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This paper deals with a systematic study of the convolution operator Kf = f ∗ k
defined on weighted pseudo almost periodic functions space PAP(X, ρ) and with 
k ∈ L1(R). Upon making several different assumptions on k, f and ρ, we get 
five main results. The first two main results establish sufficient conditions on k
and ρ such that the weighted ergodic space PAP0(X, ρ) is invariant under the 
operator K. The third result specifies a sufficient condition on all functions (k, f
and ρ) such that the Kf ∈ PAP0(X, ρ). The fourth result is a sufficient condition 
on the weight function ρ such that PAP0(X, ρ) is invariant under K. The hypothesis 
of the convolution invariance results allows to establish a fifth result related to 
the translation invariance of PAP0(X, ρ). As a consequence of the fifth result, we 
obtain a new sufficient condition such that the unique decomposition of a weighted 
pseudo almost periodic function on its periodic and ergodic components is valid 
and also for the completeness of PAP(X, ρ) with the supremum norm. In addition, 
the results on convolution are applied to general abstract integral and differential 
equations.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In [17], Diagana introduced weighted pseudo almost periodic functions theory as an extension of the 
pseudo almost periodic functions theory introduced by Zhang [41] (see also [8,37–39,42–44]) as a natural 
generalization of the almost periodicity notion started by H. Bohr [6,7] (see also [2,12–16,26–29,32]) and 
continued by several researchers like V.V. Stepanov, S. Bochner, J. Von Neumann and S.L. Sobolev [11,18].

We now briefly describe some generalities, terminology and notation. Overall, the central and original 
idea of Diagana [17] (see also [17–24]) was the enlargement of the ergodic component space with the help of 
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a so-called weighted measure dμ(t) = ρ(t)dt, with ρ : R → R
+ a locally integrable function commonly called 

weight. More precisely, a continuous function f defined from R to the Banach space X is called a weighted 
pseudo-almost periodic function if it can be written as follows: f = g+φ, with g an almost periodic function 
and φ a weighted ergodic function in the sense that φ : R → X is a bounded continuous function such that

lim
r→+∞

1∫ r

−r
ρ(t)dt

r∫
−r

‖φ(t)‖X ρ(t)dt = 0, with lim
r→+∞

r∫
−r

ρ(t)dt = ∞. (1)

The space of all weighted almost periodic functions and the weighted ergodic functions from R to X are 
denoted by PAP(X, ρ) and PAP0(X, ρ), respectively. It is clear that PAP(X, ρ) is more general, richer and 
have become more important than the standard space of pseudo-almost periodic functions PAP(X). In 
particular, we note two facts. First, if we consider that ρ is a constant function, then the first limit given 
in (1) defines the mean of φ, i.e. the ergodic functions space, PAP0(X), is a particular case of PAP0(X, ρ). 
Second, we note that

φ1(x) = 1
1 + |x| , φ2(x) = 1

1 + x2 and φ3(x) = exp(−x2)

are ergodic functions and may not necessarily be weighted ergodic functions. Thus, the Diagana’s definition 
of weighted pseudo almost-periodic functions, allows to distinguish between φ1, φ2 and φ3 according to the 
size of the disturbance measured by ρ.

The initial motivation of this paper was the fact that the general theory of weighted pseudo-almost 
periodic functions is far to be closed, since several questions remain still open. For instance, the existence 
of the weighted mean for a general almost periodic function [25], the unique decomposition of a weighted 
pseudo almost periodic function in its periodic and ergodic components and the characterization of the cases 
when the set of weighted pseudo almost periodic functions is a Banach space with the supremum norm [45], 
the ergodicity of the weighted mean and the convolution invariance of the weighted ergodic space [1,33]. 
For a recent list of some of these problems we refer the reader to [45] and for the partial solutions we refer 
to [1,25,33].

In this paper, we are interested on the convolution invariance of PAP(X, ρ). Indeed, we recall that it is well 
known that PAP(X) is a convolution invariant space, in the sense that if f ∈ PAP(X), then f ∗k ∈ PAP(X)
for k ∈ L1(R). Now, for f ∈ PAP(X, ρ), we note that f ∗k = g∗k+φ ∗k and g∗k is almost periodic function 
but φ ∗ k is not necessarily in PAP0(X, ρ). Then, the study of the convolution invariance of the spaces 
PAP(X, ρ) and PAP0(X, ρ) are equivalent. Thus, we focus in the following task: is the space PAP0(X, ρ)
convolution invariant?

We found four sufficient conditions which imply positive answers to the question of convolution invari-
ance of PAP0(X, ρ). Moreover, we establish results with the consequences of the convolution invariance of 
PAP0(X, ρ) in the translation invariance, the unique decomposition of PAP(X, ρ), and the completeness of 
PAP(X, ρ) with the supremum norm.

We now state more precisely the sufficient conditions. Let us denote by ρ ∈ U∞ the set of bounded 
weights such that the second limit in (1) is valid. First, by assuming that ρ ∈ U∞ satisfies the condition

sup
r∈R+

sup
t∈Ωr,s

ρ(t + s)
ρ(t) < ∞, Ωr,s =

{
t ∈ R : |t| < |s| + r

}
, r ∈ R+, (2)

for each s ∈ R and (k, f) arbitrary selected in L1(R) ×PAP0(X, ρ), we get that f ∗k ∈ PAP0(X, ρ). Second, 
by considering that ρ and k satisfy the conditions
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sup
|s|≤r,r∈R

1
ρ(s)

r∫
s

|k(t− s)|ρ(t)dt < ∞, (3)

sup
|s|≤r,r∈R

1
ρ(s)

s∫
−r

|k(t− s)|ρ(t)dt < ∞, (4)

lim
r→∞

1
μ(r, ρ)

−r∫
−∞

ds

r∫
−r

|k(t− s)|ρ(t)dt = 0,

lim
r→∞

1
μ(r, ρ)

+∞∫
r

ds

r∫
−r

|k(t− s)|ρ(t)dt = 0

we prove that for f arbitrary selected in PAP0(X, ρ), we get that f ∗ k ∈ PAP0(X, ρ). Third, considering 
(3)–(4) together with one of the following conditions

lim
r→∞

1
μ(r, ρ)

r∫
−r

⎡
⎣
⎛
⎝

t−r∫
−∞

+
+∞∫

t+r

⎞
⎠ |k(s)|ds

⎤
⎦ ρ(t)dt = 0,

sup
r∈R+

r∫
−r

⎛
⎝

t−r∫
−∞

+
∞∫

t+r

⎞
⎠ |k(s)|dsρ(t)dt < ∞,

we introduce one additional affirmative answer to the question of convolution invariance of PAP0(X, ρ). 
Fourth, by assuming that k, f and ρ are such that

