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1. Introduction

Though there is no unique nor equivalent definition of non integer derivative, systems defined by Caputo fractional order
derivative are widely used because it makes use of initial conditions similar as in the integer order case and also because of
the non local behavior, which seems to be the distinctive character that one could expect for non integer dynamics.

Since classical definition of dynamical system (with a specific evolution function, manifold or monoid background and
so on) does not completely hold for fractional systems (whether Caputo or other type of derivative is used in its rule of
evolution), we will simply call fractional system (of equations) to the object of our study instead of dynamical fractional
system.

Like in the integer order case, one of the main topic of research in fractional systems is the study of its asymptotic
properties such as convergence and boundedness. In the simplest systems, the linear time invariant systems, those
properties can be directly analyzed by using the analytic solution. The reader is referred for example to [1]. The next simplest
fractional systems, the linear forced systems and linear time varying systems,which are themain object of study of ourwork,
have received comparatively less attention in the specialized literature.Wemention [2] for the latter (scalar case) and [1] for
the former (BIBO stability for time invariant systems). Again, in both cases, properties are deduced by appealing to schematic
solutions of such equations.

For most complex systems, however, a generic analytic or schematic solution is not possible or not available in the
literature and therefore specific tools must be employed or developed instead. Among those tools, we will stand out the
Lyapunov functions and the comparison principle [3].

The paper is organized in the following way: Section 2 gives some basic notions and properties of fractional order
operators. Section 3 studies fractional linear unforced time variant systems, whereas in Section 4 fractional forced linear
systems are analyzed. Next, in Section 5 the study of fractional nonlinear unforced systems is presented. Finally, Section 6
offers general conclusions and future work.
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2. Preliminaries

Some useful definitions and properties (taken mainly from [4] except where indicated) are presented in this section.

Definition 1 (Fractional Integral [4, page 69]). The fractional integral of order α ∈ R+ of function f (t) on the half axis R+ is
defined as

Iα f (t) =
1

0(α)

 t

0
(t − τ)α−1f (τ )dτ (1)

where 0(α) =


∞

0 τ α−1e−τdτ is the Gamma function.

We denote IαT f (t) =
1

0(α)

 t
T (t − τ)α−1f (τ )dτ with t > T and Iα

[T1,T2]
f (t) =

1
0(α)

 T2
T1

(t − τ)α−1f (τ )dτ with T2 > T1.
In the following, n = [α] + 1 if α ∉ N and n = [α] otherwise, where [α] denotes the integer part of the real number α.

Definition 2 (Caputo Derivative [5, Definition 3.1]). The Caputo derivative of order α ∈ R+ of function f (t) on the half axis
R+ is defined as

CDα f (t) = In−α f (n)(t) (2)

whenever f belongs to L1(a, b), the Lebesgue space of functions for which |f | is Lebesgue integrable on the interval (a, b).

It must be noted that Caputo derivative requires that f (n) be differentiable a.e. and if f has well defined Caputo derivative
then f (n) must be differentiable a.e.

To simplify the notation, we will denote CDα f (t) as Dα f (t) or f (α) since we will be using only the Caputo fractional
derivative throughout the paper.

An analogue to the fundamental theorem of integer calculus is stated in the next two properties for Caputo fractional
derivative.

Property 1 ([4, Lemma 2.22]). If f belongs to Cn
[a, b], the space of continuous functions on [a, b] that have continuous first

n derivatives (or f belongs to ACn
[a, b], the space of absolutely continuous functions on [a, b] that have continuous first n

derivatives), and α > 0, then for all t ∈ [a, b]

IαDα f (t) = f (t) −

n−1
k=0

f (k)(0)
k!

tk. (3)

Property 2 ([4, Lemma 2.21]). If f belongs to L∞(a, b), the Lebesgue space of bounded functions on the interval (a, b) (or f
belongs to C[a, b]), and α > 0 with α ∉ N, then for all t ∈ (a, b)

Dα Iα f (t) = f (t). (4)

The next properties will be regularly cited along the proofs of the next sections. It is assumed that 0 < α ≤ 1.

Property 3 (Caputo Derivative Property [6, Lemma 1]). Let x(t) ∈ Rn be a differentiable vector function, then for all t ≥ 0 it
holds that

DαxT x ≤ 2xTDαx. (5)

For the proof, the reader is referred to [6]. The proofs of the following two properties can be found at [7].

Property 4 (Decaying Property). If f (t) ∈ R is a bounded function that vanishes for all t > T then Iα f → 0 and Dα f → 0
as t → ∞. Moreover, Iα f will be a uniformly continuous function and if Dα f is continuous, Dα f will be a uniformly continuous
function.

Property 5 (Limit of Integrals Property). Let f (t) ∈ R be a bounded function, if Iα f → L as t → ∞ then IαT f → L as t → ∞.

Finally, we recall the following lemma from [3]

Lemma 1 (Comparison Principle [3, Lemma 10]). If x(0) = y(0) and Dβx ≥ Dβy for 0 < β < 1, then x(t) ≥ y(t) for all t ≥ 0.
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3. Linear time-varying systems

In this section we analyze the case of systems described by fractional order linear time-varying (non-autonomous)
differential equations, deriving conditions for boundedness and convergence on system signals.

Let A(t) ∈ Rn×n be a matrix and 0 < α ≤ 1. Let us consider the system defined by

x(α)
= A(t)x, (6)

with x(0) = x0 ∈ Rn.
When A is a constant matrix, the condition for asymptotic convergence of x to zero becomes arg(spec(A)) > α π

2 [1].
According to the scalar solution in the same reference, we have ∂x/∂a ≤ sgn(x(0)) by using the monotony of Eα(−atα) [8],
whereby the greater is |a| the faster x converges to zero. For the vector case, one can deduce the same role about the
eigenvalues. Thus, the convergence speed is given by the eigenvalues of A.

We say that A is α-stable if arg(spec(A)) ≥ α π
2 . Hence, if α ≤ β ≤ 1 and A is β-stable then A is α-stable. This suggests

that, in the case A is time-varying, the results of the integer case could also be valid in non-integer case. A positive example
is given by the following theorem.

Theorem 1. Let A(t) a real matrix such that for all t ≥ 0, x is differentiable for the system (6) and A(t) ≤ −εI (i.e. for all vector
y ∈ Rn and for all t ≥ 0, it holds that yTA(t)y ≤ −εyTy) then x asymptotically converges to zero. In particular, the convergence
is O(t−α).

