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RESUMEN EJECUTIVO
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FECHA: 30/12/2015

PROFESOR GUÍA: Fernando Ordóñez Pizarro

INTEGRATION OF INVENTORY CONTROL DECISIONS WITH FACILITY LOCATION

FOR SEVERAL DEMAND CLASSES

Esta tesis es acerca de modelos de localización e inventarios con niveles de servicio diferenci-

ados para productos de alta rotación. La motivación detrás de esta tesis es el trabajo desarrollado

por mas de 10 años en el Centro Integrado de Manufactura y Automatización de la Universidad

Técnica Federico Santa María en Valparaíso, Chile. Durante esos 10 años desarrolle varios trabajos

de ingeniería en empresas manufactureras de la Quinta Región (Valparaíso). Todas estas empresas

venden sus productos a través de grandes cadenas de retail y también a través de pequeños retails.

En estos años he visto como las grandes cadenas de retail en Chile se han concentrado y forzado

a sus proveedores a segmentar a sus clientes en función de sus requerimientos de nivel de servicio.

Mas paradójico es que estos grandes cadenas de retail exijan altos niveles de servicio y no estén

dispuestos a pagar por ello.

En esta tesis estudiamos varias políticas de inventario para proveer niveles de servicio diferen-

ciados en una red de distribución de ítem de alta rotación, por ejemplo, estudiamos las políticas

Separate Stock, Round-up y critical level. En el caso de la política critical level, no existen trabajos

previos que implementen esta política para productos de alta rotación. Por lo tanto, si esta política

se expande a una red distribución, sera necesario en una primera etapa desarrollar una formulación

teórica para obtener sus parámetros óptimos.

Un breve resumen de las contribuciones de esta tesis se indican a continuación:

• Modelamos y resolvimos dos modelos de nivel crítico. En el primero se considera que el

nivel de servicio se mide por la probabilidad de satisfacer toda la demanda de cada clase
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durante un ciclo de reabastecimento desde el inventario disponible (nivel de servicio tipo 1),

y en el segundo se considera que los backorders de cada clase son penalizados con costos

diferenciados;

• Modelamos y resolvimos un problema de diseño de redes de distribución que considera la

capacidad de la red de proveer y satisfacer diferentes niveles de servicio usando las siguientes

políticas: single class allocation, global round-up, separate stock, local round-up and critical

level.
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ABSTRACT

RESUMEN DE LA TESIS PARA OPTAR AL TÍTULO DE:

Doctor en Sistemas de Ingeniería.

POR: Pablo Felipe Escalona Rodríguez

FECHA: 30/12/2015

PROFESOR GUÍA: Fernando Ordóñez Pizarro

INTEGRATION OF INVENTORY CONTROL DECISIONS WITH FACILITY LOCATION

FOR SEVERAL DEMAND CLASSES

This thesis is about location-inventory models with differentiated service levels for quick turnover

items. The motivation behind this thesis is the work that I developed over 10 years in the Integrated

Center of Manufacturing and Automation of the Universidad Técnica Federico Santa María in Val-

paraíso, Chile. During those 10 years I developed several engineering projects in manufacturing

companies in the region of Valparaiso. All these companies sell items with high demand volume

through large retail chains and through small retailers. In these years I have seen large retail chains

in Chile have been concentrated and forced these companies to segment their customers based on

the level of service. Most paradoxical is that these large retail chains require high service levels for

which they are not willing to pay.

In this thesis we studied several types of inventory control policies to provide differentiated

service levels in a distribution network of fast-moving items, e.g., Separate Stock, Round-up and

critical level policies. In the case of critical level policy, to the best of our knowledge, there does

not exist previous work implementing this policy when demand volume is large. Therefore, if

this policy is to be extended to a distribution network, it is first necessary to develop a theoretical

formulation to obtain its optimal parameters.

Let us shortly sum up the contributions in this thesis.

• We model and solve two critical level model for quick turnover items. The first one consider

that the service level is measured by the probability of satisfying the entire demand of each

class during a replenishment cycle from the on-hand inventory (service level type 1), and the

second one considers that the backorders are penalized with differentiated costs;
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• We model and solve a supply chain design problem that considers the ability of the distri-

bution network, to provide and fulfill different service levels using single class allocation,

global round-up, separate stock, local round-up and critical level policies.
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CHAPTER 1. INTRODUCTION

1 | Introduction

The fulfillment of required service levels for different classes of customers in terms of product

availability is an important issue when designing a distribution network. Especially when service

level failure can lead to loss of customers or fines. The optimal design of the distribution network

should not only determine the number of distribution centers (DC) to locate (stocking locations),

where to locate, what kinds of customers should be assigned to each DC and how much inventory

to keep each of them, but it also should prescribe how to meet the required service level for each

class or category of customer demand.

Models that integrate simultaneously inventory and location decisions (Daskin et al. (2002),

Shen et al. (2003), Shen (2005), Shen and Daskin (2005), Miranda and Garrido (2004), Snyder et al.

(2007), Ozsen et al. (2008), You and Grossmann (2008), Atamtürk et al. (2012)), consider that the

distribution network is dominated by continuous review (Q, r) policy, full backorder, deterministic

lead time and normally distributed demand in which the same service level is provided to the whole

network, i.e., they do not integrate the requirement of different demand classes in the optimal

configuration of the distribution network. Considering that the entire network is balanced in terms

of service level is not always realistic.

Several types of inventory policies can be implemented to provide differentiated service level to

the distribution network. In this thesis we propose classifying the policies that provide differentiated

service levels into two types. The first group of policies imposes general service conditions over

the entire network distribution. The simplest mechanism is that each DC serves a single demand

class (single class allocation). This policy tends to increase the number of DCs in the network

and not to take advantage of the risk pooling benefits. Another mechanism is to set the service

level of the entire distribution network based on a preset level corresponding to the highest priority

class (global round-up policy). The second type of policy imposes conditions on the operation

of the inventory system at each DC. In this case, the simplest mechanism is to impose that each
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CHAPTER 1. INTRODUCTION

DC serves the demand assigned to it from a common stockpile and uses separate safety stocks for

each class (separate stock policy). However, separating the safety stocks in each DC does not take

advantage of the benefit of centralized inventories. The separate stock policy can be outperformed

imposing at each DC, a mechanism that serves all demand assigned to it from a common stockpile

and sets the safety stock as the maximum required between the sets of classes assigned to it (local

round-up policy). In this case, although all demand of a DC is centralized and the variability re-

duced, this policy may provide too much inventory for classes that require less service level than

the maximum. A third mechanism of this type consists in each DC serving the demand assigned

to it from a common stockpile, but using a critical level policy for rationing the inventory between

different classes. With this policy, as soon as the inventory level falls below a critical level, the low

priority demands are not attended. Its main application is in inventory systems that must provide

differentiated service levels to two or more classes of demand. This policy can be implemented for

several ordering and review policies. For example, a traditional (Q, r) model is extended using a

critical level policy to a (Q, r,C) inventory model, where Q is the fixed batch size, r is the reorder

point and C := {C1, ...,Cn−1} denote a set of critical levels for rationing n classes of demand (Nah-

mias and Demmy (1981); Melchiors et al. (2000); Deshpande et al. (2003); Isotupa (2006); Arslan

et al. (2007); Wang et al. (2013a)), and (S − 1, S ) policies are extended to a (S − 1, S ,C), where

S denotes the base stock level (Ha (1997a,b, 2000); De Vericourt et al. (2000, 2002); Bulut and

Fadiloğlu (2011); Piplani and Liu (2014) for make-to-stock production system, and Dekker et al.

(2002, 1998); Möllering and Thonemann (2010); Fadıloğlu and Bulut (2010); Wang et al. (2013b)

for lot-for-lot inventory systems).

Except for the critical level policy, all the mechanisms for providing differentiated service levels

operating under continuous review policy and normally distributed demand may extend to distribu-

tion networks. In general, the complexity is not in its formulation, if not the method of resolution

due to the non-linearity inducing inventories in the network configuration.

Assuming normally distributed demand, previous inventory-location models, explicitly or im-

plicitly assume that the distribution network deals with quick turnover items, i.e., products with

high demand volume. Examples include non-perishable food, toiletries, over-the-counter drugs,

cleaning supplies, building supplies and office supplies. The distribution channels of these prod-

ucts have been concentrated in large retails chains requiring high service level in terms of product

availability at the supplier‘s expense. Therefore, many wholesalers segment their customers based
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on service level. The simplest segmentation is to classify customers into two demand classes, (i)

high priority class will correspond to large retail chains that require high service levels and (ii) low

priority class corresponding to small retailers which can be provided lower service levels.

Let us now consider the implementation of a critical level policy for items with high demand

volume (fast-moving items or items with high rotation rate). For these items, it is usually more

convenient and efficient to model the demand over a time period by a continuous distribution,

e.g., normal or gamma distributions (Axsäter (2007); Ramaekers and Janssens (2008)). Previous

work on critical level policy has only considered the case of discrete demand, in particular Poisson

distributed demand, which is how the demand for slow-moving items is modeled. Therefore, to the

best of our knowledge, there does not exist previous work that implements a critical level policy

when demand volume is large.

In summary, to integrate the requirements of different classes of customers in terms of prod-

uct availability on the optimal configuration of a distribution network for fast moving items, it is

necessary:

• develop a theoretical formulation of the critical level policy with continuous review and con-

tinuous distribution demand, in particular normal distribution, and then integrate it into a

location-inventory model,

• model and solve three simple ways to provide differentiated service levels in a distribution

network, i.e., local round up, separate stock and single class allocation policies.

The objective of this thesis is to integrate the requirements of different classes of customers,

in terms of product availability, on the optimal configuration of a distribution network with fast-

moving items. Furthermore, we have the following specific objectives:

• determine the optimal parameters of a continuous review (Q, r,C) policy for fast-moving

items when rationing is used to provide differentiated service levels to two demand classes

(high and low priority) and the service level is measured by the probability of satisfying the

entire demand during a replenishment cycle from on-hand inventory (service level type 1),

• determine the optimal parameters of a continuous review (Q, r,C) policy for fast-moving

items when the inventory system facing random demand of two customer classes (high and

low priority) and backorders of each class have different penalty costs,

3
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• modeling and solving a supply chain design problem for fast-moving items that considers the

ability of the distribution network to provide and fulfill different service levels using critical

level, separate stock, single class allocation, global round-up and local round-up policies.

The remainder of this thesis is structured as follows:

A review of related work in location-inventory models and the critical level policy is discussed

in the chapter 2.

In chapter 3 we analyze the use of a constant critical level policy for fast-moving items where

rationing is used to provide differentiated service levels. In this chapter we consider a continuous re-

view (Q, r,C) policy with two demand classes, the service level for each demand class is measured

by service level type 1 and to determine the operational characteristics of the inventory system we

use a hitting time approach. We also consider the threshold clearing mechanism of Deshpande et al.

(2003) to allocate backorders when multiple outstanding orders exist. The problem assumes a fast-

moving item which makes it reasonable to model the demand over a time period by a continuous

distribution with positive support. Given the inventory control strategy, we formulate a non-linear

problem with chance constraints, denoted (SLP), to determine the parameters of the critical level

policy. We propose to solve a relaxation of (SLP) which is able to provide good bounds. For strictly

increasing non-negative demand, we characterize the optimal solution of this relaxation through a

system of equations. We further extend this solution, under mild assumptions, when the normal

distribution is used as an approximation of the non-negative demand.

In chapter 4 we analyze the constant critical level policy for fast-moving items when the in-

ventory system facing random demand of two customer classes (high and low priority). The in-

ventory system operates under continuous review (Q, r) policy, with a critical threshold value C,

full-backorder and deterministic lead time. Penalty cost of backorders of high priority class are

greater than the low priority class and demand of each class is characterize by a strictly increasing

non-negative demand. We also characterize the demand of each class with a normal distribution,

as a approximation of the non-negative demand. Given the inventory control strategy and using

the state-dependent demand approach to model the operation of the inventory system, in which a

threshold mechanism is adopted to allocate backorders when multiple outstanding orders exist, we

propose an approximate expression for the on-hand inventory based on a convex approximation of

backorders for each class. The approximation consider that the demand class during the rationing

period is proportional to the total demand for both classes during this period. This approach allows

4
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us to formulate a convex cost minimization problem to determine the parameters of the critical level

policy, that can be solved through a equations system derived from the KKT conditions or using a

convex non linear solver.

In chapter 5 we analyze the design of a distribution network able to provide differentiated ser-

vice levels in terms of product availability for two demand classes (high and low priority). To

provide differentiated service levels we consider a critical level policy, and that the service level

provided by a DC is measured by the probability of satisfying the entire demand of each class as-

signed to the DC during a replenishment cycle from on-hand inventory. We formulate the location-

inventory model with differentiated service levels, denoted (P0), as an MINLP problem with chance

constraints and nonlinear objective function. The chance constraints of (P0) correspond to the ser-

vice levels constraints. We observe that the location-inventory model with a single service level is

a relaxation of (P0). We reformulate the location-inventory model with a single service level as a

conic quadratic mixed integer program from which we obtain a lower bound of (P0). Using the

resulting configuration of the relaxation of (P0) in terms of location and allocation variables we

obtain the optimal control parameters of the critical level policy at each DC. The result is an upper

bound (feasible solution) for the problem (P0). Furthermore, we propose a method to improve the

solution based in the risk pooling effect.

In chapter 6 we study the single class allocation, separate stock and local round-up policies to

design a distribution network able to provide differentiated service levels for two demand classes

(high and low priority). For each policy, we formulate an integer non-linear problem (INLP). We

show how to formulate the single class allocation, separate stock and local round-up problems as

conic quadratic mixed-integer problems. In particular, local round-up policy present particular chal-

lenges in their formulation, for which we propose a Lagrangian relaxation over the conic quadratic

mixed-integer formulation. We compare the performances of using the five inventory policies for

different parameters settings.

Chapter 7 correspond a illustrative example of the location-inventory models with differentiated

service levels developed in chapters 5 and 6. The industrial application correspond a company that

manufactures products derived from fruits which requires determining the number of distribution

centers (DC) to locate in Santiago (Chile), where to locate, what kinds of customers should be

assigned to each DC, how much inventory to keep each of them, and how to meet the required

service level of their customer. Our results indicates that the lower cost configuration is achieved
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with the critical level policy.

Finally, Chapter 8 contains the final conclusions of this thesis.
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CHAPTER 2. RELATED WORK

2 | Related work

In this chapter, a review of related works of location-inventory models and the critical level policy

is discussed.

2.1 Location-inventory models

The traditional structure of Facility Location Problem (Erlenkotter (1978)) does not consider the

relationship between location and inventory control decisions, nor its impact on the distribution net-

work configuration. This is because the distribution network design is solved sequentially, by first

solving the location problem and then the inventory problem. This is related to the natural separa-

tion between strategic and tactical decision making. However, when these decisions are addressed

separately, it often results in suboptimal solutions. In the last decade there has been a strong move

towards integrated models of inventories and location. These models simultaneously determine

the location of the DCs that will be opened, the allocation of customers to DCs and the optimal

parameters of the inventory policy so as to minimize the total system cost. A comprehensive char-

acterization in location-inventory models can be found in Sadjadi et al. (2015).

Our work focuses on location inventory models that integrate the service level, in terms of

product availability, in its formulation. In this sense, Daskin et al. (2002) study a location-inventory

model that incorporates fixed facility location cost, ordering, holding and safety-stock inventory

cost at the DCs, transportation costs from the supplier to the DCs, and local delivery costs from the

DCs to the customers. The main difficulty of this model is that the inventory costs at each DC are

not linear respect to customer assignments. The model is formulated as a nonlinear integer program

and solved by Lagrangian relaxation for a special case in which the ratio between the variance and

expected demand is constant for all customers. Shen et al. (2003) analyze the same problem as

Daskin et al. (2002). Their work restructures the model into a set-covering integer programming
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model and use column generation to solve the LP-relaxation of the set covering model.

The model of Daskin et al. (2002) and Shen et al. (2003) has been generalized in different direc-

tions. For example: Shen (2005) generalizes the model to a multi-commodity case with a general

cost function and proposes a Lagrangian-relaxation solution algorithm. Shen (2005) also relaxes

the assumption that the variance of the demand is proportional to the mean for all customers and

proposes a Lagrangian-relaxation approach using an algorithm proposed by Shu et al. (2005). Shen

and Daskin (2005) introduce a service level element in the model through the distance coverage and

propose a weighting method and a heuristic solution approach based on genetic algorithms. Snyder

et al. (2007) present a stochastic version of the model. Ozsen et al. (2008) study a capacitated ver-

sion of the model. Miranda and Garrido (2004) also study a capacitated version of the model and

propose a Lagrangian-relaxation solution algorithm. You and Grossmann (2008) relax the assump-

tion that each customer has identical variance-to-mean ratio, reformulating the INLP model as a

MINLP problem and solve it with different solution approaches, including a heuristic method and

a Lagrangean relaxation algorithm. Atamtürk et al. (2012) also relax the assumption that each cus-

tomer has identical variance to mean ratio and reformulate the INLP model of Daskin et al. (2002)

as conic quadratic mixed-integer problem and added cuts to improve the computational results.

They consider cases with uncapacitated facilities, capacitated facilities, correlated retailer demand,

stochastic lead times, and multi commodities. Atamtürk et al. (2012) show, through a computa-

tional study, that the conic formulation outperforms the column generation and Lagrangian based

methods considered up to now. Shahabi et al. (2014) study a capacitated version with correlated

retailer demand and propose a solution approach based on an outer approximation strategy.

All of the above authors assume that the inventory system at each DC operates under a con-

tinuous review (Q, r) policy with type I service level and full-backorder. Under this policy, a re-

plenishment order Q is emitted when the inventory level falls below the reorder point r. Based on

the results of Axsäter (1996) and Zheng (1992), previous work has approximated the (Q, r) model

assuming that each DC determines the replenishment batch Q using an EOQ model and determines

the reorder point r and the safety stock ensuring that the probability of a stockout at each DC is

less than or equal to some preset service level. This preset service level is the same for all the

distribution network. Further, a normally distributed demand is assumed at each DC as an approxi-

mation for a high volume Poisson demand process. With these approximations, the parameters for

the continuous review (Q, r) policy are the result of the optimal allocation of customers to DCs.
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Our work focuses on situations where customers may require different service levels or that

there are different demand classes, which can be more realistic in many cases. To the best of our

knowledge, there does not exist previous works that integrates differentiated service levels in the

optimal configuration of the network distribution.

Several types of inventory control policies can be implemented in a distribution network to deal

with different service requirements. We propose classifying this policies into two types. The first

group of policies imposes general service conditions over the entire network distribution. The sim-

plest mechanism is that each DC serves a single demand class, to which we refer as single class

allocation. This policy tends to increase the number of DCs in the network and not to take advan-

tage of the risk pooling benefits (Eppen (1979)). Another mechanism is to set the service level of

the entire distribution network based on a preset level corresponding to the highest priority class,

to which we refer as global round-up policy. This policy tends to provide too much inventory for

classes that require less service level than the maximum. The second type of policy imposes condi-

tions on the operation of the inventory system at each DC. In this case, the simplest mechanism is to

impose that each DC serves the demand assigned to it from a common stockpile and uses separate

safety stocks for each class (separate stock policy). However, separating the safety stocks in each

DC does not take advantage of the benefit of centralized inventories. The separate stock policy can

be outperformed imposing at each DC, a mechanism that serves all demand assigned to it from a

common stockpile and sets the safety stock as the maximum required between the sets of classes

assigned to it (local round-up policy). In this case, although all demand of a DC is centralized and

the variability reduced, this policy may provide too much inventory for classes that require less

service level than the maximum. A third mechanism of this type consists in each DC serving the

demand assigned to it from a common stockpile, but using a critical level policy for rationing the

inventory between different classes. With this policy, as soon as the inventory level falls below a

critical level, the low priority demands are not attended.

In the current thesis we focus on critical level policy because as well as using the advantage

of the pooling effect, it has the flexibility of providing different service levels to different customer

classes without provide too much inventory for classes that require less service level than the max-

imum or increase the number of DCs in the network.
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2.2 Critical level policy

A comprehensive review of inventory rationing can be found at Kleijn and Dekker (1999) and a

classification at Teunter and Haneveld (2008). In particular, Kleijn and Dekker (1999) classified

inventory systems subject to multiple classes of demand based on the review policy (continuous

and periodic) and the number of classes (2 or n classes). The above classification is extended by

Teunter and Haneveld (2008), incorporating shortage treatment (backorder or lost sale), rationing

policy (no-rationing, static, dynamic), the ordering policy and the way that the time is modeled

(discrete or continuous).

Our model corresponds to a constant critical level (Q, r,C) policy of continuous review and

demand. In this sense, Nahmias and Demmy (1981) were the first ones that studied the continuous

review policy with two demand classes. They assumed a (Q, r,C) policy, Poisson demand, full-

backorders and deterministic lead time. This work does not determine the optimal parameters of

the critical level policy, but develops an approximate expression for the expected backorder per

cycle for both demand classes when there is at most one outstanding order and uses the hitting

time to model the inventory behavior. Melchiors et al. (2000) also analyze a (Q, r,C) inventory

model, deterministic lead time and two demands classes, but unlike Nahmias and Demmy (1981),

they consider a lost sales environment. In order to determine the optimal parameters of the critical

level policy these authors propose a cost optimization problem and present a numeric procedure

for its resolution. They assumed Poisson demand and used the hitting time and renewal theory to

operationally characterize the inventory system. Isotupa (2006) presents a model with the same

assumptions as Melchiors et al. (2000) but with exponentially distributed lead time.

