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We investigate the propagation dynamics of highly localized discrete breather modes in a weak ferro-
magnetic spin lattice with on-site easy axis anisotropy due to crystal field effect. We derive the discrete
nonlinear equation of motion by employing boson mappings and p-representation. We explore the onset
of modulational instability both analytically in the framework of linear stability analysis and numerically
by means of molecular dynamics (MD) simulations, and a perfect agreement was demonstrated. It is also
explored that how the antisymmetric nature of the canted ferromagnetic lattice supports highly localized
discrete breather (DBs) modes as shown in the stability/instability windows. The energy exchange be-
tween low amplitude discrete breathers favours the growth of higher amplitude DBs, resulting even-
tually in the formation of few long-lived high amplitude DBs.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

The study of nonlinear dynamics in discrete spin systems has
recently attracted special attention owing to novel physics and
possible interesting applications [1–4]. It is also well known that
models describing microscopic phenomena in spin lattices are
inherently discrete and this discreteness effect may drastically
modify the nonlinear dynamics and properties of spatially loca-
lized models [4–6]. Both nonlinearity and lattice discreteness have
played important roles in many branches of condensed matter
physics and spin dynamics [7]. An important advance in dealing
with nonlinearity in condensed matter physics has been the in-
troduction of the soliton as a new type of elementary excitations.
One-dimensional classical continuum Heisenberg ferromagnetic
spin chains with different magnetic interactions such as bilinear
and biquadratic exchange interactions, weak ferromagnetic inter-
action, octupole–dipole interaction, site and spin dependent in-
teractions, interaction with external magnetic field and anisotropic
interactions act as an interesting class of nonlinear dynamical
School of Basic and Applied
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ha).
systems exhibiting a rich variety of integrability properties and
soliton spin excitations [8–20]. In addition to the dominant mag-
netic interactions which include integrable spin models with so-
liton spin excitations, there exist certain magnetic interactions
that are less spoken about in the literature of nonlinear dynamics
due to the mathematical complexity of their representations in the
Hamiltonian and in the governing dynamical equations [8–10].
Notable among them is the Dzyaloshinsky–Moriya (DM) interac-
tion, which is essentially an antisymmetric spin coupling interac-
tion that occurs when the symmetry around the magnetic ions is
not high enough, thus leading to the mechanism of weak ferro-
magnetism (see Fig. 1). Despite being small, this DM interaction is
often present in the models of many low-dimensional magnetic
materials and generate many spectacular features [21,22]. It was
realized by Dzyaloshinsky [23] that the appearance of weak fer-
romagnetism in some antiferromagnetic materials can be ex-
plained solely on the grounds of symmetry. In other words, if the
symmetry of the purely antiferromagnetic state is such that the

appearance of a small magnetization M
→

does not lead to a further
symmetry lowering, then any microscopic mechanism which fa-
vours a nonzero magnetization, even if it is rather weak will lead

to M 0
→

≠ . It was later shown by Moriya [24,25] that an invariant of
the required form can result from an antisymmetric microscopic
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Fig. 1. Dzyaloshinsky–Moriya interaction with slight canting of the magnetic
moments.
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coupling between two localized magnetic moments Si
→

and Sj
→

H D S S , 1DM
i i j=

→
·(

→
×

→
) ( )

and such an interaction arises from the interplay between super-
exchange and spin–orbit coupling. The energy (1) is minimized
when the two magnetic moments form a 90° angle, but due to the
simultaneous presence of the generally much stronger Heisen-

berg-type interaction H J S SB
ij i j=
→

·
→
, which favours either 0° or 180°

angle, the presence of the DM interaction usually leads to a small
canting between the interacting moments. Weak ferromagnetic
spin chains act as natural candidates for the realization of en-
tanglement basis, and the Heisenberg chain has been used in
quantum computation and construction of a quantum computer
[26,27].

