183	93	902	39	34	1.0	0.54	0.003	23	0.041
52	San Josè	Fumarole	2/2/2012	6261279	416255	5756	81.4	991		8.5	0.017	0.14	0.14	0.016	0.011

significant crustal carbon source related to both biogenic and thermogenic processes is supported by the $CH_{4/}{}^{3}$ He ratios (up to 83.3×10^{6} ; Table 3), which are higher than those measured in sediment-free midocean ridge (<1 × 10⁵; Snyder et al., 2003). In order to test this hypothesis and according to the approach proposed by Sano and Marty (1995), the relative contribution of carbon from mantle degassing (M), limestone (L) and/or organic-rich sediments (S) can be calculated, as follows:

$$\mathbf{M} + \mathbf{S} + \mathbf{L} = \mathbf{1} \tag{3}$$

$$\begin{split} \left(\delta^{13} C - CO_2 \right)_{meas} &= M \left(\delta^{13} C - CO_2 \right)_{MORB} + L \left(\delta^{13} C - CO_2 \right)_{Lim} \\ &+ S \left(\delta^{13} C - CO_2 \right)_{sed} \end{split} \tag{4}$$

$$[1/(CO_2/^3He)]_{meas} = [M/(CO_2/^3He)]_{MORB} + [L/(CO_2/^3He)]_{Lim} + [S/(CO_2/^3He)]_{Sed}.$$
(5)

Calculations of the M, S and L fractions (in %; Table 3) were carried out considering the following end-members: $(\delta^{13}C-CO_2)_{MORB} = -6.5\%$, $(\delta^{13}\text{C-CO}_2)_{\text{Sed}} = -30\%$, $(\delta^{13}\text{C-CO}_2)_{\text{Lim}} = 0\%$, $(CO_2/^3\text{He})_{\text{MORB}} = 1.5 \times 10^9$, $(CO_2/^3\text{He})_{\text{Sed}} = 1 \times 10^{13}$ and $(CO_2/^3\text{He})_{\text{Lim}} = 1 \times 10^{13}$. These results confirm a low mantle CO_2 fraction (M < 4.1%), whereas limestone was largely the most abundant crustal carbon source (L and S up to 73.3 and 32.4%, respectively). This means that contributions from the subducting slabs and the sedimentary basement controlled the budget of $CO_2 [(L + S) / M$ up to 150], as already observed by Ray et al. (2009) in other geothermal areas of SVZ and by Benavente et al. (2013) at the Tupungatito volcano. Mixing between limestone (L) and/or organicrich sediments (S), at comparable mantle contribution, could also have produced such strong variations of the δ^{13} C-CO₂ values. Most data indeed fall indeed within an area limited by two hypothetical mixing lines between M and two possible end-members with 27% and 37% of organic carbon added to limestone (Fig. 8). The lowest δ^{13} C-CO₂ values measured in samples 22 and 49a, which also showed the lowest Rc/Ra values of our dataset, are in accordance with the latter inference, being these gases characterized by the highest percentages of organic-rich sedimentary CO_2 (S = 32.4 and 36.8, respectively). Samples 50 and 51 are the only exceptions, since they were characterized by relatively high M fraction (31.9 and 35.7%). This evidence is in contrast with the Rc/Ra (3.4 and 3.8) and δ^{13} C-CO₂ (-8.9 and -8.1‰ vs. V-PDB, respectively) values of these samples, which were comparable to those measured in other samples (i.e., 30b, 30c and 47a). It is worth noting that the high %M values of samples 50 and 51 were due to their low $CO_2/^3$ He ratios, which were the lowest of our dataset and even lower than the global arc average value (1.2×10^{10}). Such relatively low $CO_2/^3$ He ratios can be produced by a secondary process according to which a selective dissolution in water of CO_2 with respect to the less soluble species (e.g. Ray et al., 2009) occurred, as suggested by relatively high He, CH₄ and Ar concentrations shown by these gases (Table 3). To investigate the effect of preferential loss of CO_2 into a liquid phase on the measured $CO_2/^3$ He ratios, the Rayleigh fractionation model was applied, as follows:

$$\mathbf{r}_{\rm be} = \mathbf{r}_{\rm af} \, \mathbf{F}^{(\alpha - 1)} \tag{6}$$

where r_{be} and r_{af} represent the CO₂/³He ratios after and before gas removal respectively, 'F' is the fraction of gas remaining after gas removal, and α is the fractionation factor expressed as the ratio of CO₂ and He solubilities (S) in water (S_{CO2}/S_{He} = 61.4499 at 40 °C, 33.4724 at 70 °C, and 10.5094 at 160 °C; Taran, 2005). Assuming an initial CO₂/³He value of 6.6 × 10¹⁰, i.e. the ratio of the fumarole with the highest Rc/ Ra value (sample 30b), the measured CO₂/³He ratio in sample 51 would require a gas loss (1 – F) of ~4%, 8% and 25% at 40°, 70° and 160 °C, respectively. It is worth noting that samples 30b, 50 and 51 had comparable δ^{13} C-CO₂ values. Thus, CO₂ associated with these waters was not affected by isotopic fractionation, likely because its dissolution occurred at T > 125 °C (Mook et al., 1974).

As shown in the N₂–He–Ar ternary diagram (Giggenbach, 1992; Fig. 9), fumarolic discharges from the surroundings of Tinguiririca (30a, b and c), Planchón-Peteroa (39a) and Descabezado Grande-Cerro Azul (47a) volcanoes were characterized by N₂/Ar ratios >84 (air value), typically shown by arc-type gases (Giggenbach, 1992). Samples from San Pedro-Pellado (50 and 51) and San José (52) volcanoes, showed relatively low N_2/Ar ratios (<84) likely due to mixing processes between gases from ASW (N₂/Ar ~ 38) and a less evolved, He-rich magma source. This hypothesis is consistent with the high calculated %M values of these samples (6.8% to 35.7%; Table 3). Bubbling gases located 16 km south of Tinguiririca volcano (32 and 33) were characterized by higher He contents (and similar N₂/Ar ratios) than those determined in the fumaroles located at the summit craters (30a, b and c) (Fig. 9). Such a He-excess was likely produced by (i) CO₂ dissolution related to the occurrence of an aquifer at the base of the volcano, and (ii) ⁴He addition due to water-rock interactions typically affecting gas discharges at the periphery of hydrothermal-dominated volcanic systems. The latter process is also supported by the relatively low Rc/Ra value of the bubbling gases (2.13) with respect to those of the fumaroles (3.6 and 3.9). The relatively low ${}^{4}\text{He}/{}^{20}\text{Ne}$ ratios (≤ 8.5 ; Table 3) shown by