When implementing a continuous review (Q, r,C) critical level policy with full backorder, it

may happen that the incoming replenishment batch is not large enough to cover the backorders.

Therefore, it is important how the backorders of the different classes are satisfied. According to

Möllering and Thonemann (2010) it is optimal to fill backorders from high priority classes first

when dealing with penalty costs. This form of clearing the backorders is called priority clearing

mechanism. This policy is difficult to analyze mathematically and given its complexity the litera-

ture has focused on manageable but sub-optimal rules, e.g., the threshold clearing mechanism from

Deshpande et al. (2003) and the FCFS type clearing scheme from Arslan et al. (2007). Deshpande

et al. (2003) analyzed the same rationing model as Nahmias and Demmy (1981), but without re-
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stricting the number of outstanding orders. They derived expressions for the average backorders per

cycle and for the expected steady-state on-hand inventory and backorder using a state-dependent

demand approach. Based on these expressions, Deshpande et al. (2003) proposed a cost optimiza-

tion model and developed algorithms to compute the optimal parameters of the critical level policy.

Arslan et al. (2007) presents a service level model to obtain the optimal parameters of a critical

level policy with multiple demand classes under the assumptions of Poisson demand, deterministic

lead time, and a continuous-review (Q, r) policy. Wang et al. (2013a) analyzed the rationing pol-

icy under the same operational conditions than Deshpande et al. (2003), but considered a mixed

service criteria with penalty costs and service level constraints (fill-rate). In that work, they show

numerically that the priority clearing mechanism does not always outperform the threshold clearing

mechanism when dealing with service levels constraints.

In certain situations a dynamic rationing policy, which allows the critical level to change based

on the number and ages of outstanding orders, can outperform a constant critical level policy

(Q, r,C). Fadiloglu and Bulut (2010) examine a dynamic rationing policy, in a continuous re-

view (Q, r) inventory model with Poisson demand and deterministic lead time. The authors use

simulation-based approaches to find efficient solutions for the cases with backordering and lost

sales.

From the literature review conducted only Dekker et al. (2002), Arslan et al. (2007), Wang et al.

(2013b) and Möllering and Thonemann (2010) use a service level problem approach to determine

the optimal parameters of the critical level policy. These four articles consider the same service

level problem: to minimize the expected on-hand inventory subject to having the service level

provided to each class exceed its preset level. Depending on the operating conditions defined for the

inventory system, what varies is the formulation of the inventory on-hand value and the service level

provided to each class. Dekker et al. (2002) analyzed the critical level policy when the inventory

system works under a continuous review lot-for-lot policy, lost sales and Poisson demand. These

authors derive expressions for fill-rate and present an efficient method to obtain optimal solutions.

Möllering and Thonemann (2010) analyze a periodic review base-stock policy with two demand

classes, deterministic lead time, discrete demand distribution and full backorder. That work models

the inventory system as a multidimensional Markov chain and optimally solves a service level

problem, based on a service level of type 1 and another on fill-rate. Wang et al. (2013b) analyzed

the same model as Möllering and Thonemann (2010), but considered an anticipated rationing policy.
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This policy reserves inventory for the high priority classes considering a constant critical level and

the coming replenishment of the next period.

In summary, previous research on inventory rationing solved periodic or continuous review

problems with discrete demand. Therefore, to the best of our knowledge, there is no constant

critical level model for the case of continuous demand distribution considered in this thesis.
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3 | Critical Level Rationing In Inventory

Systems With Continuously Distributed

Demand

This chapter analyzes the use of a constant critical level policy for fast-moving items where ra-

tioning is used to provide differentiated service levels to two demand classes (high and low prior-

ity). Previous work on critical level models, with either a continuous or periodic review policy, has

only considered slow-moving items with Poisson demand. In this chapter we consider a continuous

review (Q, r,C) policy with two demand classes that are modeled through continuous distributions

and the service levels are measured by the probability of satisfying the entire demand of each class

during the lead time. We formulate a service level problem as an non-linear problem with chance

constraints for which we optimally solve a relaxation obtaining a closed form solution that can be

computed easily. For instances we tested, computational results show that our solution approach

provide good-quality solutions that are on average 0.3% from the optimal solution.

3.1 Service level problem for strictly increasing non-negative

demand

Consider a facility that holds inventory of a single type of product to serve two demand classes

i = 1, 2, where class 1 is high priority and class 2 is low priority. Let Di(t, t+τ) be the total demand

of class i in the interval (t, t + τ], and D(t, t + τ) = D1(t, t + τ) + D2(t, t + τ) the total demand of

both classes in the interval (t, t + τ]. We denote by FDi(τ)(x) the cumulative distribution function

of the total demand of class i in [0, τ] and FD(τ)(x) the cumulative distribution function of the total

demand of both classes in [0, τ].
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In this chapter we consider fast-moving items for which is more representative and efficient to

model the demand over a time period by a continuous distribution. Following Zheng (1992) we

assume that the total demand of each class are represented by a non-decreasing stochastic process

with continuous sample paths, and stationary and independent increments. For simplicity, we will

refer to this as strictly increasing non-negative demand. This is a common assumption in stochastic

inventory models (Axsäter (2007)) and is implicitly assumed in most (elementary) textbooks on

inventory management. However, the assumptions of independence and continuity are conflicting;

therefore, rigorously speaking, the assumption is approximate (Browne and Zipkin (1991)). Note

that under stationary and independent increments, Di(τ) := Di(0, τ) = Di(t, t + τ) for any t ≥ 0,

i = 1, 2.

Inventory is replenished according to a continuous review (Q, r,C) policy that operates as fol-

lows. When the inventory position falls below a reorder level r, a replenishment order for Q units

is placed and arrives a fixed L > 0 time units later. Demand from both classes are filled as long as

the on-hand inventory level is greater than the critical level C, otherwise only high priority demand

is satisfied from inventory on-hand and low priority demand is backordered. If on-hand inventory

level reaches zero both demands are backordered. To clear backlogged orders, we consider the

threshold clearing mechanism of Deshpande et al. (2003).

Given the inventory control strategy, our objective is to find the parameters of the critical level

policy that minimize the sum of ordering and holding costs per unit time subject to satisfying the

required service level for each class. In this chapter, the service level is measured by the probability

of satisfying the entire demand of each class during the lead time from on-hand inventory (service

level type 1), which does not depend of the replenishment batch quantity. Let αi(r,C) be the

provided service level to class i and αi the preset service level for class i, where α1 > α2 > 0. Then,

the service level problem is:

min
Q,r,C

AC(Q, r,C) (3.1)

s.t: αi(r,C) ≥ αi ∀i = 1, 2 (3.2)

Q, r,C ≥ 0. (3.3)

where AC(Q, r,C) is the average cost per unit time, i.e., the sum of ordering and holding costs
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per unit time. To develop expressions for αi(r,C), i = 1, 2, and AC(Q, r,C) we use a hitting time

approach as in Nahmias and Demmy (1981) and the threshold clearing mechanism of Deshpande

et al. (2003) to allocate backorders when multiple outstanding orders exist.

The hitting time τx
H,D is defined as the amount of time that elapses until the demand D reaches

x for the first time, i.e.,

τx
H,D = inf{τ > 0 | D(τ) > x}. (3.4)

Since we assume strictly increasing non-negative demand, we have P(τx
H,D ≤ τ) = P(D(τ) ≥ x).

Therefore, the distribution function of the hitting time τx
H,D, for a fixed x > 0 is F x

H,D(τ) = 1 −

FD(τ)(x), and its density distribution is:

f x
H,D(τ) = −

∂FD(τ)(x)

∂τ
. (3.5)

Many authors have discussed the hitting time process for strictly increasing non-negative de-

mand. However, an explicit expression for the density of hitting time is not possible in many cases.

Meerschaert and Scheffler (2008) develop a density formula for the hitting time of any strictly in-

creasing non-negative demand based on the Laplace transform of the hitting time. Park and Padgett

(2005) derived a exact density distribution of hitting time for a gamma process using the same

procedure described by equation (3.5).

3.1.1 Average cost per unit time.

Let µ be the total average demand per unit of time, h be the holding cost per unit and unit time and

S the ordering cost. Then the average cost per unit time is AC(Q, r,C) = S
µ

Q
+ hE(OH(∞)), where

OH(∞) is the steady-state on-hand inventory (Axsäter (2007)).

In a (Q, r,C) policy with full-backorders and deterministic lead time, the inventory level is

the on-hand inventory net of all backorders, i.e., IL(t + L) = OH(t + L) − B1(t + L) − B2(t + L),

where IL(t + L) denotes the inventory level, OH(t + L) denotes on-hand inventory and Bi(t + L)

denotes class i backorders, i = 1, 2, all at time t + L. Furthermore, for a (Q, r,C) policy with full-

backorders and deterministic lead time it is still valid that IL(t + L) = IP(t) − D(L), where IP(t)

denotes the inventory position at time t (Deshpande et al. (2003)). Under strictly increasing non-

negative demand, IP(t) will be uniformly distributed on (r, r + Q] in steady state and independent

of lead time demand (Zheng (1992) refers to Serfozo and Stidham (1978) and Browne and Zipkin
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(1991) for a detailed discussion of this assumption). Then, the on-hand inventory at time t + L is

OH(t+L) = IP(t)−D(L)+B1(t+L)+B2(t+L). Taking expected value and limit t →∞, the expected

on-hand inventory at steady-state is E(OH(∞)) = Q

2 +r−µL+E(B∞1 (Q, r,C))+E(B∞2 (Q, r,C)), where

E(B∞i (Q, r,C)) is the class i steady-state backorder, i = 1, 2. Then, the average cost per unit time is:

AC(Q, r,C) = S
µ

Q
+ h

(
Q

2
+ r − µL + E(B∞1 (Q, r,C)) + E(B∞2 (Q, r,C))

)
(3.6)

We now develop expressions for the backorders of the low and high priority class in steady state

using a hitting time approach, the inventory position and the threshold clearing mechanism. We first

describe how the inventory system behaves under rationing, and the threshold clearing mechanism

of Deshpande et al. (2003).

Consider an arbitrary time t + L. By definition, there is rationing at time t + L when C >

OH(t + L) ≥ IL(t + L) = IP(t) − D(t, t + L). Using the hitting time τIP(t)−C

H,D defined in equation

(3.4), this last condition states that if there is rationing at t + L then τIP(t)−C

H,D < L. Note that τIP(t)−C

H,D

corresponds to the time required for IP(t) −C demands.

Define tc as the first time after t when IP(t) − C demand is observed, that is, tc = t + τIP(t)−C

H,D .

If rationing ocurrs at t + L then we have that τIP(t)−C

H,D < L. The threshold clearing mechanism of

Deshpande et al. (2003) only comes into play when backorders exist on arrival of a replenishment

order and uses tc to separate which backorders need to be cleared once the replenishment order

arrives. The general rules to clear the backorders when the replenishment order arrives are:

1. If the entering replenishment batch is large enough to clear all the backorders and leave the

on-hand inventory level above C, then clear all backorders,

2. Otherwise:

2.1 Clear all backlogged demand that arrived before tc in the order of arrival (FCFS),

2.2 Clear any remaining backlogged class 1 demands using FCFS until either all class 1

backorders are filled, or no on-hand inventory remains,

2.3 Carry over (i.e. continue backlog) all class 2 demands that arrive after tc.

Note that rule 1 ensures that OH(t) = IL(t) when OH(t) ≥ C. Rule 2.2 and 2.3 mean that all

remaining backorders that cannot be fulfilled by the entering replenishment batch, are carried over

to be satisfied in the following replenishment arrivals.
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Using the hitting time definition it easy to show that the backorders of both low- and high-

priority at time t + L , deduced by Deshpande et al. (2003), are respectively:

B2(t + L) =



D2(L − τIP(t)−C

H,D ) if τIP(t)−C

H,D < L

0 ∼
(3.7)

B1(t + L) =



D1(L − τIP(t)−C

H,D − τC
H,D1

) if τIP(t)−C

H,D + τC
H,D1
< L ,

0 ∼
(3.8)

where τC
H,D1
= inf{τ > 0 | D1(τ) > C} corresponds to the time required for C demands of class

1. The equivalence between equations (3.7), (3.8) and the expressions developed by Deshpande

et al. (2003), are given by the fact that: D2(tc, t + L) = D2(L − τIP(t)−C

H,D ) and [D1(tc, t + L) − C]+ =

D1(L − τIP(t)−C

H,D − τC
H,D1

).

Taking expectation of equations (3.7) and (3.8) and conditioning on the inventory position IP(t),

the expected backorders at steady state of class 1 and 2 are respectively:

E(B∞2 (Q, r,C)) =
1
Q

∫ r+Q

r

∫ L

0
E(D2(L − τ)) f

y−C

H,D (τ)dτdy , (3.9)

E(B∞1 (Q, r,C)) =
1
Q

∫ r+Q

r

∫ L

0
E(D1(L − τ))( f

y−C

H,D ∗ f C
H,D1

)(τ)dτdy , (3.10)

where: E(Di(L − τ)) =
∫ ∞
−∞ x fDi(L−τ)(x)dx; f

y−C

H,D (τ) = −∂FD(τ)(y−C)
∂τ

; f C
H,D1

(τ) = −∂FD1(τ)(C)

∂τ
; and we

denote by f
y−C

H,D ∗ f C
H,D1

(τ) =
∫ τ

0
f

y−C

H,D (τ − t) f C
H,D1

(t)dt the convolution of f
y−C

H,D (τ) and f C
H,D1

(τ).

3.1.2 Service level type I under rationing policy

We now develop expressions for αi(r,C) of class i = 1, 2 using the hitting time approach. We

first describe the events to fully meet the demand of each class during the lead time under strictly

increasing non-negative demand.

The conditions to fully meet the demand for class 2 in the lead time, under non-negative demand,

are that: (i) there does not exist rationing, i.e., τr−C
H,D > L, where τr−C

H,D is defined in equation (3.4) and

corresponds to the time required for r − C demands, or (ii) rationing occurs and there is no class 2

demand, i.e., τr−C
H,D < L and D2(τ) = 0 , ∀τ ∈ [τr−C

H,D, L] . Since D2(τ) is defined as strictly increasing

non-negative demand, the probability that rationing occurs and there is no demand of the class 2
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during this period is zero. Therefore, the service level provided to the low priority class is:

α2(r,C) = P(D(L) ≤ r −C) = FD(L)(r −C). (3.11)

The conditions to fully meet the demand of class 1 in the lead time, under non-negative demand,

are that: (i) rationing does not exist or (ii) rationing occurs and the class 1 demand during this

period not reach the critical level C, i.e., τr−C
H,D < L and τC

H,D1
≥ L− τr−C

H,D. Therefore, the service level

provided to the high priority class is:

α1(r,C) = P(D(L) ≤ r − C) + P(D1(L − τr−C
H,D) ≤ C ∩ τr−C

H,D < L), (3.12)

because, P(τC
H,D1
> L − τr−C

H,D ∩ τr−C
H,D < L) = P(D1(L − τr−C

H,D) ≤ C ∩ τr−C
H,D < L). Conditioning on the

hitting time τr−C
H,D, the service level provided to the high priority class can be expressed as:

α1(r,C) =
∫ L

0
P(D1(L − τ) ≤ C) f r−C

H,D (τ) dτ + P(D(L) ≤ r − C)

=

∫ L

0
P(D1(L − τ) ≤ C) f r−C

H,D (τ) dτ + α2(r,C). (3.13)

Note that equation (3.13) verifies that α1(r,C) ≥ α2(r,C).

Under strictly increasing non-negative demand, the definition of the hitting time τr−C
H,D implies

that reorder point is strictly greater than the critical level, i.e., r > C ≥ 0. Otherwise the (Q, r,C)

policy is not interesting because the provided service level to low priority class is zero. For example,

if r = C ≥ 0 in every lead time exist rationing and the only possibility to fully meet the demand for

class 2 is that there is no class 2 demand during the lead time (in this case the lead time is equal to

rationing period for class 2). Then, under strictly increasing non-negative demand and r = C ≥ 0,

α2(r, r) = P(D2(L) ≤ 0) = 0. In the same way, we can conclude that under strictly increasing

non-negative demand, for any C > r ≥ 0, α2(r,C) = 0. Therefore, in this chapter we will study

only the case where r > C ≥ 0.

3.1.3 Problem formulation

Using equation (3.11) and (3.13) we can write the service level problem for strictly increasing

non-negative demand, denoted (SLP), as the following optimization problem.
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Problem (SLP):

min
Q,r,C

S
µ

Q
+ h

(
Q

2
+ r − µL + E(B∞1 (Q, r,C)) + E(B∞2 (Q, r,C))

)
(3.14)

s.t:
∫ L

0
P(D1(L − τ) ≤ C) f r−C

H,D (τ) dτ + P(D(L) ≤ r −C) ≥ α1 (3.15)

P(D(L) ≤ r −C) ≥ α2 (3.16)

Q ≥ 0, (3.17)

r > C ≥ 0, (3.18)

where E(B∞1 (Q, r,C)) and E(B∞2 (Q, r,C)) are given by equations (3.9) and (3.10) respectively. We

note that the constraint r > C in (3.18) is implied by constraint (3.16) for demand with positive

support, as the probability of that demand being less than zero equals zero and cannot be bigger

or equal to α2 > 0. We express this strict inequality here to remind us of what the feasible region

looks like.

3.2 SLP using normal distribution as approximation of non-

negative demand

A common practice in stochastic inventory models is to use the normal distribution as an approxi-

mation of the non-negative demand, i.e., the stochastic inventory models are formulated based on

the characteristics of the non-negative demand and then are implemented using normal distribu-

tion as an approximation. The problem with the normal distribution is that there is always a small

probability of negative demand. The normal distribution is a good approximation of non negative

demand when the coefficient of variation is less than or equal to 0.5, i.e., CV ≤ 0.5 (Peterson and

Silver (1979)) in which case the probability of being less than 0 is less than 0.0228.

To solve (SLP) using normal distribution as approximation of the non-negative demand, the

expressions that characterize the hitting time τr−C
H,D and τC

H,D1
, and the backorders, under normally

distributed demand, are required. For this, consider that each class i has identical and independent

normally distributed demand per unit time, with mean µi > 0 and variance σ2
i
> 0, Di(τ) ∼

N(µiτ, σ
2
i τ), and D(τ) ∼ N(µτ, σ2τ), where µ = µ1 +µ2 and σ2 = σ2

1+σ
2
2. Following equation (3.5),
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the density distribution of the hitting time τr−C
H,D under normally distributed demand is:

f r−C
H,D (τ) =

(
r − C + µτ

2τ

) 1

σ
√
τ
ϕ

(
r −C − µτ
σ
√
τ

)
, (3.19)

where ϕ(x) is the density function of the standard normal distribution. In the same way, the density

distribution of the hitting time τC
H,D1

under normally distributed demand is:

f C
H,D1

(τ) =
(
C + µ1τ

2τ

) 1

σ1
√
τ
ϕ

(
C − µ1τ

σ1
√
τ

)
.

Then, the expected backorders in steady state given by equations (3.9) and (3.10) under nor-

mally distributed demand become:

E(B∞2 (Q, r,C)) =
µ2

Q

∫ L

0

(
G

(
r − C − µτ
σ
√
τ

)
−G

(
r + Q − C − µτ

σ
√
τ

))
σ
√
τdτ , (3.20)

E(B∞1 (Q, r,C)) =
µ1

Q

∫ L

0

∫ L

t

f C
H,D1

(t)

(
G

(
r −C − µ(τ − t)

σ
√
τ − t

)
−G

(
r + Q − C − µ(τ − t)

σ
√
τ − t

))
σ
√
τ − t dτdt

(3.21)

where G(x) =
∫ ∞

x
(v − x)ϕ(v)dv = ϕ(x)− x(1−Φ(x))) is the loss function (Axsäter (2007)) and Φ(x)

is the distribution function of the standard normal distribution.

3.3 Solution approach

Consider the following relaxation of (SLP), obtained by dropping the expected backorder expres-

sions:

Problem (RSLP):

min
Q,r,C

S
µ

Q
+ h

(
Q

2
+ r − µL

)
(3.22)

s.t: (3.15), (3.16), (3.18).

It is easy to show that (RSLP) is a relaxation of (SLP) because the objective function of the

(RSLP) is less than or equal to the objective function of (SLP) and the feasible region is the same.
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Therefore, the optimal solution of the problem (RSLP) is a lower bound (LB) of problem (SLP).

Also, if we solve (RSLP), and then use the resulting parameters (Q, r,C) to evaluate the objective

function of (SLP) we obtain a feasible solution and, hence, an upper bound (UB) for the problem

(SLP). Thus, we have a method that gives a lower bound and an upper bound of the original

problem.

Note that (RSLP) is separable in two sub-problems. The first sub problem minimizes S
µ

Q
+ h

Q

2

without constraints on Q and gives the replenishment batch Q =

√
2µS

h
that corresponds to the EOQ

problem and the second sub problem, denoted (SLP0), is

Problem (SLP0):

min
r,C

r (3.23)

s.t: (3.15), (3.16), (3.18).

Therefore, the service level problem reduces to determining the optimal reorder point and criti-

cal level (r,C) that minimize the reorder point r subject to satisfying the required service levels.

To determine the optimal parameters of (SLP0) we take advantage of the structure of the con-

straints (3.15), (3.16) and (3.18). From these constraints we derive structural properties that are

necessary to obtain the exact solution to the (SLP0) problem.

Proposition 1. α2(r,C) is increasing in r and decreasing in C and only depends on (r − C).