Proof. By Property 3 and hypothesis, DαxT x ≤ 2xTDαx ≤ 2xTA(t)x. Then DαxT x ≤ −2εxT x. By calling V (t) = xT x(t), we
note that V (·) satisfies the following inequality, DαV ≤ −2εV . By applying Lemma 1 and since the equation DαV = −2εV
has asymptotic behavior O(t−α) as shown in [1], the claim follows since xT x → 0 implies x → 0. �

Remark 1. In the above proof, no restriction is imposed on initial condition x0 except that is finite. Therefore convergence
is global as long as condition A(t) ≤ −εI globally holds. A local result is obtained by stating that xTA(t)x ≤ −εxT x holds for
a region defined by ∥x∥ < c. This observation is implicit in the results that follow.

Remark 2. Note that in the case of a symmetric matrix if A(t) ≥ εI then λm = λm(t) > ε where λm is the smallest
eigenvalue of A(t). This is because if x is any eigenvector of (A − εI) with eigenvalue λ then A(t)x = (λ + ε)x and since
A(t) − εI ≥ 0 then λ ≥ 0. Therefore λm = λm(t) > ε. In particular A is positive-definite.

Remark 3. Note that the systemwith A1 = −εI has speed of convergence ruled by ε. On the other hand, by the comparison
principle, the rate of convergence of solutions for A2(t) ≤ −εI is faster or equal to that of A1 = −εI . Then it can be inferred
that k > 1 in kA is an acceleration factor.

Hereinafter we will look for weaker conditions than those of the previous theorem. We will distinguish the scalar and
the vector cases to simplify the analysis.

3.1. Scalar case

Let us consider the following equation

x(α)
= a(t)x, (7)

with x(0) = x0 and a(t) ∈ R is a continuous bounded function such that for all t ≥ 0, a(t) ≤ 0.

Property 6. The solution to the Eq. (7) exists and it is unique.

Proof. Calling f (t, x) = a(t)x then f is Lipschitz respect to its second variable since a(·) is bounded (the bound of a(·) being
the Lipschitz parameter). On the other hand, f is continuous since it is (bi)linear. Then applying Theorem 6.5 of [5] one
obtains existence and uniqueness of the solution. �

Property 7. x = 0 is an equilibrium point of (7) and it is unique.

Proof. Since the Caputo derivative of a constant function is zero, x ≡ 0 is a solution of Eq. (7) with initial condition x(0) = 0.
By uniqueness of the solution, if x(0) = 0 then for all t > 0, x(t) = 0, which is the definition of equilibrium point. For the
uniqueness part, note that for all other initial condition the system will have non null dynamic since a(·) is not identically
null and the Caputo derivative is zero only for the constant function. �

The next property is an obvious result by the linearity of Eq. (7), so its proof is omitted.

Property 8. The solutions of Eq. (7) are linear with respect to the initial conditions.
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Remark 4. By this Property, the asymptotic properties for Eq. (7) have a global character. For instance, for fixed function a(·),
if for initial condition x(0) the systemvariable x(t) converges asymptotically to zero then it also converges asymptotically for
the initial condition rx(0) with r ∈ R different from zero. On the contrary, if there exists x(0) such that x does not converge
to zero, then there will be no convergence for none initial condition.

Property 9. x(t) = x(0) + Iα[ax](t) is a schematic solution of Eq. (7).

Proof. It follows directly from Lemma 6.2 of [5]. As alternative demonstration, given the uniqueness of the solution of (7),
it is sufficient α derive the ansatz x(t). �

Remark 5. Such a solution is in fact an integral equation of second type with discontinuous kernel.

Property 10. The equilibrium point of Eq. (7) is uniformly Lyapunov stable at t = 0.

Proof. Without loss of generality, by Property 8, let us suppose that x(0) > 0. By Corollary 6.16 in [5], for all t > 0 it holds
that x(t) > 0. On the other hand, since a(t) ≤ 0, it holds

0 < x(t) ≤ x(0). (8)

Therefore, if ∥x(0)∥ ≤ δ = ϵ then ∥x(t)∥ ≤ ϵ for all t > 0, which is the definition of Lyapunov stability for initial time t = 0
given in [9]. �

Note that if a is not equal to zero, then for all t > 0, 0 < x(t) < x(0).
For the next property we will need the following proposition.

Proposition 1. Let f be a bounded function i.e. |f (t)| < fM , ∀t ≥ t0. Then Iα[f ](t) is a Hölder-α continuous function (i.e. there
exists constant C such that |f (x)− f (y)| ≤ C |x− y|α for any x, y). In particular, if Dα f is a bounded function and f ∈ C1(R) then
f is a Hölder-α continuous function.

Proof. Without loss of generality, let us assume that t1 ≥ t2.

|Iα[f ](t1) − Iα[f ](t2)|0(α) =

 t2

0
[(t1 − τ)α−1

− (t2 − τ)α−1
]f (τ )dτ +

 t1

t2
(t1 − τ)α−1f (τ )dτ

 .
|Iα[f ](t1) − Iα[f ](t2)|0(α) ≤

 t2

0
[|(t1 − τ)α−1

− (t2 − τ)α−1
|]|f (τ )|dτ +

 t1

t2
(t1 − τ)α−1

|f (τ )|dτ .

Using the fact that f is a bounded function we have

|Iα[f ](t1) − Iα[f ](t2)|0(α) ≤ fM

 t2

0
|(t1 − τ)α−1

− (t2 − τ)α−1
|dτ +

 t1

t2
(t1 − τ)α−1dτ


.

Resolving the integrals

|Iα[f ](t1) − Iα[f ](t2)|0(α) ≤
fM
α

[tα2 − tα1 + (t1 − t2)α + (t1 − t2)α].

Then

|Iα[f ](t1) − Iα[f ](t2)| ≤
2fM

α0(α)
(t1 − t2)α.

Thus f is a Hölder-α continuous function. Now, if Dα f is bounded then IαDα f = f (t) − f (0) is a Hölder-α continuous
function. Then (f (t) − f (0)) + f (0) = f (t) is a Hölder-α continuous function since adding a constant to the function leaves
invariant the difference |f (t2) − f (t1)| which defines the Hölder-α continuity. �

Remark 6. There is an analogy with the integer case, namely, if Df is a bounded function (and therefore a Lipschitz
continuous function) then f is uniformly continuous and if D(If ) = f is a bounded function then If is uniformly continuous.

Corollary 1. If Df is a bounded function, then Dα f is a Hölder-(1 − α) continuous function.