∃φ : R → R+ : kφ ∈ L1(R) and sup
|u+s|≤r,r∈R+,s∈R

ρ(u + s)
ρ(u)φ(s) < ∞,

lim
r→∞

1
μ(r, ρ)

⎛
⎜⎝

−r∫
−r−|s|

+
r+|s|∫
r

⎞
⎟⎠ ‖f(τ)‖X ρ(τ)dτ = 0 for all s ∈ R,

we prove that f ∗ k ∈ PAP0(X, ρ). Note that the last result is not a result on the convolution invariance of 
PAP(X, ρ), since it requires a restriction on f .

In this paper, we also get three further results of the application of convolution results. In the first 
application, we get a result on the uniqueness of a weighted pseudo almost periodic solution of an integral 
equation, see Theorem 4.1. Then, we introduce a second result for the uniqueness of pseudo almost periodic 
mild solution of an evolution equation, see Theorem 4.2. Finally, in Theorem 4.3, we give a sufficient 
condition for a unique weighted pseudo almost periodic of the heat equation where the source function 
is given by γH(t) sin(u(t, x)), where γ is a positive parameter and H is the function defined as follows 
H(t) = cos(t) + cos(

√
2t) + φ(t) with φ such that φ(t)et is bounded.

The paper is organized as follows. In section 2 we introduce the notation and recall some concepts and 
previous results. In section 3, we state and prove the main results. To close the paper, in section 4 we 
introduce some applications in integral equations, abstract differential equations and partial differential 
equations.
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2. Preliminaries

In this section we present the concept of a weighted pseudo almost periodic function and related concepts 
like the weighted mean of a function, the weighted ergodic function. Moreover, we also recall some useful 
results.

Hereinafter, the notation (X, ‖ ·‖X) and (Y, ‖ ·‖Y) will be used for the general Banach spaces X and Y with 
norms ‖ · ‖X and ‖ · ‖Y, respectively. Furthermore, we will use the notations C(R ×Y, X) and BC(R, X) for 
the jointly continuous function form R ×Y to X and the Banach space of all bounded continuous functions 
from R to X dotted with the sup norm, respectively.

2.1. Weight notion and related notation

We say that a function ρ is a weight if it has the following properties: (i) ρ is defined from R to [0, ∞), 
(ii) ρ is locally integrable over R, and (iii) ρ is strictly positive almost everywhere on R. The set of such 
functions is denoted by U. Now, in relation to the weight notion, we introduce the function μ defined as 
follows

μ(r, ρ) :=
r∫

−r

ρ(x)dx (5)

as well as the following sets notation

U∞ =
{
ρ ∈ U : lim

r→∞
μ(r, ρ) = ∞

}
,

UB =
{
ρ ∈ U∞ : ρ is bounded with inf

x∈R

ρ(x) > 0
}
.

Note that U, U∞ and UB are the collections of all possible weight functions, the weights such that belong 
L1

loc(R) − L1(R), and the positive bounded weights, respectively. Clearly, the sets U, U∞ and UB are not 
empty and UB ⊂ U∞ ⊂ U. Two examples of weight functions are given by ρ0, ρ1 : R → [0, ∞) defined as 
follows

ρ0(x) = a + b|x|
1 + b|x| with a ≥ 1, b > 0 and ρ1(x) = exp(1 − x).

Indeed, we have that ρ0 ∈ U since ρ0 ∈ L1
loc(R) and ρ0(x) > 0 for all x ∈ R; ρ0 ∈ U∞ since 

limr→∞ μ(r, ρ0) = ∞; and also ρ0 ∈ UB since 1 < ρ0(x) ≤ a for x ∈ R. Similarly we can prove that 
ρ1 ∈ U∞ − UB .

Definition 2.1. Let ρ1, ρ2 ∈ U∞. Then, we say that ρ1 is equivalent to ρ2 if ρ1/ρ2 ∈ UB . The equivalence of 
ρ1 and ρ2 is denoted by ρ1 ∼ ρ2.

We note that ρ1 ∼ ρ2 if and only if there exist αi > 0 for i = 1, 2 such that α1ρ2 ≤ ρ1 ≤ α2ρ2 and 
it implies α1μ(r, ρ2) ≤ μ(r, ρ1) ≤ α2μ(r, ρ2). Hence ∼ is a binary equivalence relation on U∞. Thus the 
equivalence class of a given weight ρ ∈ U∞ will then be denoted by cl(ρ) and is naturally defined as follows

cl(ρ) =
{
ω̄ ∈ U∞ : ω̄ ∼ ρ

}
.

It is then clear that U∞ = ∪ρ∈U∞cl(ρ). Moreover, this notion of equivalence implies the identification of 
some weighted pseudo almost periodic spaces, see Theorem 2.3 below.
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We also have the monotony property

ρ(t + s) ≤ Csρ(t) implies that μ(t + s, ρ) ≤ Csμ(t, ρ), (6)

for some positive constant Cs and for each s ≥ 0, since

μ(r + s, ρ) =
r+s∫

−r−s

ρ(t)dt =
r∫

−r

ρ(t + s)dt ≤ Cs

r∫
−r

ρ(t)dt = Csμ(r, ρ).