Proof. From equation (3.11) we have α2(r,C) = FD(L)(r −C). The result follows since the distribu-

tion function is a monotonically increasing function. �

The main consequence of proposition 1 is that, given a reorder point r, the maximum service

level provided to the low priority class is α2(r, 0).

3.3.1 Solution characterization for (SLP0): increasing non-negative demand

For any strictly increasing non-negative demand that represent the total demand of class i, with

i = 1, 2, we obtain the following structural properties.

Proposition 2. If D1(τ) is a strictly increasing non-negative demand, then α1(r,C) is increasing in

r and C. (Proof. Appendix A)
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The main consequence of proposition 2 is that, given a reorder point r, the minimum service

level provided to high priority class is α1(r, 0).

Let r0
i

be the minimum reorder point r such that the service level provided to the class i, given a

critical level C = 0, is greater than or equal to his preset service level αi, i.e., r0
i
= min{r | αi(r, 0) ≥

αi}, with i = 1, 2. Since functions αi(r, 0) for i = 1, 2 are increasing in r, from propositions 1 and 2,

we have that r0
i

solves αi(r, 0) = αi for i = 1, 2. In particular this gives

r0
2 = F−1

D(L)(α2). (3.24)

Furthermore, from equation (3.13) we have that α1(r, 0) = α2(r, 0) for any r ≥ 0, because

FD1(τ)(0) = 0 for any τ > 0. Then, since α1(r0
1, 0) = α1 > α2 = α2(r0

2, 0) = α1(r0
2, 0), and α1(r, 0) is

increasing in r we conclude that 0 < r0
2 < r0

1 for any α2 > 0.

Using proposition 1 and 2 we propose the following general solution for the (SLP0) problem.

Proposition 3. If Di(τ), with i = 1, 2, are strictly increasing non-negative demand and α2 > 0, then

the optimal parameters of the critical level policy are obtained from the equation system formed by

α1(r,C) = α1 and α2(r,C) = α2, i.e.,

r∗ −C∗ = F−1
D(L)(α2), (3.25)

∫ L

0
P(D1(L − τ) ≤ C∗) f r∗−C∗

H,D (τ) dτ = α1 − α2, (3.26)

and the service levels provided to each class are equal to their preset levels, i.e., αi(r∗,C∗) = αi, i =

1, 2.

Proof. Let C2(r) be the maximum critical level, given a reorder point r, that ensures a service level

α2, i.e., C2(r) = max{C | α2(r,C) ≥ α2}. From proposition 1 we can derive that C2(r) is solution of

α2(r,C) = α2. Then, C2(r) = r − F−1
D(L)(α2) = r − r0

2, i.e., C2(r) is increasing and linear in r. Note

that, C2(r) < r for any α2 > 0. In the same way we define C1(r) as the minimum critical level,

given a reorder point r, that ensures a service level α1, i.e., C1(r) = min{C | α1(r,C) ≥ α1}. From

proposition 2 we obtain that C1(r) is solution of α1(r,C) = α1 and that C1(r) is strictly decreasing in

r. Once C1(r) and C2(r) are defined, the feasible region of (SLP0) problem where all (r,C) satisfy

that α1(r,C) ≥ α1, α2(r,C) ≥ α2 > 0, and r > C ≥ 0, is the intersection of the areas above C1(r)

and below C2(r). The feasible region is shown in figure 3.1.
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b

C
C2(r)

C1(r)

r0
2 r0

1 rr∗

C∗

r = C

Feasible
Region

Figure 3.1: Feasible region of SLP0 problem and α2 > 0.

The figure 3.1 shows that the optimal reorder point r∗ of (SLP0) problem occurs when C2(r)

= C1(r) = C∗. Therefore, the optimal parameters of the critical level policy are obtained from

the equation system formed by α1(r,C) = α1 and α2(r,C) = α2, and the presets service levels are

satisfied exactly. Note that the existence of an r such that C∗ = C2(r) = C1(r) is guaranteed, because

0 < r0
2 < r0

1 as shown above, C1(r) is strictly decreasing and continuous in r, C1(r0
1) = 0, and from

equation (3.12) we obtain that there exists an r > 0 such that C1(r) = r > 0 for any α1 > 0. The

argument is complete noting that C2(r) = r − r0
2 < r is linear and increasing in r. �

Some consequences of the above proof are: (i) the optimal reorder point r∗ is strictly greater

than the optimal critical level C∗ because r0
2 > 0 when α2 > 0, therefore, the constraint (3.18) may

be replaced by: r,C ≥ 0; and (ii) the optimal critical level is strictly greater than zero, i.e., C∗ > 0,

because r0
2 < r0

1.

Proposition 3 provides a general solution for (SLP0) when Di(τ) of class i = 1, 2, are repre-

sented with strictly increasing non-negative demand, and α2 > 0. Solving for the optimal solution

remains challenging in general, as equations (3.25)-(3.26) have to be solved numerically and in-

clude the distribution function of D(L) and the density function of τr−C
H,D which have to be derived

from the input.

3.3.2 Solution characterization for (SLP0): normally distributed demand

Recall that we use the normal distribution as approximation of the non-negative demand. Under

normally distributed demand we obtain the following structural properties.

Proposition 4. Under normally distributed demand, the function α1(r,C) is strictly increasing in r

for any 0 ≤ C < r.
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Proof. Using equation (3.13), the service level provided to the high priority class using normal

distribution can be write as:

α1(r,C) =
∫ L

0



∫ C−µ1(L−τ)
σ1
√

L−τ

−∞
ϕ(x)dx

 f r−C
H,D (τ) dτ + P(D(L) ≤ r − C)

and changing the order of integration we have:

α1(r,C) =
∫ ∞

C−µ1L

σ1
√

L

{∫ L

τ(x)
f r−C
H,D (τ)dτ

}
ϕ(x)dx +

∫ C−µ1L

σ1
√

L

−∞

{∫ L

0
f r−C
H,D (τ)dτ

}
ϕ(x)dx + P(D(L) ≤ r − C)

=

∫ ∞

C−µ1L

σ1
√

L

{P(D(τ(x)) ≤ r −C) − P(D(L) ≤ r −C)} ϕ(x)dx

+

∫ C−µ1L

σ1
√

L

−∞
{1 − P(D(L) ≤ r −C)} ϕ(x)dx + P(D(L) ≤ r − C)

=

∫ ∞

C−µ1L

σ1
√

L

P(D(τ(x)) ≤ r −C)ϕ(x)dx +

∫ C−µ1L

σ1
√

L

−∞
ϕ(x)dx

=

∫ ∞

C−µ1L

σ1
√

L

P(D(τ(x)) ≤ r −C)ϕ(x)dx + P(D1(L) ≤ C),

where τ(x) is obtained from: xσ1

√
L − τ = C −µ1(L− τ). Although τ(x) is the result of a quadratic

equation, the proof remains valid. �

Under normally distributed demand there is always a probability for negative demand. This

fact makes it difficult to prove that α1(r,C) is increasing in C for any r > C ≥ 0, as we have

for strictly increasing non-negative demand. We provide the expression for ∂α1(r,C)
∂C

in (A.1) in the

appendix A. Our numerical computations however have shown that such monotonicity of α1(r,C)

with respect to C exists for large values of the reorder point r. We therefore make this monotonicity

an assumption, which we validate with computational results in section 3.4.

Assumption 1. Assume normally distributed demand and let r̂1 be the solution of α1(r̂1, 0) = 0.5.

Then, for any r ≥ r̂1 the function α1(r,C) is an increasing function of C in the interval C ∈ [0, r).

The main consequence of assumption 1 is that, given a reorder point r ≥ r̂1, the minimum

service level provided to high priority class is α1(r, 0).

From proposition 4 we derived that r0
1 is solution of α1(r, 0) = α1 and under normally distributed

demand we can obtain from equation (3.13) that α1(r, 0) > α2(r, 0) for any finite r ≥ 0. Then, as

αi(r, 0) is increasing in r, with i = 1, 2, we infer that the relationship between r0
2 and r0

1 depends
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on the difference α1 − α2. Thus, we have two cases: (1) r0
2 < r0

1 if α1 − α2 is large enough; or (2)

r0
2 > r0

1 if α1 − α2 is small. A simple way to discriminate if we are in case 1 or 2 is to evaluate

numerically α1(r0
2, 0). Then, if α1(r0

2, 0) < α1, we are in case 1, otherwise, we are in case 2. The

method proposed in this chapter to solve the (SLP0) problem using normally distributed demand,

depends on which case occurs. Note that under normally distributed demand r0
2 = F−1

D(L)(α2) =

µL + zα2σ
√

L ≥ µL > 0 if α2 ≥ 0.5, where zα2 is the inverse standard normal distribution for a

preset service level α2.

Using proposition 4 and assumption 1 we propose the following solution for the (SLP0) prob-

lem using normally distributed demand as approximation of non-negative demand.

Proposition 5. Under normally distributed demand, the assumption 1 and α2 ∈ [0.5, 1), the optimal

parameters of the critical level policy are obtained from the following system of equations:

(a) If α1(r0
2, 0) < α1:

r∗ −C∗ = µL + zα2 σ
√

L, (3.27)
∫ L

0
P(D1(L − τ) ≤ C∗) f r∗−C∗

H,D (τ) dτ = α1 − α2, (3.28)

and the service levels provided to each class are equal to their preset levels, i.e., αi(r∗,C∗) =

αi, i = 1, 2.

(b) If α1(r0
2, 0) ≥ α1:

C∗ = 0, (3.29)

r∗ = µL + zα2 σ
√

L, (3.30)

and service levels provided to each class are: α1(r∗, 0) ≥ α1 and α2(r∗, 0) = α2 for high and

low priority class respectively.

Proof. Under normally distributed demand, C2(r) = r − r0
2 = r − µL − zα2 σ

√
L, and continues to

be increasing and linear in r. On the other hand, from proposition 4 we can obtain that C1(r) is

solution of α1(r,C) = α1 and under assumption 1 we can conclude that C1(r) is strictly decreasing

in r at least from some r > C ≥ r̂1 until r ≤ r0
1. Then, under normally distributed demand, the

feasible region of (SLP0) problem using normally distributed demand where all (r,C) satisfy that

α1(r,C) ≥ α1, α2(r,C) ≥ α2, with α2 ∈ [0.5, 1), and r > C ≥ 0, is the same as defined for the
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proof of proposition 3, but in this case, it can take two different forms, shown in figure 3.2. If

α1(r0
2, 0) < α1, then r0

2 < r0
1 which induces the first feasible regions shown in figure (3.2a) when

α2 ∈ [0.5, 1). If α1(r0
2, 0) ≥ α1, then r0

2 > r0
1, which induces a second feasible region shown in figure

(3.2b) when α2 ∈ [0.5, 1). Note that r0
2 ≥ µL > r̂1 when α2 ∈ [0.5, 1).

b

C2(r)

C1(r)

r0
2 r0

1r̂1 rr∗

C∗

C
r = C

Feasible
Region

(a) α1(r0
2 , 0) < α1 and α2 ∈ [0.5, 1)

C2(r)

C1(r)

r0
2r0

1r̂1 r

C
r = C

Feasible
Region

(b) α1(r0
2 , 0) ≥ α1 and α2 ∈ [0.5, 1)

Figure 3.2: Feasible regions for SLP0 problem using normally distributed demand and α2 ∈ [0.5, 1)

The figure (3.2a) shows that the optimal reorder point r∗ of the (SLP0) problem using normally

distributed demand occurs when C2(r) = C1(r) = C∗. Therefore, the optimal parameters of the

critical level policy are obtained from the equation system formed by α1(r,C) = α1 and α2(r,C) =

α2. From figure (3.2b) we conclude that the minimum reorder point that guarantees a service level

α1 provided to high priority class and a service level α2 provided to the low priority class is r0
2.

Therefore, r∗ = r0
2 = µL + zα2σ

√
L and C∗ = 0. �

Some consequences of the above proof are: (i) given equation (3.27), the equation (3.28) only

depends on C∗; (ii) if α1(r0
2, 0) < α1, then r0

2 is a lower bound of (SLP0) problem using normally

distributed demand when α2 ∈ [0.5, 1); (iii) if α1(r0
2, 0) < α1 and α2 ∈ [0.5, 1), then r∗ > C∗, because

r0
2 ≥ µL > 0, therefore, constraint (3.18) may be replaced by: r,C ≥ 0; and (iv) if α1(r0

2, 0) < α1

and α2 ∈ [0.5, 1), then C∗ > 0, because 0 < r0
2 < r0

1 when α2 ∈ [0.5, 1).

The proposition 5 is a general solution for the (SLP0) problem using normally distributed de-

mand under assumption 1 and α2 ∈ [0.5, 1). On the other hand, similar to the general solution in

the case with demands with non-negative support, it can be difficult to compute the critical level C∗

from equation (3.28).

The following results compare the reorder point induced by the critical level policy with the

reorder point induced by the round-up policy and separate stock policy. Let ru be the reorder point

induce by the round-up policy and rs be the reorder point induced by the separate stock policy. The
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reorder point of the round-up policy is obtained from FD(L)(ru) = α1 and the reorder point of the

separate-stock policy is obtained from rs = rs
1 + rs

2, where rs
1 is solution of FD1(L)(rs

1) = α1 and

rs
2 is solution of FD2(L)(rs

2) = α2. Under normally distributed demand, ru = µL + zα1σ
√

L, and

rs = µL + zα1σ1

√
L + zα2σ2

√
L, where zα1 is the inverse standard normal distribution for a preset

service level α1. Note that, under normal distributed demand, ru ≤ rs if zα1 ≤ zα2

σ2

σ−σ1
and that

σ2
σ−σ1
> 1.

Proposition 6. Under normally distributed demand, the assumption 1 and α2 ∈ [0.5, 1), the optimal

reorder point of the critical level policy is strictly less than the reorder point induced by the round-

up policy, i.e., r∗ < ru, and strictly less than the reorder point induced by the separate stock policy,

i.e., r∗ < rs, when α1(r0
2, 0) ≥ α1,

Proof. From equation (3.13) we note that α1(ru, 0) > α1 because we assume that the lead time

and the parameters of the demand per unit time of both classes are finite and α1 < 1. From

propositions 5(a) we obtained that α1(r∗,C∗) = α1 and r∗ > C∗, and from assumption 1 we derive

that α1(r∗,C∗) = α1 ≥ α1(r∗, 0). Therefore, it holds that α1(ru, 0) > α1 ≥ α1(r∗, 0) and from

proposition 4 we conclude that ru > r∗. On the other hand, from proposition 5(b) we obtained that

α2(r∗, 0) = FD(L)(r∗) = α2. By definition, α1 > α2, then FD(L)(ru) > FD(L)(r∗), and we conclude that

ru > r∗.

Following similar logic to compare the optimal reorder point of the critical level policy with

respect to the reorder point induced by the separate stock policy, from proposition 5(b) we obtain

that r∗ = µL + zα2σ
√

L. Since α1 > α2, we conclude that r∗ < rs from the triangle inequality. �

Unfortunately, we have not found a simple proof that the reorder point induced by the critical

level policy is strictly less than the reorder point induced by separate stock policy when α1(r0
2, 0) <

α1 and α2 ∈ [0.5, 1). The derivation requires checking that

∫ L

0
P

(
D1(L − τ) ≤ zα1σ1

√
L + zα2σ2

√
L − zα2σ

√
L
)

f
r0

2−0
H,D (τ) ∂τ > α1 − α2 , (3.31)

which is not much different from solving the system of equations (3.27)-(3.28) and seeing if r∗ < rs.
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3.4 Computational study

In this section, we present our numerical study and its results. The main objective of the com-

putational study is to show how good is the performance of our solution approach, compared the

critical level policy with the separate stock and round-up policies and provide numerical evidence

to validate assumption 1.

For simplicity, we use normally distributed demand as an approximation to the non-negative

demand, solving RSLP, from which we obtain a lower bound of SLP. Let (Q∗, r∗,C∗) be the

optimal critical level policy controls of RSLP; ACRS LP(Q∗, r∗,C∗) be the objective function of

RSLP; and ACS LP(Q∗, r∗,C∗) be the objective function of SLP given the optimal critical level

policy controls of RSLP. Note that ACRS LP(Q∗, r∗,C∗) = LB, ACS LP(Q∗, r∗,C∗) = UB and UB >

LB. In order to evaluate the performance of our solution, we carried out several test problems and

computed the percentage of optimality gap, Gap(%), expressed as 100 × (UB − LB)/LB.

Recall that RSLP is separable in the EOQ and SLP0 problems. Then, for each test problem

we determine the replenishment batch solving the EOQ model, i.e., Q∗ =
√

2µS/h, and the re-

order point r∗ and the optimal critical level C∗ solving the system of non-linear equations given in

proposition 5.

The equation systems of proposition 5 were programmed by a C code using Brent-Dekker

method. Backorders in the steady state given by equations (3.20) and (3.21) were also programmed

in C code, like the numerical experiments to validate assumption 1. All test were carried on a PC

with Intel Core i7 2.3 GHz processor and 16 GB RAM. The time to compute the parameters of the

critical level policy are on average 0.0011 seconds and in the worst case 0.0019 seconds.

3.4.1 Experimental result for (SLP) problem using normally distributed de-

mand

In order to cover a wide range of data, we design a set of 10 experiments to evaluate the performance

of our solution approach and to compare the critical level policy with the separate stock and round-

up policies. In each experiment we fix the preset service levels α1 and α2, and consider a base

case with the following parameters: normal demand distributions with mean µ1 = µ2 = 25 and

coefficient of variation CV1 = CV2 = 0.2 (σ2
1 = σ

2
2 = 25), lead time L = 5, ordering cost S = 300

and holding cost per unit and unit time h = 0.75. We conduct experiments studying the sensitivity
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of the solutions to changing parameters CVi, µi, S , and h. This gives a total of 135 experiments for

each setting of the preset service levels.

Our numerical results show that our solution approach is able to provide good-quality solutions

that are on average 0.3% and at worst 7.8% from the optimal solution. Table 3.1 show the average

and maximum relative gap over 45 instances for the ten settings of preset service levels and different

values of S .

Gap(%)
S = 100 S = 300 S = 500

α1 α2 Average Max Average Max Average Max
0.975 0.55 1.37 7.81 0.55 3.36 0.35 2.15
0.975 0.65 0.81 4.39 0.33 1.95 0.21 1.26
0.975 0.75 0.44 2.26 0.18 1.02 0.12 0.67
0.975 0.85 0.19 0.93 0.08 0.43 0.05 0.28
0.975 0.95 0.05 0.18 0.02 0.09 0.01 0.06
0.800 0.75 0.87 3.03 0.34 1.32 0.22 0.85
0.850 0.75 0.70 2.80 0.28 1.22 0.18 0.79
0.900 0.75 0.58 2.59 0.23 1.14 0.15 0.74
0.950 0.75 0.48 2.38 0.20 1.06 0.13 0.69
0.999 0.75 0.38 2.04 0.16 0.93 0.10 0.61

Table 3.1: Optimality Gap(%) between lower and upper bounds

Table 3.1 shows that the maximum relative gap occurs when there is maximum difference be-

tween the preset service levels and the ordering cost is minimal (S = 100). As an example, table

3.2 shows the relative optimality gap for the 135 problems of the experiment: α1 = 0.975 and

α2 = 0.75.

Gap(%)
µ1 = 100, µ2 = 25 µ1 = µ2 = 25 µ1 = 25, µ2 = 100

CV1 CV2 h S = 100 S = 300 S = 500 S = 100 S = 300 S = 500 S = 100 S = 300 S = 500
0.2 0.2 0.25 0.03 0.01 0.01 0.02 0.01 0.00 0.11 0.04 0.02

0.75 0.07 0.03 0.02 0.06 0.02 0.01 0.29 0.11 0.06
1.25 0.11 0.04 0.03 0.09 0.03 0.02 0.46 0.17 0.11

0.4 0.4 0.25 0.09 0.03 0.02 0.07 0.03 0.02 0.35 0.13 0.08
0.75 0.21 0.09 0.06 0.19 0.07 0.04 0.91 0.35 0.22
1.25 0.30 0.13 0.09 0.29 0.11 0.07 1.36 0.55 0.35

0.6 0.6 0.25 0.16 0.06 0.04 0.14 0.05 0.03 0.67 0.25 0.16
0.75 0.35 0.16 0.10 0.36 0.14 0.09 1.60 0.67 0.43
1.25 0.48 0.23 0.16 0.53 0.22 0.14 2.26 1.02 0.67

0.6 0.2 0.25 0.15 0.06 0.04 0.09 0.03 0.02 0.15 0.05 0.03
0.75 0.34 0.15 0.10 0.22 0.09 0.05 0.40 0.15 0.09
1.25 0.46 0.22 0.15 0.34 0.14 0.09 0.62 0.24 0.15

0.2 0.6 0.25 0.04 0.01 0.01 0.09 0.03 0.02 0.65 0.24 0.15
0.75 0.10 0.04 0.02 0.23 0.09 0.05 1.57 0.65 0.41
1.25 0.15 0.06 0.04 0.35 0.14 0.09 2.23 0.99 0.65

Table 3.2: Optimality Gap(%) when α1 = 0.975 and α2 = 0.75

The pattern of behavior of the relative optimality gap observed in table 3.2 is repeated for all
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ten experiments, i.e., the relative gap is decreasing in S and increasing in h. The maximum gap

occurs when class 2 dominates on mean and variance (µ2 = 100 and CV2 = 0.6), the ordering cost

is minimal (S = 100) and the holding cost per unit and unit time is maximum (h = 1.25). Note

that we obtain Q from EOQ problem, therefore, for a low ordering cost and high holding cost per

unit and unit time, we hope a low batch size. Then, for a low batch size and domain of low priority

class in mean and variance, we expected high backorders class 2 for the critical level policy. Since

our solution approach is based on a relaxation which despises backorders of class 2, we expect a

high gap between lower and upper bound when the parameters induce high backorders of class 2.