Proof. It follows by noting that Dα f = I1−α
[Df ] and using the last proposition. �

Property 11. The solutions of (7) are Hölder-α continuous functions.

Proof. Using Proposition 1 and the fact that x(·), a(·) are bounded functions (x(·) is bounded by Property 10), it follows that
x is Hölder-α continuous. �

In order to apply Property 3, we assure differentiability with the following property.
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Property 12. The solutions of (7) are a.e. differentiable functions. Moreover, if a(·) ∈ C1
[0, T ], then x ∈ C1(0, T ].

Proof. Since x(·), a(·) are bounded functions, by Property 9, x is well defined for all t > 0. Thereby, Dαx = ax is well defined
as well. Since I1−α

[Dx] = Dαx, Dx must be a.e. differentiable. By assuming that a is a bounded function and that belongs to
C1, hypotheses (A1–A4) of Theorem 1 of [10] hold and the claim follows. �

Hereafter, we assume that a ∈ C1(R+).

Proposition 2. For Eq. (7) there exist constants C1, C2 > 0, such that for all t > 0 we have Iα[−ax](t) < C1 and Iα[−ax2](t)
< C2.

Proof. The first follows directly from Property 10 together with the schematic solution in Property 9 for Eq. (7). For the
second one, defining 2V = x2 and using Property 3, it follows that DαV ≤ ax2 ≤ 0. Integrating, one gets V (0) − V (t) ≥

Iα[−ax2](t), and therefore V (0) ≥ V (0) − V (t) ≥ Iα[−ax2](t). �

When α = 1 and a(·) is a uniformly continuous function that does not converge to zero, x(·) converges to zero by
using I1[−ax](t) < C1 and corollary of Barbalat Lemma [11]. Nevertheless, for α < 1 if Iα f < C we can only affirm that
lim inft→∞ f = 0 (see [7]).

The following theorem gives a sufficient condition for asymptotic convergence of Eq. (7).

Theorem 2. Let us consider Eq. (7)with x(0) ∈ R any initial condition and a ∈ C1(R+) a bounded function. If a(·) satisfies that
limt→∞ Iα[−a] = ∞ then limt→∞ x = 0.

Proof. Without loss of generality, let us suppose that x(0) > 0. Defining 2V = x2, by applying Property 3, one gets
DαV ≤ ax2. Integrating the previous expression we get IαDαV ≤ Iα[ax2](t), therefore we have x2(t) ≤ x2(0) + Iα[2ax2](t).
Let τ be the integration variable. Rewriting Iα[2ax2](t) as Iα[(x2(t) + x2(τ ) − x2(t))2a(τ )](t) = x2(t)Iα[2a(τ )](t) +

Iα[(x2(τ ) − x2(t))2a(τ )](t), we obtain

x2(t) ≤
x2(0) + B

1 + Iα[2a](t)
, (9)

where B = B(t) = Iα[(x2(τ ) − x2(t))[2a](τ )](t). Since B is the fractional integral of a bounded function (let say, bounded
by constant C), B is a continuous function. Therefore for B to diverge from above it must take infinite time since B = B(t) is
lesser than Ctα , which diverges only at infinite.

We prove next that if Iα[−a] → ∞ then lim inft→∞ x = 0. In fact, reasoning by contradiction, let us assume that there
is an instant of time T such that x > ϵ for any t > T . It follows that IαT [−ax] → ∞ since if Iα[−a] → ∞ then IαT [−a] → ∞

because the term 0IαT [−ax] is bounded. Therefore IαT [−ax] > ϵT Iα[−a] → ∞. But IαT [−ax] → ∞ contradicts the precedent
proposition.

Let us define the following sequence ti ≡ min {t | x(t) ≤ 1/i} for any i ≠ 0, i ∈ N. Since lim inft→∞ x = 0 and x is a
continuous function, every ti exists and is well defined because this minimum is always reached since it is equivalent to find
the first time that x(t) = 1/i.

The sequence (ti)i is divergent, because x is a continuous function and reaches its minimum in closed interval but x has
no global minimum but global ínfimum (by Property 10, x(·) is never zero), which is zero. By the definition of ti, one has that
x2(ti) → 0 and x2(ti) ≤ x2(t) ∀t < ti, therefore B(ti) < 0. On the other hand, the separation between tk and tk+1 is finite
for any k. In fact, if it were infinite Iαax will be unbounded because x(t) > 1/(k + 1) for an infinite interval, therefore by
Proposition 2, ∞ > Iαtk [−a]x2 > (1/(k + 1))Iαtk [−a] → ∞ which is a contradiction.

Since B(t) is a continuous function, the intervals are finite and B(tk) < 0, B(tk+1) < 0, it follows that B(t) cannot diverge
to +∞ between tk and tk+1. Therefore B(t) is bounded from above. Taking limit of (9) when t → +∞, one concludes by
algebra of limits that x → 0 when t → ∞. �

Remark 7. When α = 1 one can use the general solution (x = exp(−
 t
0 adτ)) to obtain the same conclusion as in

Theorem 2. The precedent proof gives an alternative way to demonstrate it. In effect, since Dx ≤ 0, x cannot increase and B
is always non positive and in particular bounded from above. Therefore x2(t) ≤

x2(0)
1+I2a(t) converges to zero when t → ∞.

Remark 8. If Iαa is bounded from below, since x is a bounded function, Bwill be bounded and inequality (9) can be used to
bound x.

In the following theorem, we prove that condition in Theorem 2 is not only sufficient but also necessary.

Theorem 3. If x → 0 then Iα[−a] → ∞ as t → ∞.
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Proof. Since x → 0, and using that x = x(0)+ Iα[ax], we have that Iα[−ax] → x(0). By using property of limits of integrals
(Property 5), IαT [ax] → x(0) for any finite T > 0. On the other hand, since x → 0 there exists Tϵ such that for all t > Tϵ

it holds that |x| < ϵ, then it follows that
IαT (ax)

 ≤ ε
IαT (a)

. Since ϵ > 0 is an arbitrarily small number and the integral
converges to x(0), it is necessary that

IαT (a)
 → ∞. Therefore, since a(·) is a bounded function and T is finite, we conclude

that |Iα(a)| → ∞. �

Although Theorem 2 gives a condition that guarantees convergence, it does not tell us about the rate of convergence. The
following proposition allows us to have a criterion in order to estimate rates of convergence.

