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‡ Université Paris-Est, Laboratoire d’Analyse et de Mathématiques Appliquées, 5 bd
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Abstract. In this article, we study the automorphism group Aut(X, σ ) of subshifts (X, σ )
of low word complexity. In particular, we prove that Aut(X, σ ) is virtually Z for aperiodic
minimal subshifts and certain transitive subshifts with non-superlinear complexity. More
precisely, the quotient of this group relative to the one generated by the shift map is a
finite group. In addition, we show that any finite group can be obtained in this way. The
class considered includes minimal subshifts induced by substitutions, linearly recurrent
subshifts and even some subshifts which simultaneously exhibit non-superlinear and
superpolynomial complexity along different subsequences. The main technique in this
article relies on the study of classical relations among points used in topological dynamics,
in particular, asymptotic pairs. Various examples that illustrate the technique developed in
this article are provided. In particular, we prove that the group of automorphisms of a
d-step nilsystem is nilpotent of order d and from there we produce minimal subshifts of
arbitrarily large polynomial complexity whose automorphism groups are also virtually Z.
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1. Introduction
An automorphism of a topological dynamical system (X, T ), where T : X→ X is a
homeomorphism of the compact metric space X , is a homeomorphism from X to itself
which commutes with T . We call Aut(X, T ) the group of automorphisms of (X, T ).
There is an analogous definition of measurable automorphism for measure-preserving
systems (X, B, µ, T ), where (X, B, µ) is a standard probability space and T : X→ X a
measure-preserving transformation of this space. The group of measurable automorphisms
is historically denoted by C(T ). This notation stands for the centralizer group of
(X, B, µ, T ).

The study of automorphism groups is a classical and widely considered subject in
ergodic theory. The group C(T ) has been intensively studied for mixing measure-
preserving systems of finite rank. The reader is referred to [17] for a complete survey. Let
us mention some key theorems. Ornstein [32] proved that a mixing measure-preserving
system of rank one has a trivial group of measurable automorphisms which consists of
powers of T . Later, del Junco [13] showed that the well-studied weakly mixing (but not
mixing) rank one Chacon subshift also has this property. Finally, for mixing measure-
preserving systems of finite rank, King and Thouvenot (see [25]) proved that C(T ) is
virtually Z, that is, its quotient relative to the subgroup 〈T 〉 generated by T is a finite group.

In the non-weakly mixing case, Host and Parreau [23] proved that C(T ) is also virtually
Z for a family of uniquely ergodic subshifts arising from constant-length substitutions, and
that it equals Aut(X, T ). Concomitantly, Lemańczyk and Mentzen [28] proved that any
finite group can be obtained as a quotient C(T )/〈T 〉 using substitution subshifts satisfying
Host-Parreau’s result.

In the topological setting, since the seminal work of Hedlund [19], several results have
shown that the group of automorphisms for classes of subshifts in which the complexity
grows quickly with word length might possess a very rich collection of subgroups. Here,
by complexity we mean the increasing function pX : N→ N that counts the number of
words of length n ∈ N appearing in points of the subshift (X, σ ), where σ is the shift map.
In particular, the automorphism group of the fullshift on two symbols contains isomorphic
copies of any finite group [19], and the automorphism group of a mixing shift of finite
type contains the free group on two generators, the direct sum of countably many copies
of Z and the direct sum of every countable collection of finite groups [6, 24]. Similar
richness in automorphism groups has been found in synchronized systems [18] and in
multidimensional subshifts [21, 41].

In contrast, there is much evidence in the measurable and topological setting to suggest
that low complexity systems ought to have a ‘small’ automorphism group [9, 23, 28, 31,
37]. Recently, Salo and Törmä in [37] considered this problem in the context of subshifts
generated by constant-length or primitive Pisot substitutions and proved that the group of
automorphisms is virtually Z. This generalizes the seminal result of Coven concerning
constant-length substitutions on two letters [9]. In [37], the authors also asked whether
or not the same result holds for subshifts constructed from primitive substitutions or, even
more generally, for linearly recurrent subshifts [16].

In Theorem 3.1 of §3, we give a positive answer to the latter question, proving that
the group of automorphisms of a transitive subshift is virtually Z if the subshift satisfies
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lim infn→+∞ pX (n)/n <∞ together with a technical condition on the asymptotic pairs
(which happens to be satisfied by aperiodic minimal subshifts). The class of systems
satisfying this condition includes primitive substitutions, linearly recurrent subshifts and,
more generally, any minimal subshift with linear complexity. Moreover, since the
condition of the theorem involves a lim inf, Theorem 3.1 also applies to subshifts which
simultaneously present non-superlinear and superpolynomial complexity along different
subsequences. Explicit examples are given in §4. Our main tool for proving Theorem 3.1
is a detailed study of the structure of asymptotic pairs in the subshifts under consideration.
These points always exist in an aperiodic subshift [3, Ch. 1]. This strategy is related to the
study of asymptotic composants introduced by Barge and Diamond in [5]. This last notion
proved to be a powerful invariant for studying one-dimensional substitution tiling spaces.

It is natural to ask which finite groups can arise as a quotient Aut(X, σ )/〈σ 〉 for
subshifts satisfying the conditions of Theorem 3.1. As discussed above, a byproduct
of the results in [23, 28] shows that any finite group G is isomorphic to the quotient
group Aut(X, σ )/〈σ 〉 of a constant-length substitutive minimal subshift (X, σ ). Here,
we provide a direct proof of this result by giving an explicit constant-length substitutive
minimal subshift such that Aut(X, σ ) is isomorphic to Z⊕ G (Theorem 3.6).

In the process of submitting this article, we became aware of a new article by
Cyr and Kra [12]. While our Theorem 3.1 and [12, Theorem 1.4] seem very close
to each other, the methods and directions pursued in both articles are quite different.
Our technique consists of looking at the action of automorphisms on the asymptotic
pairs of a subshift. Together with studying the action of automorphisms on other
interesting equivalence relations associated to special topological factors (mainly maximal
equicontinuous factors and d-step nilfactors), this has enabled us to shed light on the
properties of the automorphism groups of several classes of transitive subshifts which
exhibit complexities with polynomial or higher growth. In comparison, the authors of
[12] explore the world of systems whose complexity grows at most linearly and that are
not necessarily transitive.

The automorphism group of subshifts with superlinear complexity
(limn→+∞ pX (n)/n =∞) seems more complicated to manage than the non-superlinear
case. In [11], it was proved that the quotient of the automorphism group relative to
the group generated by the shift is periodic for transitive subshifts with subquadratic
complexity, meaning that any element in this group has finite order. The proof of
this result was achieved by means of studying a Z2 coloring problem and uses a deep
combinatorial result of Quas and Zamboni [35].

In this article, we also explore zero entropy subshifts with superlinear complexity
in several directions. We mainly discover classes of examples where the groups of
automorphisms still show a small growth rate or are abelian. Our first class of examples
arises from the study of symbolic extensions of nilsystems. In §5, we prove that, for
every integer d ≥ 1, the groups of automorphisms of proximal extensions of d-step
nilsystems are d-step nilpotent groups. This result is then used to construct subshifts
with arbitrary polynomial complexity and automorphism groups virtually isomorphic to
Z (Theorem 5.12). The main tool used to prove this result is a detailed study of the
regionally proximal relation of order d for such subshifts [22, 39]. Then, in §6.1 we
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provide a subshift with superlinear complexity whose automorphism group is isomorphic
to Zd for some d ∈ N.

We conclude the article by asking several questions and by proposing directions
for future research. In particular, we explore the visiting time map associated to a
subshift (X, σ ) as an alternative to word complexity. We propose studying the increasing
function R′′X : N→ N which, for every n ∈ N, gives the minimum possible length of words
having as subwords all words of length n that appear in points in the subshift [8]. In
Proposition 6.4, we prove that any finitely generated subgroup of the automorphism group
of a subshift with visiting time map of polynomial growth is virtually nilpotent. This result
is somehow parallel to [12, Theorem 1.1], but applies to subshifts with visiting time map
of at most polynomial growth rather than those of linear word complexity.

2. Preliminaries, notation and background
2.1. Topological dynamical systems. A topological dynamical system (or just a system)
is a homeomorphism T : X→ X , where X is a compact metric space. It is classically
denoted by (X, T ). Let dist be a distance in X and denote by OrbT (x) the orbit {T n x; n ∈
Z} of x ∈ X . A topological dynamical system is minimal if the orbit of every point is dense
in X , and is transitive if at least one orbit is dense in X . In a transitive system, points with
dense orbits are called transitive points. The ω-limit set ω(x) of a point x ∈ X is the set of
accumulation points of the positive orbit of x , or formally ω(x)=

⋂
n≥0 {T k x; k ≥ n}.

Let (X, T ) be a topological dynamical system. We say that x, y ∈ X are proximal if
there exists a sequence (ni )i∈N in Z such that limi→+∞ dist(T ni x, T ni y)= 0. A stronger
condition than proximality is asymptoticity. Two points x, y ∈ X are said to be asymptotic
if limn→+∞ dist(T n x, T n y)= 0. Nontrivial asymptotic pairs may not exist in an arbitrary
topological dynamical system, but it is well known that a nonempty aperiodic subshift
always admits at least one [3, Ch. 1].

A factor map between the topological dynamical systems (X, T ) and (Y, S) is a
continuous onto map π : X→ Y such that π ◦ T = S ◦ π (T and S commute). We say
that (Y, S) is a factor of (X, T ) and that (X, T ) is an extension of (Y, S). We use the
notation π : (X, T )→ (Y, S) to indicate the factor map. If, in addition, π is a bijective
map we say that (X, T ) and (Y, S) are topologically conjugate.

We say that (X, T ) is a proximal extension of (Y, S) via the factor map π : (X, T )→
(Y, S) (or that the factor map itself is a proximal extension) if for every x, x ′ ∈ X the
condition π(x)= π(x ′) implies that x, x ′ are proximal. For minimal systems, (X, T ) is
an almost one-to-one extension of (Y, S) via the factor map π : (X, T )→ (Y, S) (or the
factor map itself is an almost one-to-one extension) if there exists y ∈ Y with a unique
preimage for the map π . The relationship between these two notions is given by the
following folklore lemma. We provide a proof for completeness.

LEMMA 2.1. If the factor map π : (X, T )→ (Y, S) between minimal systems is an almost
one-to-one extension, then it is also a proximal extension.

Proof. Let y0 ∈ Y be a point with a unique preimage under π and consider points x, x ′ ∈ X
such that π(x)= π(x ′). By the minimality of (Y, S), there exists a sequence (ni )i∈N in
Z such that Sni (π(x))(= Sni (π(x ′))) converges to y0 as i goes to infinity. By continuity
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of π and since T commutes with S, the sequences (T ni x)i∈N and (T ni x ′)i∈N converge to
the same unique point in the preimage of y0 for π . This shows that points x and x ′ are
proximal. �

2.2. Automorphism group. An automorphism of the topological dynamical system
(X, T ) is a homeomorphism φ of the space X such that φ ◦ T = T ◦ φ. We denote the
group of automorphisms of (X, T ) by Aut(X, T ). The subgroup of Aut(X, T ) generated
by T is denoted by 〈T 〉.

We will need the following two simple facts.

LEMMA 2.2. Let (X, T ) be a minimal topological dynamical system. Then the action of
Aut(X, T ) on X is free. That is, every nontrivial element in Aut(X, T ) has no fixed points.

Proof. Take φ ∈ Aut(X, T ) and x ∈ X such that φ(x)= x . Since φ commutes with T and
is continuous, by minimality we deduce that φ(y)= y for all y ∈ X . Thus, φ is the identity
map. �

LEMMA 2.3. Let (X, T ) be a topological dynamical system. For x ∈ X and φ ∈

Aut(X, T ) we have,
• if x and φ(x) are asymptotic then φ restricted to ω(x) is the identity map;
• if (X, T ) is minimal then x and φ(x) are proximal if and only if φ is the identity map.

Proof. In the first part, we assume limn→+∞ dist(T n x, T nφ(x))= 0. For any y ∈ ω(x)
consider a sequence (ni )i∈N in N such that T ni x converges to y. We get that φ(y)= y,
which proves the desired result.

The proof of the nontrivial direction of the second part is similar. By definition, there
exists a sequence (ni )i∈N in Z such that limi→+∞ dist(T ni x, T niφ(x))= 0. We can
assume that T ni x converges to some y ∈ X . Therefore, φ(y)= y. By Lemma 2.2 φ is
the identity map. �

Let π : (X, T )→ (Y, S) be a factor map between the minimal systems (X, T ) and
(Y, S), and let φ be an automorphism of (X, T ). We say that π is compatible with
φ if π(x)= π(x ′) implies π(φ(x))= π(φ(x ′)) for every x, x ′ ∈ X . We say that π is
compatible with Aut(X, T ) if π is compatible with every φ ∈ Aut(X, T ).