In the next set of results we compare the efficiency of the critical level policy obtained with

the proposed approach against the separate stock and round-up policies. For every one of the 135

problem parameters considered above and ten preset service levels settings, we determine the three

different policies and compute for each the operational costs. As we expected, the critical level

policy outperformed both the separate stock and round-up policies in the 1350 problems considered.

Table 3.3 shows the average and maximum relative benefit of the critical level policy with respect

to the round-up and separate stock for the 10 settings of preset service levels and different values

of S .

Table 3.3 shows that in all experiments, the average relative benefit is greater with respect to

the separate stock policy, but the maximum relative benefit is reached when comparing against the

round-up policy. We also note that the relative benefit to the round-up is more sensitive and, by

contrast, using two separate lot sizes and two separate reorder points causes a more homogeneous

benefit. The maximum relative benefit, with respect to round-up or separate stock policies, occurs

when there is maximum difference between the preset service levels and the ordering cost is mini-

mal (S = 100). As an example, table 3.4 shows the relative benefit regarding round-up and separate

stock for the 135 problems of the experiment: α1 = 0.975 and α2 = 0.75.

The pattern of the maximum relative benefit regarding round-up policy, observed in table 3.4,

is repeated for all ten experiments, i.e., the maximum benefit occurs when the class 2 dominates on

mean and variance (µ2 = 100, CV2 = 0.6), the ordering cost is minimal (S = 100) and the holding

cost per unit and unit time is maximum (h = 1.25). Clearly, the round-up policy is highly inefficient

when the class 2 dominates mean and variance, because under this situation, this policy provides

too much inventory to the low priority class causing a high reorder point and therefore a high cost.

On the other hand, when ordering cost is low and holding cost per unit and unit time is high, batch
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Benefit (%) vs Round-up
S = 100 S = 300 S = 500

α1 α2 Average Max Average Max Average Max
0.975 0.55 18.27 46.88 13.45 38.43 11.34 34.07
0.975 0.65 16.01 41.10 11.73 33.44 9.87 29.57
0.975 0.75 13.38 34.16 9.76 27.62 8.20 24.36
0.975 0.85 9.96 24.95 7.24 20.06 6.08 17.65
0.975 0.95 4.04 8.97 2.93 7.19 2.46 6.33
0.800 0.75 3.74 8.08 2.52 5.90 2.04 4.96
0.850 0.75 5.89 14.07 4.04 10.63 3.30 9.07
0.900 0.75 8.24 20.45 5.77 15.84 4.76 13.68
0.950 0.75 11.21 28.41 8.04 22.53 6.70 19.68
0.999 0.75 19.63 48.15 15.02 40.94 13.03 37.06

Benefit (%) vs Separate stock
S = 100 S = 300 S = 500

α1 α2 Average Max Average Max Average Max
0.975 0.55 24.56 32.43 25.27 31.08 25.53 30.79
0.975 0.65 24.55 31.65 25.24 30.62 25.51 30.40
0.975 0.75 24.55 30.79 25.22 30.09 25.49 29.96
0.975 0.85 24.56 29.77 25.21 29.43 25.47 29.41
0.975 0.95 24.61 30.10 25.20 29.88 25.45 29.78
0.800 0.75 26.28 31.21 26.43 30.52 26.49 30.28
0.850 0.75 25.99 30.82 26.23 30.29 26.32 30.09
0.900 0.75 25.59 30.38 25.96 30.04 26.10 29.91
0.950 0.75 25.02 30.45 25.56 30.11 25.77 29.97
0.999 0.75 22.97 32.14 24.05 30.18 23.67 24.67

Table 3.3: Benefit of the critical level vs. Round-up and Separate stock policies

sizes are small and the expected backorder increases. We observe that the expected backorders

induced by the critical level are greater than those induced by the round-up policy, but its effect on

cost is relatively low compared with the effect of the reorder point. Note that, as Deshpande et al.

(2003) observed, the relative benefit regarding Round-up is decreasing in S .

Finally, we analyze how the preset service levels impact the total cost. From equations (3.27)

and (3.28) we conclude that increasing the preset service level of the high priority class causes

the optimal critical level C∗ and reorder point r∗ to increase. Consequently, we expect an increase

in the holding and total costs. In the same way, we conclude from equations (3.27) and (3.28)

that increasing the preset service level of the low priority class causes the optimal reorder point to

increase and the optimal critical level to decrease. Therefor, we expect an increase in the holding

cost per unit time, but smaller than when α1 increases. Table 3.5 shows how ACS LP(Q∗, r∗,C∗)

increases, for different input parameters, when α2 = 0.75 and the preset service level of the high

priority class increase from α1 = 0.975 to α1 = 0.999.

From table 3.5 we observe that increase the service level of the high priority class from α1 =
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Benefit(%) vs Round-up
µ1 = 100, µ2 = 25 µ1 = µ2 = 25 µ1 = 25, µ2 = 100

CV1 CV2 h S = 100 S = 300 S = 500 S = 100 S = 300 S = 500 S = 100 S = 300 S = 500
0.2 0.2 0.25 2.97 1.90 1.52 4.33 2.65 2.10 11.59 7.41 5.93

0.75 4.40 2.97 2.43 6.80 4.33 3.46 17.17 11.59 9.47
1.25 5.16 3.59 2.97 8.26 5.37 4.33 20.14 14.02 11.59

0.4 0.4 0.25 4.93 3.38 2.78 7.53 4.84 3.89 18.87 12.95 10.64
0.75 6.67 4.93 4.17 11.04 7.53 6.17 25.54 18.87 15.97
1.25 7.48 5.73 4.93 12.89 9.07 7.53 28.60 21.93 18.87

0.6 0.6 0.25 6.32 4.57 3.84 9.98 6.69 5.45 23.83 17.24 14.47
0.75 8.09 6.32 5.49 13.91 9.98 8.35 30.43 23.83 20.70
1.25 8.83 7.16 6.32 15.80 11.75 9.98 33.21 26.97 23.83

0.6 0.2 0.25 6.04 4.35 3.65 7.36 4.79 3.86 12.48 8.12 6.54
0.75 7.75 6.04 5.24 10.65 7.36 6.07 18.06 12.48 10.28
1.25 8.48 6.85 6.04 12.34 8.82 7.36 20.91 14.95 12.48

0.2 0.6 0.25 3.76 2.44 1.97 9.15 5.95 4.79 24.36 17.55 14.71
0.75 5.45 3.76 3.10 13.25 9.15 7.53 31.24 24.36 21.12
1.25 6.31 4.50 3.76 15.37 10.96 9.15 34.16 27.62 24.36

Benefit(%) vs Separate stock
µ1 = 100, µ2 = 25 µ1 = µ2 = 25 µ1 = 25, µ2 = 100

CV1 CV2 h S = 100 S = 300 S = 500 S = 100 S = 300 S = 500 S = 100 S = 300 S = 500
0.2 0.2 0.25 24.06 24.59 24.77 29.25 29.27 29.27 24.62 24.95 25.06

0.75 23.32 24.06 24.33 29.23 29.25 29.26 24.12 24.62 24.79
1.25 22.89 23.75 24.06 29.21 29.24 29.25 23.81 24.41 24.62

0.4 0.4 0.25 23.17 23.94 24.23 29.16 29.21 29.23 23.99 24.53 24.71
0.75 22.20 23.17 23.56 29.10 29.16 29.19 23.28 23.99 24.26
1.25 21.71 22.74 23.17 29.07 29.14 29.16 22.90 23.68 23.99

0.6 0.6 0.25 22.56 23.45 23.80 29.06 29.14 29.17 23.54 24.18 24.42
0.75 21.56 22.56 23.00 28.98 29.06 29.10 22.79 23.54 23.86
1.25 21.10 22.10 22.56 28.94 29.02 29.06 22.42 23.20 23.54

0.6 0.2 0.25 21.56 22.79 23.26 29.96 29.73 29.64 28.43 27.33 26.95
0.75 20.12 21.56 22.16 30.25 29.96 29.84 29.95 28.43 27.87
1.25 19.43 20.90 21.56 30.39 30.09 29.96 30.79 29.09 28.43

0.2 0.6 0.25 23.42 24.16 24.42 25.40 26.89 27.39 18.93 21.27 22.10
0.75 22.46 23.42 23.79 23.25 25.40 26.16 15.88 18.93 20.11
1.25 21.96 23.00 23.42 22.03 24.48 25.40 14.27 17.59 18.93

Table 3.4: Benefit(%) vs. Round-up and Separate stock when α1 = 0.975 and α2 = 0.75

0.975 to α1 = 0.999, increases the total cost in 9.8% average, and as expected, the maximum

increase of ACS LP(Q∗, r∗,C∗) occurs when the class 1 dominates on mean and variance (µ1 = 100

and CV1 = 0.6), the ordering cost is minimal (S = 100) and the holding cost per unit and unit time

is maximum (h = 1.25). This is because, when class 1 is larger in mean and variance, more items

are reserved for the high priority class and the threshold level C increases. On the other hand, a

low ordering cost and high holding cost per unit and unit time produce a small batch size and high

backorders for class 2. Then, the high class 2 backorders cause the holding cost per unit time to

increase. The result is a higher holding cost and thus a higher total cost. Table 3.6 highlights how

ACS LP(Q∗, r∗,C∗) increases for different imput parameters, when α1 = 0.975 and the preset service

level of low priority class increase from α2 = 0.75 to α2 = 0.85.

From table 3.6 we observe that increase the service level of the low priority class from α2 = 0.75
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Increase (%) the total cost
µ1 = 100, µ2 = 25 µ1 = µ2 = 25 µ1 = 25, µ2 = 100

CV1 CV2 h S = 100 S = 300 S = 500 S = 100 S = 300 S = 500 S = 100 S = 300 S = 500
0.2 0.2 0.25 10.06 6.59 5.32 4.28 2.62 2.07 2.98 1.83 1.45

0.75 14.47 10.06 8.32 6.75 4.28 3.42 4.65 2.98 2.39
1.25 16.72 12.01 10.06 8.20 5.32 4.28 5.62 3.69 2.98

0.4 0.4 0.25 16.22 11.51 9.59 7.96 5.12 4.11 5.37 3.48 2.80
0.75 21.24 16.22 13.95 11.71 7.96 6.52 7.79 5.37 4.42
1.25 23.47 18.56 16.22 13.70 9.60 7.96 9.04 6.44 5.37

0.6 0.6 0.25 20.36 15.26 13.02 11.03 7.39 6.02 7.29 4.94 4.04
0.75 25.21 20.36 17.98 15.41 11.03 9.22 10.02 7.29 6.13
1.25 27.19 22.69 20.36 17.54 13.00 11.03 11.30 8.53 7.29

0.6 0.2 0.25 20.31 15.19 12.94 10.13 6.64 5.36 5.53 3.49 2.78
0.75 25.21 20.31 17.91 14.55 10.13 8.38 8.35 5.53 4.48
1.25 27.22 22.66 20.31 16.80 12.09 10.13 9.89 6.74 5.53

0.2 0.6 0.25 11.00 7.32 5.95 6.57 4.22 3.38 4.77 3.18 2.58
0.75 15.48 11.00 9.17 9.70 6.57 5.38 6.67 4.77 3.98
1.25 17.71 13.01 11.00 11.35 7.94 6.57 7.59 5.62 4.77

Table 3.5: ACS LP(Q∗, r∗,C∗) increase (%) between using ᾱ1 = 0.999 and ᾱ1 = 0.975.

Increase (%) the total cost
µ1 = 100, µ2 = 25 µ1 = µ2 = 25 µ1 = 25, µ2 = 100

CV1 CV2 h S = 100 S = 300 S = 500 S = 100 S = 300 S = 500 S = 100 S = 300 S = 500
0.2 0.2 0.25 0.73 0.46 0.37 1.20 0.73 0.57 3.50 2.17 1.72

0.75 1.08 0.73 0.59 1.92 1.20 0.95 5.40 3.50 2.82
1.25 1.27 0.88 0.73 2.35 1.50 1.20 6.47 4.31 3.50

0.4 0.4 0.25 1.07 0.73 0.60 2.06 1.30 1.04 5.97 3.93 3.17
0.75 1.44 1.07 0.90 3.09 2.06 1.68 8.47 5.97 4.95
1.25 1.61 1.24 1.07 3.64 2.51 2.06 9.69 7.09 5.97

0.6 0.6 0.25 1.23 0.89 0.74 2.70 1.77 1.43 7.78 5.37 4.41
0.75 1.55 1.23 1.07 3.85 2.70 2.24 10.41 7.78 6.61
1.25 1.68 1.38 1.23 4.41 3.21 2.70 11.58 9.00 7.78

0.6 0.2 0.25 1.14 0.82 0.69 1.88 1.21 0.97 3.67 2.32 1.85
0.75 1.44 1.14 0.99 2.77 1.88 1.54 5.52 3.67 2.98
1.25 1.56 1.29 1.14 3.24 2.27 1.88 6.52 4.47 3.67

0.2 0.6 0.25 0.96 0.62 0.50 2.69 1.71 1.37 8.15 5.58 4.58
0.75 1.40 0.96 0.79 4.00 2.69 2.19 10.99 8.15 6.90
1.25 1.62 1.15 0.96 4.70 3.26 2.69 12.27 9.46 8.15

Table 3.6: ACS LP(Q∗, r∗,C∗) increase (%) between using α2 = 0.85 and α2 = 0.75

to α2 = 0.85, increases the total cost in 3% average, and as expected, the maximum increase

of ACS LP(Q∗, r∗,C∗) occurs when the class 2 dominates on mean and variance (µ2 = 100 and

CV2 = 0.6), the ordering cost is minimal (S = 100) and the holding cost per unit and unit time is

maximum (h = 1.25). This is because, high class 2 backorders are produced in the critical level

policy when class 2 dominates and the batch size is small.

The results obtained by using normally distributed demand are similar to those obtained by

using a Poisson process (obtained from Deshpande et al. (2003)). However, using normally dis-

tributed demand as an approximation of strictly increasing non-negative demand allows us to ob-

serve the effect of changes in variance on the critical level policy, i.e., how changing the coefficient
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of variation CV (ratio of standard deviation to mean) affects our results. For any parameters setting

that we tested, we observe that increasing σ2
i , equivalent to increasing CVi for a fixed µi, causes an

increase in ACS LP(Q∗, r∗,C∗). This is because, we expect high backorders and large reorder point

r and critical level C, when variance of class i increases for i = 1 or 2. Furthermore, we observe

from table 3.4 that:

• benefit with respect to round-up is increasing in CVi for i = 1, 2,

• benefit with respect to separate stock is decreasing in CV1 when µ1 dominates and increasing

when µ1 = µ2 or µ2 dominates,

• benefit with respect to separate stock is decreasing in CV2.

3.4.2 Numerical evidence: assumption 1

Proposition 5 that characterizes the optimal critical level solution in the case of normally distributed

demand makes the assumption that α1(r,C) is increasing in C ∈ [0, r) for a large enough r (as-

sumption 1). In order to numerically validate this assumption and cover a wide range of data,

a set of 8 experiments were designed. In each experiment we generate 100000 random sets of

{L, µ1,CV1, µ2,CV2}, within predefined limits that appear in table 3.7. For each randomly generated

set of parameters, we also generate a random reorder point in the interval [µL, µL+z0.9999σ
√

L] and

a random critical level in the interval [0, r). Then, for each random set {L, µ1,CV1, µ2,CV2, r,C} we

evaluate ∂α1(r,C)
∂C

and α1(r, 0). We provide the expression for ∂α1(r,C)
∂C

in (A.1) in the appendix A. For

each experiment we obtain the minimum α1(r, 0) such that the service level provided to the high

priority class is increasing in C, i.e., min{α1(r, 0) | ∂α1(r,C)/∂C ≥ 0}. The first experiment ran-

domly vary the parameters within the limits of the base case. Then, the limits of these parameters

are varied. Table 3.7 shows the parameters limits at each experiment and the result obtained.

Based on the results shown in Table 3.7, we infer that for any r ≥ r̂1, with r̂1 solution of

α1(r̂1, 0) = 0.5, the function α1(r,C) is an increasing function of C in the interval C ∈ [0, r), i.e., we

infer that assumption 1 seems to be valid at least within the limits of the experiments of Table 3.7.
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Exp. L µ1 CV1 µ2 CV2 {min{α1(r, 0) | ∂α1(r,C)/∂C ≥ 0}}
1 [1,5] (0,25] (0,0.2] (0,25] (0,0.2] 0.4268
2 [1,25] (25,100] (0,0.2] (0,25] (0,0.2] 0.4206
3 [1,25] (0,25] (0.2,2] (0,25] (0,0.2] 0.3334
4 [1,25] (0,25] (0,0.2] (25,100] (0,0.2] 0.3715
5 [1,25] (0,25] (0,0.2] (0,25] (0.2,2] 0.4813
6 [1,25] (25,100] (0,0.2] (25,100] (0,0.2] 0.3642
7 [1,25] (0,25] (0.2,2] (0,25] (0.2,2] 0.4346
8 [1,25] (25,100] (0.2,2] (25,100] (0.2,2] 0.4535

Table 3.7: Numerical evidence for assumption 1

3.5 Conclusions

In this chapter we analyzed the constant critical level policy for fast-moving items when rationing

is used to provide differentiated service levels to two demand classes (high and low priority). The

inventory system operates under continuous review (Q, r) policy, with a critical threshold value C,

full-backorder, deterministic lead time, and the service level provided to each class is measured by

service level type 1.

Using the hitting time approach and the threshold clearing mechanism to satisfy backorders

when multiple outstanding orders exist, we develop expressions for service levels type I under

rationing and expected backorders of high and low priority classes. We formulate a service level

problem as a nonlinear problem with chance constraints (service level constraints) to determine

the optimal parameters of the critical level policy. We propose to optimally solve a relaxation,

which allows us to obtain good-quality bounds. For strictly increasing non-negative demand, we

characterize the optimal solution of the relaxed service level problem through a system of equations

and, under mild assumptions, when normally distributed demand is used as approximation of the

non-negative demand.

The computational results show that our solution approach can find good-quality solutions that

are on average 0.3% and at worst 7.8% from the optimal solution. Given the nature of our relaxation,

the maximum gap(%) occurs when the class 2 dominates on mean and variance, the ordering cost

is minimal, the holding cost per unit and unit time is maximum and difference between the preset

service levels is maximum.

As expected, the critical level policy outperformed both the separate stock and round-up policies

in terms of total cost. Using normally distributed demand as an approximation of strictly increasing

non-negative demand allows us to observe the effect of varying the coefficient of variation of the
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demand distribution, situation that is not possible with Poisson demand process. We observe that

the benefit of critical level policy with respect round-up is increasing in the variance of the demand

distributions for both classes, and the benefit with respect separate stock is decreasing in the vari-

ance of class 2 demand, decreasing in the variance of class 1 demand when the mean of class 1

demand is larger and increasing when the mean of class 2 dominates. In addition, we observe the

following managerial insights:

• the average savings induced by the critical level policy are greater with respect to separate

stock, but the maximum savings are achieved when comparing to round up policy.

• critical level policy leads to significant savings with respect to round-up when class 2 domi-

nates on mean and variance, the ordering cost is minimal, holding cost per unit and unit time

is maximum and difference between preset service levels is maximum.

• critical level policy leads to significant savings with respect to separate stock when class 2

dominates on mean, class 1 dominates on variance, the ordering cost is minimal, holding cost

per unit and unit time is maximum and difference between preset service levels is maximum.

• the cost of increasing the service level of the high priority class is significantly greater than

the cost of increasing the service level of the low priority class.

There are a number of questions and issues left for future research. The first one, is to solve

exactly the SLP problem or solve a relaxation that does not drop backorders. Second is to expand

the results to more than two classes. Third is to broaden the measures of service level. For instance

we could use the fill-rate as service level measures, leading to different problems and therefore

different solutions. In particular, the fill-rate or ready rate depend of the replenishment batch quan-

tity, therefore, although we consider a relaxation, the service level problem is not separable as in

our case. Therefore, the problem becomes more difficult to solve because the replenishment batch

quantity, the reorder point and the critical level must be optimized jointly in the same service level

problem. Another line of future work is to propose a cost optimization problem where backorders

of each class are penalized with different cost.
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4 | Convex approximation for backorders

of a rationing inventory policy with fast

moving items

This chapter analyzes the constant critical level policy for fast-moving items of an inventory system

facing random demands from two customer classes (high and low priority). We consider a contin-

uous review (Q, r,C) policy with continuously distributed demands. Using the state-dependent

demand approach and the threshold clearing mechanism we obtain an approximation for on-hand

inventory based on a convex approximation of backorders. We propose a cost optimization problem

that uses the convex objective function to determine the parameters of the critical level policy. For

instances we tested, computational results show that the proposed approximation allows us to ob-

tain good-quality solutions that induce a benefit on average 7.5% and 26.3% against the round-up

and separate stock policies respectively.

4.1 Model Framework

Consider a facility that holds inventory of a single type of product to serve two demand classes

i = 1, 2, where class 1 is high priority and class 2 is low priority. Let Di(t, t+τ) be the total demand

of class i in the interval (t, t + τ], and D(t, t + τ) = D1(t, t + τ) + D2(t, t + τ) the total demand of

both classes in the interval (t, t + τ]. We denote by FDi(τ)(x) the cumulative distribution function

of the total demand of class i in [0, τ] and FD(τ)(x) the cumulative distribution function of the total

demand of both classes in [0, τ].