However, in nonlinear discrete systems, the spatial size of the
nonlinear excitations can be comparable to the lattice spacing,
hence the discreteness of the underlying physical systems is ex-
pected to have a significant effect on the properties of nonlinear
excitations [28]. This realization has led to the extensive studies of
the features associated with intrinsic localization modes in various
nonlinear nonintegrable lattices, and it has been proved to be a
conceptual and practical breakthrough [28]. In the literature, these
localized excitations are called DBs with the fact that their for-
mation involves no disorder and that they extend over a nano-
length scale in the discrete lattice [28]. Discrete breathers or in-
trinsic localized modes (ILMs) are time periodic and spatially lo-
calized excitations that may be produced generically in discrete
arrays of weakly coupled nonlinear elements [29]. In addition, the
existence of DBs has been postulated theoretically by means of
precise numerical analysis in discrete nonlinear lattices [30,31].
Breathers have also been experimentally observed in several di-
verse systems, including optical wave guides [32], solid state sys-
tems [33,34], antiferromagnetic chains [35], Josephson-junction
arrays [36], micromechanical oscillators [37,38] and even possibly
in myoglobin [39]. The analogy between lattice vibrations and spin
waves has generated some studies on intrinsic localized spin
waves in semiclassical and classical magnetic models [40–45]. In
this context, studies have shown, that the existence of various
ILMs is accompanied by an instability of the corresponding non-
linear plane waves [46,47] and the phenomenon of modulational
instability (MI) acts as a possible mechanism for the energy loca-
lization in discrete lattices and it has been studied in a number of
discrete models [48–50]. MI, which refers to the exponential
growth of certain modulation side-bands of nonlinear plane waves
propagating in a dispersive medium as a result of the interplay
between nonlinearity and dispersion, has been studied in various
fields [51,52].

In magnetic systems, it has been shown that intrinsic localized
spin wave modes (ILSMs) can also occur in perfect but non-
integrable magnetic models [53–58]. It has been reported that in
the presence of a strong magnetic field perpendicular to the easy-
plane, both even-parity and odd-parity ILSMs appear in easy-plane
Heisenberg ferromagnetic chains when the strength of single-ion
anisotropy exceeds a certain value. It has also been demonstrated
numerically that in-band nonlinear localized excitations in easy-
plane antiferromagnetic chains can occur and that they are long
lived. So far the intrinsic localization of spin waves has been
identified only in the Heisenberg spin chain with lower order
nearest-neighbour interactions. Thus the existence of DBs in dis-
crete Heisenberg ferromagnet with DM interaction has become an
important problem to be investigated urgently. Here we demon-
strate that intrinsic localization can occur in an anisotropic weak
ferromagnetic discrete spin chains of classical spins coupled fer-
romagnetically through both nearest-neighbour and antisym-
metric spin coupling with DM interaction.

The paper is organized as the following sections. In Section 2,
we present the mathematical background of the model for an
anisotropic weak ferromagnetic system and construct the equa-
tions of motion and derive the discrete nonlinear equation of
motion with the aid of Holstein–Primakoff transformation com-
bined with Glauber's coherent state representation. In Section 3,
the analytical investigation of the modulational instability of a
plane wave propagating in a discrete weak ferromagnetic chain is
presented. A linear stability analysis will be carried out to predict
under what conditions nonlinear localized modes will occur. In
Section 4, we perform molecular dynamics simulations in order to
analyse the long time behaviour of the system and how energy is
redistributed in a weak ferromagnetic spin chain. We discuss
about the localization and the energy density distribution among
the localized modes in Section 5 and also we demonstrate the
possible existence of discrete breather localized modes. Finally, we
perform the stability analysis in Section 6 and conclude our results
in Section 7.
2. Mathematical background of weak ferromagnetic spin
dynamics

We consider a one-dimensional ferromagnetic chain of N spins
which are coupled through both nearest-neighbour and Dzya-
loshinsky–Moriya antisymmetric exchange interactions. The Ha-
miltonian to be examined is

⎡
⎣⎢

⎤
⎦⎥

H J S S S S J S S

J D S S A S ,
2

n
n
x

n
x

n
y

n
y

n
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n
z

n n n
z

1 1 1 2 1

3 1
2

∑= − ( · + · ) + ( · )