If the factor map π : (X, T )→ (Y, S) is compatible with Aut(X, T ), we can define the
projection π̂(φ) ∈ Aut(Y, S) by the equation π̂(φ)(π(x))= π(φ(x)), for all x ∈ X . We
have that π̂ : Aut(X, T )→ Aut(Y, S) is a group morphism.

Note that π̂ might not be onto or injective. Indeed, for an irrational rotation of the
circle, the group of automorphisms is the whole circle, but the group of automorphisms
of its Sturmian extension is Z [31]. We will show, in Lemma 5.7, that this factor map is
compatible and hence π̂ is well defined, but is not onto. On the other hand, the map π̂
associated with the projection on to the trivial system cannot be injective.

In the case of a compatible proximal extension between minimal systems we have:

LEMMA 2.4. Let π : (X, T )→ (Y, S) be a proximal extension between minimal systems
and suppose that π is compatible with Aut(X, T ). Then, π̂ : Aut(X, T )→ Aut(Y, S) is
injective.
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Proof. Let φ ∈ Aut(X, T ) be an automorphism such that π̂(φ) is the identity map of Y .
It suffices to prove that φ is the identity map of X . For x ∈ X we have that π(φ(x))=
π̂(φ)(π(x))= π(x). Since π is proximal, then x and φ(x) are proximal points. From
Lemma 2.3 we conclude that φ is the identity map. �

2.3. Subshifts. Let A be a finite set that we will call alphabet. Elements in A are
called letters or symbols. The set of finite sequences or words of length ` ∈ N with
letters in A is denoted by A`, the set of one-sided sequences (xn)n∈N in A is denoted
by AN and the set of two-sided sequences (xn)n∈Z in A is denoted by AZ. Also, a word
w = w1 · · · w` ∈A` can be seen as an element of the free monoid A∗ endowed with the
operation of concatenation. The length of w is denoted by |w| = `.

The shift map σ :AZ
→AZ is defined by σ((xn)n∈Z)= (xn+1)n∈Z. To simplify

notations, we denote the shift map by σ independently of the alphabet; the alphabet will
be clear from the context.

A subshift is a topological dynamical system (X, σ ) where X is a closed σ -invariant
subset of AZ (we consider the product topology in AZ). For convenience, when we state
general results about topological dynamical systems we use the notation (X, T ), and to
state specific results about subshifts we use (X, σ ).

Let (X, σ ) be a subshift. The language of (X, σ ) is the set L(X) containing all words
w ∈A∗ such that w = xm · · · xm+`−1 for some (xn)n∈Z ∈ X , m ∈ Z and ` ∈ N. We say
that w appears, or occurs, in the sequence (xn)n∈Z ∈ X . We denote the set of words of
length ` in L(X) by L`(X).

The map pX : N→ N defined by pX (`)= ]L`(X) is called the complexity function of
(X, σ ).

We recall some notations from complexity theory. Given two functions f, g : N→
N \ {0}, we write f (`)= O(g(`)) if there exists a positive constant K such that f (`)≤
K g(`), for every large enough `. We also write f (`)=2(g(`)) if f (`)= O(g(`)) and
g(`)= O( f (`)). Finally, f (`)=�+(g(`)) if lim sup`→+∞ f (`)/g(`) > 0.

We adopt the following terminology. We say that the complexity of the subshift:
• is polynomial if there exists an integer d ≥ 1 such that pX (`)=2(`

d); when
d = 1 we say the complexity is linear and when d = 2 the subshift has quadratic
complexity;

• has at most polynomial growth rate if there exists an integer d ≥ 1 such that
pX (`)= O(`d);

• is superlinear if lim`→+∞ pX (`)/`=+∞;
• is non-superlinear if lim inf`→+∞ pX (`)/` <+∞;
• is subquadratic if lim`→+∞ pX (`)/`

2
= 0;

• is superpolynomial along a subsequence if lim sup`→+∞ pX (`)/q(`)=±∞ for
every polynomial q;

• is subexponential if lim`→+∞ pX (`)/α
`
= 0 for all α > 1.

In the proof of Theorem 3.1 we will need the following well-known notion that is
intimately related to the concept of asymptotic pairs. A word w ∈ L(X) is said to be
left special if there exist at least two distinct letters a and b such that aw and bw belong to
L(X). In the same way, we define right special words.
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Let φ : (X, σ )→ (Y, σ ) be a factor map between subshifts. By the Curtis–Hedlund–
Lyndon theorem, φ is determined by a local map φ̂ :A2r+1

→A in such a way that
φ(x)n = φ̂(xn−r · · · xn · · · xn+r) for all n ∈ Z and x ∈ X , where r ∈ N is called a radius
of φ. The local map φ̂ naturally extends to the set of words of length at least 2r+ 1, and
we also denote this map by φ̂.

2.4. Substitutions and substitutive subshifts. We recall some basic definitions about
substitutions and the induced subshifts. For more details see [36].

Let A be a finite alphabet. A substitution is a map τ :A→A∗ which associates a
word τ(a) of some length in A∗ to each letter a ∈A. The substitution τ can be applied
to a word in A∗, and one-sided or two-sided infinite sequences in A, in the obvious
way by concatenating (in the case of a two-sided sequence we apply τ to positive and
negative coordinates separately and we concatenate at coordinate zero the results). Then,
substitutions can be iterated or composed n times for any integer n ≥ 1. Denote this
composition by τ n . To avoid trivial cases we will always assume, in the definition of a
substitution, that the length of τ n(a) grows to infinity for every letter a ∈A.

The substitution τ :A→A∗ is primitive if for some integer p ≥ 1 and every letter
a ∈A the word τ p(a) contains all the letters of the alphabet.

The substitution τ :A→A∗ is said to be of constant length ` > 0 if |τ(a)| = ` for each
a ∈A. The length of a substitution is also denoted by |τ |. The constant-length substitution
τ is bijective if τ(a)i 6= τ(b)i for all a, b ∈A, with a 6= b and all coordinates 1≤ i ≤ |τ |.

The subshift induced by a substitution τ :A→A∗ is denoted by (Xτ , σ ), where Xτ is
the set

{x ∈AZ
; each finite word of x is a subword of τ n(a) for some n ≥ 1 and a ∈A}.

We also say that (Xτ , σ ) is a substitutive subshift. For constant-length substitutions it is
well known that (Xτ , σ ) is minimal if and only if the substitution τ is primitive. The
substitution τ is said to be aperiodic if Xτ is an infinite set.

2.5. Equicontinuous systems. A topological dynamical system (X, T ) is equi-
continuous if the family of transformations {T n

; n ∈ Z} is equicontinuous. Let (X, T )
be an equicontinuous minimal system. It is well known that the closure of the group 〈T 〉
in the set of homeomorphisms of X for the uniform topology is a compact abelian group
acting transitively on X [3]. When X is a Cantor set, the dynamical system (X, T ) is called
an odometer.

2.6. Nilsystems. The following well-known class of systems will allow us to compute
the automorphism group of some interesting subshifts of polynomial complexity.

Let G be a group. The commutator of g, h ∈ G is defined to be [g, h] = ghg−1h−1 and
for E, F ⊂ G, we let [E, F] denote the group spanned by {[e, f ] : e ∈ E, f ∈ F}. The
commutator subgroups G j of G are defined inductively, with G1 = G and for integers
j ≥ 1, we have G j+1 = [G, G j ]. For an integer d ≥ 1, if Gd+1 is the trivial subgroup then
G is said to be d-step nilpotent. Notice that a subgroup of a d-step nilpotent group is also
d-step nilpotent and any abelian group is 1-step nilpotent.
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Let d ≥ 1 be an integer, G be a d-step nilpotent Lie group and 0 be a discrete cocompact
subgroup of G. Then, the compact nilmanifold X = G/0 is a d-step nilmanifold. The
group G acts on X by left translations and we write this action by (g, x) 7→ gx . Let
T : X→ X be the transformation x 7→ τ x for some fixed element τ ∈ G. Then, (X, T ) is
a d-step nilsystem. Thus, a 1-step nilsystem is exactly a translation on a compact abelian
group. Nilsystems are distal systems, meaning that there are no proximal pairs. Moreover,
minimal nilsystems are uniquely ergodic. See [4, 27] for general references.

An important subclass of nilsystems are affine nilsystems. Let d ≥ 1 be an integer
and consider a d × d integer matrix A such that (A − Id)d = 0 (such a matrix is called
unipotent) and a vector Eα ∈ Td . Define the transformation T : Td

→ Td by x 7→ Ax + Eα
(operations are considered mod Zd ). Since A is unipotent, one can prove that the group
G spanned by A and all the translations of Td is a d-step nilpotent Lie group. The stabilizer
of 0 is the subgroup 0 spanned by A. Thus, we can identify Td with G/0. The topological
dynamical system (Td , T )= (G/0, T ) is called a d-step affine nilsystem. This system
is minimal if and only if the projection of Eα on to Td/ker(A − Id) defines a minimal
rotation [34].

3. Automorphism groups of subshifts with non-superlinear complexity
Now we shall give a positive answer to the question raised in [37]: is it true that the group
of automorphisms of a linearly recurrent system is virtually isomorphic to Z? We recall
that a group G virtually satisfies a property P (e.g., nilpotent, solvable, isomorphic to a
given group) if there is a finite index subgroup H ⊆ G satisfying property P.

It is known that the complexity functions of linearly recurrent subshifts have at most a
linear growth rate [16]. We answer the former question by considering the much larger
class of minimal subshifts with non-superlinear complexity. The main tool for answering
this question is a detailed study of the asymptotic relation. More precisely, the so-called
asymptotic components introduced below. This notion is related to the asymptotic
composants introduced by Barge and Diamond in [5]. The chief result from this work, that
we also need here, is that there are a finite number of asymptotic composants. Notice that,
in the substitutive case, the asymptotic composants can be described combinatorially [5].

Let (X, T ) be a topological dynamical system. Given x, y ∈ X we say that orbits
OrbT (x) and OrbT (y) are asymptotic if there exist points x ′ ∈ OrbT (x) and y′ ∈ OrbT (y)
that are asymptotic. This condition is equivalent to saying that y is asymptotic to some
T n x or vice versa. Then, for each x ′ ∈ OrbT (x), there is a point y′ ∈ OrbT (y) asymptotic
to x ′. We denote this relation by OrbT (x) AS OrbT (y). It follows that AS defines an
equivalence relation on the collection of orbits. When an AS-equivalence class is not
reduced to a single element we call it an asymptotic component. The equivalence class for
AS of the orbit of x ∈ X is denoted by AS[x] and the set of all asymptotic components by
AS.

It is clear from the definition that the asymptotic relation is preserved by automorphisms
of (X, T ): if x, y ∈ X are asymptotic then φ(x), φ(y) are asymptotic for every φ ∈

Aut(X, T ). It is also not difficult to check that the orbits OrbT (φ(x)) and OrbT (φ(y))
are asymptotic whenever OrbT (x) and OrbT (y) are asymptotic. Then, the image of
an asymptotic component under φ ∈ Aut(X, T ) is an asymptotic component. These
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properties prove that every automorphism φ ∈ Aut(X, T ) induces a permutation j (φ) of
the set of asymptotic components AS. Therefore, the following group morphism is well
defined:

j : Aut(X, T )→ PerAS (1)

φ 7→ (AS[x] 7→AS[φ(x)]),

where PerAS denotes the set of permutations of AS.
Now we can state the main result of this section.

THEOREM 3.1. Let (X, σ ) be a subshift such that lim infn→+∞ pX (n)/n <+∞. Assume
there exists a point x0 ∈ X, with ω(x0)= X, that is asymptotic to a different point. Then,
the following are true.
(1) Aut(X, σ )/〈σ 〉 is finite.
(2) If (X, σ ) is minimal, the quotient group Aut(X, σ )/〈σ 〉 is isomorphic to a finite

subgroup of permutations without fixed points and ](Aut(X, σ )/〈σ 〉) divides the
number of asymptotic components of (X, σ ).

Notice that the condition on the point x0 is automatically satisfied when the dynamical
system (X, σ ) is minimal. In this, case we obtain [12, Theorem 1.4].

The condition on the growth rate of the complexity function is satisfied by
primitive substitutive subshifts, by linearly recurrent systems and many other subshifts.
Interestingly, this condition is compatible with lim supn→+∞ pX (n)/n =+∞. In §4,
we construct a minimal subshift that exhibits superpolynomial complexity along a
subsequence even though it satisfies the complexity hypothesis of Theorem 3.1.