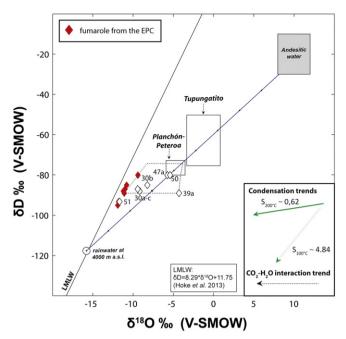
CO	H ₂ 0	R/Ra	⁴ He/ ²⁰ Ne	Rc/Ra	%A	%C	%M	δ^{13} C-CO ₂	$\delta D-H_2O$	$\delta^{18}\text{O-H}_2\text{O}$	$CO_2/^3He$ (10 ¹⁰)	CH ₄ / ³ He (10 ⁶)	М	L	S
		1.05	0.8	1.07	39.7	51.9	8.4	-7.76			15.1	35.1	0.98	73.3	25.7
		0.49	8.5	0.47	3.7	90.1	6.2	-9.76			22.2	4.9	0.66	67.0	32.4
		1.53	0.9	1.81	35.3	49.7	14.9	-8.60			13.8	3.5	1.07	70.5	28.5
								- 10.9							
	956							-8.90	-88	-11.2					
	944	3.85	17	3.90	1.8	50.0	48.2	-8.50	-85	-10.8	6.6	4.1	2.26	69.8	27.9
	966	3.58	38	3.60	0.8	54.2	45.0	-8.70	-87	-11.0	10.8	5.5	1.37	69.9	28.7
								-9.77							
		2.12	47	2.13	0.6	72.5	26.8	-8.34			2.9	190	5.16	67.9	26.9
0.0028	827	3.26	56	3.27	0.5	58.4	41.0	-5.72	-89	-11.1	14.6	83.3	1.01	80.1	18.9
0.0018	882	3.40	351	3.40	0.1	57.1	42.8	-8.12	-80	-9.4	3.6	5.1	4.15	69.5	26.3
								-11.1							
		0.65	1.5	0.55	21.2	73.0	5.8	-11.1			21.3	75	0.69	62.5	36.8
	882	3.39	70	3.40	0.4	56.9	42.7	-8.90	-80	-9.4	0.47	8.3	31.9	43.8	24.3
	997	3.79	86	3.80	0.3	52.0	47.6	-8.10	-93	-11.8	0.42	4.6	35.7	43.3	21.0
	785	2.90	95	2.91	0.3	63.1	36.6	-9.03	-95	-11.9	2.2	0.38	6.8	64.3	28.9

the other bubbling gases seem to imply a significant contamination of atmospheric He, as also suggested by the relative proportion of N_2 -Ar-He (Fig. 9).

5.1.3. Chemical equilibria in the liquid phase

With the aim to investigate the chemical-physical conditions dominating the source regions of hydrothermal fluids feeding the thermal springs in the whole investigated area, a theoretical approach based on the equilibria of chemical reactions involving ionic species of water and different mineral phases, was carried out in this section. Equilibrium temperatures of hydrothermal reservoirs are commonly evaluated on the basis of the equilibrium reactions in the Na⁺–K⁺– Mg²⁺-Ca²⁺ system (Fournier and Truesdell, 1973; Fournier and Potter, 1978; Fournier, 1979; Giggenbach, 1988, 1991). As shown in the Na/400–K/10– \sqrt{Mg} ternary diagram (Fig. 10), where the fields of "fully equilibrated", "partially equilibrated" and "immature" waters were obtained by combining the fast responding K-Mg geothermometer with the slowly re-equilibrating Na-K geothermometer (Giggenbach, 1988), cold waters are confirmed to be strongly immature. The only exception (partial equilibrium at T ~ 170 °C) was represented by sample 24 from EPC, a Na⁺-Cl⁻ water with relatively high TDS value (~7000 mg/L). A group of waters defines a dilution trend (A) from the partial equilibrium field at temperatures ranging from 200 to 240 °C (28, 32, 33, 34, 39 and 49) to the Mg corner (20, 35, 38, 41, 42, 43, 46 and 48). A second dilution trend (B) at lower temperatures (from 120 to 160 °C) is depicted by samples 16, 17, 24, 25, 26 and 27 (at partial equilibrium) and samples 15, 36, 37, 44 and 45 (in the immature field). A third, low temperature (<100 °C) trend (C) includes samples 9, 10, 11, 13, 18 and 21. Waters that tend to full equilibrium along the trend (A) are from EPC and had a Na^+ – Cl^- composition and relatively high TDS values (Table 1), i.e. the typical features of mature waters related to the active volcanoes (Giggenbach, 1988). Differently, partial equilibrium of trends B and C includes both Na⁺–Cl⁻ waters from EPC (21, 24, 25, 26 and 27) and waters far from the active volcanic chain (17 and 18). Therefore, it cannot be excluded that the latter waters were affected by some addition of the Na⁺–Cl⁻ brine uprising from the eastern deep systems through west-verging thrust faults (Farías et al., 2010; Giambiagi et al., 2014) (Fig. 2b). This hypothesis is also supported by the presence of significant amounts of mantle He (19%) as dissolved phase in sample 17 (R/Ra ~ 1.56; Hilton et al., 1993).

The increasing Mg^{2+} concentrations of the Na^+-Cl^- waters along both the A and B trends (Fig. 10) correspond to decreasing TDS values (Table 1), thus they were likely produced by dilution of mature, volcanic/geothermal brines. The apparent partial equilibrium attained by the WPC waters on the B and C trends was unlikely. In fact, samples 9, 10 and 11 had low TDS values, whereas the Ca²⁺–Cl⁻ composition of samples 13 and 16 was likely due to albitization–chloritization of basalts, which is not consistent with the paragenesis at the basis of the Na⁺–K⁺–Mg²⁺ geothermometer.


In the (10K / [10K + Na] vs. 10Mg / [10Mg + Ca]) diagram (Fig. 11) those waters from EPC showing some degree of attainment of equilibrium in Fig. 10 are reported. All samples plot far from the equilibrium curve proposed by Giggenbach (1988), suggesting that the EPC waters approached their equilibrium with rocks characterized by a mineral assemblage different with respect to that used to construct the original diagram. The EPC basement is characterized by carbonate–evaporite rocks, consequently a mineral assemblage involving calcite, dolomite, anhydrite and fluorite (e.g. Marini et al., 1986) is expected to be the most appropriate to describe water–rock interactions in this area. According to Chiodini et al. (1995), chemical equilibrium in the Ca²⁺–Mg²⁺–H₂O system is given by the following equation:

$$\begin{split} log \Big(Ca^{2+} / Mg^{2+} \Big) &= 3.117 - 979.8 / (T+273.15) + 0.03904 \\ &* log (P_{CO2}) + 0.07003 * log (\Sigma_{eq}) \end{split} \label{eq:log_constraint} \end{split}$$

where T is the temperature (in °C), P_{CO2} is the partial pressure of CO_2 (in bar) and Σ_{eq} is the salinity of the solution (in mol/L). On the other hand, the Na⁺-K⁺ ratios of these waters were likely controlled by the cation exchange between Na- and K-feldspars (Fig. 10), whose dependence on the temperature can be computed according to the following equation (Giggenbach, 1988):

$$log(K^{+}/Na^{+}) = 1.75 - [1390/(T + 273.15)] \tag{8}$$

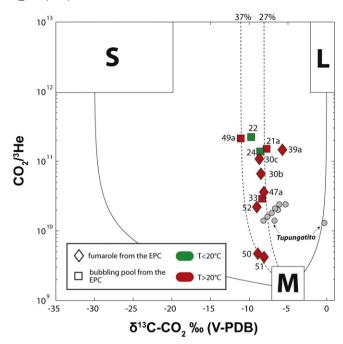
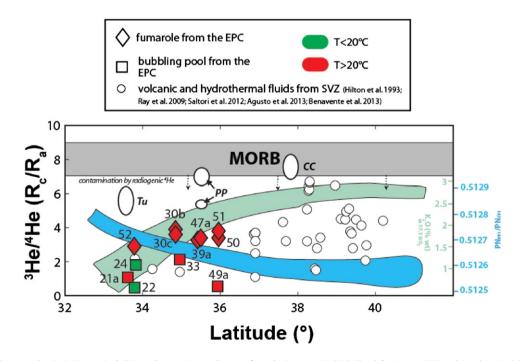

Samples 24, 25, 26, 27, 34 and 39 plot close to the equilibrium lines (green and blue dotted curve) constructed considering P_{CO2} values of 0.1, 1, 10 and 100 bar, Σ_{eq} values in the range of these samples (from 0.02 to 2 eq/L), and temperatures from 60 to ~300 °C (Fig. 11). However, most Na⁺-Cl⁻ samples plot at unrealistic high Σ_{eq} and P_{CO2} values (>20 eq/L and/or >100 bar, respectively), suggesting that the chemistry of these waters was controlled by a different mineral paragenesis. Chemical equilibria albite, K-feldspar, Ca- and Mg-saponite, the two clay-minerals being typically involved in rock–water interactions producing "mature" waters and recognized in the drilling logs wells at the Tinguiririca geothermal field (Droguett et al., 2012), can be