Proposition 3. Let us consider x1(t) and x2(t) the solutions of two systems of the form (7) defined by a1(t) and a2(t), respectively.
If (a1) ≤ (a2) for all t then |x1| ≤ |x2| for all t when x1(0) = x2(0) = x(0). In particular, if [−a(t)] ≥ C > 0 for all t , with C a
constant, then |x(t)| ≤ Eα(−Ctα).

Proof. Without loss of generality, we will take x(0) > 0. By defining ϵ = ϵ(t) a function such that x2 = x1 + ϵ, we have

Dαϵ = x1(a2 − a1) + ϵa2,

with ϵ(0) = 0. Since a2 − a1 ≥ 0 we have

Dαϵ ≥ ϵa2.

The equation Dαη = ηa2 with η(0) = 0 has a unique solution η = 0 for all t > 0. Therefore, by applying the comparison
principle (Lemma 1), ϵ(t) ≥ 0 and hence x2(t) ≥ x1(t) for all t ≥ 0.

The particular case follows from comparing a2 = −C with a1 = a. �

Remark 9. Taking pulse functions, the parameters θ of the pulse (length of the cycle, period and height) allow to classify
the functions a(·) by imposing that (−a) > pulse(θ) for all t > 0 and determine the rates of convergence as a function of θ .

Remark 10. By Proposition 3, one can relax the differentiability condition on a(·) in Theorem 2 by imposing instead that
a(t) ≤ b(t) for all t > 0 where b is a differentiable function.

Next, we give some examples of functions a(·) satisfying that limt→∞ Iα[−a] = ∞.

Example 1. a(t) = C < 0 where C is a constant, since Iα[−C] = −Ctα → ∞.

Example 2. a(t) = − sin2(t). In effect, since Iα[1] → +∞, it follows that Iα[sin2(t)+cos2(t)] = Iα[sin2(t)]+Iα[cos2(t)] →

∞. Therefore at least one of both integrals diverge. Let us suppose that only one diverges, then Iα[cos 2t] = Iα[cos2 t] −

Iα[sin2 t] → ±∞. But this contradicts the known result that the fractional integral of cos(t) is bounded [12].

Example 3. Let p be a periodic pulse of values 0 and 1. If p has 100% cycle, its fractional integral diverges since p ≡ 1. Note
that we can write p = p1 + p2, where p1 is a pulse of 50% cycle and p2 is a pulse of 50% cycle such that when p1 is 0 p2 is
1 and viceversa. Therefore Iαp = Iαp1 + Iαp2. Since Iαp diverges, either Iαp1 or Iαp2 or both must diverge. Intuitively, both
must diverge. In effect, let T be half of the period of p1 that starts in 1, then we can express p1(t) = p2(t − T ) and therefore
Iαp1 = IαT p2 − Iα

[0,T ]
p2 + Iα

[0,T ]
1, where the last terms are bounded. (Alternatively, by observing that Iαp1(t + (2n + 1)T ) >

Iαp2(t+(2n+1)T ), because p1 will havemore pulses in 1 up to time t+(2n+1)T than p2, but Iαp1(t+2nT ) < Iαp2(t+2nT )
since p2 has the same amount of pulses that p1 at the time (t + 2nT ) but those of the latter happened before whereby they
decay faster than the former.) Therefore since at least one of the integrals diverges and both of them are continuous, both
of them diverge. Then any pulse of 50% cycle has fractional integral divergent.

Further, if p3 is a pulse of cycle > 50% we have that Iαp3 ≥ Iαp1, and then its fractional integral diverges too.
Since any pulse of 50% cycle can be written as a sum of two pulses of 25% cycles, we conclude that integrals of pulses of

25% cycle diverge.
Recursively, any pulse of finite cycle has fractional integral that diverges.

Example 4. Let f be a positive function such that it greater than ϵ periodically in a finite interval, then it has a divergent
fractional integral. In effect, there exists a periodic pulse function pwith values 0 and ϵ which by the previous example has
divergent fractional integral so that Iα f ≥ Iαp.

Example 5. Let p be a pulse function with values 0, 1 of cycle I/T with T > I > 0 which starts with p(0) = 1. Let p̄
an aperiodic pulse with values 1 at intervals of large I such that such an interval happens at least one time in the interval
[nT , (n+1)T ), and 0 else. Evaluating at t = T , we have Iα p̄(T ) ≥ Iαp(T ) since the cycle of p̄ happens after from that of p and
the integrals decay when the intervals of cycle is over (decay property). Recursively, as any pulse which compose p̄ starts
just or after from that of p and supposing that Iα p̄ ≥ Iαp holds for t = (n − 1)T , by separating the integral up to and after
of t = (n − 1)T , we have Iα p̄(nT ) ≥ Iαp(nT ). Taking limits when n goes to infinity and since the integral of periodic pulse
diverges, we conclude that lim supn→∞ Iα p̄ = ∞. On the other hand, as T is a finite number, the integral of the pulse can
decay finitely in each interval [nT , (n+ 1)T ) (since it is continuous function as the pulse is bounded) and together with the
fact that lim supn→∞ Iα p̄ = ∞, it follows that limt→∞ Iα p̄ = ∞.
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We end this sub-section with other results of convergence for Eq. (7).

Proposition 4. Let us consider Eq. (7). If Iα[−a] → 0 then x → x(0).

Proof. Without loss of generality, let us suppose that x(0) = x0 > 0. By Eq. (8) we have 0 ≤ x ≤ x0. Since −a > 0 we have
0 ≤ [−xa] ≤ [−x0a]. Thereby 0 ≤ Iα[−xa] ≤ x0Iα[−a]. Using that x = x0 + Iα[xa] and taking limit when t goes to ∞, the
conclusion follows. �

Remark 11. This property can be read as that initial conditions are attractivewhen a(·)has fractional integral that converges
to zero.

Remark 12. Note that althoughDαx ≤ 0, for x(0) > 0 there exists necessarily an instant of time (and by continuity, intervals
of time) where x(·) is increasing. The above proposition is vacuously true for α = 1 since never happens that I1[−a] → 0
because the integral is monotonically increasing for positive argument. Moreover, Dx ≤ 0 implies for x(0) > 0 that x(·) can
never increase.

Remark 13. Since x converges to x(0), if a is a uniformly continuous function then a necessarily converges to zero. For a
proof of this statement refer to [13].