In this chapter we consider fast-moving items for which is more representative and efficient to

model the demand over a time period by a continuous distribution. Following Zheng (1992) we
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assume that the total demand of each class are represented by a nondecreasing stochastic process

with continuous sample paths, and stationary and independent increments. For simplicity, we will

refer to this as strictly increasing non-negative demand. This is a common assumption in stochastic

inventory models (Axsäter (2007)) and is implicitly assumed in most (elementary) textbooks on

inventory management. However, the assumptions of independence and continuity are conflicting;

therefore, rigorously speaking, the assumption is approximate (Browne and Zipkin (1991)). Note

that under stationary and independent increments, Di(τ) := Di(0, τ) = Di(t, t + τ) for any t ≥ 0,

i = 1, 2.

Inventory is replenished according to a continuous review (Q, r,C) policy that operates as fol-

lows. When the inventory position falls below a reorder level r, a replenishment order for Q units

is placed and arrives a fixed L > 0 time units later. Demand from both classes are filled as long as

the on-hand inventory level is greater than the critical level C, otherwise only high priority demand

is satisfied from inventory on-hand and low priority demand is backordered. If on-hand inventory

level reaches zero both demands are backordered. To clear backlogged orders, we consider the

threshold clearing mechanism of Deshpande et al. (2003).

Given the inventory control strategy, our objective is to find the parameters of the critical

level policy that minimize the sum of the ordering cost, the holding cost and shortage costs. Let

AC(Q, r,C) be the average cost per unit time:

AC(Q, r,C) = S
µ

Q
+ hE(OH(∞)) + b1E(BO1(∞)) + b2E(BO2(∞)), (4.1)

where µ is the average demand per unit of time; bi is the shortage cost per unit time of class i with

b1 > b2 > 0; h is the holding cost per unit and per unit time; S is the ordering cost; E(OH(∞)) is

the steady-state on-hand inventory; and E(Bi(∞)) is the class i steady-state backorder, i = 1, 2.

In a (Q, r,C) policy with full-backorders and deterministic lead time, the inventory level is the

on-hand inventory net of all backorders, i.e., IL(t + L) = OH(t + L) − BO1(t + L) − BO2(t + L),

where IL(t + L) denotes the inventory level, OH(t + L) denotes on-hand inventory and BOi(t + L)

denotes class i backorders, i = 1, 2, all at time t + L. Furthermore, for a (Q, r,C) policy with full-

backorders and deterministic lead time it is still valid that IL(t + L) = IP(t) − D(L), where IP(t)

denotes the inventory position at time t (Deshpande et al. (2003)). Under strictly increasing non-

negative demand, IP(t) will be uniformly distributed on (r, r + Q] in steady state and independent

of lead time demand (Zheng (1992) refers to Serfozo and Stidham (1978) and Browne and Zipkin
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(1991) for a detailed discussion of this assumption). Then, the on-hand inventory at time t + L is

OH(t + L) = IP(t) − D(L) + BO1(t + L) + BO2(t + L). Taking the expected value and considering

the limit t →∞, the expected on-hand steady-state inventory is:

E(OH(∞)) =
Q

2
+ r − µL + E(BO1(∞)) + E(BO2(∞)). (4.2)

4.1.1 Steady state backorders

In this section we develop expressions for backorders of the low and high priority classes in the

steady state by using state-dependent demand approach, the inventory position and the threshold

clearing mechanism. We first describe how the inventory system behaves under rationing, and the

threshold clearing mechanism of Deshpande et al. (2003).

Consider an arbitrary time t + L. By definition, there is rationing at time t + L when C >

OH(t + L) ≥ IL(t + L) = IP(t) − D(t, t + L). Under rationing conditions at t + L, let tc be the first

time after t when IP(t) − C demand is observed. The threshold clearing mechanism of Deshpande

et al. (2003) only comes into play when backorders exist on arrival of a replenishment order and

uses tc to separate which backorders need to be cleared once the replenishment order arrives. The

general rules to clear the backorders when the replenishment order arrives are:

1. If the entering replenishment batch is large enough to clear all the backorders and leave the

on-hand inventory level above C, then clear all backorders,

2. Otherwise:

2.1 Clear all backlogged demand that arrived before tc in the order of arrival (FCFS),

2.2 Clear any remaining backlogged class 1 demands using FCFS until either all class 1

backorders are filled, or no on-hand inventory remains,

2.3 Carry over (i.e. continue backlog) all class 2 demands that arrive after tc.

Note that rule 1 ensures that OH(t) = IL(t) when OH(t) ≥ C. Rule 2.2 and 2.3 mean that all

remaining backorders that cannot be fulfilled by the entering replenishment batch, are carried over

to be satisfied in the following replenishment arrivals.

The backorders of both low- and high-priority at time t + L , deducted by Deshpande et al.
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(2003), are respectively:

BO2(t + L) =



D2(tc, t + L) if IP(t) − D(t, t + L) < C

0 ∼
(4.3)

BO1(t + L) =



[D1(tc, t + L) − C]+

0 ∼
(4.4)

The inventory position IP(t) does not provide enough information to determine the backorders

in the steady state (Deshpande et al. (2003)). To address this lack of information, in chapter 3 we

propose to use the hitting time approach to characterize the inventory system and we obtain exact

expressions of backorders of both low- and high- priority class at steady state under the threshold

clearing mechanism. The problem is that the backorders are non convex. In this chapter, we propose

use an approximation to address with the lack of information and could define approximated and

convex expressions of the backorders at steady state. Our approximation is intuitive, based on

demand class i during [tc, t + L] is proportional to the total demand for both classes during this

period, i.e.,

Di(tc, t + L) = ki(D(t, t + L) − IP(t) + C), ∀ i = 1, 2, (4.5)

where D(tc, t + L) = D(t, t + L) − IP(t) +C, and ki is the proportionality factor for class i. Note that

ki is is a random variable and for any proportionality factor, it must be satisfied that k1+k2 = 1. Our

approach is to consider that the proportionality factor ki is constant. Then, replacing equation (4.5)

in equations (4.3) and (4.4), and taking the expectation and conditioning on the inventory position

the approximated expected backorders in the steady state of class 1 and 2 for a strictly increasing

non-negative demand are, respectively:

E(BO2(∞)) =
k2

Q
(β(r − C) − β(r + Q − C)) , (4.6)

E(BO1(∞)) =
k1

Q

(
β(r + C

′
) − β(r + Q + C

′
)
)
, (4.7)

where: β(v) =
∫ ∞

v
(x − v)(1 − FD(L)(x))dx and C

′
= C

(
1
k1
− 1

)
.
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4.1.2 Cost optimization problem for strictly increasing non-negative demand

Replacing equation (4.2), (4.6) and (4.7) in equation (4.1) we can express the approximate average

cost per unit time as:

AC(Q, r,C) =S
µ

Q
+ h

(
Q

2
+ r − µL

)
+ (b1 + h)

k1

Q

(
β(r + C

′
) − β(r + Q +C

′
)
)

+ (b2 + h)
k2

Q

(
β(r + C

′
) − β(r + Q + C

′
)
)

(4.8)

Our objective is to determine the optimal parameters of the (Q, r,C) policy that minimizes the

total cost. Then, our problem for a strictly increasing non-negative demand can be written as a

nonlinear optimization problem, denoted (P0), as follows.

Problem (P0):

Min
Q,r,C

AC(Q, r,C) (4.9)

s.t r ≥ C ≥ 0. (4.10)

Constraint (4.10) ensures that the replenishment order is placed before the lower priority class

is no longer served.

4.1.3 P0 using normal distribution as approximation of non-negative demand

A common practice in stochastic inventory models is to use the normal distribution as an approx-

imation of non-negative demand, i.e., stochastic inventory models are formulated based on the

characteristics of non-negative demand and are then implemented using a normal distribution. The

problem with the normal distribution is that there is always a small probability for negative demand.

Therefore, an exact result for a strictly increasing non-negative demand is only approximately true

for normal demand. But, on the other hand, a normal distribution is easy to handle and the probabil-

ity of negative demand can be handled through the relationship between the mean and the standard

deviation. In this sense, Peterson and Silver (1979) show that normal distribution is a good approx-

imation of non negative demand when the coefficient of variation is less than or equal to 0.5, i.e.,

CV ≤ 0.5.
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To solve (P0) using normal distribution as approximation of the non-negative demand, the

expressions of backorders are required. For this, consider that each class i has identical and in-

dependent normally distributed demand per unit time, with mean µi > 0 and variance σ2
i
> 0,

Di(τ) ∼ N(µiτ, σ
2
i τ), and D(τ) ∼ N(µτ, σ2τ), where µ = µ1 + µ2 and σ2 = σ2

1 + σ
2
2. The approxi-

mated expected backorders in the steady state of class 1 and 2 using a normally distributed demand

are, respectively:

E(BO2(∞)) =
σ
′2

Q
k2

[
H

(
r − C − µ′

σ′

)
− H

(
r + Q − C − µ′

σ′

)]
, (4.11)

E(BO1(∞)) =
σ
′2

Q
k1

[
H

(
r + C

′ − µ′

σ′

)
− H

(
r + Q +C

′ − µ′

σ′

)]
, (4.12)

where: µ
′
= µL, σ

′
= σ
√

L,

H(x) =
∫ ∞

x

G(v)dv =
1
2

[
(x2 + 1)(1 − Φ(x)) − xϕ(x)

]
,

G(x) =
∫ ∞

x

(v − x)ϕ(v)dv = ϕ(x) − x(1 −Φ(x)),

is the so-called loss function, Φ(x) is the distribution function of the standard normal distribution

and ϕ(x) is the density function.

As H(x) is decreasing and convex Axsäter (2007)), it is easy to note that E(BO1(∞)) is decreas-

ing in r and C, while E(BO2(∞)) is increasing in C and decreasing in r. The same behavior is

described by Deshpande et al. (2003) for Poisson demand.

Then, the problem (P0 + N) can be written as follows.

Problem (P0+N)

Min
Q,r,C

S
µ

Q
+ h

(
Q

2
+ r − µL

)
+ (b1 + h)

σ
′2

Q
k1

[
H

(
r + C

′ − µ′

σ′

)
− H

(
r + Q + C

′ − µ′

σ′

)]

+ (b2 + h)
σ
′2

Q
k2

[
H

(
r − C − µ′

σ′

)
− H

(
r + Q −C − µ′

σ′

)]
(4.13)

s.t r ≥ C ≥ 0. (4.10)
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4.2 Convexity of the approximate average cost per unit time

AC(Q, r,C)

Consider the objective function of (P0). Since it is a nonlinear function, finding the optimal param-

eters of the (Q, r,C) policy is difficult, unless the objective function is convex. Clearly the first and

second term of (4.8) are convex, hence the convexity of AC(Q, r,C) will depend on whether the

backorders are convex or not.

Proposition 7. Backorders of class 1 and class 2 defined by equations (4.6) and (4.7) are strictly

convex in Q, r and C.

Proof. Consider the backorder in the steady-state for the continuous review (Q, r) policy:

E(BO(∞)) =
1
Q

(β(r) − β(r + Q)) . (4.14)

Zipkin (1986) has already proved that (4.14) is jointly convex in Q and r when fD(L) > 0 for any

t > 0.

The proposed approximation allows us to describe the steady-state backorders in terms of Q

and a linear combination of r and C. Note that class 1 backorders depend on r + C′, and class 2

backorders depend on r − C. It is a fact that the composition of a convex function with an affine

mapping preserves convexity (see Boyd and Vandenberghe (2004)). Thus, AC(Q, r,C) given by

(4.8) is jointly convex in Q, r and C and (P0) is a nonlinear convex problem. �

The above proposition applies also to the case where FD(L)(x) is normal. Therefore, AC(Q, r,C)

given by (4.13) is jointly convex in Q, r and C and (P0 + N) is a nonlinear convex problem.

4.3 Solution approach

For any convex optimization problem with differentiable objective and constraint functions, any

points that satisfy KKT conditions are primal and dually optimal, and have zero duality gap (Boyd

and Vandenberghe (2004)). Since (P0) and (P0 + N) are strictly convex optimization problems, our

approach to finding a solution will be based on solving the KKT conditions.
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Let us consider the optimization problem (P0) and (P0 + N). A simple analysis of the objective

function allows us to relax Q,C ≥ 0 from (P0) because (i) when Q → 0+, then AC(Q, r,C) → ∞,

so it is not possible that Q ≥ 0 is active in the optimum; and (ii) E(BO1(∞)) decreases in C whereas

E(BO2(∞)) increases in C, therefore non-positive values of C would be obtained only if b2 ≥ b1

which is a contradiction according to the model framework. The above relaxation applies also to

(P0 + N).

Regarding the reorder point, although a negative value of r does not have any practical sense,

we cannot disregard the non-negativity constraint of this variable, mostly because there are some

situations when this constraint is active, e.g., if the ordering cost S is too high, the optimal lot size

will be so large that the optimal reorder point will have to be zero. Thus, we will solve (P0) and

(P0 + N) by only considering the r ≥ C and r ≥ 0 constraints, denoted as (P1+) and (P1 + N),

respectively.

The Lagrangian function of (P1+) is L(Q, r,C, λ) = AC(Q, r,C) + λ1(C − r) − λ2r, where λi is

a Lagrangian multiplier. Then, the KKT conditions are defined as follows:

∂

∂r
L(Q, r,C, λi) =

∂

∂r
AC(Q, r,C) − λ1 + λ2 = 0

∂

∂C
L(Q, r,C, λi) =

∂

∂C
AC(Q, r,C) + λ1 = 0

∂

∂Q
L(Q, r,C, λi) =

∂

∂Q
AC(Q, r,C) = 0

λ1(C − r)= 0

λ2(−r) = 0

λi ≥ 0

Note that the domain of (P1+) is defined by linear constraints which make the KKT conditions

easier to solve compared to a problem that is subjected to nonlinear constraints (e.g., service level

type 1, or the fill-rate). Since these constraints are few and easy to deal with, it is straightforward

to define an algorithm in terms of the activation/deactivation of them.

Let (Q∗, r∗,C∗) be the optimal solution of (P1+) and let (Qu, ru,Cu) be the solution of (P1+),

which is unrestricted, i.e., when λ1 = λ2 = 0. The solution set is obtained from the following

algorithm:
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Algorithm 1 Active-constraints algorithm
Solve the KKT conditions of (P1+) (unrestricted)
if ru > Cu then

The optimal solution is (Qu, ru,Cu)
else if ru > 0 then

(Q∗, r∗,C∗) is obtained from the KKT conditions by considering r∗ = C∗ (λ1 > 0 and λ2 = 0
)
else

(Q∗, r∗,C∗) is obtained from the KKT conditions by considering r∗ = C∗ = 0 (λi > 0)
end if

Algorithm 1 ensures that the optimal solution will be found, however, the complexity of the

equation systems derived from the KKT conditions will depend on how the demand process is

modeled.

Let us now consider the (P1 + N) problem. Before applying algorithm 1 to find the optimal

solution, it is convenient to define:

fi(Q, r,C) = 1 − σ
′

Q

[
G

(
ai − µ′

σ′

)
−G

(
ai + Q − µ′

σ′

)]
, (4.15)

where ai is a linear combination of r and C, with r + C′ and r − C for class 1 and class 2 demands,

respectively. We can express the partial derivatives of AC(Q, r,C) with respect to r and C in terms

of fi :

∂

∂r
AC(Q, r,C) = h + k1(b1 + h)( f1 − 1) + k2(b2 + h)( f2 − 1) (4.16)

∂

∂C
AC(Q, r,C) = k2(b1 + h)( f1 − 1) + k2(b2 + h)(1 − f2) , (4.17)

and the partial derivative of AC(Q, r,C) with respect to Q is given by the following equation:

∂

∂Q
AC(Q, r,C)=

h

2
− S
µ

Q2

−(b1 + h)
σ′2

Q2
k1

[
H

(
r +C′ − µ′

σ′

)
− H

(
r +C′ + Q − µ′

σ′

)
− Q

σ′
G

(
r +C′ + Q − µ′

σ′

)]

−(b2 + h)
σ′2

Q2
k2

[
H

(
r −C − µ′

σ′

)
− H

(
r − C + Q − µ′

σ′

)
− Q

σ′
G

(
r − C + Q − µ′

σ′

)]

(4.18)

Let (Qu, ru,Cu) be the optimal solution of (P1 + N), which is unrestricted. This solution set can
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be obtained from the following system of equations:

f1(Q, r,C) =
b1

b1 + h
(4.19)

f2(Q, r,C) =
b2

b2 + h
(4.20)

∂

∂Q
AC(Q, r,C) = 0 (4.21)

Then (Qu, ru,Cu) is the optimal solution of (P1 + N) only if it belongs to the domain of the

problem, otherwise AC(Qu, ru,Cu) is a lower bound and it is necessary to solve another system of

equations to determine the optimal solution. Then, if ru is non-negative but smaller than C, the

optimal solution of (P1 + N) is: r∗ = C∗, and C∗, Q∗ are obtained from equations (4.19) and (4.21),

respectively. Otherwise, the optimal solution of (P1 + N) is r∗ = C∗ = 0, and Q∗ is obtained from

equation (4.21). The above procedure can be carried out via the following algorithm.

Algorithm 2 Iterative technique to solve (P1 + N)

1: Q(0) =

√
2µS

h
2: Obtain(r + C′)(k) from 4.19
3: Obtain (r − C)(k) from 4.20
4: Obtain r(k) and C(k)

5: if r(k) > C(k) > 0 then
6: Given (r(k),C(k)) obtain Q(k+1) from 4.21
7: else if 0 < r(k)

6 C(k) then
8: Recalculate (r(k),C(k)) from r(k) = C(k) and 4.19
9: Given (r(k),C(k)) obtain Q(k+1) from 4.21

10: else
11: Redefine r(k) = C(k) = 0
12: Given (r(k),C(k)) obtain Q(k+1) from 4.21
13: end if
14: if AC(Q(k), r(k−1),C(k−1)) − AC(Q(k+1), r(k),C(k)) ≤ ε then
15: Stop
16: else
17: go to 2
18: end if

Note that, (P0) and (P0 + N) can also be solved using a nonlinear convex equation.
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4.4 Computational study

In this section, we present our numerical study and its results. The main objective of the computa-

tional study is to show how good is the performance of our approximation through compared the

critical level policy with the separate stock and round-up policies.

The quality of the convex approximation depends on the factor of proportionality ki, which

allows us to express the demand of class i as a portion of the total demand for both classes. We

propose to use the ratio of the average demand per unit time as a factor of proportionality, i.e.,

ki =
µi

µ
. (4.22)

For simplicity, we use normally distributed demand as an approximation to the non-negative

demand, solving (P0) through the algorithm 2. Let (Q∗, r∗,C∗) be the optimal critical level policy

controls of (P0). Once we obtain the optimal critical level policy controls we evaluate the exact ex-

pected backorders of both classes through the formulation provided by equations (3.20) and (3.21).

Then, let ACe(Q∗, r∗,C∗) be average cost per unit time resulting to evaluate the exact backorders.

To evaluate the performance of our approximation, we carried out several test problems and

computed the benefit of the critical level policy obtained with the proposed approach against the

round-up and separate stock policies. Let ACu and ACs be the average cost per unit time induced by

the round-up and separate stock policies respectively and 100× (ACu −ACe)/ACe and 100× (ACs −

ACe)/ACe the benefit of the critical level policy against the round-up and separate stock policies

respectively

In order to cover a wide range of data, we design a set of 10 experiments to evaluate the per-

formance of our approximation and to compare the critical level policy with the separate stock and

round-up policies. In each experiment we fix the shortage costs per unit time b1 and b2, and consider

a base case with the following parameters: normal demand distributions with mean µ1 = µ2 = 25

and coefficient of variation CV1 = CV2 = 0.2 (σ2
1 = σ

2
2 = 25), lead time L = 5, ordering cost

S = 300 and holding cost per unit and unit time h = 0.75. We conduct experiments studying the

sensitivity of the solutions to changing parameters CVi, µi, S , and h. This gives a total of 135

experiments for each setting of the shortage costs.

The equation systems of Algorithm 2 was programmed by a C code using Brent-Dekker method.

All test were carried on a PC with Intel Core i7 2.3 GHz processor and 16 GB RAM. The time to
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compute the parameters of the critical level policy are on average 8.8E − 05 seconds and in the

worst case 8.8E − 4 seconds.

Our numerical results show that our approximation is able to provide good-quality solutions

because the benefit of the critical level policy obtained with the proposed approach against the

separate stock and round-up policies is on average 7.5% and 26.3% respectively. Table 4.1 shows

the average and maximum relative benefit of the critical level policy with respect to the round-up

and separate stock for the 10 settings of shortage costs and different values of S .