We remark that Statement (2) of Theorem 3.1 does not impose any restriction on the
finite groups obtained as quotients Aut(X, σ )/〈σ 〉. Indeed, given a finite group G, it acts
on itself by left multiplication: Lg(h)= gh for g, h ∈ G. Then, the map Lg defines a
permutation of the finite set G without any fixed points. So G can be seen as a subgroup
of the permutation group of ]G elements, which satisfies Statement (2) of the theorem.
In §3.2, we show that, for every finite group G, there exists a subshift (X, σ ) such that
Aut(X, σ )/〈σ 〉 is isomorphic to G, by giving a characterization of the automorphisms of
a specific family of subshifts induced by substitutions. As mentioned in the introduction,
we shall give a direct proof of this result here, but it can also be deduced by combining
results in [23, 28].

Finally, we note that Statement (2) of Theorem 3.1 enables us to perform explicit
computations of automorphism groups in some easy cases. The first example of this comes
from Sturmian subshifts (see [26] for a detailed exposition of these systems). It is well
known that these systems have unique asymptotic components, so each automorphism is
a power of the shift map. A slightly more general case is when the number of asymptotic
components is a prime number p (e.g., p = 2 for the Thue-Morse subshift). In this case,
the group Aut(X, σ )/〈σ 〉 is a subgroup of Z/pZ, either the trivial one or Z/pZ itself. In
particular, since the Thue-Morse subshift admits an automorphism which is not the power
of the shift map (the one that flips the two letters of the alphabet), then in this case the
quotient is isomorphic to Z/2Z.
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We point out that the hypothesis on the complexity in Theorem 3.1 is only used to prove
that there are a finite number of asymptotic components. So, any subshift where this last
property holds is a good candidate for having an automorphism group that is virtually Z.
This is the case of minimal systems, but in general this is not a theorem, and we need
to check the structure of asymptotic components in greater detail. In fact, the structure
of asymptotic components plays a crucial role in the computation of the automorphism
groups. This motivates the second example presented in §4.

3.1. Proof of Theorem 3.1. The following lemma is a key observation that allows
the growth rate of the complexity function of a subshift to be related to its asymptotic
components. The proof follows some classical ideas from [36].

LEMMA 3.2. Let (X, σ ) be a subshift. If lim infn→+∞ pX (n)/n <+∞, then the number
of asymptotic components is finite. In particular, any subshift of linear complexity has a
finite number of asymptotic components.

Proof. We observe that the last statement follows from [36, Lemma V.22]. Here, we
extend this result to subshifts whose complexity functions are non-superlinear.

We claim that there exists a constant κ and an increasing sequence (ni )i∈N in N
such that pX (ni + 1)− pX (ni )≤ κ . If not, for every A > 0 and for every large enough
integer n, we have pX (n + 1)− pX (n)≥ A. It follows that for all large enough integers
m < n, pX (n)− pX (m)=

∑n−1
i=m pX (i + 1)− pX (i)≥ (n − m)A. From here we get that

lim infn→+∞ pX (n)/n ≥ A. This contradicts our hypothesis, since A is arbitrary, and the
claim follows.

Fix κ and an increasing sequence (ni )i∈N in N, as above. Hence, the number of left
special words of length ni of the subshift is bounded by κ (see §2.3 to recall the definition).

Let {x0, y0}, . . . , {xκ , yκ} denote nontrivial asymptotic pairs. Clearly, each pair
induces a pair of asymptotic orbits. Since X is a subshift, for each j ∈ {0, . . . , κ} there
exists ` j ∈ Z such that all coordinates of x j and y j larger than or equal to ` j coincide,
whereas the (` j − 1)th coordinates are different. Then, for each i ∈ N, the word of length
ni starting at coordinate ` j in both points x j and y j is a left special word. Since we
have proved that the number of left special words of length ni is bounded by κ , we have
that the special words associated with two different asymptotic pairs in our list coincide.
But, this fact holds for every i ∈ N and hence the pigeonhole principle implies that two
asymptotic pairs in the list must share an infinite number of their left special words. Thus,
the associated pairs of asymptotic orbits are equivalent. This proves that there are at most
κ asymptotic components, and the result follows. �

A second ingredient needed for proving Theorem 3.1 is the following corollary of
Lemma 2.3.

COROLLARY 3.3. Let (X, T ) be a topological dynamical system. Assume there exists a
point x0 ∈ X with ω(x0)= X that is asymptotic to a different point. We have the following
exact sequence,

{1} // 〈T 〉 Id // Aut(X, T )
j // PerAS,
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where j was defined in (1). More precisely, for every automorphism φ ∈ Aut(X, T ), the
permutation j (φ) fixes the asymptotic component AS[x0] if and only if φ is a power of T .

Proof. Let φ be an automorphism in Aut(X, T ) and suppose that AS[φ(x0)] =AS[x0]. This
means that there exists an integer n ∈ Z such that x0 and T n

◦ φ(x0) are asymptotic. By
Lemma 2.3, T n

◦ φ is the identity map and thus φ ∈ 〈T 〉 as desired. �

Proof of Theorem 3.1. We concentrate on the second part of Statement (2), as this is the
only facet of the theorem that does not follow directly from Lemma 3.2 and Corollary 3.3.
From Corollary 3.3, no asymptotic component is fixed by a nontrivial automorphism. So,
the group Aut(X, σ )/〈σ 〉 acts freely on the finite set of asymptotic components AS: the
stabilizer of any point is trivial. Thus, AS is decomposed into disjoint Aut(X, σ )/〈σ 〉-
orbits, and each such orbit has the same cardinality as Aut(X, σ )/〈σ 〉. �

3.2. Realization of any finite group as Aut(X, σ )/〈σ 〉. In this section we provide a
constructive proof that any finite group can be obtained as a quotient Aut(X, σ )/〈σ 〉,
where (X, σ ) is a subshift satisfying the hypothesis of Theorem 3.1. As mentioned earlier,
this result can be deduced from results in [23, 28] concerning the automorphism groups of
subshifts induced by constant-length substitutions. However, we prefer to give a direct
proof in order to highlight the notion of asymptotic components. We also provide a
new proof of the characterization of the automorphism groups of subshifts induced by
the bijective constant-length substitutions of Host and Parreau [23].

3.2.1. Properties of asymptotic pairs of subshifts induced by constant-length
substitutions.

LEMMA 3.4. Let τ :A→A∗ be a primitive aperiodic bijective constant-length
substitution. Let x = (xn)n∈Z and y = (yn)n∈Z be an asymptotic pair for (Xτ , σ ) such that
xn = yn , for each n ≥ 0 and x−1 6= y−1. Then, there exist asymptotic points x ′ = (x ′n)n∈Z
and y′ = (y′n)n∈Z for (Xτ , σ ) with x ′n = y′n , for each n ≥ 0 and x ′

−1 6= y′
−1, such that

τ(x ′)= x and τ(y′)= y.

Proof. Let ` be the length of the substitution τ . By the classical result of Mossé [29, 30] on
recognizability, the map induced by τ on Xτ , τ : Xτ → τ(Xτ ), is one-to-one. Moreover,
the collection {σ kτ(Xτ ); k = 0, . . . , `− 1} is a clopen partition (formed by subsets that
are simultaneously closed and open) of Xτ . Then, there exist x ′ = (x ′n)n∈Z, y′ = (y′n)n∈Z ∈
Xτ and 0≤ kx , ky < ` such that σ kx τ(x ′)= x and σ ky τ(y′)= y.

We claim that kx = ky = 0. Since the sequences x and y are asymptotic, there
are integers n ≥ 0 and k′ ∈ {0, . . . , `− 1} such that σ n(x), σ n(y) ∈ σ k′(τ (Xτ )). The
substitution τ is of constant-length `, so we have σ ` ◦ τ = τ ◦ σ . Therefore, x and y are in
the same clopen set σ k(τ (Xτ )) for some k ∈ {0, . . . , `− 1}. This shows that k = kx = ky .
Next, let us assume that k ≥ 1. The words x−k · · · x0, y−k · · · y0 are then prefixes of the
words τ(x ′0) and τ(y′0) respectively. Since the substitution τ is bijective and x0 = y0, we
have that x ′0 = y′0. In particular, we get that x−1 = y−1, which is a contradiction.

To complete the proof recall that the substitution τ is bijective, so for all n ≥ 0 we have
x ′n = y′n and x ′

−1 6= y′
−1. �
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LEMMA 3.5. Let τ :A→A∗ be a primitive aperiodic bijective constant-length
substitution. Then, there exists an integer p ≥ 0 such that for all asymptotic points
x = (xn)n∈Z and y = (yn)n∈Z for (Xτ , σ ), the one-sided infinite sequences (xn)n≥n0 and
(yn)n≥n0 coincide for some n0 ∈ Z and are fixed by τ p.

Proof. Since x and y are asymptotic, shifting them by the same power of the shift we
can assume that xn = yn for every integer n ≥ 0 and x−1 6= y−1. Since τ is bijective, the
map a 7→ τ(a)1 is a permutation of the alphabet. Thus, there exists an integer p ≥ 1 such
that for each letter a ∈A every word in the sequence (τ pn(a))n≥1 starts with the same
letter. Hence, the sequence (τ pn(aa · · · ))n≥1 converges to a one-sided infinite sequence
z(a) such that τ p(z(a))= z(a) (z(a) is fixed by τ p).

Now, we inductively apply Lemma 3.4 to the substitution τ p. For each integer i ≥ 0
we get asymptotic pairs x (i), y(i) ∈AZ satisfying the conclusions of the lemma and such
that τ p(x (i+1))= x (i), τ p(y(i+1))= y(i), with x (0) = x and y(0) = y. By the choice of p,
the 0 coordinate of all points x (i) and y(i) coincide at some letter a ∈A. Then, τ pn(a)
is a prefix of the sequence (x j ) j≥0 (that is equal to (y j ) j≥0) for every n ∈ N. Therefore,
(x j ) j≥0 = (y j ) j≥0 = z(a) which is fixed by τ p as desired. This concludes the proof of the
lemma. �

3.2.2. Realization of a finite group as Aut(X, σ )/〈σ 〉. A first consequence of
Lemma 3.5 is the realization of any finite group as the quotient group Aut(X, σ )/〈σ 〉
of a subshift induced by a constant-length substitution.

THEOREM 3.6. Given a finite group G, there exists a minimal substitutive subshift (X, σ )
such that Aut(X, σ ) is isomorphic to Z⊕ G.

Proof. If G is the trivial group then we can consider (X, σ ) to be the Fibonacci subshift,
which is also an Sturmian subshift (see also [31]). This result also follows from
Theorem 3.1, since one can easily prove in this case that there exists a unique asymptotic
component.

Now, we assume that the finite group G is not trivial. We choose an enumeration of its
elements G = {g0, g1, . . . , gq−1} with q ≥ 2 and we set g0 to be the identity element.

For an element g ∈ G, let Lg : G→ G denote the bijection h 7→ gh. We see G as a
finite alphabet and define the substitution of constant length τ : G→ G∗ by

τ : g 7→ Lg(g0)Lg(g1) · · · Lg(gq−1).

Since the map Lg is a bijection on G, then the substitution τ is primitive and bijective.
We claim that the subshift (Xτ , σ ) is not periodic, i.e., it does not reduce to a periodic

orbit. To show this fact, it suffices to give an example of a nontrivial asymptotic pair. By
the definition of τ , the word g0g1 ∈ L(Xτ ). Hence, the words τ(g0)τ (g1) and its subword
gq−1g1 (which is different from the word g0g1) also belong to L(Xτ ). It follows that
τ n(g0)τ

n(g1), τ
n(gq−1)τ

n(g1) ∈ L(Xτ ) for every integer n ≥ 0. Taking a subsequence if
necessary, these words converge, as n goes to infinity, to two different sequences x and
y ∈ Xτ that are asymptotic by construction.

Given an element g ∈ G we extend the definition of the map Lg to words in G∗ or
infinite one-sided or two-sided infinite sequences by Lg((hi )i∈I )= (ghi )i∈I , where I is
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a finite or infinite set of indices. In particular, this defines a left continuous G-action on
GZ. Moreover, each map Lg preserves the subshift Xτ . Indeed, if x = (xn)n∈Z ∈ Xτ
then for all integers j ∈ Z and m ≥ 1 the word x j · · · x j+m−1 is a subword of τ N (h) for
some N ∈ N and h ∈ G. Then, Lg(x j · · · x j+m−1)= gx j · · · gx j+m−1 is a subword of
Lg(τ

N (h)). But, we have the relation

Lg(τ (h))= τ(Lg(h)) for every g, h ∈ G, (2)

so Lg(x j · · · x j+m−1) is a subword of τ N (Lg(h)). This implies that Lg(x) ∈ Xτ , as
desired. Thus we have a left continuous action of G on Xτ . It is clear that L : g 7→ Lg

defines an injection of G into Aut(Xτ , σ ).
To finish the proof we need the following claim.