2.2. Weighted pseudo almost periodic functions definition

In order to introduce the weighted pseudo almost periodic functions, we firstly need to define the 
“weighted ergodic” space PAP0(X, ρ). Then, the weighted pseudo almost periodic functions appear as per-
turbations of almost periodic functions by elements of PAP0(X, ρ) (see Definition 2.2). Indeed, firstly we 
introduce some notation and then we precise the definition of PAP0(X, ρ). Let us recall that the weighted 
mean of g is denoted by M(g) and is defined by the following limit

M(g) := lim
r→∞

1
μ(r, ρ)

r∫
−r

g(s) ρ(s)ds,

when this limit exists (see (5) for μ notation). It is well known that in general the weighted mean does not 
exist for any pseudo almost periodic function or equivalently, there exists g ∈ PAP(X) such that M(g) may 
not exist, see for instance J. Liang et al. [34]. Now, let us assume that ρ ∈ U∞, then we define the weighted 
ergodic space associated to ρ as follows

PAP0(X, ρ) :=
{
f ∈ BC(R,X) : M(‖f‖X) = 0

}
. (7)

Sometimes the space PAP0(X, ρ) is referenced as the ρ −PAP0(X) space. We note that by considering ρ = 1, 
we recover the so-called ergodic space of Zhang, that is, PAP0(X, 1) is the ergodic space of Zhang which 
is briefly denoted by PAP0(X). Moreover, we observe that for several ρ ∈ U∞, the spaces PAP0(X, ρ) are 
richer than PAP0(X) and, naturally, gives rise to an enlarged space of pseudo almost periodic functions. 
Furthermore, analogously to (7), we define PAP0(Y, X, ρ) as the collection of jointly continuous function 
F : R ×Y → X such that F (·, y) is bounded for each y ∈ Y and M(‖F (·, y)‖) = 0 uniformly in y ∈ Y. Now, 
we are ready to recall the definition of weighted pseudo almost periodic functions.

Definition 2.2. Let ρ ∈ U∞. Then, we have that

(a) A function f ∈ BC(R, X) is called “ρ-pseudo almost periodic” or briefly “weighted pseudo almost 
periodic” if it can be expressed as follows f = g + φ, where g ∈ AP(X) and φ ∈ PAP0(X, ρ). The 
collection of such kind of functions will be denoted by PAP(X, ρ).

(b) A function F ∈ C(R × Y, X) is called “ρ-pseudo almost periodic” or briefly “weighted pseudo almost 
periodic” in t ∈ R uniformly in y ∈ Y if it can be expressed as F = G + Φ, where G ∈ AP(Y, X) and 
Φ ∈ PAP0(Y, X, ρ). The collection of such functions will be denoted by PAP(Y, X, ρ).

Remark 2.1. The definition of mean carries implicitly a measure μ absolutely continuous with respect to the 
Lebesgue measure and its Radom–Nikodym derivative is ρ, since dμ(t) = ρ(t)dt. Then, the results of the 
paper can be extended to more general and recent concepts for weighted pseudo-almost periodic functions 
in the context of measure theory [4,5].
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Example 2.1. Here we introduce some examples of weighted pseudo almost periodic functions.

(a) Let ρ0(x) = 1 + x2 for each x ∈ R. We note that ρ0 ∈ UB , since μ(r, ρ0) = 2(r + r3/3). Now, we define 
the function f : R → R as follows

f(x) = sin(x) + sin(
√

2x) + φ(x) with φ such that φρ0 is bounded.

Clearly, f belongs to PAP(R, ρ0). Namely, sin(x) + sin(
√

2x) is its almost periodic component, while 
φ ∈ PAP0(R, ρ0) since

M(φ) = lim
r→∞

1
2(r + r3/3)

r∫
−r

|φ(x)|(1 + x2)dx = 0.

Moreover, φ ∈ PAP(R, ρ̂) if φρ0 ≤ ρ̂, with μ(r, ρ̂)[μ(r, ρ0)]−1 → 0 as r → ∞. This assertion is valid, for 
example, with ρ̂(x) = 1 + |x|.

(b) Let ρ1(x) = |x|d, d ∈ N for each x ∈ R. Clearly ρ1 ∈ U∞ −UB since μ(r, ρ1) = 2rd+1/(d + 1). Now, we 
define the function f : R → R as follows

f(x) = sin(x) + sin(
√

2x) + φ(x) with φρ1 ∈ L∞(R).

We note that f belongs to PAP(R, ρ1). Indeed, sin(x) + sin(
√

2x) ∈ AP(R) and φ ∈ PAP0(R, ρ1) since

M(φ) = lim
r→∞

d + 1
2rd+1

r∫
−r

|φ(x)||x|ddx = 0.

(c) In this example, we present two weights which are equivalent. Let ρ1(x) = 2 + sinh(|x|) and ρ2(x) =
1 + cosh(|x|) for each x ∈ R. It can be easily seen that ρ1, ρ2 ∈ U∞ and that

ρ1(x)
ρ2(x) = 2 + sinh(|x|)

1 + cosh(|x|) = 4 + e|x| − e−|x|

2 + e|x| + e−|x| ∈ UB .

Then ρ1 ∼ ρ2. �
2.3. Some results for weighted pseudo almost periodic functions

In this section we list four useful results. First, we recall a result of J. Liang et al. [34] about the 
non-uniqueness of the decomposition given in Definition 2.2 when ρ ∈ U∞, see Lemma 2.1. Second, we 
remember that PAP(X, ρ) has a natural structure of Banach space with the sup norm when ρ ∈ UB (see 
[17,35,46]). However, it is also known that, the completeness of PAP(X, ρ) in the sup norm topology and 
when ρ ∈ U∞ − UB is not a trivial problem, see Theorem 2.2. Third, we have a result related to the 
equivalence relation, see Theorem 2.3. Fourth, we recall a composition theorem of weighted pseudo almost 
periodic functions, which will be important in the study of weighted pseudo almost periodic solution of 
differential equations, see Theorem 2.5. Moreover, we present two immediate consequences of Theorem 2.5, 
see Corollaries 2.6 and 2.7.

Lemma 2.1. Fix ρ ∈ U∞. The decomposition of a ρ-pseudo almost periodic function f = g + φ, where 
g ∈ AP(X) and φ ∈ PAP0(X, ρ) is not unique.
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We recall that the proof of this Lemma was given by Liang and collaborators in [34] through the con-
struction of some examples. Moreover, by the application of Lemma 2.1, we observe that when ρ ∈ U∞ the 
space PAP(X, ρ) cannot be always decomposed as a direct sum of AP(X) and PAP0(X, ρ). The immediate 
consequence of this fact is that we do not know precisely the subset of U∞ − UB such that PAP(X, ρ) is a 
Banach space with the induced norm ‖f‖∞ = ‖g‖∞+‖φ‖∞ although AP(X) and PAP0(X, ρ) are closed lin-
ear subspaces of BC(R, X). Then, in order to overcome this troublesome situation Zhang and collaborators 
in [45] introduce the following norm

‖f‖ρ = inf
i∈I

(
sup
t∈R

‖gi(t)‖X + sup
t∈R

‖φi(t)‖X
)

(8)

and prove the completeness of 
(
PAP(X, ρ), ‖ · ‖ρ

)
. Here {gi + φi, i ∈ I} denotes all possible decomposition 

of f ∈ PAP(X, ρ). To be more precise the result of completeness of PAP(X, ρ) is given by the following 
theorem (see also Corollary 3.9)

Theorem 2.2. Fix ρ ∈ U∞. PAP(X, ρ) is a Banach space with the norm || · ||ρ defined on (8).