Benefit (%) vs Round-up
S = 100 S = 300 S = 500

b1 b2 Average Max Average Max Average Max
30 5 11.79 34.66 11.08 29.41 8.38 23.42
30 10 7.85 23.41 7.97 29.55 5.44 14.77
30 15 5.69 17.98 6.29 29.61 3.89 10.18
30 20 4.22 14.36 5.16 29.63 2.85 7.10
30 25 3.11 11.63 4.32 29.65 2.07 4.78
10 5 7.35 24.03 7.55 29.64 5.06 13.46
15 5 9.22 27.91 9.03 29.55 6.45 17.55
20 5 10.37 30.84 9.95 29.49 7.31 20.20
25 5 11.18 33.03 10.59 29.45 7.92 22.04
35 5 12.27 35.94 11.47 29.38 8.75 24.52

Benefit (%) vs Separate stock
S = 100 S = 300 S = 500

b1 b2 Average Max Average Max Average Max
30 5 26.01 31.37 26.27 30.93 26.45 30.71
30 10 25.47 31.55 26.25 30.97 26.44 30.70
30 15 25.15 31.70 26.23 31.11 26.41 30.83
30 20 24.93 31.79 26.21 31.19 26.39 30.91
30 25 24.76 31.85 26.19 31.24 26.37 30.96
10 5 26.03 32.41 26.88 31.56 26.99 31.19
15 5 26.04 31.92 26.64 31.19 26.78 30.87
20 5 26.03 31.60 26.49 30.99 26.64 30.78
25 5 26.02 31.37 26.37 30.96 26.54 30.74
35 5 25.99 31.51 26.19 30.90 26.39 30.68

Table 4.1: Benefit of the critical level vs. Round-up and Separate stock policies

Table 4.1 shows that in all experiments, the average relative benefit is greater with respect to

the separate stock policy, but the maximum relative benefit is reached when comparing against the

round-up policy. We also note that the relative benefit to the round-up is more sensitive and, by

contrast, using two separate lot sizes and two separate reorder points causes a more homogeneous

benefit. The maximum relative benefit, with respect to round-up, occurs when there is maximum

difference between the shortage costs and the ordering cost is minimal (S = 100). Unlike, the

maximum relative benefit with respect to separate stock occurs when there is minimal difference

between the shortage costs and the ordering cost is minimal. As an example, table 4.2 shows
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the relative benefit regarding round-up and separate stock for the 135 problems of the experiment:

b1 = 30 and b2 = 5.

Benefit(%) vs Round-up
µ1 = 100, µ2 = 25 µ1 = µ2 = 25 µ1 = 25, µ2 = 100

CV1 CV2 h S = 100 S = 300 S = 500 S = 100 S = 300 S = 500 S = 100 S = 300 S = 500
0.2 0.2 0.25 2.61 1.82 1.53 3.78 29.36 2.24 8.80 6.27 5.32

0.75 4.43 3.29 2.84 6.96 29.40 4.52 15.12 11.49 10.02
1.25 5.59 4.29 3.75 9.14 29.41 6.25 19.13 15.06 13.34

0.4 0.4 0.25 4.47 3.31 2.82 6.13 4.35 3.67 13.20 9.99 8.60
0.75 6.89 5.50 4.83 10.37 7.85 6.81 20.57 16.80 14.94
1.25 8.32 6.88 6.13 13.04 10.21 8.99 24.89 21.05 19.04

0.6 0.6 0.25 5.96 4.66 4.05 8.03 5.89 5.01 16.10 12.84 11.27
0.75 8.69 7.32 6.58 12.83 10.11 8.86 23.74 20.41 18.56
1.25 10.28 8.93 8.16 15.72 12.83 11.42 28.15 24.91 23.02

0.6 0.2 0.25 5.77 4.49 3.89 6.16 4.39 3.71 9.40 6.77 5.75
0.75 8.43 7.08 6.35 10.27 7.83 6.79 15.75 12.15 10.61
1.25 9.99 8.65 7.88 12.84 10.14 8.93 19.70 15.75 13.98

0.2 0.6 0.25 3.26 2.30 1.94 7.27 5.20 4.40 16.39 13.02 11.41
0.75 5.37 4.06 3.50 12.08 9.25 8.05 24.24 20.77 18.86
1.25 6.68 5.22 4.57 15.04 11.93 10.54 28.76 25.38 23.42

Benefit(%) vs Separate stock
µ1 = 100, µ2 = 25 µ1 = µ2 = 25 µ1 = 25, µ2 = 100

CV1 CV2 h S = 100 S = 300 S = 500 S = 100 S = 300 S = 500 S = 100 S = 300 S = 500
0.2 0.2 0.25 24.18 24.73 24.90 29.42 29.36 29.34 24.84 25.27 25.39

0.75 23.61 24.31 24.53 29.50 29.40 29.36 24.88 25.49 25.66
1.25 23.28 24.03 24.26 29.55 29.41 29.36 24.99 25.72 25.92

0.4 0.4 0.25 23.62 24.36 24.61 29.78 29.59 29.52 24.38 25.04 25.24
0.75 23.14 23.98 24.28 30.09 29.79 29.68 24.44 25.28 25.55
1.25 22.98 23.80 24.11 30.30 29.93 29.78 24.58 25.55 25.86

0.6 0.6 0.25 23.48 24.23 24.52 30.25 29.92 29.79 24.29 25.00 25.24
0.75 23.27 24.02 24.33 30.80 30.33 30.14 24.55 25.40 25.70
1.25 23.34 24.01 24.30 31.18 30.62 30.38 24.90 25.79 26.12

0.6 0.2 0.25 21.28 23.02 23.65 29.79 29.81 29.77 28.35 27.35 26.98
0.75 20.79 22.67 23.39 30.59 30.46 30.33 30.18 28.70 28.12
1.25 20.78 22.63 23.36 31.18 30.93 30.71 31.37 29.63 28.91

0.2 0.6 0.25 25.18 25.12 25.11 27.25 28.14 28.44 16.39 22.49 23.32
0.75 24.63 24.59 24.61 26.23 27.57 28.02 24.24 21.82 22.95
1.25 24.22 24.20 24.23 25.59 27.22 27.78 28.76 21.58 22.89

Table 4.2: Benefit(%) vs. Round-up and Separate stock when b1 = 30 and b2 = 5

The pattern of the maximum relative benefit regarding round-up policy, observed in table 4.2,

is repeated for all ten experiments, i.e., the maximum benefit occurs when the class 2 dominates on

mean and variance (µ2 = 100, CV2 = 0.6), the ordering cost is minimal (S = 100) and the holding

cost per unit and unit time is maximum (h = 1.25). Clearly, the round-up policy is highly inefficient

when the class 2 dominates mean and variance, because under this situation, this policy provides

too much inventory to the low priority class causing a high reorder point and therefore a high cost.

On the other hand, when ordering cost is low and holding cost per unit and unit time is high, batch

sizes are small and the expected backorder increases. We observe that the expected backorders

induced by the critical level are greater than those induced by the round-up policy, but its effect on
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cost is relatively low compared with the effect of the reorder point. Note that, as Deshpande et al.

(2003) observed, the relative benefit regarding Round-up is decreasing in S .

4.5 Conclusions

In this chapter we analyzed the constant critical level policy for fast-moving items when the in-

ventory system faced random demands from two customer classes (high and low priority). The

inventory system operated under a continuous review (Q, r) policy, with a critical threshold value

C, full-backorders and a deterministic lead time. Penalty cost of backorders of the high-priority

class were greater than the low-priority class, and the demand of each class was characterized by

a strictly increasing non negative demand. We also characterized the demand of each class with

a normal distribution, which acted as an approximation of non-negative demand. Using the state-

dependent demand approach and the threshold clearing mechanism, we obtained an approximation

for on-hand inventory based on a convex approximation of backorders. The approximation consid-

ered that the demand class was proportional to the total demand for both classes. We then proposed

a nonlinear cost optimization problem with convex objective functions to determine the parameters

of the critical level policy. Given the convexity of the cost optimization problem we proposed a sys-

tem of equations to solve it. Once we obtained the optimal parameters of the critical level policy,

we evaluate the exact expected backorders which allows us to obtain the exact average cost per unit

time.

Our numerical results show that our approximation is able to provide good-quality solutions

because the benefit of the critical level policy obtained with the proposed approach against the

separate stock and round-up policies is on average 7.5% and 26.3% respectively.

There are a number of questions and issues left for future research. The first is to find a better

proportionality factor, while the second is to expand our results to more than two classes. Third is

the joint optimization of the order quantity, reorder point and critical level with an exact formula-

tion of backorders. Finally, another line of future work is to investigate the equivalence between

shortage costs and fill-rate service levels.
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5 | Joint location-inventory problem with

two demand classes

This chapter analyzes the design of a distribution network for fast-moving items able to provide

differentiated service levels in terms of product availability for two demand classes (high and low

priority) using a critical level policy. The model is formulated as a MINLP with chance constraints

for which we propose a heuristic to solve it. Although the heuristic does not guarantee an optimal

solution, our computational experiments have shown that it provides good-quality solutions that are

on average 0.8% and at worst 2.7% from the optimal solution.

5.1 Model formulation

Our location-inventory model with differentiated service levels can be stated as follows. Consider

the design of a distribution network consisting of an external supplier and a set of J candidate

sites for locating DCs which must supply a set I of retailers. These retailers could be customers or

markets, but for convenience we denote them as retailers in the rest of this chapter. We assume that

the location of the external supplier, site candidates and retailers locations are known and that the

supplier and DCs are uncapacitated. In this distribution network there are two categories of retailers

or demand classes (high and low priority). The high priority retailers (class 1) require high service

level and the low priority retailers (class 2) require lower service level. A retailer can be assigned

to a single demand class, and we define Nk = {i ∈ I | i is class k}, with k = 1, 2, as the set of retailers

of class k. We also assume that the class of each retailer is known. The demands per unit time at

each retailer are independent and normally distributed with mean µi > 0 and variance σ2
i
> 0. The

problem is to determine the optimal number of DCs, their locations, the retailers assigned to each

DC, how much inventory to keep at each of them and how to meet the preset service level for each
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demand class so as to minimize the total system cost.

To provide differentiated service levels we assume at each DC a continuous review (Q, r,C)

policy with full-backorder and deterministic lead time, operating as follows. When the inventory

position at DC j falls below a reorder level r j, a replenishment order for Q j units is placed and

arrives L j > 0 time units later. Demand from both classes is satisfied as long as the inventory

level is greater than the critical level C j, otherwise only high priority demand is satisfied from on-

hand inventory and low priority demand is backordered. If on-hand inventory level reaches zero,

both demands are backordered. If a DC j provides only retailers belonging to one class demand,

the critical level is zero, i.e., C j = 0, and therefore, the rationing policy becomes the traditional

continuous review (Q, r) policy.

As Daskin et al. (2002) and Shen et al. (2003) do, we assume the replenishment order Q j is

determined using an economic order quantity model (EOQ) and the steady-state backorders are

negligible. Hence, there are four types of decision variables in our model: the reorder point in a

candidate DC j, r j; the critical level in the candidate DC j, C j; the location variable, X j; and the

assignment variable, Yi j. In particular, the last two variables are defined as:

X j =



1 if we locate a DC at candidate site j

0 ∼

Yi j =



1 if demand at retailer i is assigned to a DC at candidate site j

0 ∼

Once we define the allocation variable Yi j, we can characterize the demand at candidate DC

j. Let Dk j(τ) be the total demand of class k during an interval of length τ at DC j and D j(τ) =

D1 j(τ) + D2 j(τ) be the total demand of both classes during an interval of length τ at DC j. As

retailers, demand per unit time are independent and normally distributed, Dk j(τ) is also normally

distributed with mean τµk j and variance τσ2
k j

, where µk j =
∑

i∈Nk
µiYi j ≥ 0 and σ2

k j
=

∑
i∈Nk
σ2

i
Yi j ≥

0. Furthermore, D j(τ) is normally distributed with mean τµ j and variance τσ2
j
, where µ j = µ1 j +

µ2 j =
∑

i µiYi j and σ2
j = σ

2
1 j
+ σ2

2 j
=

∑
i σ

2
i Yi j. In appendix B.1, we present a glossary of terms.
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5.1.1 Service level type I under rationing

In this chapter, the service level provided by a DC j to the class k is measured by the probability

of satisfying the entire demand of class k assigned to him during a replenishment cycle from it on

hand inventory, i.e., service level type I, which does not depend of the replenishment batch quantity

Q j.

For a single class demand, service level type I is defined as the probability of no stockout

per order cycle (Axsäter (2007), page 94), i.e., the probability to satisfying the entire demand

during a replenishment cycle. Mathematical formulation of these measure depends of the type

of the inventory system. In a traditional (Q, r) policy, the service level type I is the probability

that total demand during the lead time is less than or equal to the reorder point (Axsäter (2007),

page 97), equivalent to the probability of no-stock out or satisfy the total demand during lead

time. In a continuous review (Q, r,C) policy, we developed expressions for the service level type

I for high and low priority class under strictly increasing non-negative demand using normally

distributed demand (chapter 3), i.e., we formulate expressions for service level type I of each class

demand considering non-negative demand, and then imposing the normally distributed demand as

an approximation. In order to determine the operational characteristics of the inventory system we

use a hitting time approach. In our work, the hitting time at DC j, τr j−C j

H,D j
, is defined as the amount

of time that elapses from the moment an order is placed in DC j until the time at which the critical

level C j is reached for the first time, i.e., τr j−C j

H,D j
= inf{τ > 0 | D j(τ) > r j − C j}. The subscript H

is used to remind the reader we refer to a hitting time, in this case the first time that demand D j

accumulates an amount of r j − C j.

Let α j

k
(r j,C j, Yi j) be the service level type I provided by the DC j to class k, and αk the preset

service level for class k, where α1 > α2. Using the expressions developed in chapter 3, the service

level type I provided by the DC j to the high and low priority class, under strictly increasing non-

negative demand, are:

α
j

1(r j,C j, Yi j) = P(D j(L j) ≤ r j − C j) + P
(
D1 j(L j − τ

r j−C j

H,D j
) ≤ C j ∩ τ

r j−C j

H,D j
< L j

)
, (5.1)

α
j

2(r j,C j, Yi j) = P(D j(L j) ≤ r j −C j), (5.2)

where the first term of equation (5.1) is the probability that rationing does not exist in the lead time
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of DC j; and second term of equation (5.1) is the probability of rationing occurs in DC j and the

class 1 demand during this period not reach the critical level C j.

In chapter 3 we assume that a single DC serves both types of demand. In our case, a DC j could

serve both types of demand or only one type of demand. Therefore it is necessary to verify that the

equations (5.1) and (5.2) make sense in the case that the DC j is assigned a single type of demand.

Proposition 8. Under strictly increasing non-negative demand, equations (5.1) and (5.2) are gen-

eral expressions for the service level type I provided to the high and low priority classes respectively.

Proof. The proof is detailed in the appendix B.2. �

Using normally distributed demand and conditioning on the hitting time, the service levels

provided by the candidate DC j to the high and low priority class are:

α
j

1(r j,C j, Yi j) =
∫ L j

0
Φ


C j − (L j − τ)

∑
i∈N1
µiYi j√

(L j − τ)
∑

i∈N1
σ2

i
Yi j


f

r j−C j ,Yi j

H,D j
(τ) dτ + Φ


r j −C j − L j

∑
i µiYi j√

L j

∑
i σ

2
i
Yi j


,

(5.3)

α
j

2(r j,C j, Yi j) = Φ


r j −C j − L j

∑
i µiYi j√

L j

∑
i σ

2
i
Yi j


, (5.4)

where Φ(x) is the distribution function of the standard normal distribution,

f
r j−C j ,Yi j

H,D j
(τ) =

1√
τ
∑

i σ
2
i
Yi j

(
r j −C j + τ

∑
i µiYi j

2τ

)
ϕ


r j − C j − τ

∑
i µiYi j√

τ
∑

i σ
2
i
Yi j


, (5.5)

is the density distribution of the hitting time τ
r j−C j

H,D j
using normally distributed demand and ϕ(x) is

the density function of the standard normal distribution. The superscripts indicates the dependence

of the density distribution of the hitting time with respect to r j − C j and assignment variable Yi j,

and the subscript D j represent the total demand of both classes and H the hitting time.

5.1.2 Cost function

There is a fixed setup cost f j of opening each distribution center. Each DC can serve more than

one retailer, but each retailer should be only assigned to exactly one DC. The ordering cost from
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distribution center j is S j. Linear transportation costs are incurred for shipment from the external

supplier to distribution center j with unit cost a j and from distribution center j to retailer i with unit

cost di j. With this notation, the average cost per unit time at DC j is:

AC j(r j,C j, Yi j) = S j

∑
i µiYi j

Q j

+ a j

∑

i

µiYi j +
∑

i

di jµiYi j + h j


Q j

2
+ r j − L j

∑

i

µiYi j

 . (5.6)

The first term of equation (5.6) is the ordering cost per unit time. The second and third term are

the supply and distribution costs per unit time respectively. As we assume negligible backorders,

the fourth term is approximated the holding cost per unit time. Each distribution center determines

the replenishment order Q j using an EOQ model, i.e.,

Q j =

√
2S j

h j

∑

i

µiYi j . (5.7)

Then, replacing equation (5.7) into equation (5.6), the average cost per unit time at DC j is:

AC j(r j,C j, Yi j) =
∑

i

d̂i jYi j + k j

√∑

i

µiYi j + h jr j , (5.8)

where k j =
√

2h jS j and d̂i j = (a j + di j − h jL j)µi.

5.1.3 Problem formulation

We can formulate an integrated location-inventory model with differentiated service levels using

normally distributed demand as an MINLP problem with constraints on service probability (non-

convex) and nonlinear objective function including non-convexity in the assignments variables,

denoted (P0), as follows.
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Problem (P0):

min
X,Y,r,C

∑

j∈J


f jX j +

∑

i

d̂i jYi j + k j

√∑

i

µiYi j + h jr j


(5.9)

s.t:
∫ L j

0
Φ


C j − (L j − τ)

∑
i∈N1
µiYi j√

(L j − τ)
∑

i∈N1
σ2

i
Yi j


f

r j−C j ,Yi j

H,D j
(τ) dτ + Φ


r j −C j − L j

∑
i µiYi j√

L j

∑
i σ

2
i
Yi j


≥ α1 ∀ j ∈ J,

(5.10)

r j − C j ≥ L j

∑

i

µiYi j + zα2

√
L j

∑

i

σ2
i
Yi j ∀ j ∈ J, (5.11)

∑

j∈J

Yi j = 1 ∀i ∈ I, (5.12)

Yi j ≤ X j ∀i ∈ I,∀ j ∈ J, (5.13)

r j ≥ C j ≥ 0 ∀ j ∈ J, (5.14)

X j, Yi j ∈ {0, 1} ∀i ∈ I,∀ j ∈ J, (5.15)

where zα2 is the inverse standard normal distribution for a preset service level α2 and the f
r j−C j ,Yi j

H,D j
(τ)

is given by equation (5.5).

The objective is to minimize the total steady state cost per unit time including location fixed

cost, ordering costs, supply cost from supplier to DCs, distribution cost from DCs to retailers, and

holding cost at each DC. Constraints (5.10) and (5.11) ensure, at each DC, the fulfillment of the

preset service level for the high and low priority class respectively. Constraint (5.12) ensures that

each retailer is assigned to exactly one DC. Constraint (5.13) stipulates that retailers can only be

assigned to open DCs. Constraint (5.14) ensures, at each DC, that the replenishment order be

placed before the lower priority class is no longer served. Finally, constraint (5.15) is an integrality

constraint.

5.2 Solution approach

Consider the joint location-inventory problem described by Shen et al. (2003), but without relying

on the assumption that each retail has identical variance-to-mean ratio. This problem assumes

that the distribution network is dominated by a continuous review (Q, r) policy, deterministic lead

time and full-backorders. These authors considered a single demand class, i.e., to the distribution
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network providing a unique service level. Let α be this unique preset service level. Using the

notation above the model of Shen et al. (2003) is expressed as:

Problem (P1):

min
X,Y

∑

j∈J


f jX j +

∑

i

(d̂i j + h jL jµi)Yi j + k j

√∑

i

µiYi j + zαh j

√
L j

√∑

i

σ2
i
Yi j


(5.16)

s.t: (5.12), (5.13), (5.15).

It is easy to show that the problem (P1) is a relaxation of (P0) when α = α2. Therefore, the

optimal solution of the problem (P1) when the level of service is the lowest, is a lower bound (LB)

of problem (P0).

Also, if we solve (P1), and then use the resulting configuration in terms of location (X-variables)

and allocation (Y-variables), we can obtain the optimal remaining feasible variables corresponding

to this configuration, for each DC, always considering the actual proportion of customers requiring

each class of service (α2 and α1). The result is a feasible solution and, hence, an upper bound (UB)

for the problem (P0). Thus, we now have a lower bound and an upper bound of the original problem

with two classes of service, obtained by solving two problems with a single class of service, and

completing the solution of the second one by including both service classes.

Note that for fixed X-variables and Y-variables that satisfy the constraint (5.12), (5.13) and

(5.15), the problem (P0) reduces to determine the optimal parameters of the critical level policy

at all installed DCs, i.e., for all X j = 1 we must solve the following service level problem SLP( j)

using normally distributed demand:

Problem SLP( j):

min
r j ,C j

r j (5.17)

s.t: (5.10), (5.11), (5.14).

In chapter 3 we characterize under mild assumptions, the optimal solution of the problem

SLP(j) using normally distributed demand, when a single DC satisfies the demand of both demand

classes, i.e., when µk j, σ
2
k j
> 0.