Claim. The map ϕ : Z× G→ Aut(Xτ , σ ), (n, g) 7→ σ n
◦ Lg is a group isomorphism.

To show the injectivity of the map ϕ, let us assume there exists n ∈ Z and g ∈ G such
that Lg = σ

n . We can assume that n ≥ 0; the other case is analogous. Then, for every x ∈
Xτ we have that xkn+m = gk−1xm for all k ∈ Z and m ∈ {0, . . . , n − 1}. But the sequence
(gk−1)k∈Z is periodic, so x is periodic. This is a contradiction since τ is aperiodic.

To show ϕ is surjective it is enough to prove that each automorphism φ ∈ Aut(Xτ , σ )
can be written as a power of the shift composed with a map of kind Lg . Assume x, y
is an asymptotic pair in Xτ . By Lemma 3.5, since φ(x) and φ(y) are also asymptotic
points, there exist integers p > 0 and n0, n1 ∈ Z such that z1 = (xn)n≥n0 = (yn)n≥n0 ,
z2 = (φ(x)n)n≥n1 = (φ(y)n)n≥n1 and both sequences are fixed by τ p (observe that from
Lemma 3.5 we can use the same power p for every couple of asymptotic pairs). Taking
φ1 = σ

n0−n1 ◦ φ instead of φ we can assume that n1 = n0.
Set g1 = xn0 and g2 = φ1(x)n0 . Since z1 and z2 are fixed by τ p we have that z1 =

limn→+∞ τ
pn(g1g1 · · · ) and z2 = limn→+∞ τ

pn(g2g2 · · · ). Now, by (2), for all n ∈ N
we have that Lg1(g

−1
2 )
(τ pn(g2))= τ

pn(Lg1(g
−1
2 )
(g2))= τ

pn(g1). Then, Lg1(g
−1
2 )
(z2)= z1.

This proves that x and Lg1(g
−1
2 )
◦ φ1(x) are asymptotic points. Therefore, by Lemma 2.3,

we get φ1 = (Lg1(g
−1
2 )
)−1
= Lg2(g

−1
1 )

. So, the original φ is a power of the shift composed
with some translation Lg . This proves the claim and thus completes the proof of
Theorem 3.6. �

3.2.3. Characterization of Aut(Xτ , σ ) for bijective constant-length substitutions
subshifts. Thanks to Lemma 3.5 we can offer a different proof of the following result
due to Host and Parreau.

THEOREM 3.7. [23] Let τ :A→A∗ be a primitive bijective constant-length substitution.
Then, each automorphism of the subshift (Xτ , σ ) is the composition of some power of the
shift with an automorphism φ ∈ Aut(Xτ , σ ) of radius 0. Moreover, its local rule φ̂ :A→
A satisfies

τ ◦ φ̂ = φ̂ ◦ τ. (3)

Observe that a local map satisfying (3) defines an automorphism of the subshift. Hence,
since there are a finite number of local rules of radius 0, we have an algorithm to determine
the group of automorphisms for these kinds of subshifts.
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Proof. First, we notice that if Xτ is finite then it is reduced to a finite orbit. Hence an
automorphism is a power of the shift map. From now on, we assume τ is aperiodic.

Let x = (xn)n∈Z, y = (yn)n∈Z ∈ Xτ be two asymptotic sequences and consider φ ∈
Aut(Xτ , σ ). As discussed before, φ(x) and φ(y) are also asymptotic pairs.

By Lemma 3.5, there exist integers p ≥ 0 and n0, n1 ∈ Z such that (xn)n≥n0 =

(yn)n≥n0 , (φ(x)n)n≥n1 = (φ(y)n)n≥n1 and all sequences are fixed by τ p (observe that from
Lemma 3.5 we can use the same power p for every couple of asymptotic pairs).

After shifting, we can assume that n0 = 0. Also, in what follows, we will consider
the automorphism φ′ = σ n1 ◦ φ. Thus, the sequence (φ′(x)n)n≥0 = (φ(x)n)n≥n1 is fixed
by τ p.

Let r and φ̂′ denote the radius and the local map of φ′ respectively. Taking a power
of τ p if needed, we can assume that the length ` of substitution τ p is greater than
2r+ 1. Consider different integers m, n ≥ 0 such that xn = xm . We have φ′(x)m`+r =

φ̂′(xm` · · · xm`+2r)= φ̂′(τ
p(xm)[0,2r])= φ̂′(τ

p(xn)[0,2r])= φ
′(x)n`+r, where, for a word,

u = u0 · · · u`−1, u[0,2r] stands for the prefix u0 · · · u2r. Since φ′(x)n`+r and φ′(x)m`+r
are the (r + 1)th letters of the words τ p(φ′(x)n) and τ p(φ′(x)m) respectively, and the
substitution τ is bijective, we obtain that φ′(x)n = φ′(x)m . Then, the map ψ̂ :A→A
given by ψ̂(xn)= φ

′(x)n for all n ≥ 0 is well defined.
Let ψ :AZ

→AZ be the shift commuting map with local map ψ̂ . By construction, for
each word w ∈ L(Xτ ) we have that ψ̂(τ p(w))= τ p(ψ̂(w)) and then ψ(Xτ )⊆ Xτ . Since
τ is bijective we also get relation (3) for ψ̂ .

In the same way, using φ′−1 instead of φ′, we obtain that ψ is invertible. By
construction, we have that ψ−1φ′(x) is asymptotic to x , so by Lemma 2.3, ψ = φ′ =
σ n1 ◦ φ. This completes the proof of Theorem 3.7. �

4. Examples illustrating Theorem 3.1
In this section, we present two examples to illustrate Theorem 3.1 and the technique behind
it. We start with a minimal subshift which shows non-super linear and superpolynomial
complexity along subsequences. Since it is minimal, Part (2) of Theorem 3.1 is satisfied.
The second example is a transitive non-minimal substitutive subshift with superlinear
complexity. It does not satisfy all the hypotheses of Theorem 3.1 but the technique of the
proof applies. In fact, it has a unique asymptotic component that we are able to characterize
in order to prove that its automorphism group is isomorphic to Z.

4.1. A minimal subshift with lim infn→+∞ pX (n)/n <+∞ and lim supn→+∞
pX (n)/n =+∞. Now, we present an example of a minimal subshift (X, σ ) induced by
a point x ∈ {0, 1}N in the following way:

X = {y ∈ {0, 1}Z; all words appearing in y also appear in x}.

The point x is chosen in order to have the following properties:
(i) x is uniformly recurrent: for any n ∈ N there exists N ∈ N such that every word of

length N that appears in x contains all words of length n in x ;
(ii) the complexity of (X, σ ) is non-superlinear, that is, there exists a positive constant

C such that for infinitely many values of n ∈ N we have pX (n)≤ Cn;
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(iii) for a fixed subexponential function ϕ (meaning that limn→+∞ ϕ(n)/αn
= 0 for every

α > 1), the complexity pX (n) is �+(ϕ(n)).
It is clear from (i) that (X, σ ) is minimal. This property and (ii) says that (X, σ ) satisfies

the hypotheses of Theorem 3.1. Then, its automorphism group is virtually Z. Property (iii)
illustrates that the hypothesis of Theorem 3.1 is compatible with high complexities along
subsequences, in particular any polynomial complexity.

We will need the following lemmas whose simple proofs are left to the reader. Also,
we will denote by pz(n) the number of words of length n ∈ N occurring in a one-sided or
two-sided sequence z on the alphabet {0, 1}.

LEMMA 4.1. Let ξ : {0, 1} → {0, 1}∗ be a substitution of constant length L and τ :

{0, 1} → {0, 1}∗ be a substitution such that all the words of length two in the alphabet
{0, 1} appear as subwords of τ(0) and τ(1). Then, for every x ∈ {0, 1}N having
occurrences of all words of length two in the alphabet {0, 1}, y ∈ {0, 1}N and 0< l ≤ L,
we have pξ(x)(l)= pξ◦τ(y)(l).

In what follows ρ : {0, 1} → {0, 1}∗ is the Morse substitution: ρ(0)= 01 and ρ(1)=
10. Notice that it is a bijective constant-length substitution and the words ρ3(0) and ρ3(1)
contain all the words of length 2.

LEMMA 4.2. Let ξ : {0, 1} → {0, 1}∗ be a substitution of constant length L and consider
a point x ∈ {0, 1}N. We have pξ◦ρ3(x)(2L)≤ 6L.

Fix a subexponential function ϕ. The sequence x is built recursively. We are going
to construct two increasing sequences of integers (`i )i≥1 and (mi )i≥1 and a sequence of
substitutions (τi : {0, 1} → {0, 1}∗)i≥1 such that:
(1) x = limi→+∞ ρ

3τ1 · · · ρ
3τi (0110∞), where 0∞ = 00 . . .;

(2) `1 < m1 < `2 < m2 < · · · ;
(3) px (`i )≤ 3`i for every integer i ≥ 1;
(4) px (mi )≥ ϕ(mi ) for every integer i ≥ 1.
We separate the construction into different steps. Since there are many technical issues, we
describe steps 1 and 2 before stating the recursive step in order to simplify understanding
of the construction.

Step 1: Set `1 = 2 and x (1) = ρ3(0110∞). Then, px (1)(`1)= 4≤ 3`1.
Let k1 be a positive integer such that 2k1 ≥ ϕ(k1|ρ

3
|) (this choice is always possible

since ϕ has subexponential growth). Let τ1 : {0, 1} → {0, 1}∗ be a bijective substitution of
constant length such that τ1(0) and τ1(1) start with 0 and the number of words of length
k1 in τ1(0) and τ1(1) is 2k1 . The existence of such a substitution can be seen from the fact
that De Bruijn graphs are Eulerian.

Now, define m1 = k1|ρ
3
| and y(1) = ρ3τ1(0110∞). Since τ1(0) contains 2k1 different

subwords of length k1 and ρ3 is bijective, then py(1)(m1)≥ 2k1 ≥ ϕ(m1). Moreover, from
Lemma 4.1 we have that px (1)(l)= py(1)(l) for all 0< l ≤ |ρ3

|. So, py(1)(`1)≤ 3`1 and
py(1)(m1)≥ ϕ(m1).

Step 2: Set x (2) = ρ3τ1ρ
3(0110∞). By Lemma 4.2 we have that px (2)(2|ρ

3τ1|)≤ 6|ρ3τ1|.

Setting `2 = 2|ρ3τ1| one gets that px (2)(`2)≤ 3`2.
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Let k2 ≥ k1 be an integer such that 2k2 ≥ ϕ(k2|ρ
3τ1ρ

3
|) and τ2 : {0, 1} → {0, 1}∗ be

a bijective substitution of constant length such that τ2(0) and τ2(1) start with 0 and the
number of words of length k2 in τ2(0) and τ2(1) is 2k2 .

We set m2 = k2|ρ
3τ1ρ

3
| and y(2) = ρ3τ1ρ

3τ2(0110∞). As in step 1, we deduce that
py(2)(m2)≥ 2k2 ≥ ϕ(m2). Moreover, by using Lemma 4.1 in two different ways together
with the results of step 1, we have that

py(2)(l) = px (2)(l) for all 0< l ≤ |ρ3τ1ρ
3
|,

px (2)(l) = py(1)(l) for all 0< l ≤ |ρ3τ1|,

py(1)(l) = px (1)(l) for all 0< l ≤ |ρ3
|.

Thus, if the length of τ1 is taken large enough, we can deduce that py(2)(`1)≤ 3`1,
py(2)(m1)≥ ϕ(m1), py(2)(`2)≤ 3`2 and py(2)(m2)≥ ϕ(m2).