In order to characterize the Zhang’s space PAP(X) in terms of the new space PAP(X, ρ), Diagana [17]
(see also [17–19,21,35]) introduce and analyze the equivalence relation given on Definition 2.2-(c). Moreover, 
he gives a generalization of the well known composition results for the pseudo almost periodic functions.

Theorem 2.3. Let ρ ∈ U∞. If ρ1, ρ2 ∈ cl(ρ), then

(a) PAP(X, ρ1 + ρ2) = PAP(X, ρ1) = PAP(X, ρ2), and
(b) PAP(X, ρ1/ρ2) = PAP(X, cl(1)) = PAP(X).

Corollary 2.4. Let ρ ∈ UB. Then, PAP(X, ρ) = AP(X) ⊕ PAP0(X, ρ) and (PAP(X, ρ), || · ||∞) is a Banach 
space equivalent to the spaces (PAP(X, ρ), || · ||ρ) and (PAP(X, 1), || · ||1).

Theorem 2.5. (See [17–19,21].) Let ρ ∈ U∞ and let f ∈ PAP(Y, X, ρ) satisfying the Lipschitz condition

‖f(t, u) − f(t, v)‖X ≤ L‖u− v‖Y for all u, v ∈ Y, t ∈ R. (9)

If g ∈ PAP(Y, cl(ρ)), then f(·, g(·)) ∈ PAP(X, cl(ρ)).

Corollary 2.6. Let ρ1, ρ2 ∈ U∞ with ρ2 ∈ cl(ρ1). Let f ∈ PAP(Y, X, cl(ρ1)) satisfying the Lipschitz’s 
condition (9). If g ∈ PAP(Y, ρ2), then f(·, g(·)) ∈ PAP(X, cl(ρ1)).

Corollary 2.7. Let ρ ∈ UB. Let f ∈ PAP(Y, X, cl(ρ)) satisfying the Lipschitz’s condition (9). If g ∈
PAP(Y, ρ), then f(·, g(·)) ∈ PAP(X).

Here, we introduce two comments related with Theorem 2.3. Firstly, we note that the Theorem 2.3 enables 
us to identify the Zhang’s space PAP(X) with a weighted pseudo almost periodic class PAP(X, ρ). Indeed, 
if ρ ∈ UB , then PAP(X, ρ) = PAP(X, cl(1)) = PAP(X). Secondly, by considering ρ1 and ρ2 as given on 
Example 2.1-(c) an application of Theorem 2.3 implies that PAP(X, ρ1) = PAP(X, ρ2) = PAP(X, ρ1 + ρ2)
and PAP(X, cl(1)) = PAP(R, ρ1/ρ2).

3. The convolution and some consequences

In this section we focus on the following question: When the convolution operator K, defined as follows
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(Kf)(t) =
∞∫

−∞

k(t− s)f(s)ds for a given k ∈ L1(R), (10)

maps PAP0(X, ρ) into itself? In the best of our knowledge, there are some isolated results for this problem, 
but there is not yet a systematic study, see for instance [3,9,10,31,40]. Here, we recall that an effective way 
to construct weighted pseudo almost periodic functions is through the convolution operator. Indeed Diagana 
[17–19,21] proved the following result

Proposition 3.1. Fix ρ ∈ UB. Let f ∈ PAP0(X, ρ) and k ∈ L1(R). Then Kf = f ∗ k, the convolution of f
and k on R, belongs to PAP0(X, ρ).

However, the restriction ρ ∈ UB reduces PAP0(X, ρ) to PAP0(X, 1) the ergodic space of Zhang (see 
Theorem 2.3). In order to overcome this problem, in this section we assume that ρ ∈ U∞. To be more 
precise we assume that

Fix ρ ∈ U∞ and k ∈ L1(R). (11)

Now, under the general hypothesis (11), we obtain four main results related to the general question which 
proves that f ∈ PAP0(X, ρ) implies that Kf ∈ PAP0(X, ρ). In a broad sense, we get the results by three 
types of additional conditions:

(a) The first two results (see Theorems 3.2 and 3.3) are obtained by requiring explicit conditions between 
k and ρ.

(b) The third result (see Theorem 3.4) is deduced by imposing conditions on k, ρ and f .
(c) The fourth result (see Theorem 3.5) is a result where we assume conditions for the weight ρ.

Then, to have that the convolution (Kf) is PAP0(X, ρ), first we use Theorem 3.5. If this does not work we 
check Theorems 3.2 and 3.3, where k helps to ρ. Finally, we prove with Theorem 3.4, where f helps to k
and ρ, see Liang et al. [34].

Moreover, we obtain a fifth result (see Theorem 3.7) related to the translation invariance property of the 
space PAP0(X, ρ).

3.1. Convolution invariance of PAP0(X, ρ)

Theorem 3.2. Consider that the condition (11) is satisfied and K is defined by (10). Assume that ρ and k
satisfy the following requirements:

sup
|s|≤r,r∈R+

1
ρ(s)

r∫
s

|k(t− s)|ρ(t)dt < ∞,

sup
|s|≤r,r∈R+

1
ρ(s)

s∫
−r

|k(t− s)|ρ(t)dt < ∞,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(12)

lim
r→∞

1
μ(r, ρ)

−r∫
−∞

ds

r∫
−r

|k(t− s)|ρ(t)dt = 0,

lim
r→∞

1
μ(r, ρ)

+∞∫
r

ds

r∫
−r

|k(t− s)|ρ(t)dt = 0.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(13)