Fig. 6. δD -H₂O vs. $\delta^{18}O$ -H₂O (‰ vs. V-SMOW) binary diagram for fumarolic steam from Central Chile. The Local Meteoric Water Line (LMWL; Hoke et al., 2013) and the field of "Andesitic water" (Taran et al., 1989) are reported. White diamonds: calculated isotopic composition of fumaroles prior to condensations (details are reported in the text).


calculated using Eq. (8) and the chemical reaction between Ca- and Mg-saponite, as follows:

$$\begin{split} & \mathsf{Ca}_{0.165}\mathsf{Mg}_3\mathsf{Al}_{0.33}\mathsf{Si}_{3.67}\mathsf{O}_{10}(\mathsf{OH})_2 \\ & + 0.165\mathsf{Mg}^{2+} \!\leftrightarrow\!\mathsf{Mg}_{3.165}\mathsf{Al}_{0.33}\mathsf{Si}_{3.67}\mathsf{O}_{10}(\mathsf{OH})_2 + 0.165\mathsf{Ca}^{2+}. \end{split}$$

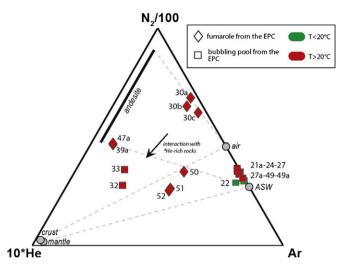
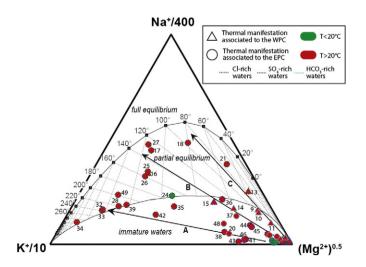


Fig. 8. $CO_2/^3$ He vs. $\delta^{13}C$ - CO_2 binary diagram. End-member compositions of sedimentary (organic)-derived carbon (S), calcareous (limestone)-derived carbon (L) and mantle-derived carbon (M) are from Sano and Marty (1995). Binary mixing curves between S and M, between L and M, and between S and L (solid lines) are reported. Dotted lines represent binary mixing between M and two possible end-members with 27% and 37% of organic carbon added to limestone.

Assuming that the activity ratios for the saponite solid mixture are close to unity (Giggenbach, 1988; Marini, 2006) and that the activity coefficients of bivalent cations are similar (i.e., $\gamma Ca^{2+} \sim \gamma Mg^{2+}$), the Ca²⁺/Mg²⁺ (in mg/kg) ratios can be calculated using the

Fig. 7. ³He/⁴He ratios (expressed as Rc/Ra) vs. Latitude binary diagram. Fumarolic gases from the Tupungatito (Tu), Planchón–Peteroa (PP) and Copahue–Caviahue (CC) volcanoes and other hydrothermal fluids from SVZ (Hilton et al., 1993; Ray et al., 2009; Saltori et al., 2012; Agusto et al., 2013; Benavente et al., 2013) are reported for comparison. The K₂O contents (green area) and ¹⁴³Nd/¹⁴⁴Nd ratios (blue area) of volcanic rocks along the SVZ are also reported for comparison (Hildreth and Moorbath, 1988). Along-arc variations in chemical and isotopic composition of volcanic rocks from the SVZ indicate an increasing participation of continental crust in the magma genesis to the north (Hildreth and Moorbath, 1988; Cembrano and Lara, 2009). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)


 $\mbox{Fig. 9.}\ N_2\mbox{-Ar-He}$ ternary diagram (Giggenbach, 1992) for fumaroles and bubbling gases from Central Chile.

following temperature-dependent relations (T in °C) computed using the thermodynamic data from Delany and Lundeen (1991):

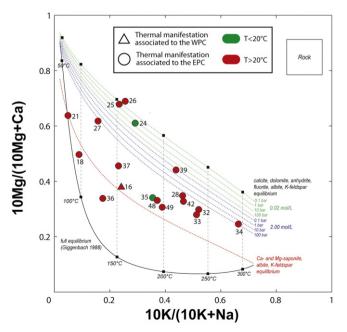
$$\begin{split} log \Big(Ca^{2+}/Mg^{2+} \Big) &= 0.0356 + 0.012T - 4.121 \Big(T^2/10^5 \Big) \\ &\quad + 0.848 \Big(T^3/10^7 \Big) - 0.569 \Big(T^4/10^{10} \Big) \end{split} \tag{10}$$

As shown in Fig. 11, the Na⁺–Cl⁻ waters seem to have attained chemical equilibria in the Na⁺–K⁺–Ca²⁺–Mg²⁺ system at temperatures consistent with those indicated by the Na/400–K/10– \sqrt{M} g ternary diagram (Fig. 10), in presence of the mineral paragenesis considered to compute Eqs. (7), (8) and (10), i.e. calcite, dolomite, anhydrite, fluorite, albite, K-feldspar, Ca- and Mg-saponite. It is worth noting that the temperatures estimated for the Na⁺–Cl⁻ waters from Tinguiririca volcano (32, 33 and 34: >230 °C) and the San Pedro–Pellado volcanoes (48 and 49: ~200 °C) are in good agreement with those measured at the bottom of the slim holes drilled in these systems (Clavero et al., 2011; Hickson et al., 2011).

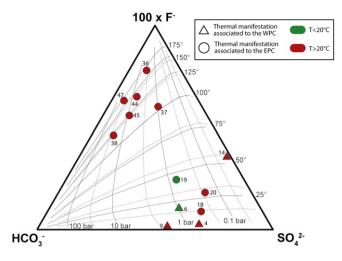
As suggested by Chiodini et al. (1995), equilibrium temperatures of $Ca^{2+}-SO_4^{2-}$, $Na^+-SO_4^{2-}$, and $Na^+-HCO_3^-$ springs from WPC and EPC, i.e. those likely controlled by the interaction with the Mesozoic carbonate–gypsum formations with no significant contribution from the Na^+ -

Fig. 10. Na–K–Mg ternary diagram proposed by Giggenbach (1988) for thermal and cold springs from Central Chile. The axes (Na/400–K/10– \sqrt{Mg}) were modified to enlarge the low temperature area of the diagram.

Cl⁻ brine, can be conveniently computed considering the theoretical concentrations of HCO₃⁻, SO₄⁻ and F⁻ in equilibrium with calcite, dolomite, anhydrite and fluorite. The theoretical T- P_{CO2} grid in the SO₄²⁻ F⁻ HCO₃⁻ ternary diagram (Fig. 12) was calculated for salinities (0.02 and 0.5 mol/L) consistent with those of the plotted waters. Thermal waters from the southern sector of EPC close to the Planchón–Peteroa and Descabezado Grande–Cerro Azul volcanoes (36, 37, 38, 44, 45 and 47) seem to have attained equilibrium at temperatures from 105 to 150 °C and P_{CO2} values from 1 to 10 bars. On the contrary, the two thermal Ca²⁺–SO₄²⁻ waters from the northern end of EPC (19 and 20) and those from WPC (4, 6, 9 and 14) plot at relatively low equilibrium temperatures (<55 °C) and P_{CO2} values indicating a shallow and cooler hydrological pattern.