+ [
→

·(
→

×
→

)] − ( ) ( )

+ + +

+

where S S S S, ,n n
x

n
y

n
z→

= ( ) represents the spin angular momentum

operator at the lattice site n and D D D D, ,x y z→
= ( ) is the Dzya-

loshinsky vector. J1 represents the bilinear spin–spin coupling in
the S Sx y( – ) plane and J2 corresponds to the neighbouring bilinear
spin–spin coupling along the Sz direction. The term proportional to
J3 corresponds to the D–M, antisymmetric weak spin coupling. The
parameter J3 characterize the Dzyaloshinsky–Moriya (DM) ex-
change interaction which is proportional to the vector product of
interacting spins and is allowed by symmetry in noncentric crystal
structures. This DM interaction is of interest in its own right and is
known to be the cause of weak ferromagnetism in certain mate-
rials such as Hematite Fe O2 3α− [24]. This interaction is also found
to enhance the fluctuation of the spin components in the plane

perpendicular to D
→
. The vector D

→
denotes the intensity of DM

interaction imposed along the chain. To understand what is going

on, we first note that for two spins S1
→

and S2
→

, interacting via iso-
tropic exchange and the DM term, the interaction energy is

minimized at J D S2 2 2− + , when both spins S1
→

and S2
→

are per-

pendicular to D
→

in the absence of an external magnetic field. As

shown by Moriya, the cross-product term D S Sn n n 1
→

·(
→

×
→

)+ originates
from spin-flop hopping, which made the possible existence of
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spin-orbit interactions resulting in a canted spin system. The
parameter A characterizes the strength of the crystal field aniso-
tropy along the easy axis of magnetization.

For treating the problem semiclassically, we employ the Hol-
stein–Primakoff transformation [59] for the spin operators in
terms of boson operators an, an

† and recast the dimensionless
Hamiltonian as follows:

⎡
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where S1/ϵ = . The dynamics of the spins can be expressed in
terms of the Heisenberg equation of motion for the Bose operator
an:

i
da
dt

a H, .n
n= [ ]

We then introduce Glauber's coherent-state representation (p-re-
presentation) [60] defined by the product of the multimode co-
herent states u un n| 〉 = ∏ | 〉 with u u 1〈 | 〉 = . Each component u n| ( )〉 is
an eigenstate of the annihilation operator an, i.e., a u u un n| 〉 = | 〉,
where u n| ( )〉⁎ is the coherent-state eigen vector for the operator an

†

and un is the coherent amplitude in this representation. Since
coherent states are normalized and overcompleted, the field op-
erators sandwiched by u n| ( )〉 can be represented only with their
diagonal elements. The p-representation of nonlinear equation
leads
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where J J/2 1α = , J D J/z
3 1β = and A J/ 1γ = . The above nonlinear dif-

ferential–difference equation is a generalized discrete nonlinear
equation which has not been reported so far. Solving this equation
analytically is extremely difficult owing to its high nonlinearity
and discreteness. In addition, the discreteness makes the proper-
ties of the system periodic, so that due to the interplay between
the discreteness and nonlinearity, new types of nonlinear excita-
tions, which are absent in continuum models, may be possible in
the present system.
3. Existence conditions for discrete breathers

Wave instabilities are probably the most remarkable nonlinear
phenomena that may occur in nature. We study the condition of
modulational instability of a constant-amplitude solution of the
present model under a plane-wave perturbation and demonstrate
the possibility of the localized structures by a linear stability
analysis. We find that Eq. (4) allows a constant-amplitude solution

u t u i kn texp , 5n 0 ω( ) = [ ( − )] ( )

which exhibits modulational instability leading to a modulation of
the solution, where u0 is the constant amplitude, k and ω re-
present the wave number and the angular frequency, respectively.
Upon substituting the above solution in Eq. (4), yields the fol-
lowing appropriate nonlinear dispersion relation:

k u u k u2 cos 2 2 sin 1 . 62
0
2 2

0
2 2

0
2ω α γ β= [ ( − ϵ ) + ϵ ( + ) + ( − ϵ )] ( )