Remark 14. When α = 1 we have that x always converges, since it is bounded and monotone. When α = 0 (consider
as the right hand limit), under smoothness assumption, we have limα→0+ Iα f = f and we can write the solution as
x(t) = x(0) − ax(t). Then, (a) x(t) ≤ x(0) and x(t) > 0 (without loss of generality x(0) > 0) (b) if a converges to zero, x
converges to x(0), in accord with Remark 13 (c) x converges iff a converges. Therefore the claim that x always converges,
would not hold for every α (d) if a diverges, then x converges, in accordwith Theorem 2where lim Iαa = −∞with α → 0+.

Wewill prove that x converges only if Iα|a| converges. Let us suppose that x converges to L. Then Iαax converges to x(0)−L.
As x converges, there exists T such that for all t > T we have |x(t)− L| ≤ ε, thereby (L− ε)IαT |a| ≤ IαT |a|x ≤ (L+ ε)IαT w2. By
property of limits of integrals, IαT |a|x converges also to L − x(0). In particular, IαT |a| ≤

1
L I

α
T |a|x + ε1, where ε1 = ε1(ε) which

converges to zero when ε converges to zero. Similarly, using the other inequality, IαT |a| ≥
1
L I

α
T |a|x − ε1. On the other hand,

for all t > T sufficiently larger, there exists ε2 such that Iα|a| ≥ IαT |a| + ε2, since Iα
[0,T ]

|a| converges to zero. Consequently,
there exists ε3 such that Iα|a| ≥

1
L I

α
T |a|x + ε3 (Similar for the other inequality). Then Iα|a| converges to L−x(0)

L .
We arrive to the following classification of linear systems according to the integral of its function a(·): If Iα|a| → ∞ then

x(·) converges to zero. If Iα|a| ≤ C implies x(·) converges to a non zero number or it does not converge (since Iα|a| → ∞ is
condition necessary for convergence to zero). If Iα|a| → 0 implies that x(·) converges to x(0).

3.2. Vector case

We assume that the components of matrix A are of class C1(R+) and the matrix A is bounded (in matrix norm), whereby
the solutions of (6) become of class C1(R+) by similar arguments of [10] generalized to the vector case. For the boundedness
of the trajectories of the system (6), we define the function 2V = xT x since, by applying Caputo derivative property, its
derivative satisfies V (α)

≤ xTAx ≤ 0 thereby, by comparison principle, V (t) ≤ V (0). For the asymptotic convergence,
Theorem 1 provides a useful tool but not quite general since in many practical cases the matrix A(t) could not be negative-
definite for each instant. For these cases, we state the following theorem.

Theorem 4. Let f (t) be a scalar non negative differentiable function such that Iα[f ] → ∞. Let x(0) ∈ Rn be any initial condition.
If A(t) ≤ −f (t)I holds for all t > 0 and the components of matrix A are of class C1(R+) then x → 0 (where I is the identity
matrix).

Proof. By using Property 3 and the hypothesis, we can write

(xT x)(α)/2 ≤ xTA(t)x ≤ −f (t)xT x.

Noting that for system (xT x)(α)
= −2f (t)xT x, xT x converges asymptotically to zero by Theorem 2, since it is equivalent

to V (α)
= −2f (t)V with V (0) ≥ 0 where V (t) = xT x. The claim follows by applying the comparison principle. �

Remark 15. Theorem 1 can be seen as a direct corollary by using f (t) = ϵ for all t > 0 and Example 1. Therefore, if f (t) > ϵ
for all t > 0 we get t−α stability.

Remark 16. Since it is possible for f (t) to take the zero value for some instants, this theorem does not restrict A(t) to be
positive-definite as Theorem 1 does. Further, if A(t) is a symmetricmatrix, a sufficient condition for asymptotic convergence
is obtained by defining λM = λM(A(t)) as the largest eigenvalue of A and imposing that −λM(t) has divergent fractional
integral (since A ≤ λM I). In the same way, the condition of theorem holds only if −λm(Iα[A]) has divergent fractional
integral, where λm(A) is the smallest eigenvalue of A. When A is not symmetric one must use Re(λ) instead of λ.
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Remark 17. Let u be any unitary vector of dimension n. A(t) ≤ −f (t)I implies, by definition, uTA(t)u ≤ −f (t). Since that
if f (t) converges fast to zero its fractional integral does not diverge (for instance, if f (t) is O(e−t)), Amust have full range at
least in a divergent sequence of instants in order to satisfy the condition of last theorem.

The condition could not be necessary as shown in [14] for α = 1 ∧ A = −wwT , where it is enough that the integral
diverges in a finite set of directions.

Example 6. If A(t) continuous differentiable, periodic and uniformly continuous matrix function such that A(t) ≤ 0 for all
t > 0 and there exists one instant where A < 0, then A(t) holds hypothesis of Theorem 4 (it follows by using Example 3).

As in the scalar case, the rates of convergence can be relatively estimated by using the following comparison proposition.

Proposition 5. If f1(t) ≥ f2(t) for all t where fi are continuous differentiable functions and Ai(t) ≤ −fi(t)I , then xT1x1(t) ≤

xT2x2(t) when x1(0) = x2(0).

Proof. Using Property 3, hypothesis and defining 2Vi = xTi xi, we have V (α)
1 ≤ −f1(t)V1 ≤ −f2(t)V1 and V (α)

2 ≤ −f2(t)V2.
Using Lemma 1 and that V1(0) − V2(0) = 0, we have V1(t) ≤ V2(t) and the claim follows. �

4. Forced linear systems

In this section we analyze the case of systems described by fractional order linear time-varying forced differential
equations, deriving conditions for boundedness and convergence on system signals. Before going deeper in the subject of
this section, we will establish the following lemma.

Lemma 2. Let h : R+
→ R be a function belonging to L1. If u : R+

→ R is a bounded function (whose bound is uM ) such that
u converges to zero as t → ∞, then y = h ∗ u also converges to zero, where ∗ denotes the convolution operator.

Proof. Let us consider any ϵ > 0. Since h is in L1 there exists T1 > 0 such that


∞

T1
h < ϵ/(2uM). Since u converges to zero,

there exists T2 > 0 such that u(t) < ϵ/(2l) where l is a real number such that l ≥


∞

0 |h|. By taking T = max{T1, T2} we
can write

∞

0
|h(τ )| |u(t − τ)|dτ =

 T

0
|h(τ )| |u(t − τ)|dτ +


∞

T
|h(τ )| |u(t − τ)|dτ ,

and by the choice of each Ti, have for all t > T2 + T that
∞

0
|h(τ )| |u(t − τ)|dτ < ϵ/2 + ϵ/2 = ϵ.

Therefore

0 ≤

 ∞

0
h(τ )u(t − τ)dτ

 ≤


∞

0
|h(τ )| |u(t − τ)|dτ < ϵ.