Then f ∈ PAP0(X, ρ) implies Kf ∈ PAP0(X, ρ).
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Proof. By the properties of convolution we have that f ∈ BC(X, R) implies that f ∗ k ∈ BC(R, X) for 
k ∈ L1(R). Then, in order to get that f ∗ k ∈ PAP0(X, ρ) we must to prove that M(‖f ∗ k‖X) = 0. Indeed, 
we proceed in two stages. Firstly, we assume that k(t − s) = 0 for t > s. Then, by applying the Fubini 
Theorem, we deduce that

|M(‖f ∗ k‖X)| =

∣∣∣∣∣∣ lim
r→∞

1
μ(r, ρ)

r∫
−r

ρ(t)
∥∥(f ∗ k)(t)

∥∥
X
dt

∣∣∣∣∣∣

≤ lim
r→∞

1
μ(r, ρ)

r∫
−r

ρ(t)
t∫

−∞

‖f(s)‖X|k(t− s)|dtds

≤ lim
r→∞

1
μ(r, ρ)

r∫
−r

ρ(t)

⎛
⎝

−r∫
−∞

‖f(s)‖X|k(t− s)|ds

+
t∫

−r

‖f(s)‖X|k(t− s)|ds

⎞
⎠ dt

= lim
r→∞

1
μ(r, ρ)

−r∫
−∞

‖f(s)‖X
r∫

−r

|k(t− s)|ρ(t)dtds

+ lim
r→∞

1
μ(r, ρ)

r∫
−r

‖f(s)‖X
r∫

s

|k(t− s)|ρ(t)dtds

= lim
r→∞

1
μ(r, ρ)

−r∫
−∞

‖f(s)‖X
r∫

−r

|k(t− s)|ρ(t)dtds

+ lim
r→∞

1
μ(r, ρ)

r∫
−r

‖f(s)‖Xρ(s)

⎡
⎣ 1
ρ(s)

r∫
s

|k(t− s)|ρ(t)dt

⎤
⎦ ds. (14)

Now, we note that these two limits tend to zero. Indeed, we deduce that the first limit vanishes by using the 
fact that f ∈ BC(R, X) and the first limit of the hypothesis (13). Meanwhile, the deduction that the second 
limit vanishes is proved by application of the first part of the condition (12) and the fact that M(‖f‖X) = 0. 
This concludes the first stage, since we have that M(‖f ∗ k‖X) = 0 for k ∈ L1(R) such that k(t − s) = 0 for 
t > s. Now, in the case of a general k we deduce the result similarly using the fact that 

∫∞
−∞ =

∫ t

−∞ + 
∫ +∞
t

and the second parts of the hypothesis (12)–(13) to estimate the terms corresponding to 
∫ +∞
t

. �
Theorem 3.3. The result in Theorem 3.2 is true if (13) is replaced by

lim
r→∞

1
μ(r, ρ)

r∫
−r

⎡
⎣
⎛
⎝

t−r∫
−∞

+
+∞∫

t+r

⎞
⎠ |k(s)|ds

⎤
⎦ ρ(t)dt = 0. (15)

In particular, Theorem 3.2 is valid, if (13) is replaced by

sup
r∈R+

r∫
−r

⎛
⎝

t−r∫
−∞

+
∞∫

t+r

⎞
⎠ |k(s)|dsρ(t)dt < ∞. (16)
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Proof. We follow the proof by applying similar arguments to the proof of Theorem 3.2. Mainly, we note 
that the hypothesis (13) and (15) are equivalent. This fact can be proved by using the identities

r∫
−r

ρ(t)
−r∫

−∞

|k(t− s)|dsdt =
r∫

−r

ρ(t)

⎛
⎝

∞∫
t+r

|k(s)|ds

⎞
⎠ dt (17)

r∫
−r

ρ(t)
∞∫
r

|k(t− s)|dsdt =
r∫

−r

ρ(t)

⎛
⎝

t−r∫
−∞

|k(s)|ds

⎞
⎠ dt. (18)

More precisely, if in (14) we use (17)–(18) instead of the Fubini Theorem, we can follow the proof of the 
theorem by using the facts that f ∈ PAP0(X, ρ) and the pair (ρ, k) satisfies the hypothesis (12) and (15). �
Example 3.1. Let us consider hα(t) = e−αt and ρσ(t) = eσt with α0 := α− σ > 0. We note that

1
ρ(s)

r∫
s

kα(t− s)ρσ(t)dt = 1
eσs

r∫
s

e−α(t−s)eσtdt = eα0s

r∫
s

e−α0tdt

= eα0s

[
−1
α0

(e−α0r − e−α0s)
]
< 1,

which implies that (kα, ρσ) satisfies the conditions in Theorems 3.2 and 3.3. �
Here, we recall that Diagana [17,19] considers the condition

sup
r>0

⎧⎨
⎩

r∫
−r

e−α(r+t)ρ(t)dt

⎫⎬
⎭ < ∞,

which corresponds to the particular case k(t) = e−αt of (16) in Theorem 3.3, but he does not consider 
other condition and does not the convolution operator either. Moreover, we have two observations. First, 
the convolution e−α· ∗ f is not necessarily in PAP0(X, ρ) as is shown by ρ(t) = |t|βeαt, see examples 2.1, 
2.2 in Liang et al. [34]. Second, let ε > 0, our results allow consider (e−(2+ε)t, |t|e2t)-convolutions.

Theorem 3.4. Consider that the condition (11) is satisfied. Assume that ρ, k and f ∈ PAP(X, ρ) such that

∃φ : R → R+ : kφ ∈ L1(R) and sup
|u+s|≤r,r∈R+,s∈R

ρ(u + s)
ρ(u)φ(s) < ∞, (19)

lim
r→∞

1
μ(r, ρ)

⎛
⎜⎝

−r∫
−r−|s|

+
r+|s|∫
r

⎞
⎟⎠ ‖f(τ)‖X ρ(τ)dτ = 0 for all s ∈ R. (20)

Then the (k, ρ)-convolution of f is in PAP0(X, ρ).