5.1.4. Chemical equilibria in the gas phase

Among H₂O-H₂-CO-CO₂-CH₄, i.e. the main gas compounds sensitive to changes of chemical-physical conditions in hydrothermal systems, H₂O and CO cannot reliably be used for geothermometric purposes to the gas discharges investigated in the present study. These two compounds are indeed strongly dependent on steam condensation processes due to the presence of liquid water at various temperatures at the surface (bubbling pools) and also affecting the fumarolic discharges (Fig. 6). Therefore, fluid reservoir temperatures can be preferably investigated using the CO₂ geothermometer proposed by Giggenbach and Goguel (1989), which assumes that P_{CO2} is controlled by interactions with crustal rocks. Another geothermometer that can be usefully be applied to hydrothermal fluids is based on the dependence on temperature of H₂ fugacity (Giggenbach, 1987). Problems related to the use of the univariant reactions involving these two sensitive species can be prevented by formulating isomolar concentration ratios with a chemically inert constituent, such as Ar that is assumed to have a meteoric origin in hydrothermal reservoirs (Giggenbach, 1991).


Considering that hydrothermal fluids are O_2 -free, to avoid the effect of possible atmospheric contamination at the surface, Ar concentrations were transformed into Ar^{*} values, as follows:

$$Ar_{*} = Ar - O_2/22$$
 (11)

where the $O_2/22$ ratio represents a minimum estimation (being O_2 rapidly consumed by redox reactions) of the Ar concentration from

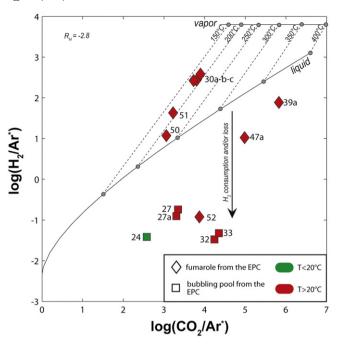
Fig. 11. (10K/[10K + Na] vs. 10Mg/[10Mg + Ca]) binary diagram (Giggenbach, 1988) for thermal and cold springs from Central Chile.

Fig. 12. SO_4^2 -F⁻HCO₃⁻ ternary diagram (Marini et al., 1986; Chiodini et al., 1995) for thermal and cold springs from Central Chile. Two theoretical T-P_{CO2} grids for salinities of 0.02 mol/L (solid lines) and 0.5 mol/L (dotted lines) are shown.

atmospheric contamination. The dependences of H_2 on R_H in the two phases can be expressed, as follows:

$$\log(H_2/Ar*)_V = R_H + 6.52$$
(12)

$$\log(H_2/Ar*)_{\rm L} = R_{\rm H} - \log(B_{\rm H2}) + 6.52 \tag{13}$$

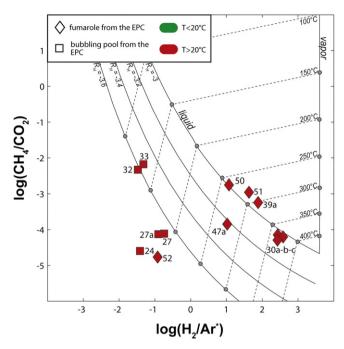

where B_{H2} is the vapor/liquid distribution coefficients of H_2 . At redox conditions controlled by the Fe^{II}–Fe^{III} (GT) redox buffer system [RH = $log(H_2/H_2O) = -2.8$; Giggenbach, 1987], the dependence of CO₂/Ar^{*} ratios on temperature is given by:

$$\begin{array}{l} log(CO_2/Ar*)_V = -2.81 - 5012.7/T - 0.00919 \times T + 6.464 \\ \times \ log(T) \end{array} \tag{14}$$

$$\begin{array}{l} log(CO_2/Ar*)_L = -2.81 - 5012.7/T - 0.00919 \times T + 6.464 \\ \times \ log(T) - log(B_{CO2}) \end{array} \tag{15}$$

where T is in K and B_{CO2} is the vapor/liquid distribution coefficient of CO₂. The combination of the CO₂/Ar* and H₂/Ar* geothermometers from 150 to 350 °C was graphically displayed in Fig. 13. Fumarolic gases from the Tinguiririca (30a, b, c) and the San Pedro-Pellado volcanoes (50 and 51) approached equilibrium in a vapor phase separated from a liquid at 200–250 °C. This temperature range is consistent with that attained by the liquid phase of the thermal waters from those areas (32-33 and 49, respectively; Figs. 10 and 11). Nevertheless, the bubbling gases from the same areas were far from the equilibrium (Fig. 13), possibly due to (i) H₂ consumption and/or (ii) Ar addition, both likely occurring at shallow depth in the bubbling water. Similar processes can also have affected the other bubbling gases (24, 27 and 27a; Fig. 13), especially those having no detectable H_2 concentrations (21a, 22, 49 and 49a; Table 3), and the fumarole from San José volcano (52). Fumaroles from Planchón-Peteroa (39a) and Descabezado Grande-Cerro Azul (47a) areas seem to have attained equilibrium in the liquid phase at relatively high temperature (>300 °C). Accordingly, in these gases CO was measured at significant concentrations (Table 3). However, the thermal waters associated with these systems were mostly immature or approach equilibrium at temperatures <210 °C (Figs. 10 and 11). This suggests the occurrence of hightemperature fluids whose liquid phase was partially diluted by shallow aquifers, whereas the gas fraction maintained the composition acquired at depth.

Chemical reactions involving CH_4 are kinetically slow, thus they can provide information about the equilibria attained at deeper levels with


Fig. 13. $Log(H_2/^*Ar)$ vs. $log(CO_2/^*Ar)$ binary diagram for bubbling and fumarolic gases from Central Chile. Solid lines refer to equilbria in the vapor and liquid phases controlled by the GT redox buffer system at temperatures from 150 to 350 °C (Giggenbach, 1987).

respect to the quick responding geothermometers (Giggenbach, 1987, 1991; Chiodini and Marini, 1998). Assuming that the CH₄–CO₂ pair is regulated by the Sabatier reaction (CH₄ + 2H₂O \leftrightarrow CO₂ + 4H₂) and that log *f*H₂O = 4.9–1820 / T (Giggenbach, 1987), the dependence of the log(CO₂/CH₄) values on temperature and R_H in the vapor and the liquid phases is, as follows:

$$\log(CH_4/CO_2)_V = 4 R_H + 5181/T(K)$$
(16)

$$\log(CH_4/CO_2)_L = 4 R_H + 5181/T(K) + \log(B_{CO2}) - \log(B_{CH4}).$$
(17)

Eqs. (12), (13), (16) and (17) were used to construct the $T-R_H$ grid in the CO_2 -CH₄-H₂ system that is reported in the $log(X_{H2}/X_{Ar^*})$ vs. log(X_{CH4}/X_{CO2}) diagram (Fig. 14). As expected, the CO₂-CH₄-H₂ equilibrium temperatures of the Tinguiririca and San Pedro-Pellado fumaroles (30a-b-c, 50 and 51) are significantly higher (up 350 °C) with respect to those estimated by the CO_2-H_2 geothermometer. The apparent low equilibrium temperatures (<150 °C) and highly oxidizing conditions $(R_H < -3.4)$ of fluids from the Tinguiririca bubbling pools (32 and 33) were likely caused by H₂-consumption, as also evidenced in Fig. 13. Similarly, the relatively low H₂ (Fig. 13) and CH₄ (Fig. 14) contents of the other bubbling gases and the San José fumarole (52) seem to derive from secondary oxidation processes, which were able to mask the chemical composition attained at depth. On the other hand, the temperature estimates for Planchón-Peteroa and Descabezado Grande-Cerro Azúl fumaroles were consistent, although this similarity is only apparent since the CO₂-CH₄-H₂ equilibrium occurred at more oxidizing conditions (R_H from -3.2 to -3.0) with respect to that controlled by the GT redox buffer. This would imply that these hydrothermal systems were characterized by thermally stratified fluid reservoirs, likely related to hot and oxidizing magmatic fluids they receive from below. Such input of magmatic fluids is consistent with the δ^{13} C-CO₂, Rc/Ra and $CO_2/^3$ He values of the fumarolic gases. A magmatic fluid contribution should also have affected the water isotopic signature of the fumarolic condensates, which on the contrary seems not consistent with the "Andesitic water" field (Taran et al., 1989), possibly due to the masking effect due to vapor condensation that affects these fluid discharges (Fig. 6). To investigate this process, the isotopic composition of the