Thereby y converges to zero. �

Using Lemma 2 we can prove the following theorem.

Theorem 5. Let H(s) be a linear time-invariant filter defined by a rational transfer function with polynomials of integer order or
commensurate fractional order relative to α < 1, which is asymptotically stable. If the input to the filter u is a bounded function
that converges to zero then the output of the filter y also converges to zero.

Proof. For α = 1, the filter impulse response h is in L1 since it is a sum of decaying exponentials (eventually multiplied by
polynomials functions of t in the case of poles with multiplicity different from unity). For α < 1, by using results of [1], the
impulse response h belongs toL1 since the linear system is BIBO stable. Thereby taking u ≡ 1 the output y is just the integral
of the impulse response, which by BIBO stability turns out to be bounded. (Moreover, for the scalar case it is monotonically
and therefore for the general case it is also a sum of L1 terms). The claim follows by applying Lemma 2. Since the filter is
asymptotically stable, the terms associated to initial conditions also decay to zero. �

Remark 18. The previous theorem allows us to get rid of terms in L1 from inputs in forced time invariant linear systems,
when studying asymptotic convergence to zero of outputs.
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Corollary 2. Let us consider the system defined by

e(α)
= −λe + φTw,

with e(t) ∈ R; φ(t), w(t) ∈ Rn; the components of w(·) are of class C1(R+); λ > 0 and φ(t) satisfies that

φ(α)
= −ew.

If w converges to zero then e converges to zero.

Proof. In order to apply preceding theorem, we must show that φ is a bounded function. In effect, choosing the function
2V = φ2

+ e2 we have DαV ≤ −λe2 ≤ 0 (the trajectories are differentiable by using Theorem 1 of [10]). By α-integrating
the last inequality, V (t) ≤ V (0), whereby the trajectories of the system are bounded and therefore φ is bounded. �

The next theorem studies the above issue for linear time-variant systems. However, it holds only for integer order.

Theorem 6. Let us consider the following system

ẋ = A(t)x + f (t), (10)

where A(t) ∈ Rn×n is a matrix function bounded (in norm) and f (t) ∈ Rn. Let us suppose that when f (t) ≡ 0 the resulting
system is asymptotically stable. Then if f (t) is any bounded function belonging toL2 the trajectories of the system asymptotically
converge to zero for any bounded initial condition.

Proof. Let us consider the following function V = xTP(t)x with P(t) ∈ Rn×n. Since the unforced system is asymptotically
stable, then there exists a matrix P(t) satisfying the following conditions

0 < c1I ≤ P(t) ≤ c2I,
−Ṗ = PA + ATP + Q ,

Q ≥ c3I.

The existence of such P(t) and Q (t) follows from Theorem 3.10 in [15] since A(t) is asymptotically stable by hypothesis.
Then using Cauchy–Schwarz inequality we can write

V̇ ≤ −c3∥x∥2
+ c2∥x∥ ∥f ∥. (11)

Using that 2ab ≤ a2 + b2 with a = ϵ∥x∥ and b = c2∥f ∥/ϵ (with ϵ2
= 2(1 − ρ)c3 and ρ < 1), we have that

V̇ ≤ −c3ρ∥x∥2
+ c22∥f ∥

2/(2ϵ2) ≤ c22∥f ∥
2/(2ϵ2). By integrating, we obtain V (t) ≤ V (0) + c22∥f ∥2/(2ϵ2). Therefore V (t) is

bounded and so it is x(t) and therefore ∥x(t)∥ < C .
Integrating (11) and using that V (t) is bounded, it follows that ∥x∥2 ≤ (V (0) + c22C∥f ∥2/(2ϵ2))/c3. Therefore x belongs

toL2. Since f and x are bounded functions, x is Lipschitz continuous by Eq. (10). Applying Barbalat Lemma [11], we conclude
that ∥x∥ → 0 as t → ∞. �

Remark 19. Theorem 6 allows us to ignore terms in L2, in the analysis of asymptotic convergence of systems where
an Eq. (11) can be demonstrated. For example, in the context of adaptive observers instead of studying equation φ̇ =

wwTφ + cT exp(Ft)φ0 [11], it is enough to study φ̇ = wwTφ when F is a constant asymptotically stable matrix.

Corollary 3. Let us consider the system (10). If f ∈ L∞ then x ∈ L∞. In particular, the system is BIBO stable for an output
defined as y = cT (t)x with c ∈ L∞.

Proof. Using Eq. (11), it follows that there exists a constant C1 > 0 sufficiently large such that for ∥x∥ > C we have V̇ ≤ 0.
Therefore we can apply Theorem 4 in [16] to conclude that x(t) a is bounded function. The rest of the claim follows by using
Cauchy–Schwarz inequality to get |y| ≤ ∥c∥ ∥x∥ ≤ C2. �

Corollary 4. Let Dαx = A(t)x + f (t) be a system where f ∈ L2
α := {f : R+ → Rn

|(∀t > 0)Iα[∥f ∥2
](t) < ∞}, f continuously

differentiable, the components of matrix A are of class C1(R+) and A(t) ≤ −ϵI for all t > 0. Then the trajectories x(t) of the
system are bounded functions.

Proof. By Property 3 we have DαxT x ≤ 2xTDαx = 2xTA(t)x+ 2xT f ≤ −2ϵ∥x∥2
+ 2∥x∥ ∥f ∥. By a similar argument to that of

the proof of Theorem 6, it follows that DαxT x ≤ 2∥f ∥. Thereby, after integrating and using hypothesis upon f , we conclude
that x is a bounded function. �
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5. Non linear systems

In this section we analyze the case of systems described by fractional order nonlinear differential equations, deriving
conditions for boundedness and convergence on system signals.We begin by generalizing Theorem 4 of Section 3 to systems
described by

Dαx = f (t, x), (12)

with x(t), f (t, x(t)) ∈ Rn, for the initial condition x(0) ∈ Rn. It will be assumed that f (t, 0) = 0 for all t ≥ 0.

Theorem 7. Let us consider system (12). If there exist a scalar function V = V (x), a scalar class-K function γ and, for any x (or
locally around a ball of the origin x = 0), a bounded continuous differentiable function g(·, x) such that

(i) V ≥ γ (x);
(ii) DαV ≤ −|g(x, t)|2γ (x);
(iii) Iα[∥g(x, t)∥2

] → ∞ for any fixed x as t → ∞.

Then ∥x(t)∥ → 0 as t → ∞.