Consider now that we solve the same two problems (P1) and SLP(j) for an increasing value

of α, starting at α2. Let X∗
α
, Y∗
α

be the optimal location and assignments variables of the problem
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(P1) given a service level α; FOP1(α) be the objective function of problem (P1) given a service

level α; and FOP0(X∗
α
, Y∗
α
) be the objective function of problem (P0) given the optimal network

configuration of the problem (P1) and a service level α. We propose a simple heuristic to find a

better upper bound of the problem (P0) based on the following four properties:

(1) LB = FOP1(α2), UB = FOP0(X∗
α2
, Y∗
α2

) and UB > LB;

(2) FOP1(α) is strictly increasing in α for all α ∈ [α2, α1] with α2 ≥ 0.5 because increasing the

requirements in quality of service tightens the feasible space. However, as α increases, there

is no guarantee that FOP1(α) is a lower bound anymore;

(3) Recall that the feasible solution FOP0(X∗
α1
, Y∗
α1

) is computed by finding variables X and Y as

if there were only customers requiring service at level α1, and completed using the actual

distribution of classes of customers. Then, FOP1(α1) ≥ FOP0(X∗
α1
, Y∗
α1

), because a global

round-up policy induces a higher cost than a critical level policy. In other words, providing

all customers with the highest class of service α1 is costlier than having some of them with

the lowest class of service α2.

(4) As we increase the service level α and solve the problem (P1) one or more of the following

events may occur:

(i) the configuration (X∗
α2
, Y∗
α2

) remains constant for any α ∈ [α2, α1];

(ii) the optimal network configuration (X∗
α
, Y∗
α
) changes due to the reallocation of demand

without changing the number of open DCs; and

(iii) the optimal network configuration (X∗
α
, Y∗
α
) tends to make pooling, closing one or more

DCs and reassigning demand.

Our improvement heuristic exploits the risk pooling effect to increase the service level α in the

interval [α2, α1]. If pooling happens at some α̂ ∈ [α2, α1] and the sum of the savings on holding and

fixed costs are greater than the increase in transportation costs at that point, then FOP0(X∗α̂−ε, Y
∗
α̂−ε) >

FOP0(X∗α̂, Y
∗
α̂). A heuristic, to find this α̂ (if exist) based on the systematic increase in the service

level α can be costly in terms of computational time because each increased service level α means

solving the problems (P0) and SLP(j). We propose to evaluate FOP0(X∗
α
, Y∗
α
) only in α = α1 and

α = α2. Let FO∗
P0 the objective value of the best solution found to (P0), then:
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• if FOP0(X∗
α2
, Y∗
α2

) ≤ FOP0(X∗
α1
, Y∗
α1

), an increase in the service level α in the interval [α2, α1]

produces no improvement in the initial solution (UB), which becomes the best solution found,

i.e., FO∗
P0 = FOP0(X∗

α2
, Y∗
α2

);

• if FOP0(X∗
α2
, Y∗
α2

) > FOP0(X∗
α1
, Y∗
α1

), there is improvement in the initial solution and the sec-

ond solution becomes the best solution found, i.e., FO∗
P0 = FOP0(X∗

α1
, Y∗
α1

);

i.e., FO∗
P0 = min{FOP0(X∗

α2
, Y∗
α2

), FOP0(X∗
α1
, Y∗
α1

)}.

5.2.1 Solution characterization for the problem (P1)

The square root term in the objective function of problem (P1) can give rise to difficulties in the

optimization procedure. When the DC j is not selected, both square root terms would take a

value of 0, which leads to unbounded gradients in the NLP optimization and hence numerical

difficulties. Thus, we reformulate the problem (P1) in order to eliminate the square root terms. We

first introduce two sets of nonnegative continuous variables, Z1 j and Z2 j, to represent the square

root terms in the objective function:

Z12
j =

∑

i

µiY
2
i j, ∀ j ∈ J (5.18)

Z22
j =

∑

i

(σiYi j)
2, ∀ j ∈ J (5.19)

Z1 j, Z2 j ≥ 0, ∀ j ∈ J (5.20)

Because the nonnegative variables Z1 j and Z2 j are introduced in the objective function with

positive coefficients, and this problem is a minimization problem, the equations (5.18) and (5.19)

can be further relaxed as the following inequalities:

Z12
j ≥

∑

i

µiY
2
i j, ∀ j ∈ J (5.21)

Z22
j ≥

∑

i

(σiYi j)
2, ∀ j ∈ J (5.22)
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Note that constraints (5.21) and (5.22) with constraint (5.20) define second-order cone con-

straints. Thus, the reformulated problem (P1) can be expressed as the following MINLP problem

with second-order cone constraints denoted as (P2):

Problem (P2):

min
X,Y,Z1,Z2

∑

j∈J

 f jX j +
∑

i

(d̂i j + h jL jµi)Yi j + k jZ1 j + zαh j

√
L jZ2 j

 (5.23)

s.t: (5.21), (5.22), (5.12), (5.13), (5.15), (5.20).

Problem (P2) can be trivially shown to be equivalent to problem (P1) but it has a linear objetive

function and second-order cone constraints (5.21) and (5.22). We can solve this problem using

CPLEX 12.4., which handles second-order cone constraints in an efficient way.

5.2.2 Solution characterization for SLP(j) using normally distributed demand

In this section we suppress the j subscript in order to simplify the notation. In chapter 3 we

characterized under mild assumptions, the optimal solution of the problem SLP(j) under normally

distributed demand, when a single DC satisfies demand of both classes as follows:

For, µ1, σ
2
1, µ2, σ

2
2 > 0 and α2 ∈ [0.5, 1), the optimal parameters of the critical level policy are

obtained from the following system of equations:

(a) If α1(r0
2, 0) < α1:

r∗ −C∗ = µL + zα2 σ
√

L, (5.24)

∫ L

0
Φ


C∗ − µ1(L − τ)√

(L − τ)σ2
1


f r∗−C∗

H,D (τ) dτ = α1 − α2, (5.25)

where r0
2 = µL + zα2 σ

√
L and the service levels provided to each class are equal to their

preset levels, i.e., αi(r∗,C∗) = αi, i = 1, 2.

(b) If α1(r0
2, 0) ≥ α1:

C∗ = 0, (5.26)

r∗ = µL + zα2 σ
√

L, (5.27)
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and service levels provided to each class are: α1(r∗, 0) ≥ α1 and α2(r∗, 0) = α2 for high and

low priority class respectively.

In our network design, a candidate DC j can provide both demand classes, one or none. The

following proposition indicates the optimal parameters of rationing policy when a DC provides

only a single demand class.

Proposition 9. Under normally distributed demand and single class demand, the optimal parame-

ters of the critical level policy are:

(a) If µ1 = σ
2
1 = 0 and µ2, σ

2
2 > 0, the optimal parameters of the critical level policy are: C∗ = 0,

r∗ = r0
2 = µ2L + zα2 σ2

√
L, and the service levels provided to the high and low priority class

are α1(r∗,C∗) = 1 and α2(r∗,C∗) = α2 respectively.

(b) If µ1, σ
2
1 > 0 and µ2 = σ

2
2 = 0, the optimal parameters of the critical level policy are C∗ = 0

and r∗ = r0
1 solution of α1(r∗, 0) = α1, i.e.,

∫ L

0
Φ


−µ1(L − τ)√

(L − τ)σ2
1


f r∗

H,D1
(τ) dτ + Φ


r∗ − µ1L√
σ2

1L


= α1, (5.28)

and the service levels provided to the high and low priority class are α1(r∗,C∗) = α1 and

α2(r∗,C∗) > α2 respectively.

Proof. The proof is detailed in the appendix B.3 �

Note that under no demand for one of the classes C∗ = 0. Therefore, the (Q, r,C) policy is

equivalent to the traditional (Q, r) policy.

5.3 Computational Study

In order to illustrate the applicability and evaluate the performance of our solution approach in

terms of quality solution (optimality gap) and computational time, we carried out computational

experiments for instances with 49 and 88 nodes from Daskin (2011). We generated several test

problems for each data set in which we compare our solution approach with the Global Round-up

policy. We denote these instances as test sets. In all cases, each retailer location is also a candidate

DC location, i.e., there are as many candidate DC locations as retailer locations for each instance.
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The test problems were generated around a base case with the following parameters: service

level requirements α1 = 0.975 and α2 = 0.75; cost per unit to ship between retailer i and candidate

DC site j, di j equal to the distance between retailer i and candidate DC j multiplied by a transport

rate ci j = 0.01, ∀i, j; and holding cost per unit and unit time at candidate DC site j, h j = 0.25, ∀ j ∈

J. Furthermore, all the test problems used the following common criterion and parameters: demand

per unit time at each retailer is normally distributed with mean µi = U[10, 50] and coefficient of

variation CVi = U[0.1, 0.4]; class of the retail i, ni = {1, 2} with discrete uniform distribution; fixed

(per unit time) cost of locating a DC at candidate site j, f j = U[200, 300]; cost per unit to ship

between external supplier and candidate DC site j, a j = 0.5, ∀ j ∈ J; ordering cost from candidate

DC site j, S j = 1000,∀ j ∈ J; and lead time, L j = {2, 3, 4} with discrete uniform distribution.

Problem (P2) was modeled with AMPL and solved with CPLEX 12.4. The equation systems

(5.24)-(5.25) and proposition 9, solutions of problem S LP( j), were programmed and solved by a

C code. We integrate both codes through an AMPL script and the shell command to execute the C

code. The time limit was set for 10800 seconds. All test were carried on a PC with Intel Core i7

2.3 GHz processor and 16 GB RAM.

We solved 63 problems, 30 for 49 nodes and 33 for 88 nodes. In each problem, we changed

parameters relative to the base case. In particular the modified parameters were: the preset service

level for low priority class (α2), the holding cost per unit and unit time (h j), and the transport rate

(ci j). Table B.2 (appendix B.4) shows the data-set used, the parameter modified from the base case;

results of location-inventory model with differentiated service levels using critical level policy;

results of the global round-up policy; and the relative difference between the total costs induced by

critical level and global round-up policies.

Regarding the difficult to solve the problem we have the following comments derived from the

computational experiments in table B.2 (appendix B.4):

• as expected, as the problems grow larger, it becomes more difficult to solve them;

• as the holding cost per unit and unit time and/or the preset service level increases, the problem

(P2) becomes harder to solve. This is because, higher values of h j and zα assign more weight

on the nonlinear terms of the objective function of (P2).

We measure, for our approach, the relative optimally gap between the lower bound (LB) and

the best solution found, i.e., Gap(%) = 100 × (FO∗
P0 − LB)/LB. Figure 5.1 show for each data set,
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how the relative optimally gap change as the holding cost per unit and unit time (h j) and the preset

service level of the low priority class (α2) change.
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Figure 5.1: Relative Gap with α1 = 0.975, ci j = 0.01

From Figure 5.1, we can see that relative optimality gap increase when the holding cost per

unit and unit time and α1 − α2 increases. This is because, the absolute gap is less than or equal to

FOP0(X∗
α2
, Y∗
α2

)−FOP1(α2) =
∑

j h j(r∗j − (L j

∑
i µiY

∗
i j + zα2

√
L j

∑
i σ

2
i
Y∗

i j
)). From table B.2 (appendix

B.4) the maximum relative gap is 2.7%.

Regarding the number of DC installed we have the following comments derived from the com-

putational experiments in table B.2:

• as expected, as the holding cost per unit and unit time increases, the number of DCs de-

creases;

• as expected, as the transport rate increases, the number of DCs increases;

• no effect of α1 − α2 on the number of DC is observed.

For all instances in table B.2, the total cost of the location-inventory model with differentiated

service levels using critical level policy is less than the total cost induced by the global round-up

policy. We measure the relative benefit induced by the critical level policy regarding global round-

up policy as △cost(%) = 100 × (FOP1(α1) − FO∗
P0)/FOP1(α1). Figure 5.2 show for each data set,

how the relative benefit induced by the critical level policy change as the holding cost per unit and

unit time (h j) and the preset service level of the low priority class (α2) change.

From figure 5.2, we can see that benefit induced by the critical level policy increase when the

holding cost per unit and unit time and α1 − α2 increases. This is because, the absolute benefit is

63



CHAPTER 5. JOINT LOCATION-INVENTORY PROBLEM WITH TWO DEMAND CLASSES

b

b

b b

r
r

r

r
r r

u u
u u

0.20 0.40 0.60 0.80 1.00 1.20

1%

2%

3%

h j

b α2 = 0.55
r α2 = 0.75
u α2 = 0.95

(a) 49-node

b
b

b

b

r
r

r

r
r

r

u u
u u

0.20 0.40 0.60 0.80 1.00 1.20

1%

2%

3%

h j

(b) 88-nodes

Figure 5.2: Relative benefit with α1 = 0.975, ci j = 0.01

greater than or equal to FOP1(α1) − FOP0(X∗
α1
, Y∗
α1

) =
∑

j h j((L j

∑
i µiY

∗
i j
+ zα1

√
L j

∑
i σ

2
i
Y∗

i j
) − r∗

j
).

Therefore, we concluded that our location-inventory model with differentiable service levels using

critical level policy is useful when the difference between the preset service levels for high and low

priority class is high and / or the holding cost per unit and time unit is high. From table B.2 the

maximum benefit induced by the critical level policy is 2.33%.

5.4 Conclusions

This chapter consider a location-inventory model for fast-moving items in which the distribution

centers observe demand from two classes of customers, high and low priority. To provide differ-

entiated service levels we assume, at each DC, a continuous review (Q, r,C) inventory policy. If a

DC provides only one class of demand, the critical level policy becomes the traditional continuous

review (Q, r) policy. In this chapter the service level is measured by service level type I.

We formulate the location-inventory model with differentiated service levels as an MINLP prob-

lem with chance constraints, corresponding to the service levels constraints, and nonlinear objective

function. We propose optimally solve a relaxation of the location-inventory model with differenti-

ated service levels which allows us to obtain good-quality bounds.

The computational results show that our proposed heuristic able to find good-quality solutions

because for test set problems, the maximum optimality gap is 2.7%, a very good solution in itself,

which provides us the configuration of the network, including location of the CD’s, allocation of

demands and the required stock everywhere.

The computational result also provides managerial insight: the benefit of using a critical level
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policy in the configuration of a distribution network is greater when the holding cost per unit and

unit time is high, and / or when the difference between the preset service levels for high and low

priority class is high.

There are a number of questions and issues left for future research. The first one, is to consider

other policies to provide differentiated service levels in a distribution network, e.g., separate stock

policy, single class allocation or round-up policy, so we can determine the best policy to provide

differentiated service levels in a distribution network. The second one is related with the fact

that our solution approach uses normally distributed demands. We believe that since the problem

formulation is valid for any strictly increasing non-negative, similar solution approaches could be

developed for other distributions in future research. Another possible extensions are: (i) consider

other service levels measure, e.g., fill-rate; and (ii) use penalty cost as an alternative way of the

service levels.
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6 | On the Effect of Inventory Policies on

Distribution Network Design with two

Demand Classes

This chapter study several inventory policies in the design of a distribution network for fast-moving

items able to provide differentiated service levels in terms of product availability for two demand

classes (high and low priority). In particular, we consider the distribution network design problem

when the separate stock, single class allocation, global round-up, local round-up and critical level

inventory policies are used. We show how to formulate these problems as conic quadratic mixed-

integer problems.

6.1 Model formulation

Consider the design of a distribution network consisting of an external supplier and a set of J, j =

1, ..., |J|, candidate sites for locating DCs which must supply a set I, i = 1, ..., |I|, of retailers.

These retailers could be customers or markets, but for convenience we denote them as retailers in

the rest of this chapter. We assume that the location of the external supplier, site candidates and

retailers locations are known and that the supplier and DCs are uncapacitated. In this distribution

network there are two categories of retailers or demand classes (high and low priority). The high

priority retailers (class 1) require high service level and the low priority retailers (class 2) require

lower service level. A retailer can be assigned to a single demand class, and we define Nk = {i ∈

I | i is class k}, with k = 1, 2, as the set of retailers of class k. We also assume that the class of

each retailer is known. The demands per unit time at each retailer are independent and normally

distributed with mean µi > 0 and variance σ2
i > 0. The problem is to determine the optimal number
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of DCs, their locations, the retailers assigned to each DC, how much inventory to keep at each of

them and how to meet the preset service level for each demand class so as to minimize the total

system cost.

In this chapter, each DC follow a continuous review (Q, r) policy with full-backorder and de-

terministic lead time that operate as follow. When the inventory position at DC j falls below a

reorder level r j, a replenishment order for Q j units is placed and arrives L j > 0 time units later.

The service level level is measured by the service level type I. Let αk be the preset service level for

class k, where α1 > α2 > 0. To provided differentiated service levels, we consider the single class

allocation, local separate stock and local round-up policies.

As Daskin et al. (2002) and Shen et al. (2003) do, we assume the replenishment order Q j is

determined using an economic order quantity model (EOQ) and the steady-state backorders are

negligible. The reorder point r j depend the policy used to provide differentiated service levels.

Hence, there are two types of decision variables in our model: the location variable, X j; and the

assignment variable, Yi j. In particular, the last two variables are defined as:

X j =



1 if we locate a DC at candidate site j

0 ∼

Yi j =



1 if demand at retailer i is assigned to a DC at candidate site j

0 ∼

Once we define the allocation variable Yi j, we can characterize the demand at candidate DC

j. Let Dk j(τ) be the total demand of class k during an interval of length τ at DC j and D j(τ) =

D1 j(τ) + D2 j(τ) be the total demand of both classes during an interval of length τ at DC j. As

retailers, demand per unit time are independent and normally distributed, Dk j(τ) is also normally

distributed with mean τµk j and variance τσ2
k j

, where µk j =
∑

i∈Nk
µiYi j ≥ 0 and σ2

k j
=

∑
i∈Nk
σ2

i
Yi j ≥

0. Furthermore, D j(τ) is normally distributed with mean τµ j and variance τσ2
j
, where µ j = µ1 j +

µ2 j =
∑

i µiYi j and σ2
j = σ

2
1 j
+ σ2

2 j
=

∑
i σ

2
i Yi j. In appendix B.1, we present a glossary of terms.
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6.1.1 Cost function

There is a fixed setup cost f j of opening each distribution center. Each DC can serve more than

one retailer, but each retailer should be only assigned to exactly one DC. The ordering cost from

distribution center j is S j. Linear transportation costs are incurred for shipment from the external

supplier to distribution center j with unit cost a j and from distribution center j to retailer i with unit

cost di j. Using this notation, the average cost per unit time at DC j is:

AC j(r j,C j, Yi j) = S j

∑
i∈I µiYi j

Q j

+ a j

∑

i∈I

µiYi j +
∑

i∈I

di jµiYi j + h j


Q j

2
+ r j − L j

∑

i∈I

µiYi j

 . (6.1)

The first term of equation (6.1) is the ordering cost per unit time. The second and third term are

the supply and distribution costs per unit time respectively. As we assume negligible backorders,

the fourth term is approximated the holding cost per unit time. Each distribution center determines

the replenishment order Q j using an EOQ model, i.e.,

Q j =

√
2S j

h j

∑

i

µiYi j . (5.7)

Then, replacing equation (5.7) into equation (6.1), the average cost per unit time at DC j is:

AC j(r j,C j, Yi j) =
∑

i∈I

d̂i jYi j + k j

√∑

i∈I

µiYi j + h j

r j − L j
∑

i∈I

µiYi j

 , (6.2)

where k j =
√

2h jS j and d̂i j = (a j + di j)µi.

In what follow, we formulate the inventory-location problems when single class allocation,

local separate stock and local round-up policies are assumed to provide differentiated service levels.

This three policies differ each of one on the reorder point formulation.

6.1.2 Inventory-Location Problem under local separate stock policy (SSP)

The local separate stock policy consider that each DC serves the demand assigned to it from a

common stockpile and uses separate safety stocks for each class. The reorder point of the separate-

stock policy is obtained from r j =
∑

i rk j, where rk j is solution of FDk j(L j)(rk j) = αk. Under normally
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distributed demand:

r j = µ jL j +
∑

k∈K

zαk
σk j

√
L j

= L j

∑

i∈I

µiYi j +
∑

k∈K

zαk

√
L j

∑

i∈Nk

σ2
i
Yi j (6.3)

where zαk
is the inverse standard normal distribution for a preset service level αk.

Replacing equation (6.3) in (6.2) and rearranging terms, we formulate an integrated location-

inventory model under local separate stock policy as an INLP, denoted (SSP), as follows:

Problem (SSP):

min
X,Y

∑

j∈J


f jX j +

∑

i∈I

d̂i jYi j + k̂ j

√∑

i∈I

µiYi j + θ̂ j

∑

k∈K

zαk

√∑

i∈Nk

σ2
i
Yi j


(6.4)

s.t:
∑

j∈J

Yi j = 1 ∀i ∈ I (6.5)

Yi j ≤ X j ∀i ∈ I, j ∈ J (6.6)

X j, Yi j ∈ {0, 1} ∀i ∈ I, j ∈ J (6.7)

where θ̂ j = h j

√
L j. Constraints (6.5) establish that each customer is assigned exactly to one DC,

(6.6) ensure that one customer can be assigned to location j only if a DC is installed there, and (6.7)

are integrality constraints.

6.1.3 Inventory-location problem under single class allocation (SCA)

The single class allocation policy consider that each DC serves a single demand class. To formulate

this policy, we define a new a new variable:

Vk
j =



1 if a DC installed at j serves class k

0 ∼
(6.8)

Then, the integrated location-inventory model under single class allocation policy is formulated

as an INLP, denoted (SCA), as follows:
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Problem (SCA):

min
X,Y,V

∑

j∈J


f jX j +

∑

i∈I

d̂i jYi j + k̂ j

√∑

i∈I

µiYi j + θ̂ j

∑

k∈K

Zαk

√∑

i∈Nk

σ2
i
Yi j


(6.4)

s.t: (6.5), (6.6), (6.7),

Yi j ≤ Vk j ∀i ∈ Nk, j ∈ J, k ∈ K (6.9)
∑

k∈K

Vk j ≤ X j ∀ j ∈ J (6.10)

Vk j ∈ {0, 1} ∀ j ∈ J, k ∈ K. (6.11)

Constraints (6.9) ensure the allocation of each customer to a DC that serves its class, (6.10)

impose that each installed DC serves only one class, and (6.11) are the integrality constraints for

the new variable Vk j.