Now we study whether the solution is stable against small per-
turbations by performing a linear stability analysis for which we
introduce a perturbed field of the form

u t u u t i kn texp , 7n n0 δ ω( ) = ( + ( )) [ ( − )] ( )

where u tnδ ( ) is a small perturbation of the carrier wave.
Here

u t u i Qn t u i Qn texp exp ,n 1 2δ Ω Ω( ) = [ ( − )] + [ − ( − )]⁎ ⁎

here Q andΩ represent the wave number and the frequency of the
linear modulation waves, respectively. Also u1 and u2

⁎ are the
amplitudes of the carrier wave and assumed to be small when
compared to the parameters of the carrier wave and asterisk de-
notes the complex conjugate. Subsequently upon using u tnδ ( ) and
Eqs. (4) and (7), we obtain the following quadratic equation:
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Upon solving for Ω, we obtain the dispersion relation:
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The constant amplitude solution (5) is stable if perturbations at
any wave number k do not grow with time. This is true as long as
frequency Ω is real. From Eq. (9), we find that Ω remains real for
any ω provided that X Y2 2> . However, Ω can become imaginary
for X Y2 2< and the plane-wave perturbations grow exponentially
with time t. The perturbation that grows exponentially with the
intensity given by the growth rate or the modulational instability
gain g Ω( ) defined by
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where Im denotes the imaginary part and existence of localized
structures are possible only when the constant-amplitude solution is
unstable. The gain equation (10) shows more interesting dependence
of Ω on the coupling parameters α, β and γ. Eq. (10) determines the
stability and instability of a plane wave with the wave number Q in
discrete weak ferromagnetic spin chain and the instability gain
spectrum is portrayed for both staggered and unstaggered modes as
shown in Figs. 2(a) and (b). Figs. 3–5 depict the regions of stability/
instability and the corresponding influence of the coupling para-
meters α, β and γ are explored pictorially. Fig. 3 portrays the stability/
instability regions in the k Q,( ) plane by choosing values of 1.41β = ,

0.38γ = and for various values of the exchange anisotropic para-
meter α. In the figures, the dark bluish area corresponds to a region
where the nonlinear plane waves are stable with respect to mod-
ulation of any wavenumber Q and the region with bright yellowish
orange area experiences in which the amplitude of any wave would
Fig. 2. Instability gain spectrum for the staggered
be expected to suddenly display an exponential growth. From Fig. 3,
it is evident from the 2D plots that the domains of modulational
instability seems to be enhanced as the value of the exchange ani-
sotropic parameter α increases from 0.41α = to 1.5, thus inducing
instability of the propagating plane-wave in the discrete weak fer-
romagnetic chain. In the 3D plots shown in Fig. 3, the growth rate is
increased significantly and the weak ferromagnetic system is driven
to highly instable nature of the modulated waves. A similar phe-
nomenon is observed and the domain size of the instability grows
further upon an increase in the values of D–M interaction parameter
β from β¼0.2 to 1.2. It is revealed from Fig. 4 that the play-role of the
D–M interaction leads to the instability and a subsequent formation
of intrinsic localized structures. Surprisingly, an increase in the ani-
sotropy parameter A also leads to the extended domain size of in-
stability more significantly and the corresponding growth rate is
depicted in Fig. 5. Thus, in an anisotropic discrete weak ferromag-
netic system, the effective presence of the coupling parameters ,α β
and γ crucially change the stability/instability properties of a propa-
gating plane-wave and subsequently supports the formation of lo-
calized structures.
4. Molecular dynamics simulations

Though the modulational instability of nonlinear spin waves
have been deduced from the linear stability analysis, such analysis
is based only on the linearization around the unperturbed carrier
wave. Unfortunately, at large time scale, the analysis neglects ad-
ditional combination of waves generated through wave mixing
processes which become significant if its wave vector falls inside
an instability domain. Therefore, in this section, we perform the
molecular dynamics (MD) numerical simulations in order to ana-
lyse the long time behaviour of the nonlinear spin waves.