Proof. From (i) and (ii) it follows thatDαV ≤ −∥g(x, t)∥2V . Using the comparison principle (Lemma 1) and (iii) we conclude
that V converges to zero, and then, using (i), the trajectories of (12) are globally asymptotically convergent to zero (or locally
around a ball of the origin x = 0). �

Similarly, we can prove the following claim.

Proposition 6. Let us consider system (12). If we can find a positive-definite function V = V (x) ∈ R such that DαV = g(V )
locally (globally) holds with g(·) a concave function such that g(x) = 0 implies x = 0 and g ′(0) < 0, then we conclude that
trajectories of (12) are locally (globally) asymptotically convergent to zero.

Proof. From the concavity of g wehaveDαV ≤ g ′(0)V . By using the comparison principle (Lemma1) and sinceDαy = g ′(0)y
holds that y converges to zero andV is not negative,we conclude thatV converges to zero and since g(0) = 0, the trajectories
of (12) are locally (globally) asymptotically convergent to zero. �

It would be desirable to have a convergence condition of the type
 t+T
t V̇ ≤ −γ (∥x∥) since it would allow to generalize

the notion of persistent excitation of adaptive theory in a natural way. In fact, we can prove it with a weaker hypothesis
where γ is a positive constant, namely t+T

t
V̇ ≤ −γ V (t + T ), (13)

so we can write V (t + T ) ≤
1

1+γ
V (t). Therefore we have convergence to zero of V since 1

1+γ
< 1.

By the same reasons, with the condition
 t+T
t V̇ ≤ −γ ∥V (t)∥ we have convergence to zero of V when 0 < γ < 1 is a

constant.
A fractional (non local) version can be obtained by the following condition

IαDαV (t) ≤ −g(t)V (t), (14)

where g(t) → ∞ as t → ∞. From this condition it follows that V converges to zero.
The following theorem generalizes to fractional order claims for the integer orders of theorems in [16].

Theorem 8. Let V (t, x) be an associated scalar continuous function for the system with continuous trajectories x(t) ∈ Rn such
that V (t, x) > γ (x) with γ radially unbounded (i.e. a function γ : Rn

→ R such that ∥x∥ → ∞ ⇒ γ (x) → ∞) non negative
function (for example, ∥x∥2

= γ (x)), for all t > 0. Let us assume that DαV (·, x) is differentiable and 0 < α ≤ 1.

(a) If there exists T > 0 such that DαV ≤ 0 for any t > T then the trajectories of the system are bounded.
(b) In the case that V = V (x), let Ω be a compact neighborhood around the origin x = 0 such that DαV ≤ 0 for all x ∈ Ωc .

Then the trajectories of the system are bounded.

Proof. (a) Let us denote DαV (t) := g(t). Since T is finite and DαV is continuous, g(t) turns out to be bounded on [0, T ].
Further, since it is differentiable, we can integrate to obtain V (t) = V (0)+ Iα

[0,T ]
g(t)+ IαT g(t) < C + IαT g < C , since Iα

[0,T ]
g(t)

converges to zero (Property 4), there exists T1 such that for all t > T1 we bound Iα
[0,T ]

f (t) < C1 and by continuity, on [0, T1]
its value is bounded by C2; choosing C = max(Ci) we get the bound. Therefore as γ (x) < V < V (0) + C we have that x is
bounded since γ is radially unbounded then by counter reciprocal if γ is bounded, x is bounded.

(b) If x is always in Ω it is bounded. If x is always in Ωc it is bounded since we have DαV ≤ 0 then V ≤ V (0), by
comparison principle. If x is always on Ω after a finite time, it will be bounded since it is continuous. If x is always on Ωc

after a finite time, we conclude boundedness by using part (a). The remaining case is if x is in Ω and in Ωc alternately and
endlessly. Observing thatΩ is compact, V turns out to be bounded on ∂Ω , the border ofΩ , (say) by CΩ . Also, when x crosses
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to the set Ωc , since it is well definite and x is a continuous function, x crosses necessarily by ∂Ω . Let T be any instant when
this cross to Ωc occurs, then

V (x(T )) = V (0) + IαDαV (x(T )) < CΩ .

Since CΩ is a constant independent of the instant T , we have Iα
[0,T ]

DαV (T ) < CΩ + V (0) with CΩ + V (0) independent of
the instant T and Iα

[0,T ]
DαV (t) converges to zero (Property 4) as t → ∞. Therefore, for all T ′ > t > T where T ′ is the instant

when x returns to Ω

V (t) = V (0) + Iα
[0,T ]

DαV (t) + IαT D
αV (t) < C + IαT D

αV (t) < C,

where C is chosen in the sameway as in part (a) since Iα
[0,T ]

DαV (t) is continuous because DαV is bounded on [0, T ]. Thereby,
V is bounded when x belongs to Ωc , and it is also bounded when x belongs to Ω . Since T is an arbitrary crossing time, we
conclude boundedness of V (x) and, by a similar reasoning as in the part (a), we conclude boundedness of x. �

Remark 20. For α = 1 the proof can be simplified by noting that in Ωc , V cannot increase since DV ≤ 0 (a fact not
necessarily true for fractional derivative of any kind) and therefore x(t) is bounded.

Remark 21. The part (b) can be generalized for V = V (x, t) if Ω is a compact time invariant set.

Hypothesis of Theorem 8 can be seen as conditions on the (fractional) integral of (integer) derivative of (Lyapunov)
function in order to get a bounded system or formally asymptotically stable system, since, by definition, Caputo derivative
is the (fractional) integral of (integer) derivative. In this direction, we include the following results.

Let V (·, x) be a differentiable function for any x such that V (t, x) ≥ γ (x)with γ (·) a radially unbounded function, defined
on all the trajectories x(t) for t ≥ 0 of a system S.

The first result allows to conclude boundedness even if DαV could take positive values at some instants of time (the case
DαV (t) ≤ 0 for all t ≥ 0 being a particular case).

Proposition 7. If there exists α in (0, 1] such that for any t ≥ 0 it holds that IαDαV ≤ 0 for any trajectory x(t) then the system
S has bounded trajectories.

Proof. IαDαV = V (t) − V (0) ≤ 0, then γ (x(t)) ≤ V (t, x(t)) ≤ V (x(0)) for every t > 0. Since γ (·) is radially unbounded,
if it is bounded, its argument is bounded. �

The second result requires a weaker hypothesis for a weaker conclusion.