Proof. Clearly k ∗ f ∈ BC(X, R) since f ∈ PAP(X, ρ) and k ∈ L1(R). Now, by Fubini Theorem, we get

M(‖k ∗ f‖X) = lim
r→∞

1
μ(r, ρ)

r∫
−r

‖(k ∗ f)(t)‖Xρ(t)dt

= lim
r→∞

1
μ(r, ρ)

∞∫
|k(s)|

r∫
‖f(t− s)‖Xρ(t)dtds
−∞ −r



1392 A. Coronel et al. / J. Math. Anal. Appl. 435 (2016) 1382–1399
= lim
r→∞

∞∫
−∞

|k(s)|

⎡
⎣ 1
μ(r, ρ)

r∫
−r

‖f(t− s)‖Xρ(t)dt

⎤
⎦ ds

= lim
r→∞

∞∫
−∞

fr,ρ(s)|k(s)|ds, (21)

where fr,ρ is defined by the term between the brackets [. . .]. We note that fr,ρ has the following properties

(f1) By definitions of fr,ρ and μ we can deduce that |fr,ρ(s)| ≤ ‖f‖∞, which implies that ‖fr,ρk‖L1(R) ≤
‖f‖∞‖k‖L1(R) for all r ∈ R+.

(f2) By a change of variable and hypothesis (19) we have that there exists a positive constant C such that 
the following bound holds

fr,ρ(s) = 1
μ(r, ρ)

r∫
−r

‖f(t− s)‖Xρ(t)dt

= 1
μ(r, ρ)

r−s∫
−r−s

‖f(u)‖Xρ(u + s)du

≤ C
1

μ(r, ρ)

r+|s|∫
−r−|s|

‖f(u)‖Xρ(u)φ(s)du

= Cφ(s)

⎡
⎢⎣ 1
μ(r, ρ)

r+|s|∫
−r−|s|

‖f(u)‖Xρ(u)du

⎤
⎥⎦ .

Now, noticing that fr,ρ ≥ 0, the application of condition (20) implies that fr,ρ(s) → 0 when r → ∞ for 
all s ∈ R. Then, naturally fr,ρ(s)|k(s)| → 0 when r → ∞ for all s ∈ R.

(f3) By definition of the limit given on hypothesis (20) we have that for all ε > 0 there exists N > 0 such 
that r > N implies that

1
μ(r, ρ)

r+|s|∫
−r−|s|

‖f(u)‖Xρ(u)du ≤ ε.

Then, the bound deduced in (f2) implies that fr,ρ(s) ≤ C ε φ(s) for all s ∈ R and r > N . Thus, 
using additionally the fact that kφ ∈ L1(R) by the assumption (19), we deduce that there exists 
g(s) = C ε φ(s)|k(s)| ∈ L1(R) such that fr,ρ(s)|k(s)| ≤ g(s) for all s ∈ R.

From the properties (f1)–(f3), the Lebesgue dominated convergence theorem and (21) we follow that M(‖k∗
f‖X) = 0. Hence k ∗ f ∈ PAP0(X, ρ). �
Theorem 3.5. Consider that the condition (11) is satisfied and K is defined by (10). Assume that ρ is such 
that for each s ∈ R the inequality

sup
r∈R+

sup
t∈Ωr,s

ρ(t + s)
ρ(t) < ∞, Ωr,s =

{
t ∈ R : |t| < |s| + r

}
, r ∈ R+, (22)

holds. Then f ∈ PAP0(X, ρ) implies Kf ∈ PAP0(X, ρ).
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Proof. Denote by Cs the supremum given in (22). By the definition of C|s|, ρ(t +|s|) ≤ C|s|ρ(t) for |t| < |s| +r. 
By (6), we deduce that the following inequality holds

μ(r + |s|, ρ) ≤ C|s| μ(r, ρ), for each (s, r) ∈ R× R+. (23)

Now the proof continues using the ideas and the same notation as in the proof of Theorem 3.4. Indeed, by 
the estimate (23), the hypothesis (22), and the fact that f ∈ PAP0(X, ρ), we deduce that

0 ≤ fr,ρ(s) = 1
μ(r, ρ)

r−s∫
−r−s

‖f(t)‖Xρ(t + s)dt

≤ 1
μ(r, ρ)

r+|s|∫
−r−|s|

‖f(t)‖Xρ(t + s)dt

≤ μ(r + |s|, ρ)
μ(r, ρ)

1
μ(r + |s|, ρ)

r+|s|∫
−r−|s|

‖f(t)‖Xρ(t + s)dt

≤ C|s|
1

μ(r + |s|, ρ) Cs

r+|s|∫
−r−|s|

‖f(t)‖Xρ(t)dt.

Then

0 ≤ lim
r→∞

fr,ρ(s) ≤ C|s|Cs lim
r→∞

1
μ(r + |s|, ρ)

r+|s|∫
−r−|s|

‖f(t)‖Xρ(t)dt

= C|s|CsM(‖f‖X) = 0,

i.e. fr,ρ(s) → 0 when r → ∞. Thus the property (f2) is again valid. Meanwhile, to prove (f1) and (f3) we 
proceed similarly. Then, the proof finishes as in Theorem 3.4, i.e. by application of Lebesgue dominated 
convergence theorem. �
Example 3.2. In this example, we introduce some possible functions where the hypotheses given on (19), 
(20) or (22) are valid. First, conditions (19) or (22) are satisfied with φ = ρ if ρ is sub-multiplicative, i.e. 
there exists cs > 0 such that ρ(s + t) ≤ csρ(s)ρ(t) for all t, s ∈ R. Now, condition (20) follows if f and ρ
satisfy at least one of the following requirements

fρ ∈ Lp(R) for some p such that 1 ≤ p ≤ ∞, or

lim
r→∞

1
μ(r, ρ)

⎛
⎜⎝

−r∫
−r−|s|

ρ(t)dt +
r+|s|∫
r

ρ(t)dt

⎞
⎟⎠ = 0.

Moreover, the condition (20) in Theorem 3.4 is related with the condition f ∈ PAP0(X, ρ) “enlarged”, see 
Liang et al. [34]. Meanwhile, the condition (22) is easy to verify when ρ is sub-multiplicative or for instance, 
when ρ is even, ‖ρ‖L1(0,t) → ∞ when t → ∞ and the limit lim ρ(t + |s|)[ρ(t)]−1 exists. �
t→∞
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Here, we comment two important facts. First, note that the bound in Theorem 3.5 is not uniform in 
s ∈ R. Then the limit of the mean is not uniform. However, these conditions are satisfied by a wide range of 
weight functions. For instance if ρ verifies the sub-multiplicativity condition (see Example 3.2). A function 
of this type is given by ρ(t) = (1 + |t|β)eαt for α ≥ 0 and β ≥ 0. Second, more particular conditions of type 
(22) have been obtained previously by Agarwal et al. [1].

