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In this work, we study the existence of positive solutions for a class of fractional differential equation given by

tD˛
1�1

D˛t u.t/C u.t/ D f.t, u.t//,

u 2 H˛.R/,
(1)

where ˛ 2 .1=2, 1/, t 2 R, u 2 R, f 2 C.R,R/. Using the mountain pass theorem and comparison argument, we prove that
(1) at least has one nontrivial solution. Copyright © 2015 John Wiley & Sons, Ltd.
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1. Introduction

The aim of this article is to study the fractional differential equation with left and right fractional derivative

tD˛1�1D˛t u.t/C u.t/ D f .t, u.t//,

u 2 H˛.R/,
(2)

where ˛ 2 .1=2, 1/, t 2 R, u 2 R, f 2 C.R,R/.
The study of fractional calculus (differentiation and integration of arbitrary order) has emerged as an important and popular field

of research. It is mainly due to the extensive application of fractional differential equations in many engineering and scientific disci-
plines such as physics, chemistry, biology, economics, control theory, signal and image processing, biophysics, blood flow phenomena,
aerodynamics, fitting of experimental data, and so on [1–6]. An important characteristic of fractional-order differential operator that
distinguishes it from the integer-order differential operator is its nonlocal behavior, that is, the future state of a dynamical system or
process involving fractional derivative depends on its current state as well as its past states. In other words, differential equations of
arbitrary order describe memory and hereditary properties of various materials and processes. This is one of the features that has con-
tributed to the popularity of the subject and has motivated the researchers to focus on fractional order models, which are more realistic
and practical than the classical integer-order models.

Very recently, also equations including both left and right fractional derivatives were investigated [7–20]. Equations of this type are
known in literature as the fractional Euler-Lagrange equation and are obtained by modifying the principle of least action and applying
the rule of fractional integration by parts. Such differential equations mixing both types of derivatives found interesting applications in
fractional variational principles, fractional control theory, fractional Lagrangian and Hamiltonian dynamics, as well as in the construction
industry [21–28].

Although investigations concerning ordinary and partial fractional differential equations yield many interesting and important
results for equations with operators including fractional derivatives of one type [2–4, 29], still the fractional differential equations with
mixed derivatives need further study. This form of fractional operator makes it difficult to find an analytical solution of the considered
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C. TORRES

equation. Some analytical results can be found in papers [7, 10, 11, 14], where a fixed point theorem was used. This solution has a com-
plex form, that is, contains a series of alternately left and right fractional integrals. Using the Mellin transform, Klimek [12] obtained
an analytical solution which was represented by a series of special functions. In both cases, the analytical results are very difficult for
practical calculations.

On the other hand, it should be noted that critical point theory and variational methods have also turned out to be very effective
tools in determining the existence of solutions for integer order differential equations. The idea behind them is trying to find solutions
of a given boundary value problem by looking for critical points of a suitable energy functional defined on an appropriate function
space [30, 31]. In [15] and [17], the authors showed that the critical point theory is an effective approach to tackle the existence of
solutions for fractional boundary value problem (FBVP) with mixed derivatives. We note that it is not easy to use the critical point theory
to study FBVP, because it is often very difficult to establish a suitable space and variational functional for the FBVP.

Inspired by this previous works, very recently in [18], the author considered the fractional Hamiltonian systems

tD˛1.�1D˛t u.t//C L.t/u.t/ D rW.t, u.t//, (3)

where ˛ 2 .1=2, 1/, L.t/ is a positive definite n � n matrix, W is assumed to be superquadratic at infinity and subquadratic at zero in u.
It is worth noting that under the assumption L.t/ ! 1 as jtj ! 1, the Palais–Smale condition holds, and the existence of nontrivial
solution of (3) follows from the mountain pass theorem. In [19], the authors considered the potential W.t, u/ D a.t/V.u/ and assumed
that L is uniformly bounded from below and

lim
jtj!C1

a.t/ D 0.