Proposition 8. Let V = V (t) be a uniformly continuous function. If there exist α in (0, 1], a divergent sequence (ti) such
that |ti − ti+1| ≤ T where T is a sufficiently small number (depending on the grade of boundedness T (ϵ)) and it holds that
IαDαV (ti) ≤ 0 for any trajectory x(t), then the system S has bounded trajectories.

Proof. IαDαV (ti) = V (ti) − V (0) ≤ 0 whereby V (ti) ≤ V (0). By uniform continuity hypothesis, for any ϵ > 0 there exists
δ > 0 such that if |t − ti| < T < δ then |V (t) − V (ti)| ≤ ϵ. Thereby, V (t) ≤ ϵ + V (0) for all t since ti → ∞, and therefore
∥x(t)∥ is bounded for all t ≥ 0. �

The third result is restricted to the integer case.

Proposition 9. If there exists T > 0 such that for all t > T > 0,
 t+T
t V̇ ≤ 0 then the system S has bounded trajectories.

Proof. SinceV is a continuous function of time and [0, T ] is a compact set,V reaches itsmaximum, say,VM < ∞whereby for
any t ∈ [0, T ], it holds that V (t) ≤ VM . Therefore for any 0 < t < T and since

 t+T
t V̇ ≤ 0 we have V (t + T ) ≤ V (t) ≤ VM .

Taking now 0 < t < 2T one can put the same argument as before and recursively conclude that since for any t > 0,
γ (x) ≤ V (t) ≤ VM , any trajectory will be bounded. �

6. Conclusions

Sufficient conditions for asymptotic convergence of fractional linear systems have been presented in this paper for both,
scalar and vector case. In the vector case, some additional work has yet to be done in order to clarify how far from necessity
are these conditions and how practical turn out to be for evaluate if any specific matrix satisfies them. Besides, the rate of
convergence may still be better characterized.

Some rather simple but useful results of convergence and boundedness were presented for fractional forced linear
systems. However, the case of strictly fractional forced non autonomous linear systems could not be fully encompassed
in the proposed results for convergence and must be treated in a different way; in the integer case, we make use of Barbalat
Lemma and the existence of Lyapunov functions for linear stable systems.

Finally, we obtained boundedness conditions and, by abstraction of the method used to get results for linear systems,
asymptotic convergence conditions for fractional nonlinear systems were studied. Additionally, a couple of ways that could
be explored in order to have more general results were stated.



826 J.A. Gallegos, M.A. Duarte-Mermoud / Journal of Computational and Applied Mathematics 296 (2016) 815–826

Acknowledgments

This work has been supported by CONICYT-Chile, under the grants FB009 ‘‘Centro de Tecnología para la Minería’’ and
FONDECYT 1150488, ‘‘Fractional Error Models in Adaptive Control and Applications’’.

References

[1] D. Matigon, Stability results for fractional differential equations with applications to control processing, in: Computational Engineering in Systems
Applications, 1996, pp. 963–968.

[2] B. Zhang, Stability and Liapunov functionals for Fractional differential equations, Math and Computer Science Working Papers. Paper 12. 2012.
[3] Y. Li, Y.Q. Chen, I. Podlubny, Mittag-Leffler stability of fractional order nonlinear dynamic systems, Automatica 45 (8) (2009) 1965–1969.
[4] A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006.
[5] K. Diethelm, The Analysis of Fractional Differential Equations, Springer, 2004.
[6] N. Aguila-Camacho, M.A. Duarte-Mermoud, J.A. Gallegos, Lyapunov functions for fractional order systems, Commun. Nonlinear Sci. Numer. Simul. 19

(9) (2014) 2951–2957.
[7] J.A. Gallegos, et al., On fractional extensions of Barbalat lemma, Systems Control Lett. 84 (1) (2015) 7–12.
[8] K.S. Miller, S.G. Samko, Completely monotonic functions, Integral Transforms Spec. Funct. 12 (4) (2001) 389–402.
[9] J.P. LaSalle, Stability of nonautonomous systems, Nonlinear Anal. (1976) 57–65.

[10] R. Miller, A. Feldstein, Smoothness of solutions of Volterra integral equations with weakly singular Kernels, SIAM J. Math. Anal. (1970).
[11] S. Sastry, M. Bodson, Adaptive Control: Stability, Convergence and Robustness, Prentice Hall, 1994.
[12] K. Yao, W.Y. Su, S.P. Zhou, The fractional derivatives of a fractal function, Acta Math. Sin. (Engl. Ser.) 22 (3) (2006) 719–722.
[13] M.A. Duarte-Mermoud, N. Aguila-Camacho, J.A. Gallegos, Sufficient condition on the fractional integral for the convergence of a function, Sci. World

J. 2013 (2013).
[14] A. Morgan, K. Narendra, On the uniform asymptotic stability of certain nonautonomous linear differential equations, SIAM J. Control Optim. 15 (1977).
[15] H.K. Khalil, Nonlinear Systems, Prentice-Hall, 2002.
[16] J. LaSalle, Some extensions of Liapunov’s second method, IRE Trans. Circuit Theory 7 (4) (1960) 520–527. (0096-2007).

http://refhub.elsevier.com/S0377-0427(15)00553-1/sbref1
http://refhub.elsevier.com/S0377-0427(15)00553-1/sbref3
http://refhub.elsevier.com/S0377-0427(15)00553-1/sbref4
http://refhub.elsevier.com/S0377-0427(15)00553-1/sbref5
http://refhub.elsevier.com/S0377-0427(15)00553-1/sbref6
http://refhub.elsevier.com/S0377-0427(15)00553-1/sbref7
http://refhub.elsevier.com/S0377-0427(15)00553-1/sbref8
http://refhub.elsevier.com/S0377-0427(15)00553-1/sbref9
http://refhub.elsevier.com/S0377-0427(15)00553-1/sbref10
http://refhub.elsevier.com/S0377-0427(15)00553-1/sbref11
http://refhub.elsevier.com/S0377-0427(15)00553-1/sbref12
http://refhub.elsevier.com/S0377-0427(15)00553-1/sbref13
http://refhub.elsevier.com/S0377-0427(15)00553-1/sbref14
http://refhub.elsevier.com/S0377-0427(15)00553-1/sbref15
http://refhub.elsevier.com/S0377-0427(15)00553-1/sbref16

	Boundedness and convergence on fractional order systems
	Introduction
	Preliminaries
	Linear time-varying systems
	Scalar case
	Vector case

	Forced linear systems
	Non linear systems
	Conclusions
	Acknowledgments
	References