Fig. 14. $Log(H_2/^*Ar)$ vs. $log(CO_2/CH_4)$ binary diagram for bubbling and fumarolic gases from Central Chile. Solid lines refer to equilibria in the vapor and liquid phases at temperatures from 150 to 350 °C and R_H values from -3.0 to -3.6.

fumarolic vapor prior to condensation can be computed by considering two processes, as follows: i) δ^{18} O-H₂O fractionation due to 18 O- 16 O exchange between water vapor and CO₂ and ii) the chemical and isotopic effect of vapor condensation (Benavente et al., 2013). As described by Chiodini et al. (2000), the former can be estimated, as follows:

$$\begin{split} \delta^{18} O - H_2 O_{ini} &= \delta^{18} O - H_2 O + [2X_{CO2}/(1+X_{CO2})] \\ \times \left[1000 ln\alpha \left(T_i \right) - 1000 ln\alpha \left(T_{meas} \right) \right] \end{split} \tag{16}$$

where T_i is temperature (°C) estimated by gas geothermometry in the $CO_2-CH_4-H_2$ systems (Fig. 14), $\delta^{18}O-H_2O_{ini}$ is the initial composition of steam at the $CO_2-CH_4-H_2$ equilibrium conditions, T_{meas} is the fumarolic outlet temperature (°C), X_{CO2} is the CO_2 molar fraction, and α is the oxygen isotope fractionation factor between $CO_2(g)$ and $H_2O(g)$, whose temperature (°C) dependence is given by:

$$1000 \ln \alpha = -5.7232 + 20.303(103/T) - 11.977(106/T^{2}) + 3.7432(109/T^{3}).$$
(17)

The X_{CO2} values in Eq. (16) were calculated considering that $X_{CO2} + X_{H2O} \sim 1$ (Giggenbach, 1980) and using the CO₂/H₂O molar ratios modeled from Eq. (6), where r_{be} and r_{af} correspond to the CO₂/H₂O molar ratio before and after vapor condensation, and α is the CO₂-H₂O liquid–vapor distribution factor (4651 at 100 °C; Giggenbach, 1980). As shown in Fig. 6, the corrected isotopic values (white diamonds) plot along a mixing line between meteoric water (at 4000 m a.s.l.) and the Andesitic water field, consistently with the vapor isotopic signature of the fluids discharged from the summit fumaroles of Tupungatito and Planchón–Peteroa volcanoes (Saltori et al., 2012; Benavente et al., 2013). The only exception was represented by sample 39a that was likely affected by condensation with a condensed steam fraction value (c = 1 – F) of 0.43.

6. Conclusions

The hydrothermal systems of the numerous fluid discharges seeping out along the Principal Cordillera of Central Chile are mainly fed by meteoric water infiltrating at different altitudes, the latter being dependent on the variable morphology of this large region. Significant contributions of magmatic water likely affected the hydrothermal fluids discharged from fumaroles fed by hydrothermal systems related to the active volcanoes. Thermal and cold springs in WPC were produced by interaction of groundwater, circulating through permeable pathways associated with the Infiernillo and San Ramon-Pocuro fault systems, and low soluble Cenozoic basaltic-andesitic volcanic rocks. This process exhaustively explains the low TDS, neutral to alkaline pH, shown by the springs having a HCO₃⁻ dominated composition. The few SO_4^{2-} and CI^{-} dominated waters of this area were produced by interaction, at relatively low temperatures (<60 °C), with the evaporite-rich Mesozoic formation possibly located underneath the Cenozoic rocks. Secondary mineral produced by the alteration of volcanic rocks, whose products are frequently recognized in this area, may also explain the relatively high Cl⁻ concentrations in some thermal springs, although close to the boundary between WPC and EPC some addition of Na⁺-Cl⁻ brine cannot be excluded.

In EPC, the chemistry of thermal fluids was controlled by interaction with the Mesozoic sequences enhanced by addition of CO₂-rich gases, whose influence increases eastward approaching the active volcanic chain. At relatively short distance from the volcances showing fumarolic activity, direct interaction of shallow aquifers with $CO_2(H_2S)$ -rich volcanic gases produced immature HCO_3^- and SO_4^{2-} dominated waters. Closely out of these areas, especially S of the Maipo Orocline, where the dominating transtensional regime favors the uprising of heat and deep fluids, the occurrence of mature hydrothermal reservoirs at temperatures >200 °C was testified by the numerous thermal springs discharging high-TDS, Na⁺-Cl⁻ waters.

The He isotopic composition of fumarole and bubbling gases from the volcanic areas of Tinguiririca, Planchón-Peteroa and San José, as well as in the Mariposa geothermal area clearly indicated the occurrence of magmatic fluids. This was also suggested by the anomalous heat flux of these zones. However, the Rc/Ra values measured in these gases (up to 3.9), which were significantly lower than those measured from other hydrothermal systems in CVZ and SVZ (up to 6.9) and lower than the expected mantle signature for volcanic arcs (8 \pm 1 Ra; Hilton et al., 2002), unequivocally indicated a significant addition of ⁴He-rich fluids from a crustal source. This process was reasonably occurring within the Andean crust during long-time residence (aging) of magma and/or contact with ⁴He-rich rocks. The δ^{13} C-CO₂ (from -13.2 to -5.72% vs. V-PDB) and the CO₂/³He values (up to 14.6×10^{10}) also suggest that most CO₂ derived from limestone with an important contribution of sedimentary (organic-derived) carbon, both possibly originating from the recycling of subducted sediments and the sedimentary basement. In agreement with the information gathered from the preliminary prospection carried out at Calerías, Tinguiririca, Calabozos and Mariposa geothermal areas, the results of this study have confirmed the promising geothermal potential of this region that likely represents a complementary energy source able to provide an adequate response to the increasing need for energy supply of this country.

Acknowledgments

This research was partly funded by the FONDAP Project #15090013 "Centro de Excelencia en Geotermia de los Andes, CEGA". Additional support was provided by MECESUP doctoral fellowship (UCH-0708), the PBCT-PDA07 project granted by CONICYT (Chilean National Commission for Science and Technology), "Proyecto de Iniciación FONDECYT N°11100372: Role of climate, continental crust and subducted sediments in the degassing style and fluid composition of Andean volcanoes", and by the laboratories of Fluid Geochemistry and Stable Isotopes of the Department of Earth Sciences of the University of Florence. We thank Mariano Tantillo (INGV-Palermo) for the analytical support during He isotope measurements. We also thank Italo Payacan, Cristobal Bayer, Constanza Nicolau, Javiera Mulet, Javier Lobato, Roberto Valles and Benjamin Oberreuter for their assistance in the field. Two anonymous reviewers are kindly thanked since they provided useful and helpful comments to an early version of the manuscript that was then substantially improved.