It was shown that (3) possesses at least one nontrivial solution using the mountain pass theorem.
Our goal is to study the existence of ground states of (2). Before continuing, we make precise definitions of the notion of solutions

for the equation

tD˛1�1D˛t u.t/C u.t/ D f .t, u.t//. (4)

Definition 1.1
Given f 2 L2.R/, we say that u 2 H˛.R/ is a weak solution of (4) ifZ

R

�
�1D˛t u.t/�1D˛t v.t/C u.t/v.t/

�
dt D

Z
R

f .t, u.t//v.t/dt for all v 2 H˛.R/.

Here, H˛.R/ denotes the fractional Sobolev space (see Section 2).

Now, we state our main assumptions. In order to find solutions of (2), we will assume the following general hypotheses.

(f0) f .t, �/ � 0 if � � 0 and f .t, �/ D 0 if � � 0, for all t 2 R.
(f1) There exists � > 2 such that

0 < �F.t, �/ � �f .t, �/, 8.t, �/, � ¤ 0,

where F.t, �/ D
R �

0 f .t, �/d� .
.f2/ f .t, �/ D o.j�j/ uniformly in t.
(f3) limj�j!1

f.t,�/
j�jp0 D 0 for some p0 C 1 > � , uniformly in t 2 R.

.f4/
f.t,��/�
�

is a increasing function for every � > 0, t, � 2 R.
.f5/ There exist continuous functions f and a, defined in R, such that f satisfies .f0/ � .f4/ and

0 � f .t, �/ � f .�/ � a.t/.j�j C j�jp0/ for all t, � 2 R,

limjtj!1 a.t/ D 0,

and

m.ft 2 R : f .t, �/ > f .�/g/ > 0,

where m denotes the Lebesgue measure.

At this point, we state our existence theorem for the autonomous equation, that is, when the nonlinearity f does not depend on t.
This theorem will serve as a basis for the proof of the main existence theorem for the case where f depends on t.

Theorem 1.1
Assume that 1

2 < ˛ < 1 and that f satisfies .f0/ � .f4/, then

tD˛1�1D˛t u.t/C u.t/ D f .u/ in R,

has a nontrivial weak solution.

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015, 38 5063–5073
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C. TORRES

The simplest case of a function f satisfying the hypotheses .f0/� .f4/ is f .s/ D sp
C

, where p is as in .f3/ and sC D maxfs, 0g. Naturally,
the class of functions satisfying these hypotheses is much ampler than this homogeneous case.

In the t-dependent case, we have to consider the behavior of the nonlinearity for large values of t in order to obtain proper com-
pactness conditions. In the simplest model case, we may consider the t-dependent nonlinearity f .t, s/ D b.t/sp

C
, where b.t/ � 1. If this

inequality is strict somewhere and limjtj!1 b.t/ D 1, then we will prove that a solution of (2) exists. However, we could consider a
more general class of t-dependent nonlinearities.

Now, we state our main existence theorem.

Theorem 1.2
Assume that 1

2 < ˛ < 1 and f satisfies .f0/ � .f5/. Then Eq. (2) possesses at least one weak nontrivial solution.

We prove the existence of weak solution of (2) by applying the mountain pass theorem [32] to the functional I defined on H˛.R/ as

I.u/ D
1

2

Z
R

hˇ̌
�1D˛t u.t/

ˇ̌2
C u.t/2

i
dt �

Z
R

F.t, u.t//dt. (5)

However, the direct application of the mountain pass theorem is not sufficient, because the Palais-Smale sequence might lose
compactness in the whole space R. To overcome this difficulty, we use a comparison argument devised in [33], based on the
energy functional

I.u/ D
1

2

Z
R

hˇ̌
�1D˛t u.t/

ˇ̌2
C u.t/2

i
dt �

Z
R

F.u.t//dt. (6)

The rest of the paper is organized as follows: In Section 2, we describe the Liouville–Weyl fractional calculus and we introduce the
fractional space that we use in our work and some proposition are proven, which will aid in our analysis. In Section 3, we will prove
Theorems 1.1 and 1.2.