The MD simulation is performed with a chain of N¼256 spins
with periodic boundary conditions, so that the wave vector k is
defined modulo 2π in the lattice and chosen in the form k l N2 /π=
and Q L N2 /π= , where l and L are integers lower than N/2. The
initial conditions involve coherently modulated nonlinear spin
waves of the form

u t u Qn kn

u t u Qn kn

0.01 cos cos ,

0.01 cos sin . 11
n

n

0

0 ω

( ) = ( + ( )) ( )
̇ ( ) = ( + ( )) ( ) ( )

The time evolution of a large amplitude zone centre mode is
perturbed by random noise in both Fourier and real space
and unstaggered modes. (a) k¼π. (b) k¼0.



Fig. 3. Left columns: Stability/instability region in the k Q,( ) plane. Right columns: MI gain profile for (a) α¼0.41, (b) α¼1.5 and on all plots β¼1.41 and γ¼0.38. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

L. Kavitha et al. / Journal of Magnetism and Magnetic Materials 401 (2016) 394–405398
consisting of 256 spins. We study the behaviour of the modulated
wave with the help of discrete spatial Fourier transform of the
wavefunction:

S t u t e l Nwith 0 /2.
12

p
n

N

n
i ln N

0

1
2 /∑( ) = ( ) ≤ ≤

( )
π

=

−

It is worthy to note that S t a tp n( ) = 〈 ( )〉 is the expectation value of
the boson operator, which is proportional to the transverse value
of S S iSn n

x
n
y= ++ and precessing magnetization thus represents a

spin wave-amplitude.

4.1. Stability for short time

We perform molecular dynamics (MD) simulations for the short
time period by considering a weak ferromagnetic chain of 256 spins,
with periodic boundary conditions in order to monitor the time
evolution of individual Fourier components. The growth rate of each
individual Fourier component can be obtained by the least square
fitting of S tp

2| ( ) | over the first few periods during which it is expected
to grow at the rate of g Ω( ). The exchange parameters are taken to be
α¼0.41, β¼1.41 and γ¼0.38, and the amplitude u0¼0.025. Fig. 6
shows the evolution of a carrier wave with wavevector and modu-
lated by the small amplitude waves k Qi 0, /2π( ) = = ,

k Qii /3, 5 /6π π( ) = = , respectively, for 100 units of time. From Fig. 6a
(i) it is evident that until 30 units of time, none of the k7Q satellite
side bands display any exponential growth. Even after 30 units of
time the exponential growth of satellite side bands stays at the initial
stage of instability which obviously can be seen from the log-linear
plot of Fig. 6a(i). Further for the increased carrier wave vectors and
modulated amplitude waves are shown in Fig. 6a(ii), the satellite
sidebands display an exponential growth gradually as evidenced
from the corresponding log-linear plots. This can be verified with the
stability/instability regions in the k Q,( ) plane as depicted in Figs. 3–
5. The excellent agreement between them demonstrates that the
linear-stability analysis gives quantitatively a correct prediction of the
onset of instability. In these figures, even the higher harmonics of the
modulation satellite sidebands illustrate the origin of the oscillatory
instability leading to a chaotic state of the system.

4.2. Stability for long time

We carry out MD simulations in order to examine the longer time
dynamics in the discrete weak ferromagnetic systems which is sub-
jected to MI. The prediction of stability from linear stability analysis
does not necessarily rule out the occurrence of instability in the long
time evolution of the carrier wave because of the combination of
satellite bands neglected there. To illustrate this point, the longer
time evolution of the perturbed carrier wave vectors and modulation
wave vectors for k Qi 0, /2π( ) = = , k Qii /3, 5 /6π π( ) = = is depicted
in Fig. 6(b). From Fig. 6b(i), it is manifested that until 35 units of time
there is no exponential growth and the carrier wave is fairly stable in
this regime. However, in Fig. 6b(ii) the carrier wave becomes un-
stable and generates more and more combination of satellite side