General step: going from n to n + 1. The general procedure follows, almost identically,
what we did in step 2. The situation after finishing step n ≥ 2 is as follows:
(1) we have an increasing sequence of integers k1 ≤ · · · ≤ kn and for every 1≤ i ≤ n,

we have constructed a bijective substitution τi : {0, 1} → {0, 1}∗ of constant length
such that τi (0) and τi (1) start with 0 and the number of words of length ki in τi (0)
and τi (1) is 2ki ;

(2) for every 1≤ i ≤ n we have that 2ki ≥ ϕ(ki |ρ
3τ1 · · · ρ

3τi−1ρ
3
|);

(3) for every 1≤ i ≤ n we have defined points x (i) = ρ3τ1 · · · ρ
3τi−1ρ

3(0110∞) and
y(i) = ρ3τ1 · · · ρ

3τi (0110∞);
(4) px (i)(l)= py(i)(l) for all 0< l ≤ |ρ3τ1 · · · ρ

3τi−1ρ
3
| and 1≤ i ≤ n;

(5) py(i)(l)= px (i+1)(l) for all 0< l ≤ |ρ3τ1 · · · ρ
3τi | and 1≤ i ≤ n − 1;

(6) we produced a sequence of integers `1 < m1 < `2 < · · ·< `n < mn such that for
every 1≤ i ≤ n: `i = 2|ρ3τ1 · · · ρ

3τi−1|, mi = ki |ρ
3τ1 · · · ρ

3τi−1ρ
3
|, py(n)(`i )≤

3`i and py(n)(mi )≥ ϕ(mi ).
Repeating what we did in step 2, to pass to step n + 1 we first set x (n+1)

=

ρ3τ1 · · · ρ
3τnρ

3(0110∞). Then, from Lemma 4.2 we get that

px (n+1)(2|ρ3τ1 · · · ρ
3τn|)≤ 6|ρ3τ1 · · · ρ

3τn|.

Putting `n+1 = 2|ρ3τ1 · · · ρ
3τn| one deduces that px (n+1)(`n+1)≤ 3`n+1.

Let kn+1 ≥ kn be an integer such that 2kn+1 ≥ ϕ(kn+1|ρ
3τ1 · · · ρ

3τnρ
3
|) and τn+1 :

{0, 1} → {0, 1}∗ be a bijective substitution of constant length such that τn+1(0) and
τn+1(1) start with 0 and the number of words of length kn+1 in τn+1(0) and τn+1(1) is
2kn+1 . We set mn+1 = kn+1|ρ

3τ1 · · · ρ
3τnρ

3
| and y(n+1)

= ρ3τ1 · · · ρ
3τnρ

3τn+1(0110∞).
Then, py(n+1)(mn+1)≥ 2kn+1 ≥ ϕ(bn+1). Moreover, up to a modification in the length of
τn+1, by Lemma 4.1 and the recurrence procedure, we have that

px (i)(l)= py(i)(l) for all 0< l ≤ |ρ3τ1 · · · ρ
3τi−1ρ

3
| and 1≤ i ≤ n + 1;

py(i)(l)= px (i+1)(l) for all 0< l ≤ |ρ3τ1 · · · ρ
3τi | and 1≤ i ≤ n.

Thus, an appropriate choice of parameters and the recurrence allow us to deduce that
py(n+1)(`i )≤ 3`i for every 1≤ i ≤ n +1 and py(n+1)(mi )≥ ϕ(mi ) for every 1≤ i ≤ n + 1.
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We have proved that properties (1) to (6) hold at the end of step n + 1. This finishes the
recurrence procedure.

To conclude, observe that (y(n))n≥1 converges to the desired point x . Indeed,
convergence follows from the fact that ρ3τ1 · · · ρ

3τn(0) is a prefix of y(n) and y(n+1)

for all n ≥ 1. In addition, since limn→+∞ y(n) = x , then, given i ∈ N, there exists n ∈ N
such that px (`i )= py(n)(`i ) and px (mi )= py(n)(mi ). This proves that px (`i )≤ 3`i and
px (mi )≥ ϕ(mi ) for all i ∈ N.

We are left to prove that x is a uniformly recurrent point. This follows from the fact that
all words of a given length appearing in x are contained in ρ3τ1 · · · ρ

3τN (01) for some
N ∈ N.

4.2. A substitutive subshift with superlinear complexity. It is known that pXτ (n)=
2(ϕ(n)) with ϕ(n) ∈ {n, n log log n, n log n, n2

} for any substitution τ :A→A∗ (see
[33]). Clearly, if ϕ(n) 6= n, i.e., the subshift has superlinear complexity, then the hypothesis
on the complexity of Theorem 3.1 is not satisfied. However, the structure of the asymptotic
components might be quite simple, allowing its automorphism group to be computed using
the same technique developed to prove Theorem 3.1.

The next example is a transitive non-minimal substitutive subshift with pXτ (n)=
2(n log log n). Moreover, it has a unique asymptotic component. This, in addition to
the particular form of the unique asymptotic component, will suffice to conclude that the
automorphism group is isomorphic to Z. We remark that it is also possible to construct
examples of the same kind with pXτ (n)=2(n

2) [33].
Let A= {0, 1} and consider the substitution τ :A→A∗ defined by

τ(0)= 010 and τ(1)= 11.

It is not difficult to check that (Xτ , σ ) is a non-minimal transitive subshift. Moreover,
pXτ (n)=2(n log log n) (see [7, §4.4] for details).

4.2.1. Basic properties of τ and some notation. We will need some specific notation.
For a sequence x ∈ {0, 1}Z we write x = x−.x+ where x− = · · · x−2x−1 and x+ =
x0x1 · · · . For any a ∈ {0, 1} we set a+∞ = aaa · · · and a−∞ = · · · aaa. Thus, the
sequence · · · aaa.aaa · · · ∈ {0, 1}Z can be written as a−∞.a+∞. We also write τ+∞(a)=
limn→+∞ τ

n(a+∞) and τ−∞(a)= limn→+∞ τ
n(a−∞) when the limits exist.

We list some easy properties that the subshift (Xτ , σ ) satisfies. Being simple, the proofs
are left to the reader.

Recall that w ∈ L(Xτ ) if and only if there exists a ∈ {0, 1} and N ∈ N such that w
is a subword of τ N (a). Then, by definition of τ , any word w ∈ L(Xτ ) containing the
symbol 0 must be a subword of some τ N (0). From here, we easily deduce that: (i)
00, 1010, 11011 6∈ L(Xτ ), (ii) 010 is always preceded and followed by 11 in a word of
L(Xτ ) and (iii) two consecutive occurrences of 010 in w ∈ L(Xτ ) are separated by an
even number of 1’s.

These properties allow a recognizability property for τ to be proved.

LEMMA 4.3. For any x ∈ Xτ there exists a unique x ′ ∈ Xτ such that τ(x ′)= σ `(x) for
some ` ∈ {0, 1, 2}.
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Proof. First we prove that any point x ∈ Xτ \ {1−∞ · 1+∞} can be decomposed in a unique
way as a concatenation of words 010 and 11. By (i), every 0 in x appears in the word 101
and, by (i) and (ii), this word is contained in 1101011. We therefore have a unique way
of determining 010. This property and (iii) enable 11 to be uniquely localised and the
desired decomposition follows. Then, there exists a unique point x ′ ∈ {0, 1}Z such that
τ(x ′)= σ `(x) for some ` ∈ {0, 1, 2}. It is constructed by replacing the 010’s by 0’s and
the 11’s by 1’s in the previous decomposition and then shifting to recenter on coordinate
0. It is clear that x ′ ∈ Xτ .

To finish, we just remark that τ(1−∞ · 1+∞)= 1−∞ · 1+∞. �

4.2.2. Automorphism group of τ . We will prove that (Xτ , σ ) has a unique asymptotic
component. Then we will describe it explicitly in order to compute the automorphism
group. For this, first we show that asymptotic points should end with 1+∞.

Let x, y ∈ Xτ be two asymptotic points. After shifting, we can assume that x−1 = 0,
y−1 = 1 and x+ = y+. Since 00 6∈ L(Xτ ), then x0 = y0 = 1. Also, x1 = y1 = 1. If not, by
(ii) x2x3 = 11 and thus y−1 y0 y1 y2 y3 = 11011 which is not in L(Xτ ) by (i).

Now suppose that x+ starts with 12n+10 for some n ≥ 1. Then, property (i) implies that
x−3 · · · x2n+3 = 01012n+1010 which contradicts (iii). Thus, x+ either starts with 12n0 for
some integer n ≥ 1 or it is equal to 1+∞.

To finish, we need to discard the first case. We prove this fact by contradiction, so
assume x+ (and thus y+) starts with 12n10 for some integer n1 ≥ 1.

By Lemma 4.3 together with a detailed analysis of the decomposition given by this
lemma, there exist unique sequences x (1) = · · · 0.1n1010 · · · and y(1) = · · · 1.1n1010 · · ·
in Xτ such that x = τ(x (1)) and y = τ(y(1)) (the dot indicates the position just before
coordinate 0). Clearly, x (1) and y(1) are asymptotic. By the same argument developed
earlier, if n1 is odd, then points x (1), y(1) 6∈ Xτ , which is a contradiction. If n1 is even, we
can proceed as before to get another pair of asymptotic points x (2) = · · · 0.1n2010 · · · and
y(2) = · · · 1.1n2010 · · · , for some integer n2 ≥ 1. As before, either n2 is odd, and we get a
contradiction, or n2 is even, and we can continue recursively producing asymptotic points
x (i) = · · · 0.1ni 010 · · · and y(i) = · · · 1.1ni 010 · · · in Xτ for all 1≤ i ≤ m, where n1 =

2n2 = 22n3 = · · · = 2m−1nm and m ≤ log2(n1), until we get a contradiction as before or
we stop with nm = 1. In this last case x (m) = · · · 0.1010 · · · and y(m) = · · · 1.1010 · · · .
But, (i) tells us that 01010 6∈ L(Xτ ), so we also get a contradiction.

We have proved that x+ = 1+∞ and then (Xτ , σ ) has a unique asymptotic component.
Furthermore, it can be proved using the same kind of arguments as above that x = x− ·

1+∞ ∈ Xτ \ {1−∞ · 1+∞} if and only if x− = τ−∞(0)1n for some integer n ≥ 1. Hence,
if x, y ∈ Xτ are asymptotic then they belong to

{1−∞ · 1+∞, σ n(τ−∞(0).1+∞); n ∈ Z}.

We finish this section by proving that the automorphism group of (Xτ , σ ) is isomorphic
to Z. Observe that, if (Xτ , σ ) is a subshift of subquadratic growth, then the main result of
[11] gives that Aut(Xτ , σ )/〈σ 〉 is a periodic group.
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LEMMA 4.4. Aut(Xτ , σ )= 〈σ 〉.

Proof. Let x̄ = τ−∞(0).1+∞. As discussed above, if x, y ∈ Xτ are asymptotic then they
belong to {1−∞ · 1+∞, σ n(x̄) ; n ∈ Z}.

Consider φ ∈ Aut(Xτ , σ ). Since 1−∞ · 1+∞ is the unique fixed point for σ in Xτ , then
φ(1−∞ · 1+∞)= 1−∞ · 1+∞. Also, since φ maps asymptotic points to asymptotic points,
then x̄ should be mapped to σ n(x̄) for some n ∈ Z. But, the orbit of x̄ is dense in Xτ and
hence φ = σ n . This finishes the proof. �

5. The group of automorphisms of nilsystems and some associated subshifts
The purpose of this section is twofold. First, we prove that the group of automorphisms
of a proximal extension of an inverse limit of a minimal d-step nilsystem (and thus of
a minimal d-step nilsystem) is d-step nilpotent. Then, we use this result to construct
subshifts of arbitrary polynomial complexity whose group of automorphism is virtually
Z. Another important motivation of this section is to illustrate how the understanding of
special topological factors of a subshift allows the computation of its automorphism group.

We will need some preliminary results to enable dealing with d-step nilsystems and
their inverse limits.

5.1. Dynamical cubes, regionally proximal relation of order d and nilfactors. We recall
the machinery and terminology introduced in [22] to study nilsystems in topological
dynamics.

Let (X, T ) be a topological dynamical system and consider an integer d ≥ 1. Let
X [d] denote the set X2d

. We index the coordinates of a point in X [d] using the natural
correspondence with points in {0, 1}d and we usually denote these points in bold letters.
For example, a point x in X [2] is written as (x00, x10, x01, x11). We denote the special point
(x, x, . . . , x) (2d times) by x [d], where x ∈ X . The space of cubes of order d , denoted
by Q[d](X), is the closure in X [d] of the set {(T En·εx)ε=(ε1,...,εd )∈{0,1}d ∈ X [d]; x ∈ X, En =
(n1, . . . , nd) ∈ Zd

}, where En · ε =
∑d

i=1 ni · εi . As an example, Q[3](X) is the closure in
X8 of the set of points

(x, T n1 x, T n2 x, T n1+n2 x, T n3 x, T n1+n3 x, T n2+n3 x, T n1+n2+n3 x),

where x ∈ X and (n1, n2, n3) ∈ Z3 (see [22, §3] for further details). We say that points
x, y ∈ X are regionally proximal of order d if for any δ > 0 there exist x ′, y′ ∈ X and
En ∈ Zd such that dist(x, x ′) < δ, dist(y, y′) < δ and dist(T En·εx ′, T En·ε y′) < δ for every ε ∈
{0, 1}d \ {(0, . . . , 0)}. The set of regionally proximal pairs of order d of (X, T ) is denoted
by RP[d](X). In [22] for distal systems and then in [39] for general minimal systems, it
was proved that RP[d](X) is an equivalence relation. Clearly, RP[d+1](X)⊆ RP[d](X).