2. Preliminary results

2.1. Liouville–Weyl fractional calculus

The Liouville–Weyl fractional integrals of order 0 < ˛ < 1 are defined as

�1I˛x u.x/ D
1

�.˛/

Z x

�1

.x � �/˛�1u.�/d� , (7)

x I˛1u.x/ D
1

�.˛/

Z 1
x

.� � x/˛�1u.�/d� . (8)

The Liouville–Weyl fractional derivative of order 0 < ˛ < 1 are defined as the left-inverse operators of the corresponding Liouville–Weyl
fractional integrals

�1D˛x u.x/ D
d

dx
�1I1�˛

x u.x/, (9)

x D˛1u.x/ D �
d

dx
x I1�˛
1 u.x/. (10)

The definitions (9) and (10) may be written in an alternative form:

�1D˛x u.x/ D
˛

�.1 � ˛/

Z 1
0

u.x/ � u.x � �/

�˛C1
d� , (11)

x D˛1u.x/ D
˛

�.1 � ˛/

Z 1
0

u.x/ � u.x C �/

�˛C1
d� . (12)

We establish the Fourier transform properties of the fractional integral and fractional differential operators. Recall that the Fourier
transformbu.w/ of u.x/ is defined by

bu.w/ D Z 1
�1

e�ix.wu.x/dx.

Let u.x/ be defined on .�1,1/. Then, the Fourier transform of the Liouville–Weyl integral and differential operator satisfies

4

�1I˛x u.x/.w/ D .iw/�˛bu.w/, 2

x I˛1u.x/.w/ D .�iw/�˛bu.w/. (13)

4

�1D˛x u.x/.w/ D .iw/˛bu.w/, 3

x D˛1u.x/.w/ D .�iw/˛bu.w/. (14)

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015, 38 5063–5073
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C. TORRES

2.2. Fractional derivative space

In this section, we introduce some fractional derivative space (for more details, see [34]).
Let ˛ > 0. Define the semi-norm

jujI˛�1 D k�1D˛x ukL2.R/,

and norm

kukI˛�1 D
�
kuk2

L2.R/ C juj
2
I˛�1

�1=2
, (15)

and let

I˛�1.R/ D C10 .R/
k.kI˛�1 .

Now, we define the fractional Sobolev space H˛.R/ in terms of the Fourier transform. For 0 < ˛ < 1, let the semi-norm

juj˛ D kjwj
˛bukL2.R/, (16)

and norm

kuk˛ D
�
kuk2

L2.R/ C juj
2
˛

�1=2
,

and let

H˛.R/ D C10 .R/
k.k˛

.

We note a function u 2 L2.R/ belongs to I˛�1.R/ if and only if

jwj˛bu 2 L2.R/, (17)

especially

jujI˛�1 D
��jwj˛bu��

L2.R/
. (18)

Therefore, I˛�1.R/ and H˛.R/ are equivalent with equivalent semi-norm and norm. Analogous to I˛�1.R/, we introduce I˛1.R/. Let
the semi-norm

jujI˛1 D
��

x D˛1u
��

L2.R/ ,

and norm

kukI˛1 D
�
kuk2

L2.R/ C juj
2
I˛1

�1=2
, (19)

and let

I˛1.R/ D C10 .R/
k.kI˛1 .

Moreover I˛�1.R/ and I˛1.R/ are equivalent, with equivalent semi-norm and norm [34].
We recall the Sobolev lemma.

Theorem 2.1 ([18])
If ˛ > 1

2 , then H˛.R/ � C.R/, and there is a constant C D C˛ such that

kuk1 � Ckuk˛ . (20)

Remark 1
If u 2 H˛.R/, then u 2 Lq.R/ for all q 2 Œ2,1�, becauseZ

R
ju.x/jqdx � kukq�2

1 kuk2
L2.R/.