Fig. 4. Left columns: Stability/instability region in the k Q,( ) plane. Right columns: MI gain profile for (a) β¼0.2, (b) β¼1.2 and on all plots α¼0.5, γ¼0.85. (For interpretation
of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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bands, and the simulations confirm the prediction of instability when
a modulated wave moves in the spin chain with a nonvanishing
imaginary part of the frequency of the modulated wave. We carried
out the longer-time dynamical simulations for t¼900 units for the
values of coupling parameters α¼0.41, β¼1.41 and γ¼0.38 as shown
in Fig. 6(c). From all these figures, we notice that the presence of not
only the principal k7Q satellite modulations also the other higher
harmonics 2Q, 3Q⋯k72Q display an appreciable exponential
blowing up. From these figures, it is also revealed that the amplitude
of most of the Fourier components of the various combination modes
initially increases at a small rate of instability and notably the 3Q
modulation induces a higher instability in the system thus driving
the system into a chaotic regime at longer time scales with its wa-
vevector falling well in an instability domain.
5. Localization of energy

It has been demonstrated by Lai and Sievers [61,28,57] that in
an antiferromagnetic spin chain, a delocalized state in Fourier
space can either be a localized state or a delocalized state in the
corresponding real space, depending on the relative phases be-
tween Fourier components. The time evolution in Fourier space
alone does not tell us the complete process of energy distribution.
However, it is generally believed that the system will finally reach
equipartition of energy in a sufficiently long time since entropy
should grow during the long time evolution of the system.
Generally, one of the major consequences of the MI is the creation
of localized excitations from spatially extended spin excitations in a
ferromagnetic lattice. In this section, we investigate how the energy
initially concentrated in few modes is redistributed in a weak fer-
romagnetic chain of 256 spins. As predicted by many authors [48,69],
MI is a first step towards energy localization in nonlinear lattices.
This MI induced energy localization has been proposed to be the
mechanism responsible for the formation of intrinsic localization.
The normalized energy density distribution is represented as
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We perform the MD simulations to compute the evolution of energy
density equation (13) and analyse the play role of the exchange in-
teraction parameters on the formation of DBs. In the previous sec-
tion, we addressed the study of a linear wave under modulation with
its wave vector falling in an unstable region. As already evidenced
some higher harmonics will inevitably exhibit the exponential



Fig. 5. Left columns: Stability/instability region in the k Q,( ) plane. Right columns: MI gain profile for (a) γ¼0.2, (b) γ¼1.0 and on all plots α¼0.5, β¼0.2. (For interpretation of
the references to color in this figure caption, the reader is referred to the web version of this paper.)
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growth and finally this instability will destroy completely the co-
herence of initial condition. This is exactly what we found and what
we present in Fig. 7. In Fig. 7, we plot the temporal evolution of the
energy density for various values of the DM interaction parameter to
analyse the effect of weak ferromagnetism and the associated spin
canting on the localization of energy phenomenon and subsequently
on the formation of long-lived discrete breather modes. In the fig-
ures, at the beginning, i.e., at the bottom of the panel, the whole
chain is grey and coherent which corresponds to an equipartition of
the energy through all the sites. The initial uniformly distributed
energy becomes localized as the instability develops. After a small
delay of about 18 periods of time, the initial linear wave breaks up
and a number of localized excitations are created and appear to be
trapped by the discreteness of the lattice. Among these localized
excitations with varying amount of energy, only a few localized ex-
citations move as discrete breathers and interact with each others.
The horizontal axis indicates the position along the chain and the
vertical axis corresponds to the time. The gray scale goes from En¼0
(dark) to the maximum En (white). In Figs. 7a(i)–(iii), as an influence
of the parameter α related to the exchange anisotropy along the easy
axis of magnetization, it is illustrated that the nonlinear development
of the MI in the weak ferromagnetic spin lattice is set up more
quickly for the DM interaction parameter β¼0.4. Certainly, the
parameter β determines the life time of the discrete breather modes
which appears to last for a range of time scale sufficiently long in few
cases. In the panels shown in Fig. 7a(i), the parameters take the va-
lues of α¼1.41, β¼0.4 and γ¼0.38, which display the evolution of
energy along the chain, the horizontal axis indicates the lattice po-
sition along the chain and the vertical axis corresponds to the time.
In the panel, the dark area refers to the zero or minimum energy and
the brighter lines refers to the maximum energy. In Figs. 7a(i)–(iii), it
is obviously understood that upon an increase in the parameter α,
the MI sets in earlier, which ultimately kills many short lived DBs and
the DBs with maximum energy is more persistent and survive for a
sufficiently longer time. A similar trend can be observed in Fig. 7
(b) and for the value ofβ¼0.4, α¼1.41 though the instability break
up occurs more early than the previous one, it allows the DBs to
interact much with each other. Surprisingly, the temporal evolution
of energy density for the case α¼3.0 leads to the generation of in-
coherent DBs and the subsequent trapping of the same in the spin
lattices as shown in Fig. 7b(iii).