The following theorem relates the regionally proximal relation of order d with the space
of cubes of order d + 1.

THEOREM 5.1. [22, 39] Let (X, T ) be a minimal topological dynamical system. For every
integer d ≥ 1, the following statements are equivalent:
(1) (x, y) ∈ RP[d](X);
(2) (x, y, . . . , y) ∈Q[d+1](X);
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(3) (x, x, . . . , x, y) ∈Q[d+1](X);
(4) there exists a sequence (Eni )i∈N in Zd+1 such that T Eni ·εx converges to y as i goes to

infinity for every ε ∈ {0, 1}d+1
\ {(0, . . . , 0)}.

From Theorem 5.1 it is clear that T preserves the equivalence classes of RP[d](X).
Then, it induces a map Td on the quotient space Zd(X)= X/RP[d](X). Moreover, the
natural projection πd : (X, T )→ (Zd(X), Td) defines a topological factor map. The
following theorem describes the topological structure of (Zd(X), Td).

THEOREM 5.2. [22] Let (X, T ) be a minimal topological dynamical system. For each
integer d ≥ 1, (Zd(X), Td) is topologically conjugate to an inverse limit of minimal d-step
nilsystems. Moreover, it is the maximal factor of (X, T ) with this property, that is, any
other factor of (X, T ) which is an inverse limit of minimal d-step nilsystems factorizes
through (Zd(X), Td) (in particular, it is a factor of (Zd(X), Td)).

The system (Zd(X), Td) is called the maximal d-step nilfactor of (X, T ). We notice
that the bonding maps in the inverse limit (Zd(X), Td) are topological factors between
minimal d-step nilsystems. These kinds of inverse limits are also called systems of order
d in [22].

Some direct consequences of Theorem 5.2 are: (1) (Z1(X), T1) is the maximal
equicontinuous factor of (X, T ) (see [3]) and (2) condition RP[d](X)=1X (the diagonal
of X × X ) characterizes topological conjugacy with the inverse limits of d-step nilsystems.
It follows from RP[d+1](X)⊆ RP[d](X) and (2) that the maximal d + 1-step nilfactor of
an inverse limit of d-step nilsystems is the system itself.

Let π : (X, T )→ (Y, S) be a factor map between minimal systems. For an integer d ≥
1, πd : (X, T )→ (Zd(X), Td) and π̃d : (Y, S)→ (Zd(Y ), Sd) are the factor maps induced
by the regionally proximal relations of order d in each system. Since (Zd(X), Td) is the
maximal d-step nilfactor of (X, T ) and (Zd(Y ), Sd) is an inverse limit of minimal d-step
nilsystems which is a factor of (X, T ), then by Theorem 5.2 there exists a unique factor
map ϕd : (Zd(X), Td)→ (Zd(Y ), Sd) such that ϕd ◦ πd = π̃d ◦ π .

LEMMA 5.3. Let π : (X, T )→ (Y, S) be an almost one-to-one extension between
minimal systems. Then, for any integer d ≥ 1 the canonical induced factor map ϕd :

(Zd(X), Td)→ (Zd(Y ), Sd) is a topological conjugacy (equivalently, maximal d-step
nilfactors of (X, T ) and (Y, S) coincide).

Proof. Recall πd : X→ Zd(X) and π̃d : Y → Zd(Y ) denote the quotient maps described
above. First we prove that ϕd : (Zd(X), Td)→ (Zd(Y ), Sd) is an almost one-to-one
extension. This fact will imply the result.

Let x ∈ X be such that π−1
{π(x)} = {x}. We claim that ϕ−1

d {ϕd(πd(x))} = {πd(x)}.
Let x ′ ∈ X be such that ϕd(πd(x))= ϕd(πd(x ′)), so we get π̃d(π(x))= π̃d(π(x ′)) and
thus (π(x), π(x ′)) ∈ RP[d](Y ). By Theorem 5.1, there exists a sequence (Eni )i∈N in Zd+1

such that SEni ·επ(x ′) converges to π(x) for every ε ∈ {0, 1}d+1
\ {(0, . . . , 0)}. Taking a

subsequence we can assume that T Eni ·εx ′ converges to x , the unique point in π−1
{π(x)},

for every ε ∈ {0, 1}d+1
\ {(0, . . . , 0)}. Then, again by Theorem 5.1, we have that (x, x ′) ∈

RP[d](X). This implies that πd(x)= πd(x ′) and then ϕd is an almost one-to-one extension.
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Finally, by Lemma 2.1, ϕd is a proximal extension. But (Zd(X), Td) is a distal system,
so there are no proximal pairs. This proves that ϕd is a topological conjugacy. �

As an application of the previous results we obtain the following corollary.

COROLLARY 5.4. Let π : (X, T )→ (Y, S) be an almost one-to-one extension between
minimal systems. If (Y, S) is an inverse limit of minimal d-step nilsystems, then it is the
maximal d-step nilfactor of (X, T ).

For instance, since any Sturmian subshift is an almost one-to-one extension of an
irrational rotation on the circle (see [26]), this rotation is its maximal 1-step nilsystem,
or more classically its maximal equicontinuous factor. Similarly, Toeplitz subshifts are
symbolic almost one-to-one extensions of odometers (see [15]), hence odometers are their
maximal 1-step nilsystems.

5.2. The group of automorphisms of a nilsystem. The following is the main result of
this section.

THEOREM 5.5. Let (X, T ) be an inverse limit of minimal d-step nilsystems for some
integer d ≥ 1. Then, its group of automorphisms Aut(X, T ) is d-step nilpotent.

To prove the theorem we need to introduce some further notation. Given a function φ :
X→ X and an integer d ≥ 1, for each k ∈ {1, . . . , d} we define the k-face transformation
φ[d],k : X [d]→ X [d] by

(φ[d],k(x))ε =
{
φxε if εk = 1,
xε if εk = 0,

for every x ∈ X [d] and ε ∈ {0, 1}d . For example, for d = 2 the face transformations
associated to φ : X→ X are φ[2],1 = id× φ × id× φ and φ[2],2 = id× id× φ × φ. We
remark that φ[d+1],k

= φ[d],k × φ[d],k for any k ∈ {1, . . . , d}.
When φ = T , the transformations T [d],1, T [d],2, . . . , T [d],d are called the face

transformations and Fd denotes the group spanned by them. Also, we denote by Gd the
group spanned by Fd and the diagonal transformation T × · · · × T (2d times). We remark
that Q[d](X) is invariant under Gd . This result can be extended to face transformations
associated to an automorphism.

LEMMA 5.6. Let (X, T ) be a minimal topological dynamical system. Consider φ ∈
Aut(X, T ) and an integer d ≥ 1. For every k ∈ {1, . . . , d} the face transformation φ[d],k

leaves invariant Q[d](X).

Proof. Fix k ∈ {1, . . . , d}. By minimality of (X, T ), for all x ∈ X there exists a sequence
(ni )i∈N of integers such that T ni x converges to φ(x). Then, by the definition of face
transformations, (T [d],k)ni (x [d]) converges to φ[d],k(x [d]) (recall that x [d] = (x, . . . , x)).
This implies that φ[d],k(x [d]) ∈Q[d](X).

Let x ∈Q[d](X). By definition, there exist x ∈ X and a sequence (gi )i∈N in Gd such
that gi (x [d]) converges to x. Since φ commutes with T we have that φ[d],k commutes with
each element of Gd and thus φ[d],k gi (x [d])= giφ

[d],k(x [d]) ∈Q[d](X). Taking the limit,
we conclude that φ[d],k(x) ∈Q[d](X). This proves that φ[d],k leaves invariant Q[d](X). �
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Proof of Theorem 5.5. Let φ1, . . . , φd+1 ∈ Aut(X, T ). Using Lemma 5.6 we have that
φ
[d+1],i
i leaves invariant Q[d+1](X) for every i = 1, . . . , d + 1. Therefore, their iterated

commutator [[[. . . [φ[d+1],1
1 , φ

[d+1],2
2 ], . . .], φ

[d+1],d
d ], φ

[d+1],d+1
d+1 ] also leaves invariant

Q[d+1](X). Let h = [[[. . . [φ1, φ2], . . .], φd ], φd+1] be the iterated commutator of
φ1, . . . , φd+1. We claim that

id× id · · · × id× h = [[[. . . [φ[d+1],1
1 , φ

[d+1],2
2 ], . . .], φ

[d+1],d
d ], φ

[d+1],d+1
d+1 ].

We prove this equality by induction on d . To illustrate how to deduce this fact we start
showing the case d = 2. In this case,

φ
[3],1
1 = id× φ1 × id× φ1 × id× φ1 × id× φ1;

φ
[3],2
2 = id× id× φ2 × φ2 × id× id× φ2 × φ2;

φ
[3],3
3 = id× id× id× id× φ3 × φ3 × φ3 × φ3.

Then, [φ[3],11 , φ
[3],2
2 ] = id× id× id× [φ1, φ2] × id× id× id× [φ1, φ2] and

[[φ
[3],1
1 , φ

[3],2
2 ], φ

[3],3
3 ] = id× id× id× id× id× id× id× [[φ1, φ2], φ3]

as desired.
Now suppose the equality holds for d − 1 and let φ1, . . . , φd , φd+1 ∈ Aut(X, T ). Let

h′ = [[[. . . [φ1, φ2], . . .], φd−1], φd ]

and
h = [[[. . . [φ1, φ2], . . .], φd ], φd+1] = [h′, φd+1].

By the induction hypothesis we have that

[[[. . . [φ
[d],1
1 , φ

[d],2
2 ], . . .], φ

[d],d−1
d−1 ], φ

[d],d
d ] = id× id · · · × id× h′.

Since φ[d+1],k
k = φ

[d],k
k × φ

[d],k
k for every k ∈ {1, . . . , d} we have

[[[. . . [φ
[d+1],1
1 , φ

[d+1],2
2 ], . . .], φ

[d+1],d−1
d−1 ], φ

[d+1],d
d ]

= id× id · · · × id× h′ × id× id · · · × id× h′.

Thus,

[[[. . . [φ
[d+1],1
1 , φ

[d+1],2
2 ], . . .], φ

[d+1],d
d ], φ

[d+1],d+1
d+1 ] = id× · · · × id× [h′, φd+1]

and the claim is proved.
Therefore, we have that id× id · · · × id× h(x [d])= (x, x, . . . , x, h(x)) ∈Q[d+1](X)

for every x ∈ X . By Theorem 5.1, we have that (h(x), x) ∈ RP[d](X) for every x ∈ X .
But, the system is an inverse limit of d-step nilsystems, so by Theorem 5.2 we have that
RP[d](X)=1X and thus h(x)= x . We conclude that h is the identity automorphism,
which proves that Aut(X, T ) is a d-step nilpotent group. �

To extend Theorem 5.5 to proximal extensions of inverse limits of minimal d-step
nilsystems we need to understand the action of automorphisms on the regionally proximal
relation of order d. The following lemma states this fact.
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LEMMA 5.7. Let (X, T ) be a minimal topological dynamical system. For all φ ∈
Aut(X, T ) and all integers d ≥ 1 we have that (x, y) ∈ RP[d](X) if and only if
(φ(x), φ(y)) ∈ RP[d](X). Consequently, the projection πd : (X, T )→ (Zd(X), Td) is
compatible with Aut(X, T ).

Proof. We only need to prove that (φ(x), φ(y)) ∈ RP[d](X) whenever (x, y) ∈ RP[d](X).
By Theorem 5.1, there exists a sequence (Eni )i∈N in Zd+1 such that T Eni ·εx converges to
y as i goes to infinity for every ε ∈ {0, 1}d+1

\ {(0, . . . , 0)}. Since φ is continuous and
commutes with T , we also have that T Eni ·εφ(x) converges to φ(y) as i goes to infinity for
every ε ∈ {0, 1}d+1

\ {(0, . . . , 0)} too. Then Theorem 5.1 allows us to prove our claim. �

Finally we have the following corollary of Theorem 5.5.

COROLLARY 5.8. Let (X, T ) be a proximal extension of an inverse limit of minimal d-step
nilsystems for d ≥ 1. Then, there is an injection from Aut(X, T ) to Aut(Zd(X), Td). In
particular, Aut(X, T ) is a d-step nilpotent group.