References

- Agusto, M., Tassi, F., Caselli, A., Vaselli, O., Rouwet, D., Capaccioni, B., Caliro, S., Chiodini, G., Darrah, T., 2013. Gas geochemistry of the magmatic-hydrothermal fluid reservoir in the Copahue–Caviahue Volcanic Complex (Argentina). J. Volcanol. Geotherm. Res. 257, 44–56.
- Arriagada, C., Ferrando, R., Cordova, L., Morata, D., Roperch, P., 2013. The Maipo Orocline: a first scale structural feature in the Miocene to Recent geodynamic evolution in the central Chilean Andes. AndGeo 40 (3), 419–437.
- Barazangi, M., Isacks, B.L., 1976. Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America. Geology 4 (11), 686–692. http://dx.doi.org/10. 1130/0091-7613(1976)4<686:SDOEAS>2.0.CO;2.
- Barnett, P., 2012. Geothermal projects in South America of hot rock limited. 1st Chilean International Renewable Energy Congress, Santiago, Chile.Benavente, O., Tassi, F., Gutiérrez, F., Vaselli, O., Aguilera, F., Reich, M., 2013. Origin of fu-
- Benavente, O., Tassi, F., Gutiérrez, F., Vaselli, O., Aguilera, F., Reich, M., 2013. Origin of fumarolic fluids from Tupungatito Volcano (Central Chile): interplay between magmatic, hydrothermal, and shallow meteoric sources. Bull. Volcanol. 75 (8), 1–15. http:// dx.doi.org/10.1007/s00445-013-0746-x.
- Bencini, A., 1985. Applicabilità del metodo dell'Azometina-H alla determinazione del Boro nelle acque naturali. Rend. Soc. Ital. Mineral. Petrol. 40, 311–316.
- Brondi, M., Dall'Aglio, M., Vitrani, F., 1973. Lithium as pathfinder element in the large scale hydrothermal exploration for hydrothermal systems. Geothermics 2, 142–153. http://dx.doi.org/10.1016/0375-6505(73)90021-7.
- Caliro, S., Chiodini, G., Izzo, G., Minopoli, C., Signorini, A., Avino, R., Granieri, D., 2008. Geochemical and biochemical evidence of lake overturn and fish kill at Lake Averno, Italy. Journal of Volcanology and Geothermal Research. V. 178. I. 2, 305–316.
- Cembrano, J., Lara, L., 2009. The link between volcanism and tectonics in the southern volcanic zone of the Chilean Andes: a review. Tectonophysics 471 (1–2), 96–113. http://dx.doi.org/10.1016/j.tecto.2009.02.038.
- Charrier, R., Baeza, O., Elgueta, S., Flynn, J.J., Gans, P., Kay, S.M., Muñoz, N., Wyss, A.R., Zurita, E., 2002. Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat-slab segment, southern Central Andes, Chile (33°– 36°S.L.). J. S. Am. Earth Sci. 15 (1), 117–139. http://dx.doi.org/10.1016/S0895-9811(02)00009-3.
- Chiodini, G., Marini, L., 1998. Hydrothermal gas equilibria: the H₂O-H₂-CO₂-CO-CH₄ system. Geochim. Cosmochim. Acta 62, 2673–2687. http://dx.doi.org/10.1016/S0016-7037(98)00181-1.
- Chiodini, G., Frondini, F., Marini, L., 1995. Theoretical geothermometers and pCO₂ indicators for aqueous solutions coming from hydrothermal systems of medium-low temperature hosted in carbonate–evaporite rocks. Application to the thermal springs of the Etruscan Swell, Italy. Appl. Geochem. 10, 337–346. http://dx.doi.org/10.1016/ 0883-2927(95)00006-6.
- Chiodini, G., Allard, P., Caliro, S., Parello, F., 2000. ¹⁸O exchange between steam and carbon dioxide in volcanic and hydrothermal gases: isotopic and genetic implications. Geochim. Cosmochim. Acta 64, 2479–2488. http://dx.doi.org/10.1016/S0016-7037(99)00445-7.
- Clavero, J., Pineda, C., Mayorga, C., Giavelli, A., Aguirre, I., Simmons, S., Martini, S., Soffia, J., Arriaza, R., Polando, E., Achurra, L., 2011. Geological, geochemical, geophysical and first drilling data from Tinguiririca geothermal area, central Chile. Geothermal Resources Council Transactions (GRC) 35. Geothermal Resources Council, San Diego, California, pp. 731–734.
- Cox, S.F., 2010. The application of failure mode diagrams for exploring the roles of fluid pressure and stress states in controlling styles of fracture-controlled permeability enhancement in faults and shear zones. Geofluids 10 (1–2), 217–233. http://dx.doi.org/ 10.1111/j.1468-8123.2010.00281.x.
- Davis, S.N., Cecil, L.D., Zreda, M., Moysey, S., 2001. Chlorine-36, bromide, and the origin of spring water. Chem. Geol. 179, 3–16. http://dx.doi.org/10.1016/S0009-2541(01)00312-6.
- Delany, J.M., Lundeen, S.R., 1991. The LLNL thermochemical data base revised data and file format for the EQ3/6 package (Other Information: PBD: Jul 1991: Medium: P; Size: 59 pp.).
- Dobson, P., Kennedy, M., Reich, M., Sanchez, P., 2013. Effects of Volcanism, Crustal Thickness, and Large Scale Faulting on the He Isotope Signatures of Geothermal Systems in Chile. Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California February 11-13, SGP-TR-198.
- Droguett, B., Morata, D., Clavero, J., Pineda, G., Morales, S., Carrillo, F., 2012. Mineralogía de alteración en el pozo Pte-1, campo geotermal Tinguiririca, Chile. XIII Congreso Geológico Chileno 13. Universidad Católica del Norte, E. Medina. Antofagasta, Chile, pp. 500–502 (In Spanish).
- Dufey, A., 2010. Opportunities and domestic barriers to clean energy investment in Chile. IISD: Trade, Investment and Climate Change Series (Available in http://www.iisd.org/ pdf/2010/bali_2_copenhagen_Chile_Jun2010.pdf).
- Epstein, S., Mayeda, T.K., 1953. Variation of the ¹⁸/J¹⁶O ratio in natural waters. Geochim. Cosmochim. Acta 4, 213–224. http://dx.doi.org/10.1016/0016-7037(53)90051-9.
- Evans, W.C., White, L.D., Rapp, J.B., 1988. Geochemistry of some gases in hydrothermal fluids from the southern Juan de Fuca Ridge. J. Geophys. Res. Solid Earth 93 (B12), 15305–15313. http://dx.doi.org/10.1029/JB093iB12p15305.