The co-existence of nonlinearity and discreteness in the weak
ferromagnetic chain supports the existence of ILMs or DBs that
oscillate for long time in a localized region of space. This existence
has been rigorously proved [57,62] and they can be constructed
using standard numerical algorithms [63–70]. We aim to construct
DBs numerically in the framework of the one dimensional model
for weak ferromagnetic spin chains. The computational tools for
studying DB properties are confined to the case of a finite lattice
size. We construct the DBs in a discrete weak ferromagnetic chain
through numerical simulations using Newton–Raphson scheme.
According to the simplest version of this method, one looks for the
stationary wave solutions in the form of u u en n

i t= Λ , where Λ is the
nonlinearity induced shift in the propagation constant. Our



Fig. 6. Time evolution of the Fourier components and complete spatial Fourier spectrum of the wave for (a) t¼100, (i) k ¼ 0, Q ¼ π/2 (ii) k ¼ π/3, Q ¼ 5π/6. (b) t¼500, (i) k
¼ 0, Q ¼ π/2 (ii) k ¼ π/3, Q ¼ 5π/6. and (c) t¼900, α¼0.41, β¼1.41, and γ¼0.38, (i) k ¼ 0, Q ¼ π/2 (ii) k ¼ π/3, Q ¼ 5π/6. on all plots.
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numerical calculation is made at n¼45 units of spin and we seek
the localized modes in the form of DBs, by varying the values of
the exchange interaction coupling parameters. Figs. 8a(i) and (ii)
display the snapshots of oscillating DBs centred at different sites in
weak ferromagnetic spin chain for various values of α the bilinear
exchange anisotropic coupling parameter. From the figures, it is
manifested that the exchange anisotropic parameter α influences
on the amplitude and width of the existing bulk multisite breather
modes. Upon tuning the initial conditions appropriately, we obtain
three-site symmetric bulk DB localized over four lattice sites, with
an amplitude of 1.18 when there is no anisotropic exchange

Ji.e., 0, 02 α( = = ) with the values of parameters β¼0.1 and γ¼0.1,
as shown in Fig. 8a(i). On the contrary, after an introduction of the
exchange anisotropy J 02 ≠ , the amplitude of the DB shoots up to
10 times rather the previous one, as shown in Fig. 8a(ii) and
widens the width of DB with more number of lattice sites
participating in the motion. In Fig. 8(b), the effect of DM interac-
tion on the formation of DBs is analysed. In the absence of DM
interaction β¼0, we obtain a single-site symmetric DB, centred at
n¼23 as shown in Fig. 8b(i). However, when the DM interaction
parameter is slowly enhanced from 0 to 0.02, the amplitude of the
DB is increased slightly. Upon further increasing the DM interac-
tion parameter β, we observe a remarkable increase in the am-
plitude of the DB and it leads to the participation of more number
of lattice sites on the formation of localized DB centred at n¼23 as
shown in Fig. 8b(ii). It is evident from the plots that the amplitude
of the DB is directly proportional to the strength of the DM in-
teraction. The stronger of the DM interaction is, the wider and
taller the DB appears in the system. From the snapshots it has been
realized that in the weak ferromagnetic chain, the degree of spin
canting as a result of weak antisymmetric coupling modulates the
amplitude of the DB more appreciably. Thus the presence of DM