Example 3.3. Consider the weight defined by ρ(x) = (1 + |x|β)eαx for each x ∈ R. Clearly, ρ ∈ U∞ − UB . 
Set k(x) = e−x2 and f(x) = sin(x) + sin(

√
2x) + e−|x|. It is easily seen that f belongs to PAP(R, ρ) and 

satisfies (22). Then,

(Kf)(u) = (f ∗ k) (u)

=
∞∫

−∞

(
sin(u− r) + sin(

√
2(u− r)) + e−|u−r|

)
e−r2

dr

is in PAP(R, ρ), by application of Theorem 3.5. �
3.2. Some consequences of convolution invariance of PAP0(X, ρ)

In this subsection we introduce some consequences of the fourth Theorems 3.2–3.5. Indeed, let us start 
by recalling that when f ∈ AP(X) the standard mean satisfies the translation invariance property: M(f) =
M(fξ) for any ξ ∈ R with ρ = 1. Here fξ denotes a ξ-translation of f , i.e. fξ(t) = f(ξ + t) for all t ∈ R. 
Therefore, the following question naturally appears: is the translation invariance property valid for the 
weighted mean when f ∈ BC(R, X) and ρ ∈ U are arbitrary selected? The answer to this question was 
focused by Ji and Zhang in [33]. In particular, they prove the following result

Theorem 3.6. Consider the notation

U
0
∞ =

{
ρ ∈ U∞ : lim

r→∞
μ(r + τ, ρ)
μ(r, ρ) = 1, ∀τ ∈ R

}
,

a(λ, f) = lim
r→∞

1
2r

r∫
−r

f(t)e−iλtdt,

σb(f) = {λ ∈ R : a(λ, f) �= 0}.

Suppose that ρ ∈ U
0
∞ and f : R → X an almost periodic function such that

lim
r→∞

∣∣∣∣∣∣
1

μ(r, ρ)

r∫
−r

ρ(s)e−iλsds

∣∣∣∣∣∣ = 0

for all λ ∈ σb(f)\{0}. Then a translation invariance of the following type

lim
r→∞

1
μ(r, ρ)

r∫
−r

(fρ)ξ(s)ds = lim
r→∞

1
2r

r∫
−r

fξ(s)ds

= lim
r→∞

1
2r

r+ξ∫
−r+ξ

f(s)ds, ∀ξ ∈ R,

is satisfied.
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Moreover, Ji and Zhang assuming that PAP0(X, ρ) is translation invariant for ρ ∈ U∞ prove that 
PAP0(X, ρ) is convolution invariant.

On the other hand, Ji and Zhang [33] note that the problem of existence and the ergodicity property 
of the weighted mean for almost periodic functions are involved in a systemic answer to the translation 
invariance property of PAP0(X, ρ). In the case of the existence of the weighted mean for almost periodic 
functions, by applying the Theorem 2.3 of [25], the authors of [33] prove two results (see Theorems 3.3 
and 3.5 of [33]). Meanwhile, concerning the ergodicity, they introduce a result (see Theorems 3.11 of [33]).

In this subsection, we prove that PAP0(X, ρ) is convolution invariant under (22). More precisely, we have 
the following result.

Theorem 3.7. Consider that the condition (11) is satisfied. Then, the following assertions are valid

(a) If the space PAP0(X, ρ) is translation invariant, then PAP0(X, ρ) is convolution invariant.
(b) If (22) holds, then the space PAP0(X, ρ) is translation invariant.

Proof. The proof of item (a) follows by application of Theorem 2.4 of [33]. Now, we prove that f ∈
PAP0(X, ρ) implies that fs(·) ∈ PAP0(X, ρ). Indeed, let us consider that f ∈ PAP0(X, ρ), then by con-
dition (22), we have that for any s ∈ R

lim
r→∞

1
μ(r, ρ)

r∫
−r

‖f(t− s)‖Xρ(t)dt = 0,

and the translation fs(·) ∈ PAP0(X, ρ). �
Corollary 3.8. Consider that the condition (11) is satisfied. Then, the space PAP0(X, ρ) is translation in-
variant, whether (22) is valid or even if we impose that one of the following two pairs of conditions hold: 
(12) and (13) or (12) and (15).

Using Theorem 3.2 of Liang et al. [34] we have

Corollary 3.9. If (12) and (13), or (12) and (15), or (22) hold, then the decomposition of PAP(X, ρ) is 
unique. Furthermore, under the same hypothesis, PAP(X, ρ) is a Banach space with the sup norm.

4. Applications to abstract integral and differential equations

Consider the integral equation [37]

u(t) =
t∫

−∞

R(t, s)f(s, u(s))ds, (24)

where f and R satisfy the following hypothesis

(H1) The function f belongs to PAP(Y, X, ρ) (see Definition 2.2-(b)) and satisfying the Lipschitz condi-
tion (9).

(H2) The kernel R satisfies the inequality ‖R(t, s)‖ ≤ Mk(t − s) for all t ≥ s, some k ∈ L1([0, ∞)) and 
some positive constant M . Moreover, R(t, s) is k-bi-almost periodic [37], that is, for every ε > 0 there 
are �ε > 0 and c > 0 such that each interval of length �ε contains τ for which the inequality
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‖R(t + τ, s + τ) −R(t, s)‖ ≤ ε c k(t− s), t ≥ s,

is satisfied.

We note that, for an arbitrary almost periodic function a > 0, the kernel defined by the following relation 
R(t, s) = exp

(
−
∫ t

s
(α + a(r))dr

)
satisfies the condition (H2) with k(t) = exp(−αt) for each t ≥ 0.

Theorem 4.1. Consider ρ ∈ U∞ satisfying (22) or the conditions in Theorems 3.2 and 3.3. Assume that 
(H1) and (H2) hold. Then, if LM ‖k‖1 < 1, the integral equation (24) has a unique cl(ρ)-pseudo almost 
periodic solution.

Proof. Let us consider the operator

(Nu)(t) :=
t∫

−∞

R(t, s)f(s, u(s))ds.

Then the integral equation (24) can be rewritten equivalently as the operator equation of second kind 
Nu = u. Then the proof of the theorem follows by application of fixed point arguments. Indeed, we firstly 
obtain some estimates and then we specify the application of fixed point argument.