- Farías, M., Charrier, R., Carretier, S., Martinod, J., Fock, A., Campbell, D., Cáceres, J., Comte, D., 2007. Late Miocene high and rapid surface uplift and its erosional response in the Andes of Central Chile (33°–35°S). Tectonics 27 (1), TC1005. http://dx.doi.org/10. 1029/2006TC002046.
- Farías, M., Comte, D., Charrier, R., Martinod, J., David, C., Tassara, A., Tapia, F., Fock, A., 2010. Crustal-scale structural architecture in central Chile based on seismicity and surface geology: implications for Andean mountain building. Tectonics 29, 22. http://dx.doi.org/10.1029/2009TC002480.
- Fontes, J.C., Matray, J.M., 1993. Geochemistry and origin of formation brines from the Paris Basin, France. Chem. Geol. 109, 177–200. http://dx.doi.org/10.1016/0009-2541(93)90068-T.
- Fournier, R.O., 1979. A revised equation for the Na/K geothermometer. Trans. Geotherm. Resour. Counc. 3, 221–224.
- Fournier, R.O., Potter II, R.W., 1978. A magnesium correction for the Na-K-Ca geothermometer. Geochim. Cosmochim. Acta 43, 1543–1550. http://dx.doi.org/10. 1016/0016-7037(79)90147-9.
- Fournier, R.O., Truesdell, A.H., 1973. An empirical Na–K–Ca geothermometer for natural waters. Geochim. Cosmochim. Acta 37, 1255–1275. http://dx.doi.org/10.1016/0016-7037(73)90060-4.
- Giambiagi, L.B., Ramos, V.A., Godoy, E., Alvarez, P.P., Orts, S., 2003. Cenozoic deformation and tectonic style of the Andes, between 33° and 34° south latitude. Tectonics 22 (4), 1041. http://dx.doi.org/10.1029/2001TC001354.
- Giambiagi, L., Tassara, A., et al., 2014. Evolution of shallow and deep structures along the Maipo–Tunuyan transect (33°40′5): from the Pacific coast to the Andean foreland. In: Sepúlveda, S.A., Giambiagi, L.B., Moreiras, S.M., Pinto, L., Tunik, M., Hoke, G.D., Farías, M. (Eds.), Geodynamic Processes in the Andes of Central Chile and Argentina. Geological Society, London, Special Publications 399. http://dx.doi.org/10.1144/SP399.14.
- Giggenbach, W.F., 1975. A simple method for the collection and analysis of volcanic gas samples. Bull. Volcanol. 39 (1), 132–145. http://dx.doi.org/10.1007/BF02596953.
- Giggenbach, W.F., 1980. Geothermal gas equilibria. Geochim. Cosmochim. Acta 44, 2021–2032. http://dx.doi.org/10.1016/0016-7037(80)90200-8.
- Giggenbach, W.F., 1987. Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl. Geochem. 2, 143–161. http://dx.doi. org/10.1016/0883-2927(87)90030-8.
- Giggenbach, W.F., 1988. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim. Cosmochim. Acta 52 (12), 2749–2765. http://dx.doi.org/10. 1016/0016-7037(88)90143-3.
- Giggenbach, W.F., 1991. Chemical techniques in geothermal exploration. In: D'Amore, F. (Ed.), Application of Geochemistry in Geothermal Reservoir Development. UNITAR, pp. 119–144.
- Giggenbach, W.F., 1992. The composition of gases in geothermal and volcanic systems as a function of tectonic setting. Proc Int Symp Water–Rock Interaction 8, pp. 873–878. Giggenbach, W.E., Goguel, R.L., 1989. Collection and analysis of geothermal and volcanic
- water and gas samples. NZ DSIR Report No CD 2401 (Appendix), p. 81.
- Gripp, A.E., Gordon, R.G., 2002. Young tracks of hotspots and current plate velocieties. Geophys. J. Int. 150 (2), 321–361. http://dx.doi.org/10.1046/j.1365-246X.2002. 01627.x.
- Hall, S., Román, R., Cuevas, F., Sanchez, P., 2009. Are dams necessary in Patagonia? An Analysis of Chile's Energy Future. Ocholibros Ed (in Spanish)
- Hamza, V.M., Muñoz, M., 1996. Heat flow map of South America. Geothermics 25 (6), 599–621. http://dx.doi.org/10.1016/S0375-6505(96)00025-9.
- Hardie, L.A., 1983. Origin of CaCl₂ brines by basalt-seawater interaction: insights provided by some simple mass balance calculations. Contrib. Mineral. Petrol. 82, 205–213. http://dx.doi.org/10.1007/BF01166615.
- Hauser, A., 1997. Catastro y caracterización de las fuentes de aguas minerales y termales de Chile Santiago, Chile, Servicio Nacional de Geología y Minería (SERNAGEOMIN). Boletín 50 70 pp. (In Spanish).
- Hickson, C.J., Ferraris, F., Rodriquez, C., Sielfeld, G., Henriquez, R., Gislason, T., Selters, J., Benoit, D., White, P., Southon, J., Ussher, G., Smith, A., Lovelock, B., Lawless, J., Quinliven, P., Smith, L., Yehia, R., 2011. The Mariposa geothermal system, Chile. Geothermal Resources Council Transactions (GRC) 35. Geothermal Resources Council, San Diego, California, pp. 817–825.
- Hildreth, W., Moorbath, S., 1988. Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib. Mineral. Petrol. 98 (4), 455–489. http://dx.doi.org/10.1007/ BF00372365.
- Hilton, D.R., 1996. The helium and carbon isotope systematics of a continental geothermal system: results from monitoring studies at Long Valley caldera (California, U.S.A.). Chem. Geol. 127, 269–295. http://dx.doi.org/10.1016/0009-2541(95)00134-4.
- Hilton, D.R., Hammerschmidt, K., Teufel, S., Friedrichsen, H., 1993. Helium isotope characteristics of Andean geothermal fluids and lavas. Earth Planet. Sci. Lett. 120 (3–4), 265–282. http://dx.doi.org/10.1016/0012-821X(93)90244-4.
- Hilton, D.R., Fischer, T.P., Marty, B., 2002. Noble gases and volatile recycling at subduction zones. In: Porcelli, D., Ballentine, C.J., Wieler, R. (Eds.), Noble Gases in Cosmochemistry and Geochemistry. Mineralogical Society of America, Washington, pp. 319–370 http://dx.doi.org/10.2138/rmg.2002.47.9.
- Hodgson, S., 2013. Focus on Chile parts I, II and III 47. Geothermal Resources Council Bulletin (GRC).
- Hoefs, J., 1997. Stable Isotope Geochemistry. 4th ed. Springer, Verlag, Berlin, Germany, p. 201.
- Hoke, G.D., Aranibar, J.N., Viale, M., Araneo, D.C., Llano, C., 2013. Seasonal moisture sources and the isotopic composition of precipitation, rivers, and carbonates across the Andes at 32.5–35.5°S. Geochem. Geophys. Geosyst. 14 (4), 962–978. http://dx.doi.org/10. 1002/ggge.20045.
- Horita, J., Wesolowski, D.J., 1994. Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature. Geochim. Cosmochim. Acta 58, 3425–3437.

Langelier, W.F., Ludwig, H.F., 1942. Graphical methods for indicating the mineral character of natural waters. JAWWA 34, 335.