The following lemma is a version of the concentration compactness principle.

Lemma 2.1
Let r > 0 and q � 2. Let .un/ 2 H˛.R/ be bounded. If

lim
n!1

sup
y2R

Z yCr

y�r
jun.t/j

qdt! 0, (21)

then un ! 0 in Lp.R/ for any p > 2.

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015, 38 5063–5073
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Proof
Let q < s < ˇ and u 2 H˛.R/. If Iy D Œy � r, y C r�, the Hölder inequality implies that,

kukLs.Iy/ D

 Z
Iy

ju.t/jsdt

!1=s

D

 Z
Iy

ju.t/js.1��/ju.t/js�dt

!1=s

�

 Z
Iy

ju.t/jqdt

! 1��
q
 Z

Iy

ju.t/jˇdt

! �
ˇ

�

 Z
Iy

ju.t/jqdt

! 1��
q

kuk�1jIyj
�=ˇ ,

where 0 < � < 1 and s.1��/
q C s�

ˇ
D 1. Now, by Theorem 2.1,

kuk1 � C

 Z
Iy

hˇ̌
�1D˛t u.t/

ˇ̌2
C u.t/2

i
dt

!1=2

.

Thus,

kuks
Ls.Iy/
� .2r/

s�
ˇ

 Z
Iy

ju.t/jqdt

! .1��/s
q

C�s

 Z
Iy

hˇ̌
�1D˛t u.t/

ˇ̌2
C u.t/2

i
dt

! �s
2

.

Choosing �s D 2, i.e s D 2C q
�

1 � 2
ˇ

�
, which gives, as t > s is arbitrary, 2 < s < 2C q, we obtain

kuks
Ls.Iy/
� C0

 Z
Iy

ju.t/jqdt

! .1��/s
q

 Z
Iy

hˇ̌
�1D˛t u.t/

ˇ̌2
C u.t/2

i
dt

!
.

Consequently, Z
R
ju.t/jsdt D

X
k2Z

Z 2r.kC1/

2rk
ju.t/jsdt

� C0
X
k2Z

8<:
 Z 2r.kC1/

2rk
ju.t/jqdt

! .1��/s
q

 Z 2r.kC1/

2rk
Œj�1D˛u.t/j2 C u.t/2�dt

!9=;
� sup

y2R

 Z yCr

y�r
ju.t/jqdt

! .1��/s
q

kuk˛ .

Applying this inequality to each un, we see that un ! 0 in Ls.R/ for 2 < s < q C 2. As un 2 Lr.R/ for each r > 2, it follows by
interpolation that un ! 0 in Lp.R/ for each p > 2.

Now we introduce more notations and some necessary definitions. Let B be a real Banach space, I 2 C1.B,R/, which means that I
is a continuously Fréchet-differentiable functional defined on B. Recall that I 2 C1.B,R/ is said to satisfy the Palais–Smale condition if
any sequence fukgk2N 2 B, for which fI.uk/gk2N is bounded and I0.uk/! 0 as k!C1, possesses a convergent subsequence in B.

Moreover, let Br be the open ball in B with the radius r and centered at 0 and @Br denotes its boundary. For the reader convenience,
we recall the Mountain Pass Theorems [31].

Theorem 2.2
Let B be a real Banach space and I 2 C1.B,R/ satisfying (PS) condition. Suppose that I.0/ D 0 and

(i) There are constants �,ˇ > 0 such that Ij@B� � ˇ, and
(ii) There is and e 2 B n B� such that I.e/ � 0.

Then I possesses a critical value c � ˇ. Moreover, c can be characterized as

c D inf
�2�

max
s2Œ0,1�

I.	.s//,

where

� D f	 2 C.Œ0, 1�,B/ : 	.0/ D 0, 	.1/ D eg.