Let us consider u ∈ PAP(X, ρ). Then, by Definition 2.2, we can write u as follows u = y + z with 
y ∈ AP(X) and z ∈ PAP0(X, ρ). Now, using the hypothesis (H1) and the composition result given in 
Theorem 2.5, it follows that f(·, u(·)) ∈ PAP(X, ρ) and naturally, by Definition 2.2, f can be expressed as 
follows

f(·, u(·)) = G(·, u(·)) + Φ(·, u(·)),
G(·, u(·)) = g(·, y(·)),
Φ(·, u(·)) = f(·, u(·)) − f(·, y(·)) + φ(·, y(·)),

where f = g + φ with g ∈ AP(Y, X) and φ ∈ PAP0(Y, X, ρ). Then, we can split N in two operators N1
and N2, since we can rewrite (Nu) as follows (Nu) = (N1u) + (N2u), where for each t ∈ R the operators 
N1 and N2 are defined by

(N1u)(t) :=
t∫

−∞

R(t, s)G(s, u(s))ds,

(N2u)(t) :=
t∫

−∞

R(t, s)Φ(s, u(s))ds.

Moreover, we note G(·, u(·)) ∈ AP(X) and Φ(·, u(·)) ∈ PAP0(X, ρ). Then, by the definition of the space 
AP(X), the fact G(·, u(·)) ∈ AP(X) implies that for each ε > 0, there exists �(ε) > 0 such that every interval 
of length �(ε) contains a number τ such that

∥∥∥G(t + τ, u(t + τ)
)
−G

(
t, u(t)

)∥∥∥ <
ε

M ‖k‖1
for all t ∈ R.

Now, using the assumption (H2) it follows that ||(N1u)(t + τ) − (N1u)(t)|| < ε for all t ∈ R. Hence 
N1u ∈ AP(X). The next step consists of showing that



A. Coronel et al. / J. Math. Anal. Appl. 435 (2016) 1382–1399 1397
lim
r→∞

1
μ(r, ρ)

r∫
−r

||(N2u)(t)||ρ(t)dt = 0. (25)

Indeed, from hypothesis (H2) we deduce that

‖(N2u)(t)‖ ≤
t∫

−∞

Mh(t− s)‖Φ(s, u(s))‖ds.

Then, the fact that Φ(·, u(·)) ∈ ρ-PAP0(X) implies that N2u ∈ ρ-PAP0(X), since by Theorem 3.5 any 
(h, ρ)-convolution of a PAP0(X, ρ) function is PAP0(X, ρ). Then N2u ∈ PAP0(X, ρ) since Φ(·, u(·)) ∈
ρ-PAP0(X). Thus (25) is satisfied.

To complete the proof, we apply the fixed-point principle of Banach to the nonlinear operator N . Based 
on the above, it is clear that N maps PAP(X, ρ) into itself. Moreover, for all u, v ∈ PAP(X, ρ), it is easy to 
see that

||(Nu) − (N v)||∞ ≤ LM ‖k‖1 ||u− v||∞,

and hence N has a unique fixed-point, which obviously is the unique ρ-pseudo almost periodic solution 
to (26). �

As a simple application we obtain a ρ-pseudo almost periodic solution to the abstract differential equation

u′(t) = Au(t) + f(t, u(t)), t ∈ R, (26)

where A is the infinitesimal generator of an exponentially stable C0-semigroup (T (t))t≥0 and f ∈
PAP(X, X, cl(ρ)) [30,36]. Moreover, we assume that

(H3) There exist constants M > 0 and α > 0 such that ||T (t)|| ≤ Me−αt for each t ≥ 0.
(H4) (e, ρ)-conditions. The weight ρ satisfies at least one of the following conditions:

ρ is such that (22) holds, or

sup
|s|≤r,r∈R

eαs

ρ(s)

r∫
s

e−αtρ(t)dt < ∞, lim
r→∞

e−αr

μ(r, ρ)

r∫
−r

e−αtρ(t)dt = 0.

Thus, we have the following result related to the pseudo almost periodic mild solutions of (26).

Theorem 4.2. Fix ρ ∈ U∞. Suppose that assumptions (H1), (H3)–(H4) hold. Then (26) has a unique 
cl(ρ)-pseudo almost periodic mild solution whenever L < α/M .

To illustrate Theorem 4.2 we consider the existence and uniqueness of weighted pseudo almost periodic 
solutions to the heat equation given by the system

∂u

∂t
(t, x) = ∂2u

∂x2 (t, x) + γH(t) sin(u(t, x)), (x, t) ∈ [0, π] × R, (27)

u(t, 0) = u(t, π) = 0, t ∈ R, (28)
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where γ is a positive parameter and H is a function defined as follows H(t) = cos(t) + cos(
√

2t) + φ(t) for 
each t ∈ R and with φ such that φ(t)et is bounded. Now, in order to analyze (27)–(28), we suppose that 
X =

(
L2[0, π], || · ||2

)
and define the notation

D(A) =
{
u ∈ L2[0, π] : u′′ ∈ L2[0, π], u(0) = u(π) = 0

}

Au = Δu = u′′(·), ∀u(·) ∈ D(A).

It is well-known that A is the infinitesimal generator of an analytic semigroup T (t) on L2[0, π] with M =
α = 1: ||T (t)|| ≤ e−t for t ≥ 0. More precisely

T (t)ϕ =
∞∑

n=1
e−n2t < ϕ,ψn > ψn,

for ϕ ∈ L2[0, π] and ψn(t) =
√

2/π sin(nt) with n ∈ N. Now, set ρ(t) = et and f(t, u(t)) = γH(t) sin(u(t, ·))
for t ∈ R. Clearly f satisfies the Lipschitz condition (H2) since

‖f(t, u(t, ·)) − f(t, v(t, ·))‖2 ≤ γ‖H‖‖u(t, ·) − v(t, ·)‖2,

for all u(t, ·), v(t, ·) ∈ L2[0, π] and t ∈ R. Moreover, it is straightforward to check that H ∈ PAP(R, cl(et))
with φ(t) as its weighted ergodic component and cos(t) + cos(

√
2t) as its almost periodic component. 

Consequently, f is et-pseudo almost periodic in t ∈ R uniformly in the second variable. Note that the 
hypothesis (H4) is also satisfied. Hence an application of Theorem 4.2 implies the following result.

Theorem 4.3. The heat equation with Dirichlet condition in (27)–(28) has a unique weighted et-pseudo 
almost periodic solution, whenever γ is small enough.
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