- Maksaev, V., Townley, B., Palacios, C., Camus, F., 2007. Metallic ore deposits. In: Moreno, T., Gibbons, W. (Eds.), The Geology of Chile. The Geological Society (London), p. 414.
- Mamyrin, B., Tolstikhin, I., 1984. Helium isotopes in nature. Developments in Geochemistry. E. S. Ltd. Amsterdam, Elsevier, p. 288.
- Mariner, R.H., Evans, W.C., Presser, T.S., White, L.D., 2003. Excess nitrogen in selected thermal and mineral springs of the Cascade Range in northern California, Oregon and Washington: sedimentary or volcanic in origin? J. Volcanol. Geotherm. Res. 121, 99–114. http://dx.doi.org/10.1016/S0377-0273(02)00414-6.
- Marini, L., 2006. Chapter 5: The product solid phases. Geological sequestration of carbon dioxide: thermodynamics, kinetics, and reaction path modeling. D. i. Geochemistry 11. Elsevier, pp. 79–167. http://dx.doi.org/10.1016/S0921-3198(06)80025-6.
- Marini, L., Chiodini, G., Cioni, R., 1986. New geothermometers for carbonate–evaporite geothermal reservoirs. Geothermics 15, 77–86. http://dx.doi.org/10.1016/0375-6505(86)90030-1.
- Marini, L., Ottonello, G., Canepa, M., Cipolli, F., 2000. Water–rock interaction in the Bisagno valley (Genoa, Italy): application of an inverse approach to model spring water chemistry. Geochim. Cosmochim. Acta 64 (15), 2617–2635. http://dx.doi.org/10. 1016/S0016-7037(00)00383-5.
- Montegrossi, G., Tassi, F., Vaselli, O., Buccianti, A., Garofalo, K., 2001. Sulfur species in volcanic gases. Anal. Chem. 73 (15), 3709–3715. http://dx.doi.org/10.1021/ac001429b.
- Mook, W.G., Bommerson, J.C., Staverman, W.H., 1974. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet. Sci. Lett. 22, 169–176.
- Muñoz, M., Aguirre, L., Vergara, M., Demant, A., Fuentes, F., Fock, A., 2010. Prehnite– pumpellyite facies metamorphism in the Cenozoic Abanico Formation, Andes of central Chile (33°50'S): chemical and scale controls on mineral assemblages, reaction progress and the equilibrium state. AndGeo 37 (1), 54–77.
- Ohmoto, H., Goldhaber, M.B., 1997. Sulfur and carbon isotopes. In: Barnes, H.L. (Ed.), Geochemistry of Hydrothermal Ore Deposits. John Wiley & Sons, pp. 517–611.
- Ozima, M., Podosek, F.A., 1983. Noble gas geochemistry. Cambridge University Press, Cambridge.
- Pauwels, H., Fouillac, C., Goff, F., Vuataz, F.D., 1997. The isotopic and chemical composition of CO₂-rich thermal waters in the Mont–Dore region (Massif-Central, France). Appl. Geochem. 12 (4), 411–427. http://dx.doi.org/10.1016/S0883-2927(97)00010-3.
- Peiffer, L., Bernard-Romero, R., Mazot, A., Taran, Y.A., Guevara, M., Santoyo, E., 2014. Fluid geochemistry and soil gas fluxes (CO₂-CH₄-H₂S) at a promissory hot dry rock geothermal system: the Acoculco caldera, Mexico. J. Volcanol. Geotherm. Res. 284 (122-137), 2014. http://dx.doi.org/10.1016/j.jvolgeores.2014.07.019.
- Pilger, R.H., 1981. Plate reconstruction, aseismic ridges, and low angle subduction beneath the Andes. Geol. Soc. Am. Bull. 92, 448–456. http://dx.doi.org/10.1130/0016-7606(1981)92<448:PRARAL>2.0.CO;2.
- Poreda, R., Craig, H., 1989. Helium isotope ratios in circum-Pacific volcanic arcs. Nature (London) 338, 473–478. http://dx.doi.org/10.1038/338473a0.
- Ray, M., Hilton, D., Muñoz, J., Fischer, T., Shaw, A., 2009. The effects of volatile recycling, degassing and crustal contamination on the helium and carbon geochemistry of hydrothermal fluids from the southern volcanic zone of Chile. Chem. Geol. 266 (1–2), 38–49. http://dx.doi.org/10.1016/j.chemgeo.2008.12.026.
- Reyes, A.G., Christenson, B.W., Faure, K., 2010. Sources of solutes and heat in low-enthalpy mineral waters and their relation to tectonic setting, New Zealand. J. Volcanol. Geotherm. Res. 192, 117–141. http://dx.doi.org/10.1016/j.jvolgeores.2010.02.015.
- Rizzo, A., Barberi, F., Carapezza, M.L., Di Piazza, A., Francalanci, L., Sortino, F., D'Alessandro, W., 2015. New mafic magma refilling a quiescent volcano: evidence from He–Ne–Ar isotopes during the 2011–2012 unrest at Santorini, Greece. Geochem. Geophys. Geosyst. http://dx.doi.org/10.1002/2014GC005653.
- Rollinson, H., 1993. Using geochemical data. Longman, London, UK, p. 352.

- Saltori, O., Aguilera, F., Agusto, M., Benavente, O., Tassi, F., Caselli, A., Gutierrez, F., Pizarro, M., 2012. Fluids geochemistry from Planchón–Peteroa–Zufre volcanic complex, southern volcanic zone, Chile. XIII Congreso Geológico Chileno. E. Medina 13. Universidad Católica del Norte, Antofagasta, Chile, pp. 474–476.
- Sanchez-Alfaro, P., Sielfeld, G., Van Campen, B., Dobson, P., Fuentes, V., Reed, A., Palma-Behnke, R., Morata, D., 2015. Geothermal barriers, policies and economics in Chile – lessons for the Andes. Renew. Sust. Energ. Rev. 51, 1390–1401. http://dx. doi.org/10.1016/j.rser.2015.07.001.
- Sano, Y., Williams, S.N., 1996. Fluxes of mantle and subducted carbon along convergent plate boundaries. Geophysical Research Letters (ISSN: 0094-8276) 23. http://dx.doi. org/10.1029/96GL02260.
- Sano, Y., Fischer, T.P., 2013. The analysis and interpretation of noble gases in modern hydrothermal systems. In: Burnard, P. (Ed.), The Noble Gases as Geochemical Tracers. Springer Verlag, Berlin Heidelberg, pp. 249–317 http://dx.doi.org/10.1007/978-3-642-28836-4_10.
- Sano, Y., Marty, B., 1995. Origin of carbon in fumarolic gases from island arcs. Chem. Geol. 119, 265–274. http://dx.doi.org/10.1016/0009-2541(94)00097-R.
- Sibson, R.H., 1996. Structural permeability of fluid-driven fault-fracture meshes. J. Struct. Geol. 18 (8), 1031–1042. http://dx.doi.org/10.1016/0191-8141(96)00032-6.
- Sibson, R.H., 2007. An episode of fault-valve behaviour during compressional inversion?: the 2004 MJ6.8 Mid-Niigata Prefecture, Japan, earthquake sequence. Earth Planet. Sci. Lett. 257 (1–2), 188–199. http://dx.doi.org/10.1016/j.epsl.2007.02.031.
- Snyder, G., Poreda, R., Fehn, U., Hunt, A., 2003. Sources of nitrogen and methane in central American geothermal settings: noble gas and ¹²⁹I evidence for crustal and magmatic volatile components. Geochem. Geophys. Geosyst. http://dx.doi.org/10. 1029/2002GC000363.
- Soffia, J., 2004. Perspectivas de Desarrollo de la Energía Geotérmica en Chile. En: Seminario Latinoamericano sobre energías renovables: Hacia la Conferencia Mundial de Bonn – 2004. Programa Chile Sustentable, pp. 93–100 (M. [en línea] http://www. archivochile.com/Chile_actual/patag_sin_repre/06/chact_hidroay-6%2000011.pdf, in spanish).
- Stern, C.M.H., López-Escobar, L., Clavero, J., Lara, L., Naranjo, J., Parada, M., Skewes, A., 2007. Chilean volcanoes. Geological Society Special Publication: The Andes of Chile. Londres, pp. 147–178.
- Stevenson, S., 1993. Physical models of fumarolic flow. J Volcanol Geotherm 57 (3–4), 139–156.
- Taran, Y.A., 2005. A method for determination of the gas-water ratio in bubbling springs. Geophys. Res. Lett. 32, L23403. http://dx.doi.org/10.1029/2005GL024547.
- Taran, Y.A., Pokrovsky, B.G., Esikov, A.D., 1989. Deuterium and oxygen-18 in fumarolic steam and amphiboles from some Kamchatka volcanoes: "andesitic waters". Dokl. Akad. Nauk SSSR 304, 440–443.
- Tassara, A., Gotze, H.J., Schmidt, S., Hackney, R., 2006. Three-dimensional density model of the Nazca plate and the Andean continental margin. J. Geophys. Res. Solid Earth 111 (B9). http://dx.doi.org/10.1029/2005JB003976.
- Truesdell, A.H., Hulston, J.R., JCh, F., 1980. Isotopic evidence on environments of geothermal systems. In: Fritz, P. (Ed.), Handbook of Environmental Isotopes Geochemistry. The Terrestrial Environment A 1. Elsevier, Amsterdam, pp. 179–226
- Vaselli, O., Tassi, F., Montegrossi, G., Capaccioni, B., Giannini, L., 2006. Sampling and analysis of fumarolic gases. Acta Vulcanol. 18, 65–76.
- Vergara, M., Levi, B., Villarroel, R., 1993. Geothermal-type alteration in a burial metamorphosed volcanic pile, central Chile. J. Metamorph. Geol. 11, 449–454. http://dx.doi. org/10.1111/j.1525-1314.1993.tb00161.x.
- Yáñez, G., Ranero, C.R., von Huene, R., Díaz, J., 2001. Magnetic anomaly interpretation across the southern central Andes (32°–34°S): the role of the Juan Fernández Ridge in the late Tertiary evolution of the margin. J. Geophys. Res. 106, 6325–6345. http://dx.doi.org/10.1029/2000JB900337.