Proof. By Theorem 5.2 and the hypothesis, πd : (X, T )→ (Zd(X), Td) is also a proximal
extension. Then, by Lemma 5.7, this factor is compatible with Aut(X, T ) and thus from
Lemma 2.4 we get that π̂d : Aut(X, T )→ Aut(Zd(X), Td) is injective. This proves the
result, since by Theorem 5.5 Aut(Zd , Td) is a d-step nilpotent group. �

Since Sturmian and Toeplitz subshifts are almost one-to-one extensions of their
maximal equicontinuous factors (maximal 1-step nilfactors), then they are also proximal
extensions (Lemma 2.1). We obtain from the last corollary that their automorphism groups
are abelian. More precisely, Lemmas 5.7 and 2.4 together imply that their automorphism
groups are subgroups of the automorphism group of their maximal equicontinuous factors,
which we characterize in Lemma 5.9 below. For integers d > 1, it is not difficult to
construct minimal subshifts that are almost one-to-one extensions of d-step nilsystems by
considering codings on well chosen partitions. An example of this kind will be developed
in §5.3.

Using a byproduct of Theorem 3.1 and Corollary 5.8, it is possible to obtain coarser
properties of the finite group Aut(X, σ )/〈σ 〉 for substitutive Toeplitz subshifts. This is
achieved in [10] where explicit computations of automorphism groups of constant length
substitutions are given.

We finish this section with a characterization of the group of automorphisms of an
equicontinuous system (or 1-step nilsystems). This result is well known, but for the sake
of completeness we provide a short proof here (see [2]).

LEMMA 5.9. Let (X, T ) be an equicontinuous minimal system. Then Aut(X, T ) is the
closure of the group 〈T 〉 in the set of homeomorphisms of X for the topology of uniform
convergence. Moreover, Aut(X, T ) is homeomorphic to X.

Proof. Denote by G the closure in the set of homeomorphisms of X of the group 〈T 〉 for
the topology of uniform convergence. Clearly, G ⊆ Aut(X, T ). Moreover, by Ascoli’s
theorem, it is a compact abelian group.
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Now we prove that Aut(X, T )⊆ G. Consider a point x ∈ X and an automorphism φ ∈

Aut(X, T ). By minimality, there exists a sequence of integers (ni )i∈N such that (T ni x)i∈N
converges to φ(x). Taking a subsequence, we can assume that the sequence of maps
(T ni )i∈N converges uniformly to a homeomorphism g in G. Combining both of these
facts we get that φ(x)= g(x) and thus g−1

◦ φ(x)= x . Since g−1
◦ φ ∈ Aut(X, T ), by

Lemma 2.2 we conclude that φ = g and consequently φ ∈ G.
To finish, we remark that Lemma 2.2 ensures that the map from G to X sending g ∈ G

to g(x) ∈ X is a homeomorphism on to its image Y ⊆ X . Since Y is T invariant and T is
minimal we get that Y = X . This proves that Aut(X, T ) is homeomorphic to X . �

5.3. Coding an affine nilsystem. We introduce a class of subshifts with polynomial
complexity of arbitrarily high degree whose group of automorphisms is virtually Z. We
build these systems as extensions of minimal nilsystems.

5.3.1. Coding topological dynamical systems. We start by recalling some general
results about symbolic codifications.

Let (X, T ) be a minimal topological dynamical system and let U = {U1, . . . ,Um} be a
finite collection of subsets of X . We say that U is a cover of X if

⋃m
i=1 Ui = X . Clearly,

finite partitions of X are covers. The refinement of two covers U = {U1, . . . ,Um} and
V = {V1, . . . , Vp} of X is given by U ∨ V = {Ui ∩ V j ; i = 1, . . . m, j = 1, . . . p} \ {∅}.
For N ∈ N we set UN =

∨N
i=−N T−iU .

Let U = {U1, . . . ,Um} be a cover of X and set A= {1, . . . , m}. We say that ω =
(wi )i∈Z ∈AZ is a U-name of a point x ∈ X if x ∈

⋂
i∈Z T−iUwi . Define

XU =

{
ω ∈ AZ

;

⋂
i∈Z

T−iUwi 6= ∅

}
⊆AZ.

It is easy to prove that XU is shift invariant and closed whenever the Ui ’s are closed. In
addition, if U denotes the collection {U 1, . . . ,U m} we have that XU ⊆ XU .

We say that U separates points if every ω ∈ XU is a U-name of exactly one point x ∈ X .
If U separates points, we can build a factor map πU : (XU , σ )→ (X, T ), where πU (ω) is
defined as the unique point in

⋂
i∈Z T−iUwi .

LEMMA 5.10. Let (X, T ) be a minimal topological dynamical system and let U =
{U1, . . . ,Um} be a finite partition of X that separates points. Suppose that for every
N ∈ N every atom of UN has nonempty interior, then (XU , σ ) is a minimal subshift.

Proof. Take points ω, ω′ ∈ XU and an integer N ∈ N. Set x = πU (ω) and x ′ = πU (ω′).
By definition, we have that

⋂N
−N T−iUwi 6= ∅. Therefore, by hypothesis, it has nonempty

interior. Since (X, T ) is minimal there exists n ∈ Z such that T n x ′ ∈ int(
⋂N
−N T−iUwi ).

This implies that w′n−N · · · w
′

n+N = w−N · · · wN . We have proved that (XU , σ ) is a
minimal subshift. �

5.3.2. Automorphism groups of some symbolic extensions of nilsytems. Now, we
compute automorphism groups of a family of symbolic extensions of some nilsystems.
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This family was studied in details in [1]. Even though we will recall many of the results
we need here, we will freely make use of many results from [1].

First, we recall the construction of [1]. Let A = (ai, j )i, j∈N be the infinite matrix where
ai, j =

( j
i

)
. In [1, §4], it was proved that Ai is well defined for all i ∈ N and

Ai
=



1 i i2 i3 i4
· · ·

1 2i 3i2 4i3
· · ·

1 3i 6i2
· · ·

1 4i · · ·

1 · · ·

· · · · · ·


.

Let α ∈ [0, 1) be an irrational number. For any integer d ≥ 1 define Ad to be the restriction
of A to the upper left corner of dimension d . Notice that Ai

d = (A
i )d for every i ∈ N.

Let Td : Td
→ Td be the map that sends (x0, . . . , xd−1) ∈ Td to the first d coordinates

of Ad+1(x0, . . . , xd−1, α)
t , where in Td all operations are modulo one. For example, T2 is

the map (x0, x1) 7→ (x0 + x1 + α, x1 + 2α) and T3 is the map (x0, x1, x2) 7→ (x0 + x1 +

x2 + α, x1 + 2x2 + 3α, x2 + 3α). So, for any x ∈ T we can write Td(x)= Ad x + Eα. This
is the classical presentation of an affine nilsystem (see §2.6).

Next, fix an integer d ≥ 1. For every i, n ∈ Z let Hi,n be the affine hyperplane in Rd

given by the equation
∑d−1

k=0 ik xk + idα = n. It can be proved that T i
d Hi,n = H0,n . Also,

for each i ∈ Z the canonical projections of the hyperplanes (Hi,n)n∈Z to Td are the same.
Call this projection Ĥi and refer to it as a projected hyperplane. We remark that Ĥ0 =

{(0, x1, . . . , xd−1); (x1, . . . , xd−1) ∈ Td−1
} and that the intersection of more than d + 1

different projected hyperplanes in (Ĥi )i∈Z is empty. We refer to [1, §5] for further details.
For each i ∈ Z, since the projected hyperplane Ĥi is defined from equations with integer

coefficients, it naturally induces a finite partition Ci of Td whose boundaries are defined
by Ĥi (the ambiguities in the choice of the boundaries are solved arbitrarily).

For each integer n ≥ 1 we define the partition Vd = C0 ∨ · · · ∨ Cd , and its atoms are the
nonempty intersections of the sets induced by Ĥ0, . . . , Ĥd . It is proved in [1, Lemma
9], that those atoms have convex interiors. Also, it is shown in [1, Lemmas 5 and 7]
that no point in Ĥ0 ∪ · · · ∪ Ĥd belongs to the interior of an atom. Thanks to the equality
T i

d Hi,n = H0,n , we remark that the partition T−i
d Vd is the one induced by Ĥi , . . . , Ĥi+d

and its atoms also have a convex interior.
We claim that partition Vd separates points. Let x and y be different points in Td .

Since every point in Td belongs to at most d projected hyperplanes (Ĥi )i∈Z, we have
that x, y /∈ Ĥi for all large enough i ∈ N. In particular, x, y /∈ Ĥi ∪ · · · ∪ Ĥi+d for all
large enough i ∈ N, which implies that they belong to the interior of atoms of the partition
T−i

d Vd . Choose x̃ = (x̃0, . . . , x̃d−1), ỹ = (ỹ0, . . . , ỹd−1) ∈ Rd with x = x̃ mod Zd and
y = ỹ mod Zd . The difference in R between

∑d−1
k=0 ik x̃k + idα and

∑d−1
k=0 ik ỹk + idα

behaves like ik(x̃k − ỹk), where k =max{0≤ k < d; x̃k 6= ỹk}. Then, it grows to infinity
with i ∈ N. Thus, for a large i ∈ N we can find a point z̃ = (z̃0, . . . , z̃d−1) in the segment
joining x̃ and ỹ such that

∑d−1
k=0 ik z̃k + idα ∈ Z, meaning that z̃ mod Zd

∈ Ĥi . Because
no point in Ĥi ∪ · · · ∪ Ĥi+d belongs to the interior of an atom of the partition T−i

d Vd , we
have that x and y are in different atoms of partition T−i

d Vd . Therefore, if i is large enough
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and N ≥ i , these points also lie in different atoms of
∨N

i=−N T−i
d Vd , which shows that Vd

separates points.
We recall that (XVd , σ ) is the subshift induced by Vd . By Lemma 5.10, since Vd

separates points and (Vd)N has nonempty interior for all N ∈ N, one has that (XVd , σ )

is a minimal subshift and there is a factor map πd : (XVd , σ )→ (Td , Td). Moreover, by
construction, the set of points in Td with more than one preimage for πd consists of points
which fall in Fd = Ĥ0 ∪ Ĥ1 ∪ · · · ∪ Ĥd−1 under some power of Td , i.e.,

⋃
j∈Z T− j

d Fd =⋃
j∈Z T− j

d Ĥ0. This set has zero Lebesgue measure and thus there exist points with exactly
one preimage for πd . In particular, (XVd , σ ) is an almost one-to-one extension of (Td , Td).
By Corollary 5.4 we get,

LEMMA 5.11. The maximal d-step nilfactor of (XVd , σ ) is the affine nilsystem (Td , Td).
Then, Td can be identified with the quotient XVd /RP[d](XVd ).

We are ready to compute the group of automorphisms for these examples.

THEOREM 5.12. The group Aut(XVd , σ ) is virtually Z.

Proof. Let φ ∈ Aut(XVd , σ ) and set W = {ω = (wi )i∈Z ∈ XVd ; #π
−1
d {πd(ω)} ≥ 2}. Then,

πd(W ) is the set of points in Td with more than one preimage for πd . As discussed above
πd(W )=

⋃
j∈Z T− j

d Fd =
⋃

j∈Z T− j
d Ĥ0.

By Lemma 5.7, φ preserves RP[d](XVd ). Since πd is induced by this relation, W
is invariant under φ. We also get that π̂d(φ) ∈ Aut(Td , Td) leaves invariant πd(W )=⋃

j∈Z T− j Ĥ0.

The affine nilsystem (Td , Td) is ergodic by construction (α is irrational) and the
associated matrix has 1 as unique eigenvalue. Ref. [40, Theorem 2 and Corollary 1]
imply that π̂d(φ) ∈ Aut(Td , Td) is an affine transformation, i.e., it has the form Bx + Eβ,
where B is an invertible integer matrix and Eβ ∈ Td (recall that operations are taken modulo
one). Hence, the image of the projected hyperplane Ĥ0 by the affine map π̂d(φ) is still
a projected hyperplane. But, the set πd(W ) is invariant for π̂d(φ) and so we get that
the projected hyperplane π̂d(φ)Ĥ0 is included in the union of the projected hyperplanes
(T− j

d Ĥ0) j∈Z. By Baire’s theorem, and since π̂d(φ)Ĥ0 and T− j
d Ĥ0 for j ∈ Z share

the same dimension, we obtain that π̂d(φ)Ĥ0 is equal to some T− j
d Ĥ0. Finally, the

automorphism T j
d π̂d(φ) ∈ Aut(Td , Td) leaves Ĥ0 invariant.