Fig. 7. Evolution of the energy density along the chain. The parameters are γ¼0.38 for (a) β¼0.4, (i) α ¼ 1.41 (ii) α ¼ 2.4 (iii) α ¼ 3.0 and (b) β¼0.8, (i) α ¼ 1.41 (ii) α ¼ 2.4
(iii) α ¼ 3.0.
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interaction in a ferromagnetic spin lattice influences the proper-
ties of nonlinear excitations even at the nano-scale length as
shown in Figs. 8b(i) and (ii). Thus in a weak ferromagnetic spin
chain, it is demonstrated that both discreteness and strong anti-
symmetric coupling is essential for the creation of long-lived lo-
calized excitations or DBs.
6. Stability analysis of DBs

We would like to analyse the linear stability of DBs by in-
troducing the following expansion:

u t t e , 14n n n
i nk tϕ δϕ( ) = ( + ( )) ( )ω( + )

where ϕn designates the unperturbed amplitude and tnδϕ ( ) is a
small perturbation. Upon substituting Eq. (14) in Eq. (4), further, by
splitting the perturbation nδϕ into real part anδ and imaginary part
bnδ , i.e., nδϕ ¼ anδ þ i bnδ and introducing the two real vectors

A a B band ,n n n nδ δ δ δ= { } = { }

and the two real matrices A Anm= { } and B Bnm= { }, we elucidate
the following eigenvalue problem:
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Fig. 8. Snapshots of breather profile at Λ¼1.8 for
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(a) β¼0.1, (b) α¼1.5, and γ¼0.1 on all plots.



Fig. 9. Eigenvalue spectrum of the DBs for the choice of the parameters β¼0.66 and γ¼0.450. (a) α¼0.0983. (b) α¼0.172.
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The DBs are linearly stable if and only if the matrix M has all its
eigenvalues on the imaginary axis; otherwise the DBs are unstable
[71–73]. In our stability analysis, the eigenvalue spectrum always
contains eigenvalues which are zero. This eigenvalue corresponds
to the (ς) translational invariance and to the invariance of the
solution to a constant phase factor, respectively. Figs. 9(a) and
(b) portray the eigenvalue spectrum in the spectral plane ( ,i rλ λ )
for the parametric choices 0.0983, 0.450α γ= = and 0.66β = . As
shown in Figs. 9(a) and (b), it could be observed that when

0.172α < , all the eigenvalues are occupying both the real and
imaginary axes of the spectral plane exploring the instability
window and once 0.172α = , suddenly all the eigenvalues at the
real axis are vanished and an abrupt gathering of eigenvalues on
the imaginary axis could be manifested from Fig. 9(b), leading to a
platform for stable localized modes. These figures expose the im-
pact of the exchange anisotropy parameter α on the stability
window.
7. Conclusions

We have investigated the nonlinear dynamics of a discrete
weak ferromagnetic chain with on-site easy-axis anisotropy due to
crystal field effect. The quasiclassical equation of motion for the
nonlinear evolution of the Heisenberg spin system is obtained by
employing the boson mappings of spin operators via Holstein–
Primakoff transformation and Glauber's coherent-state
representation. We performed a systematic modulational in-
stability analysis both analytically in the framework of linear sta-
bility analysis and numerically by means of molecular dynamics
simulations. The numerical simulations also enabled us to ex-
amine the long-time evolution of modulational instabilities and
demonstrate the possibility of the formation of localized struc-
tures. We investigate the properties of modulational instabilities
and subsequent formation of discrete breathers for the energy
exchange parameters of interest and we check that there is a
systematic tendency to favour the growth of the larger DB ex-
citations with higher amplitudes. We analysed the stability/in-
stability of DBs using Fourier collocation method. These results
allow us to draw conclusions that the spin–orbit induced Dzya-
loshinsky–Moriya interaction and the anisotropy have profound
impact on the DB excitations and the antisymmetric nature of the
canted ferromagnetic medium supports the long-lived nano-scale
localized excitations in the form of single-site DBs.
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