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015, 38 5063–5073
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3. Ground state

In this section, we consider the fractional differential equation with mixed derivatives, given by

tD˛1�1D˛t u.t/C u.t/ D f .t, u.t//, t 2 R,

u 2 H˛.R/,
(22)

where 1
2 < ˛ < 1 and f 2 C.R � R,R/ satisfies .f0/ � .f5/. Our goal is to prove the existence of a ground state of Eq. (22), that is, a

non-negative solution with lowest energy.
We prove the existence of weak solution of (22) finding a critical point of the functional I defined on H˛.R/ as

I.u/ D
1

2

Z
R

hˇ̌
�1D˛t u.t/

ˇ̌2
C u2.t/

i
dt �

Z
R

F.t, u.t//dt. (23)

Using the properties of the Nemistky operators and the embeddings given in Remark 1, we can prove that the functional I is of class
C1, and we have

I0.u/v D

Z
R

�
�1D˛t u.t/�1D˛t v.t/dtC u.t/v.t/

�
dt �

Z
R

f .t, u.t//v.t/dt. (24)

We define the Nehari manifold associated to the functional I as

ƒ D fu 2 H˛.R/nf0g : I0.u/u D 0g,

and we observe that all non trivial solutions of (22) belong toƒ. Next, from .f2/ and .f3/, it is standard to prove that, for any 
 > 0, there
exists C	 such that

jf .t, �/j � 
j�j C C	j�j
p0 , 8t 2 R, (25)

and consequently

jF.t, �/j �



2
j�j2 C

C	
p0 C 1

j�jp0C1, 8t 2 R. (26)

We start our analysis with.

Lemma 3.1
Assume the hypotheses (f0)–(f4) hold. For any u 2 H˛.R/ n f0g, there is a unique �u D �.u/ > 0 such that �uu 2 ƒ, and we have

I.�uu/ D max
��0

I.�u/.

Proof
Let u 2 H˛.R/ n f0g and consider the function  : RC ! R defined as

 .�/ D I.�u/ D
�2

2
kuk2

˛ �

Z
R

F.t, �u/dt.

Then, by (26), we have Z
R

F.t, u/dt �
C


2
kuk2

˛ C
CC	

p0 C 1
kukp0C1

˛ .

This implies that  .�/ > 0, for � small. On the other hand, by (f1), there exists A > 0 such that F.t, �/ � Aj�j
 , 8j�j > 1. So

I.�u/ �
�2

2
kuk2

˛ � A�

Z
R
ju.t/j
dt, (27)

and because � > 2, we see that  .�/ < 0 for � large. By (f0),  .0/ D 0, therefore there is �u D �.u/ > 0 such that

 .�u/ D max
��0

 .�/ D max
��0

I.�u/ D I.�uu/.

We see that  0.�/ D 0 is equivalent to

kuk2
˛ D

Z
R

f .t, �u/u

�
dt,

from where, using (f4), we prove that there is a unique �u > 0 such that �uu 2 ƒ.

Now, we define two critical values as follows

c� D inf
u2ƒ

I.u/ and c D inf
�2�

sup
�2Œ0,1�

I.	.�//, (28)

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015, 38 5063–5073
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where � is given by

� D f	 2 C.Œ0, 1�, H˛.R/= 	.0/ D 0, I.	.1// < 0g.

Under our assumptions, certainly � is not empty and c > 0. The following lemma is crucial, and it uses (f1).

Lemma 3.2

c� D inf
u2H˛.R/nf0g

sup
��0

I.�u/ D c. (29)

Proof
We notice that I is bounded below on ƒ, because by (f1), I.u/ > 0,8 u 2 ƒ, so that c� is well defined. By Lemma 3.1 for any u 2
H˛.R/ n f0g, there is a unique �u D �.u/ > 0 such that �uu 2 ƒ, then

c� � inf
u2H˛.R/nf0g

max
��0

I.�u/.