We are left to study the automorphisms of (Td , Td) which leave Ĥ0 invariant. Let
ϕ ∈ Aut(Td , Td) be such an automorphism. As discussed before, by [40] ϕ has the form
ϕ(x)= Bx + Eβ mod Zd , where B = (Bi, j )1≤i, j≤d is an invertible matrix with integer
entries and Eβ = (β0, . . . , βd−1)

t
∈ Rd . Since ϕ commutes with Td , we have, for every

x ∈ Td , that Ad Bx + A Eβ + Eα = B Ad x + B Eα + Eβ mod Zd . This allows us to conclude
that B commutes with Ad as real matrices and that (B − Id)Eα = (Ad − Id) Eβ mod Zd .

The map ϕ leaves Ĥ0 invariant, meaning that ϕ(0, x1, . . . , xd−1) ∈ Ĥ0 for any
(x1, . . . , xd−1) ∈ Td−1. This allows us to deduce that coefficients B1,2 = · · · = B1,d =

0= β0. Also, since Ai
d B = B Ai

d for every i ∈ N, by looking at the first rows of these
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matrices, we deduce that for all 1≤ j ≤ d and i ∈ N
d∑

k=1,k 6= j

(B j,k)ik−1
+ (B j, j − B1,1)i j−1

= 0.

But, the vectors (1, i, i2, . . . , id−1) are linearly independent for different values of i ∈ N,
so B = B1,1 Id . Therefore, (Ad − Id) Eβ = (B − Id)Eα = (B1,1 − 1)Eα mod Zd . Since Ad

is upper triangular with ones in the diagonal, we deduce that (B1,1 − 1)α ∈Q and thus
B1,1 = 1. We have proved that B = Id and then ϕ is the rotation by Eβ = (0, β1, . . . , βd−1)

t

and (Ad − Id) Eβ ∈ Zd . This last property can be written as
0 1 1 · · · 1

0 2
. . .

. . .

0 d
0




0
β1
...

βd−1

 ∈ Zd .

This implies that dβd−1 ∈ Z which is possible for a finite number of βd−1 mod Z ∈
T. Inductively, we deduce that there are a finite number of rational solutions Eβ =
(0, β1, . . . , βd−1)

t mod Zd in Td . This means that the group of automorphisms that
leaves Ĥ0 invariant is a finite group of rational rotations. Therefore, π̂(Aut(XVd , σ )) is
spanned by Td and a finite set. We recall that the factor map πd : (XVd , σ )→ (Td , Td) is
almost one-to-one, so by Lemma 2.4 π̂ : Aut(XVd , σ )→ Aut(T, Td) is an injection. We
conclude that Aut(XVd , σ ) is also spanned by σ and a finite set. The result follows. �

To finish this section, we mention that the main theorem in [1] (see p. 2) asserts that the
complexity function of (XVd , σ ) is given by

p(n)=
1

V (0, 1, . . . , d − 1)

∑
0≤k1<k2<···<kd≤n+d−1

V (k1, k2, . . . , kd),

where V (k1, k2, . . . , kd)=
∏

1≤i< j≤d(k j − ki ) is a Vandermonde determinant. We note
that varying d ∈ N results in polynomial complexities of arbitrary degree.

Thus we have proved that particular symbolic codings of affine nilsystems produce
subshifts of polynomial complexity of arbitrary degree whose automorphism groups are
virtually Z. A natural question is whether or not this is still true for symbolic extensions
of general nilsystems induced by coding on well-chosen partitions.

6. Final comments and open questions
In this section, we comment on some natural questions that follow from our own work,
together with recent work on the topic of this article.

6.1. Realization of automorphism groups. By the Curtis–Hedlund–Lyndon theorem,
the collection of automorphisms of a subshift is countable. So, it is natural to ask whether
any countable group can be realized as an automorphism group of a subshift. This is a
complicated question and, as was mentioned in the introduction, many partial answers
have been given in the case of positive entropy subshifts. In the context of this article the
question we want to address is:
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Question 6.1. Given a countable group G (not necessarily finitely generated), does there
exist a minimal subshift with subexponential complexity (X, σ ) such that Aut(X, σ ) is
isomorphic to G?

We are far from solving this question. As a first step, we provide subshifts whose
automorphism groups are isomorphic to Zd for some integer d ≥ 1.

PROPOSITION 6.2. For every integer d ≥ 1, there exists a minimal subshift (X, σ ) with
complexity satisfying pX (n)=2(nd) such that Aut(X, σ ) is isomorphic to Zd .

Thus, we remark that the statement of Theorem 3.1 is no longer valid for arbitrary
polynomial complexity.

Proof. Let α1, . . . , αd ∈ R \Q be rationally independent numbers. For every i ∈
{1, . . . , d} let ([0, 1), Rαi ) be the rotation modulo one by angle αi on the unit interval and
let (X i , σi ) be the Sturmian subshift associated to it (we write σi to distinguish the shift
in each of the systems). We recall that each Sturmian subshift is obtained from the coding
of the orbits of points for Rαi with respect to the partition {[0, 1− αi ), [1− αi , 1)}. Since
each αi is an irrational number, there exists an almost one-to-one extension πi : (X i , σi )→

([0, 1), Rαi ) and πi is injective except for the orbit of 1− αi , where every point has exactly
two preimages. This last fact implies that ([0, 1), Rαi ) is its maximal equicontinuous factor
and that, in (X i , σi ), the proximal relation is an equivalence relation.

Set X = X1 × X2 × · · · × Xd , σ = σ1 × σ2 × · · · × σd and REα = Rα1 × · · · × Rαd .
Since the angles α1, . . . , αd are rationally independent, the product system ([0, 1)d , REα)
is minimal. This implies, by [3, Ch. 11, Theorem 7], that (X, σ ) is transitive. However,
in each subshift (X i , σi ), the proximal relation is an equivalence relation and so by [3, Ch.
11, Theorem 9] we get that (X, σ ) is a minimal subshift. In addition, the product system
([0, 1)d , REα) is its maximal equicontinuous factor. The factor map π = π1 × · · · × πd :

(X, σ )→ ([0, 1)d , REα) is almost one-to-one and each point in [0, 1)d has at most 2d

preimages for π .
Recall that for each i ∈ {1, . . . , d} the group Aut(X i , σi ) is generated by σi (see

the comment below Theorem 3.1 or [31]). It is clear that the map (φ1, . . . , φd) ∈

Aut(X1, σ1)× · · · × Aut(Xd , σd) 7→ φ1 × · · · × φd ∈ Aut(X, σ ) is an embedding of the
group Zd . We claim that this embedding is actually an isomorphism.

By Lemma 5.7, the factor π : (X, σ )→ ([0, 1)d , REα) is compatible with Aut(X, σ ),
so for every φ ∈ Aut(X, σ ) the automorphism π̂(φ) ∈ Aut([0, 1)d , REα) is well
defined. Moreover, it preserves the set of points in [0, 1)d that have a maximum
number of preimages for π : namely the set OrbRα1

(1− α1)× · · · × OrbRαd
(1− αd).

Hence, there exist n1, . . . , nd ∈ Z such that π̂(φ)(1− α1, . . . , 1− αd)= (R
n1
α1 (1−

α1), . . . , Rnd
αd (1− αd)). This implies that π̂(φ)= Rn1

α1 × · · · × Rnd
αd = π̂(σ

n1
1 × · · · ×

σ
nd
d ). But, by Lemma 2.4, the map π̂ : Aut(X, σ )→ Aut([0, 1)d , REα) is injective and

thus φ = σ n1
1 × · · · × σ

nd
d . This proves our claim and that Aut(X, σ ) is isomorphic to Zd .

To finish, we compute the complexity function of (X, σ ). It is well known that pX i (n)=
n + 1 for every i ∈ {1, . . . , d}. Thus, the complexity function of (X, σ ) is pX (n)=
(n + 1)d . �
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Another direction to explore, in order to answer Question 6.1, is to analyse specific
families of subshifts. In particular, Toeplitz subshifts have proved to be a very good
source of inspiration for constructively solving some open problems in different branches
of topological dynamics. As was stated in Corollary 5.8, the automorphism group of a
Toeplitz subshift is a subgroup of its maximal equicontinuous factor, which is an odometer.
These systems are well understood, so we may expect to explicitly describe this subgroup.

6.2. Relation between dynamical properties and automorphisms.

6.2.1. Complexity versus group of automorphisms. The results of [11, 12] and of this
paper show the relation between the complexity and the growth rate of the automorphism
groups of subshifts, especially for subquadratic complexities. Is it possible to extend these
results to higher complexities? Inspired by the main theorem of this paper and examples
in §§ 5.3 and 6.1, we ask the following question.

Question 6.3. Let (X, σ ) be a minimal or transitive subshift such that

d = inf
{
δ ∈ N; 0< lim inf

n→+∞
pX (n)/nδ <+∞

}
> 0.

Is the automorphism group of such a subshift virtually Zk for some k ≤ d?

6.2.2. Recurrence and growth rate of automorphism groups. Is it possible to give an
extension of Theorem 3.1 to a class of subshifts with higher complexity? To address this
question we propose exploring an alternative notion to word complexity. For a subshift
(X, σ ), we define the visiting time map by

R
′′

X (n) := inf{|w|; w ∈ L(X) contains each word of X of length n},

where n ∈ N. To the best of our knowledge, this concept was first introduced in [8] but
without any name. We have borrowed the notation from this reference and we bestow
a name on it. Clearly, this map is finite for every n ∈ N if and only if the subshift is
transitive. In this case, it satisfies R

′′

X (n)≥ pX (n)+ n − 1. Moreover, for a minimal
subshift, R

′′

X (n) is less than the so-called recurrence function RX (n) as defined in [20].
We will not comment any further on this latter function.

Some computations are known for particular subshifts. For instance, linearly recurrent
subshifts, which include primitive substitutive subshifts, satisfy R

′′

X (n)= O(n). Also, it is
proved in [8] that R

′′

X (n)≤ 2n for every Sturmian subshift.
For higher polynomial degree we obtain the following result.

PROPOSITION 6.4. Let (X, σ ) be a subshift such that R
′′

X (n)= O(nd) for some integer
d ≥ 1. Then, each finitely generated subgroup of Aut(X, σ ) is a virtually nilpotent group
whose step only depends on d.

Proof. Let S = 〈φ1, . . . , φ`〉 ⊆ Aut(X, σ ) be a finitely generated group. Let r be an upper
bound of the radii of the local maps associated to all generators φi of S and their inverses.
For n ∈ N, consider

Bn(S)= {φs1
i1
· · · φ

sm
im
; 1≤ m ≤ n, i1, . . . , im ∈ {1, . . . , `}, s1, . . . , sm ∈ {1,−1}}.
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Let w be a word of length R
′′

X (2nr+ 1) containing every word of length (2nr+ 1) of
X . If φ, φ′ ∈ Bn(S) are different, then φ(w) 6= φ′(w). Further, there is an injection from
Bn(S) into the set of words of length R

′′

X (2nr+ 1)− 2r (the injection is just the evaluation
of φ on w). This implies that ]Bn(S)≤ pX (R

′′

X (2nr+ 1)− 2r). We deduce from the
hypothesis on R

′′

X that ]Bn(S)≤ nd2
+1 for all large enough integers n ∈ N. The proof

is completed by applying the quantitative result of Shalom and Tao in [38], generalizing
Gromov’s classical result on the growth rate of groups. �

Notice that [38, Theorem 1.8] provides an explicit value for the step of the nilpotent
group appearing in the proposition. It is clear that a subshift of polynomial visiting time
(meaning that R

′′

X (n)= O(nd) for some integer d ≥ 1) has polynomial complexity. It is
straightforward to show that the converse is false by constructing explicit counterexamples.

6.3. Extension to higher dimensional subshifts. A natural generalization of the topic
developed in this article is to study the automorphism groups of higher dimensional
subshifts and even of tiling systems.

We believe that the study of asymptotic components, or the somehow analogous notion
of nonexpansive directions in higher dimensions, may also provide useful tools to address
computations of automorphism groups in this context. For instance, in [14], such an
approach allowed the authors to prove that the automorphism group of the minimal
component of the Robinson subshift of finite type is trivial, i.e., it is generated by the
shift map.
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[33] J.-J. Pansiot. Complexité des facteurs des mots infinis engendrés par morphismes itérés. Automata,
Languages and Programming (Lecture Notes in Computational Science, 172). Springer, Berlin, 1984,
pp. 380–389.

[34] W. Parry. Ergodic properties of affine transformations and flows on nilmanifolds. Amer. J. Math. 91 (1969),
757–771.

[35] A. Quas and L. Zamboni. Periodicity and local complexity. Theoret. Comput. Sci. 319 (2004), 229–240.
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