On the other hand, for any u 2 ƒ, we have

I.u/ D max
��0

I.�u/ � inf
u2H˛.R/nf0g

max
��0

I.�u/,

so
c� D inf

ƒ
I.u/ � inf

u2H˛.R/nf0g
max
��0

I.�u/,

therefore the first equality in (29) holds. Next, we prove the other equality, that is, c� D c. We claim that for every 	 2 � , there exists
�0 2 Œ0, 1�, such that 	.�0/ 2 ƒ.

To prove the claim, we first see that, by (25) and the Remark 1, we haveZ
R

f .t, u/udx � 
Ckuk2
˛ C C	Ckukp0C1

˛ . (30)

Hence, for 	 2 � , we have

I0.	.�//	.�/ D k	.�/k2
˛ �

Z
R

f .t, 	.�//	.�/dt

�
�

1 � 
C � C	Ck	.�/kp0�1
˛

�
k	.�/k2

˛ .

If we take r D
�

1�	C
C	C

� 1
p0�1

, then we see that

I0.	.�//	.�/ > 0 8 � 2 Œ0, 1�, such that, k	.�/k˛ < r.

On the other hand, using .f1/ and since I.	.1// < 0, we have

k	.1/k2
˛ <

Z
R

2F.t, 	.1//dt <

Z
R
�F.t, 	.1//dt �

Z
R

f .t, 	.1//	.1/dt,

that implies I0.	.1//	.1/ < 0. Thus, by the Intermediate Value Theorem, there exists �0 2 .��, 1/ such that I0.	.�0//	.�0/ D 0 and so
	.�0/ 2 ƒ, completing the proof of the claim. From this result, max�2Œ0,1� I.	.�// � I.	.�0// � infƒ I and then

c � c�. (31)

In order to prove the other inequality, we see that from (27), there exists ��u large enough such that I
�
��u u

�
< 0. Now, we define the

curve 	u : Œ0, 1� ! H˛.R/ as 	u.�/ D �
�
��u u

�
. Then 	u.0/ D 0, I.	.1// D I

�
��u u

�
< 0 and 	u is continuous, so that 	u 2 � . Now, by

definition of 	u,

max
��0

I.�u/ � max
�2Œ0,1�

I.	u.�//, 8 H˛.R/ n f0g,

then c� � c, completing the proof.

Remark 2
Since c D infƒ I and any critical point of I lies onƒ, if c is a critical value of I, then it is the smallest positive critical value of I.

Lemma 3.3
Suppose fung 2 H˛.R/ and there exists b > 0 such that

I.un/ � b and I0.un/! 0. (32)

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015, 38 5063–5073

5
0

6
9



C. TORRES

Then either

(i) un ! 0 in H˛.R/, or
(ii) there is a sequence .yn/ 2 R, and r,ˇ > 0 such that

lim inf
n!1

Z ynCr

yn�r
jun.x/j

2dx > ˇ.

Proof
By (32), it is standard to check for k large enough

bC kunk˛ � I.un/ �
1

�
I0.un/un �

	
1

2
�

1

�



kunk

2
˛ , (33)

and then fung is bounded in H˛.R/.
Suppose (ii) is not satisfied, then for any r > 0, (21) holds. Consequently by Lemma 2.1

kunkLp0C1 ! 0. (34)

Then, noticing that

I0.un/un D kunk
2
˛ �

Z
R

f .t, un/undt, (35)

by (25) and Remark 1, we have Z
R

f .t, un/undt � 
Ckunk
2
˛ C C	kunk

p0C1

Lp0C1 ,

where p0 C 1 > � . So

I0.un/un � .1 � 
C/kunk
2
˛ � C	kunk

p0C1

Lp0C1 . (36)

Choosing an appropriate 
 and using (32) and (34), we find that un ! 0 in H˛.R/, that is, (i) holds.

We defineƒ,� , and c, replacing f by f . The following theorem gives the existence of a solution for the limit problem.

Theorem 3.1
I has at least one critical point with critical value c.

Proof
By the Ekeland variational principle [30], there is a sequence un such that

I.un/! c and I
0
.un/! 0. (37)

By (37) and (f1), given 
 > 0, for n large enough,	
1

2
�

1

�



kunk

2
˛ �

	
1

2
�

1

�



kunk

2
˛ C

Z
R

�
1

�
f .un/un � F.un/

�
dt

D I.un/ �
1

�
I
0
.un/un � kunk˛ C cC 
,

so that .un/ is a bounded sequence. Because H˛.R/ is a reflexive space, there is a subsequence .un/ 2 H˛.R/ converging weakly to u
in H˛.R/ and strongly in Lp

loc.R/ for p 2 Œ2,1/. Thus, for such a subsequence and any ' 2 C10 .R/,

lim
n!1

I
0
.un/' D I

0
.u/' D 0.

If we show that u ¤ 0, then I
0
.u/ D 0, and then I.u/ � c. On the other hand, using (f1) again, we see that, for every r > 0,

I.un/ �
1

2
I
0
.un/un D

Z
R

	
1

2
f .un/un � F.un/



dt

�

Z r

�r

	
1

2
f .un/un � F.un/dt .

(38)

Because un ! u in Lp
loc.R/, for any p 2 Œ2,1/, up to a subsequence,

un.t/! u.t/ a.e. on .�r, r/,
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and there are h 2 L2.�r, r/ and g 2 Lp0C1.�r, r/, such that

jun.t/j � h.t/ and jun.t/j � g.t/ a.e on .�r, r/.

Moreover, by (25) and (26), we get

jf .un.t//un.t/j � 
h.t/2 C C	g.t/p0C1 2 L1.�r, r/,

jF.un.t//j �



2
h.t/2 C

C	
p0 C 1

g.t/p0C1 2 L1.�r, r/.

By Lebesgue’s dominated convergence theoremZ r

�r
f .un/undt!

Z r

�r
f .u/udt and

Z r

�r
F.un/dt!

Z r

�r
F.u/dt.

Therefore, because r is arbitrary

c �

Z
R

	
1

2
f .u/u � F.u/



dt.

Now, because I
0
.u/u D 0 and

I.u/ D I.u/ �
1

2
I
0
.u/u D

Z
R

	
1

2
f .u/u � F.u/



dt,

it follows that I.u/ � c.
In order to complete the proof, we just need to show that u is non-trivial. For this purpose, by Lemma 3.3, it is possible to find a

sequence yn 2 R, r > 0 and ˇ > 0 such that Z ynCr

yn�r
u2

n.t/dt > ˇ, 8n.

Now, we define un.t/ D un.t C yn/. We note that un is bounded in H˛.R/, and so, up to a subsequence, weakly converges in H˛.R/ to
some u 2 H˛.R/ and strongly in Lp.�r, r/. ButZ r

�r
ju.t/jpdt D lim

n!1

Z r

�r
jun.t/j

2dt D lim
n!1

Z ynCr

yn�r
jun.t/j

pdt > ˇ,

that implies u ¤ 0.

Now, we prove our main result.

Theorem 3.2
I has at least one critical point with critical value c < c.

Proof
By definition of c in (29), for every sequence f
ng, there exists a sequence of fung in H˛.R/ such that kunk˛ D 1,

c � max
��0

I.�un/ � cC 
n and max
��0

I.�un/! c. (39)

As in the proof of Lemma 3.2, associated with each un, there is a function 	n 2 � such that

max
�2Œ0,1�

I.	n.�// � max
��0

I.�un/ � cC 
n. (40)

Now, let X D H˛.R/, K D Œ0, 1�, K0 D f0, 1g, M D � ,' D 	n and

c1 D max
�n.K0/

I D 0 < c,

then we can use Theorem 4.3 of [30] to find a sequence fwng in H˛.R/ and f�ng � Œ0, 1� such that I.wn/ 2 .c � 
n, cC 
n/,

kwn � 	n.�n/k˛ � 

1=2
n and kI0.wn/k.H˛/0 � 


1=2
n . (41)

Now, because

I.wn/! c in R and I0.wk/! 0 in .H˛.R//0, (42)

as in the proof of the Theorem 3.1, we show that fwng is bounded in H˛.R/. Moreover, up to a subsequence

wn * w in H˛.R/ and wn ! w in Lp
loc.R/, 2 � p <1, (43)
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where w is weak solution of (22). By Lemma 3.3, there is a sequence fyng � R, ˇ > 0 and r > 0 such that

lim inf
n!1

Z ynCr

yn�r
w2

ndt � ˇ. (44)

If fyng contains a bounded subsequence, then (44) guarantees that w ¤ 0, and the results follows. If fykg is an unbounded sequence,
we may assume that, for given R > 0,

lim
n!1

Z R

�R
junj

2dt D 0, (45)

because the contrary implies that u ¤ 0 following the same argument as in the preceding text. In order to complete the proof, we first
obtain that

c < c. (46)

To see this, we use the characterization of c and c as in Lemma 3.2. Let u be a non-trivial critical point of I given by Theorem 3.1 and let

A D ft 2 R : f .t, �/ > f .�/ for all � > 0g.

Then, by (f5) and the fact that u is non-zero, there exists y 2 R such that the function uy , defined as uy.t/ D u.tC y/, satisfies

m../ft 2 R : juy.t/j > 0g \Aj > 0,

where m denotes the Lebesgue measure. But then

c D I.uy/ � I.�uy/ > I.�uy/ for all � > 0.

Choosing � D �� > 0 such that I.��uy/ D sup�>0 I.�uy/, we find ��uy 2 ƒ and we conclude that

c > I.��uy/ � inf
u2ƒ

I.u/ D c,

proving (46). Now, we see that, for � � 0, from (f5), we have

I.�un/ D I.�un/ �

Z
R
.F.t, un/ � F.un//dt

� I.�un/ �

Z
R

Ca.t/.j�un.t/j
2 C j�un.t/j

p0C1/dt.

Let 
 > 0, Then, by (f5) again, there exists R > 0 such thatZ
B.0,R/c

Ca.t/.j�un.t/j
2 C j�un.t/j

p0C1/dt � 
,

for � bounded. Then, by (45),

lim
n!1

Z
B.0,R/

Ca.t/.j�un.t/j
2 C j�un.t/j

p0C1/dt D 0.

Choosing � D �� such that I.��un/ D max��0 I.�un/, we see that c � c � 
. If 
 > 0 is chosen sufficiently small, this contradicts (46).
Having the existence of a critical point u of I in H˛.R/, we just have to prove that u � 0 a.e. For this fact, we recall thatZ

R
jwj2˛bub'dw D C

Z
R

Z
R

Œu.x/ � u.y/�Œ'.x/ � '.y/�

jx � yj1C2˛
dxdy,

for all ' 2 H˛.R/ [35]. Testing with u� :D maxf�u, 0g, by the positive of f .t, u.t//, we obtainZ
R
jwj2˛bub'dw D

Z
R

u2
�dx.

But this cannot occur for u� 6� 0, becauseZ
R
jwj2˛bub'dw D C

Z
fu<0g

Z
fu>0g

Œu.x/ � u.y/�u�.x/

jx � yj1C2˛
dxdy

C C

Z
fu>0g

Z
fu<0g

Œu.x/ � u.y/�u�.y/

jx � yj1C2˛
dxdy

C C

Z
fu<0g

Z
fu<0g

Œu.x/ � u.y/�Œu�.x/ � u�.y/�

jx � yj1C2˛
dxdy.
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The last term can be written as

�C

Z
fu<0g

Z
fu<0g

ju�.x/ � u�.y/j2

jx � yj1C2˛
dxdy,

which is strictly negative unless u� � 0 a.e. The other two terms are also negative, hence, u� � 0 and the conclusion follows.
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