It is easy to show that the problem (SSP) is a relaxation of (SCA). Therefore, the optimal

solution of the problem (SSP) is a lower bound (LB) of problem (SCA).

6.1.4 Inventory-Location problem under local round-up policy (LRU)

The local round-up policy consider that each DC serves all demand assigned to it from a common

stockpile and sets the safety stock as the maximum required between the sets of classes assigned to

it. The reorder point of the local round-up policy at DC j is obtained from FD j(L j)(r j) = max
k∈K

{
αkV

k
j

}

and under normally distributed demand:

r j = µ jL j + max
k∈K
{zαk

Vk j}σ j

√
L j

= L j

∑

i∈I

µiYi j + max
k∈K

{
zαk

Vk j

} √
L j

∑

i∈I

σ2
i
Yi j (6.12)

Replacing equation (6.12) in (6.2), define Z j = max
k∈K

{
zαk

Vk j

}
and rearranging terms, we formu-

late an location-inventory model under local round-up policy, denoted (LRU), as follows:
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Problem (LRU):

min
X,Y,V,Z

∑

j∈J


f jX j +

∑

i∈I

d̂i jYi j + k̂ j

√∑

i∈I

µiYi j + θ̂ jZ j

√∑

i∈I

σ2
i
Yi j


(6.13)

s.t: (6.5), (6.6), (6.7), (6.9), (6.11)

Z j ≥ zαk
Vk j ∀ j ∈ J, k ∈ K (6.14)

Z j ≥ 0 ∀ j ∈ J (6.15)

Constraints (6.14) stipulate that Z j is equal to the maximum of the inverse normal distribution

for the service levels of the demand that the DC j serves and (6.15) are the non-negativity con-

straints for Z j. This variable is greater or equal to zero, because we assume α2 ≥ 0.5.

6.2 A Conic Quadratic MIP Formulation

In this section we show how to reformulate SSP, SCA,LRU, as a conic quadratic mixed-integer

program (CQMIP). The advantage of the CQMIP formulation is that it can be solved directly using

standard optimization software packages such as CPLEX or Mosek.

The square root term in the objective function of problems SSP, SCA,LRU, can give rise to

difficulties in the optimization procedure. When the DC j is not selected, the square root terms

would take a value of 0, which leads to unbounded gradients in the NLP optimization and hence

numerical difficulties. Thus, we reformulate the problems SSP, SCA,LRU in order to eliminate

the square root terms. We first introduce three sets of nonnegative continuous variables, H1 j, H2 j,

H3k j, to represent the square root terms in (6.4) and (6.13) :

H12
j =

∑

i∈I

µiY
2
i j, ∀ j ∈ J (6.16)

H22
j =

∑

i∈I

(σiYi j)
2, ∀ j ∈ J (6.17)

H32
k j =

∑

i∈Nk

(σiYi j)
2, ∀ j ∈ J, k ∈ K (6.18)

H1 j ≥ 0, ∀ j ∈ J (6.19)

H2 j ≥ 0, ∀ j ∈ J (6.20)
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H3k j ≥ 0, ∀ j ∈ J, k ∈ K (6.21)

Because the nonnegative variables H1 j, H2 j and H3k j are introduced in the objective function

of SSP, SCA,LRU, with positive coefficients, and this problems are minimization problem, the

equations (6.16), (6.17) and (6.18) can be further relaxed as the following inequalities:

H12
j ≥

∑

i∈I

µiY
2
i j, ∀ j ∈ J (6.22)

H22
j ≥

∑

i∈I

(σiYi j)
2, ∀ j ∈ J (6.23)

H32
k j ≥

∑

i∈Nk

(σiYi j)
2, ∀ j ∈ J, k ∈ K (6.24)

Note that constraints (6.22), (6.23), (6.24) with constraint (6.19), (6.20) and (6.21) define

second-order cone constraints. Thus, the reformulated problems SSP, SCA,LRU, can be expressed

as the following MINLP problem with second-order cone constraints denoted as (CQSSP,CQSCA,CQLRU)

respectively:

Problem (CQSSP):

min
X,Y,H1,H3

∑

j∈J

 f jX j +
∑

i∈I

d̂i jYi j + k̂ jH1 j + θ̂ j

∑

k∈K

zαk
H3k j

 (6.25)

s.t: (6.5), (6.6), (6.7), (6.22), (6.24), (6.19), (6.21)

Problem (CQSCA):

min
X,Y,V,H1,H3

∑

j∈J

 f jX j +
∑

i∈I

d̂i jYi j + k̂ jH1 j + θ̂ j

∑

k∈K

zαk
H3k j

 (6.25)

s.t: (6.5), (6.6), (6.7), (6.9), (6.10), (6.11), (6.22), (6.24), (6.19), (6.21)

Problem (CQSSP) and (CQSCA) can be trivially shown to be equivalent to problem (SSP) and

(SCA) respectively but they have a linear objective function and second-order cone constraints

(6.22) and (6.23) and (6.22) and (6.24) respectively. We can solve this problem using CPLEX

12.4., which handles second-order cone constraints in an efficient way.
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Problem (CQLRU):

min
X,Y,V,H1,H2

∑

j∈J

 f jX j +
∑

i∈I

d̂i jYi j + k̂ jH1 j + θ̂ jZ jH2 j

 (6.26)

s.t: (6.5), (6.6), (6.7), (6.9), (6.11), (6.14), (6.15)(6.22), (6.23), (6.19), (6.21)

Problem (CQLRU) can be trivially shown to be equivalent to problem (LRU) but it has a non-

linear objective function and second-order cone constraints (6.22) and (6.23). In what follow, we

propose a solution approach for the (CQLRU) problem that deal with the non-linear term on (6.26).

6.3 Solution Characterization for local round-up policy

Due to the non-linearity in the last term on (6.26), we need an special treatment to solve (CQLRU).

To achieve this, we relax (6.5) and add it to objective function with lagrangian multipliers λi ,∀i ∈ I.

Then, the problem is separable into |J| subproblems with the following structure:

Problem (SPCQLRU(j)):

min
X,Y,V,H1,H2

f jX j +
∑

i

(d̂i j − λi)Yi j + k̂ jH1 j + θ̂ jZ jH2 j (6.27)

s.t: Yi j ≤ X j ∀i ∈ I (6.28)

Z j ≥ zαk
Vk j ∀k ∈ K (6.29)

∑

i∈I

σ2
i (Yi j)

2 ≤ (H2 j)
2 (6.30)

∑

i∈I

µi(Yi j)
2 ≤ (H1 j)

2 (6.31)

X j, Yi j ∈ {0, 1} ∀i ∈ I (6.32)

Z j,H1 j,H2 j ≥ 0 (6.33)

Note that the objective function of (SPCQLRU(j)) remains non-linear, due to that, it can not be

solved directly using standard optimization software packages such CPLEX or Mosek. To solve

(SPCQLRU(j)), we fix Vk j for all possible combinations, i.e., a DC can serve the high priority class,

the low priority class, or both classes at once. Fixing Vk j transforms Z j in a parameter, eliminating

non-linear term in (6.27). We solve the subproblems with fixed Vk j, choosing the one with minimum
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optimal value. This procedure gives a lower bound (LB) for (CQLRU), which is computed using the

following expression:

LB(k) =
∑

j∈J

S P(k)( j) +
∑

i∈I

λ(k)
i
, (6.34)

where S Pk( j) represents the optimal value for problem (SPCQLRU(j)) in iteration k.

Overall the Lagrangian Relaxation Method solves the lagrangian lowerbounds for each value of

the multipliers, computes upper bounds, and updates the Lagrangian multipliers. Here we describe

how we obtain an upper bound for (CQLRU). The Lagrangian multipliers (or dual variables) are

updated using the sub-gradient method. The details of this method are described in algorithm 4

in C.1. The upper bound (UB) of (CQLRU) is obtained taking the values of X j and Vk j from the

relaxation (SPCQLRU(j)), then assigning each customer i to an opened DC j, i.e., with X j = 1,

serving its class, and having the smallest value of d̂i j. Thus Yi j is obtained, allowing the evaluation

of H1 j and H2 j, and finally the computation of the objective value of (CQLRU), which is the upper

bound (UB) at iteration k. The procedure to obtain the Upper Bound of (CQLRU) is shown in

algorithm 3 in C.1.

6.4 Computational Study

In order to illustrate the performance of each policy when varying the parameters of the distribution

network we carried out computational experiments for instances with 49 and 88 nodes from Daskin

(2011). We generated several test problems for each data set in which we compare the separate

stock, single class allocation, global round-up, local round-up and critical level inventory policies.

We denote these instances as test sets. In all cases, each retailer location is also a candidate DC

location, i.e., there are as many candidate DC locations as retailer locations for each instance.

The test problems were generated around a base case with the following parameters: service

level requirements α1 = 0.975 and α2 = 0.75; cost per unit to ship between retailer i and candidate

DC site j, di j equal to the distance between retailer i and candidate DC j multiplied by a transport

rate ci j = 0.01, ∀i, j; and holding cost per unit and unit time at candidate DC site j, h j = 0.25, ∀ j ∈

J. Furthermore, all the test problems used the following common criterion and parameters: demand

per unit time at each retailer is normally distributed with mean µi = U[10, 50] and coefficient of

variation CVi = U[0.1, 0.4]; class of the retail i, ni = {1, 2} with discrete uniform distribution; fixed

(per unit time) cost of locating a DC at candidate site j, f j = U[200, 300]; cost per unit to ship
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between external supplier and candidate DC site j, a j = 0.5, ∀ j ∈ J; ordering cost from candidate

DC site j, S j = 1000,∀ j ∈ J; and lead time, L j = {2, 3, 4} with discrete uniform distribution.

Problems CQSSP and CQSCA and the Lagrangian relaxation, to solve CQLRP, were modeled

with AMPL and solves with CPLEX 12.4. The location-inventory model using global round-up

and critical level policies were also modeled with AMPL and solved with CPLEX 12.4, following

the formulations presented in chapter 5. The time limit was set for 10800 seconds. All test were

carried on a PC with Intel Core i7 2.3 GHz processor and 16 GB RAM.

We solved 60 problems, 30 for each data set. In each problem, we changed parameters relative

to the base case. In particular the modified parameters were: the preset service level for low priority

class (β2), the holding cost per unit and unit time (h j), and the transport rate (ci j). Table C.1

(appendix C.2) shows the data-set used, the parameter modified from the base case; results of

location-inventory model with differentiated service levels using critical level policy; results of the

global round-up policy; and the relative difference between the total costs induced by critical level

and global round-up policies.

For all instances in table C.1, the total cost of the location-inventory model with differentiated

service levels using critical level policy is less than the total cost induced by the global round-

up, local round-up, single class allocation and separate stock policies. Let ZLRU , ZS CA, ZS S P be

the objective function of problems (CQLRU), (CQSCA) and (CQLRU) respectively; and ZGRU and

ZCLP objective function of the location-inventory problem using global round-up and critical level

policies respectively developed and solved in chapter 5. We measure the relative benefit induced by

the critical level policy regarding the others policies as bene f it(%) = 100×(ZP−ZCLP)/ZCLP, where

ZP is the objective function of the others policies. Table 6.1 show for each data set, the minimum,

maximum and average relative benefit induced by the critical level policy with respect the others

policies.

Data set
49-nodes 88-nodes

Benefit (%) min average max min average max
CLP vs GRU 0.02 0.86 2.22 0.02 0.82 2.38
CLP vs LRU 0.02 0.82 2.24 0.13 0.75 2.38
CLP vs SCA 7.46 12.87 15.40 16.74 18.12 21.53
CLP vs SSP 0.01 0.62 1.64 0.01 0.69 1.80

Table 6.1: Benefit of the critical level policy vs other policies

Table 6.1 shows that the greatest benefit is obtained regarding single class allocation policy. For

both data set, the maximum benefit has the same behavior: (i) critical policy induces maximum

76



CHAPTER 6. ON THE EFFECT OF INVENTORY POLICIES ON DISTRIBUTION NETWORK DESIGN WITH TWO DEMAND CLASSES

benefit level relative to global round-up and local round-up when the holding cost per unit and unit

time is maximum (h j = 1.25) and the preset service level of the low priority class is minimum

(β2 = 0.55); (ii) critical policy induces maximum benefit level relative to single class allocation

when the holding cost per unit and unit time is maximum and transport rate is minimum, and (iii)

critical policy induces maximum benefit level relative to separate stock when the holding cost per

unit and unit time is maximum and the preset service level of the low priority class is maximum.

6.5 Conclusions

We study the effect of using global round-up, local round-up, single class allocation, separate stock

and critical level policies in the problem of designing a distribution network able to provide dif-

ferentiated service levels for two demand classes. We formulate a location-inventory using local

round-up, single class allocation and separate stock policies as an INLP where the non-linearity is

induced by the inventory cost. We show, in this chapter, how to formulate these problems as conic

quadratic mixed-integer problems and in the special case of single class allocation we propose a

Lagrangian relaxation over its conic quadratic mixed-integer to solve it.

For the instances solved in the computational experiments, the best policy was never the one

that assigns to each distribution center a unique demand class, i.e., the single class allocation is the

worst policy performance in terms of total cost.

There are a number of questions and issues left for future research. The first one is to determine

analytically the conditions under which a policy is better than the others, in particular, to generalize

what we observed in our computational experiments in the sense that assigning a unique class

to each DC is not the best policy. The second one is to use higher dimension network, e.g., for

instances of 49 and 88 nodes by Daskin (2011). Another stream of future work is to broaden the

measure of service level, e.g., fill rate, or to use a critical level policy to provide differentiated

service levels.
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7 | Illustrative Example for an Industrial

Application

To illustrate the industrial applicability of the location-inventory model with differentiated service

levels developed in chapters 5 and 6, we consider a illustrative example of a company that manu-

factures products derived from fruits and vegetables. The supply chain consisting of one plant, 38

potencial DCs, and 38 customers.

We will analyze five inventory policies to provided differentiated service levels for two demand

classes. In particular, we consider the distribution network design problem when the critical level,

separate stock, single class allocation, global round-up and local round-up policies are used. The

location-inventory model that use a critical level inventory policy to provide differentiated service

levels was developed in chapter 5, while the location-inventory models that use separate stock,

single class allocation, global round-up and round-up policies was developed in chapter 6. There-

fore, for the Illustrative example, we also determine the best inventory policy implemented in the

distribution network to provide differentiated service levels.

7.1 Parameters: product, customers, potencial DCs and costs

Consider the case of a company that manufactures products derived from fruits and vegetables

which requires determining the number of distribution centers (DC) to locate in Santiago (Chile),

where to locate, what kinds of customers should be assigned to each DC, how much inventory to

keep each of them, and how to meet the required service level of their customer. The supply chain

consisting of one plant, 38 potencial DCs, and 38 customers. The production plant is located 200

km south of Santiago (Chile). The company segments its customers by volume of annual demand.

Thus, customers who demand more than the average annual demand are classified as high priority
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and its preset service level is β1 = 0.98. Customers who require less than the average annual

demand are classified as low priority and its preset service level is β2 = 0.70.

The products manufactured by the company are derivative of fruits and vegetables, with holding

cost per unit and unit time at candidate DC site j, h j = 0.005(US $/Kg−day), ∀ j ∈ J. The location,

class, demand, and coefficient of variance for each customers is show in table D.1. From table D.1,

note that 24% of customers are class 1 and they demand 72% of daily demand.

Ordering cost from candidate DC site j, S j = 250(US $/order),∀ j ∈ J; cost per unit to

ship between plant and candidate DC site j, a j = 0.0069(US $/kg), ∀ j ∈ J; and lead time,

L j = 4(day), ∀ j ∈ J. The location and fixed cost to the 40 potential DCs is show in table D.1.

For class 1 customers the company uses medium goods vehicles and for class 2 customers the com-

pany uses light goods vehicle. Each vehicle uses a driver and an assistant. The unit cost of transport

(US $/Kg) between candidate DC j and retail i, di j, is calculated as the fixed cost of loading and un-

loading (including labor and depreciation), plus variable cost that depends on the distance between

candidate DC j and retail i (including labor, fuel and depreciation). Then, unit cost of transport are

di j = 0.0025 + 0.00012 θi j and di j = 0.0021 + 0.00015 θi j for class 1 and 2 respectively, where θi j

is the Euclidean distance between candidate DC j and retail i.

7.2 Network configuration using several inventory control poli-

cies

We analyze the location-inventory problem with differentiated service levels using five inventory

control policies. Table 7.1 shows the inventory policy, number of opened DC, the objective function

and the cost components (FC: fixed cost; OC: ordering cost; SC: supply cost; CD: distribution cost;

HC: holding cost).

Result Cost Component (%)
Policy ♯ DC FO Time (s) FC OC SC DC HC

Critical Level 1 807.2 0.140 0.2 0.2 0.2 0.1 0.3
Single Class Allocation 2 1122.1 13.361 0.3 0.2 0.1 0.1 0.2
Separate stock policy 1 829.5 0.149 0.2 0.1 0.2 0.1 0.3

Global round-up 1 826.7 0.149 0.2 0.1 0.2 0.1 0.3
Local Round - up 1 826.7 41.297 0.2 0.1 0.2 0.1 0.3

Table 7.1: Illustrative example: results.

Table 7.1 indicates that the lower cost configuration is achieved with the critical level policy
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with a saving of 39%, 2.8%, 2.4% and 2.4% per day with respect to single class allocation, separate

stock, global round-up and local round-up respectively. The resulting network configuration is the

same for critical level, separate stock, global round-up and local round-up policies. Figure 7.1 show

the network configuration.
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Figure 7.1: Network configuration using Critical Level policy : FO∗ = 807.2

Single class allocation policy induces the highest cost because two DCs are installed on the

network. Figure 7.2 show the network configuration for the single class allocation policy.
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Figure 7.2: Network configuration using single class allocation policy : FO∗ = 1122.1
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8 | Conclusions

Location-inventory mathematical models have been known since 2000. Earlier models were limited

by the assumption that each customer has identical variance-to-mean ratio. Furthermore, models

that integrate inventory and location decisions, consider that the distribution network is dominated

by continuous review (Q, r) policy, full backorder, deterministic lead time, normally distributed

demand and service level type I, in which the same preset service level is provided to the whole net-

work. Therefore, previous location-inventory models do not integrate the requirement of different

demand classes in the optimal configuration of the distribution network.

The design of distribution networks able to provide differentiated service levels is particularly

relevant for fast-moving items because in the last decades the distribution channels of fast-moving

consumer goods (FMCG) have been concentrated on large retails chains, which demand a large

quantity of items and are therefore in a position to request high service level in terms of product

availability at the supplier’s expense. In this thesis, we consider a supplier of fast moving items

that serves several customers, including large retails chains, and is likely to face a stock-out. Given

this situation, the supplier would likely prefer to meet the higher service level requested by the

large retail chain to ensure a good relationship with the businesses that most impact the bottom

line. This makes a natural situation where the supplier decides to meet demand with differentiated

service levels and segment operationally their customers based on service levels. The simplest

segmentation is to classify customers into two demand classes: (i) High-priority class that would

correspond to large retail chains that require high levels of service and, (ii) Low-priority class that

would represent small retailers that have to settle for a lower level of service.

This thesis consists of several small steps towards constructing an efficient supply chain man-

agement system for fast moving-items, which is also able to provide differentiated service levels to

two demand classes (high and low priority). We propose five location-inventory models with differ-

entiated service levels using (i) single class allocation, in which each DC serves a single demand
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class; (ii) global round-up policy, which set the service level of the entire distribution network

based on a preset level corresponding to the highest priority class; (iii) separate stock policy, which

impose that each DC serves the demand assigned to it from a common stockpile and uses separate

safety stocks for each class; (iv) local round-up policy, which serves all demand assigned to it from

a common stockpile and sets the safety stock as the maximum required between the sets of classes

assigned to it; and (v) critical level policy, which rationing the inventory between different classes.

Except for the critical level policy, all the mechanisms for providing differentiated service levels

operating under continuous review policy and strictly increasing non-negative demand may extend

to distribution networks. In general, the complexity is not in its formulation, but in the solution

method due to the non-linearity that inventories introduce in the the network configuration. For

critical level policy it is first necessary to develop a theoretical formulation with continuous review

and strictly increasing non-negative demand, and then integrate it into a location-inventory model,

because previous work on critical level policy has only considered the case of slow-moving items.

The contributions in this thesis are:

• In chapter 3 (i) we present a new critical level inventory model and solution technique when

demand is modeled through continuous distributions, (ii) we develop expressions for the

service level type 1 under rationing and (iii) we provide exact expressions for the steady state

backorders under rationing.

• In chapter 4 we model and solve a critical level model when demand is modeled through

continuous distributions and backorders are penalized with differentiated costs. Furthermore,

we develop approximate expressions for backorders of each class and we demonstrate its

convexity.

• In chapter 5 (i) we address for the first time the modelling and solution of a supply chain

design problem of fast moving items that considers the ability of the distribution network to

provide and fulfill different service levels in term of product availability, (ii) we demonstrate

that under no demand for one of the classes, the (Q, r,C) policy is equivalent to the traditional

(Q, r) policy and (iii) the service level constraints, under rationing, remain valid under no

demand for one of the classes.

• In chapter 6 we model and solve three alternatives ways to provide differentiated service

levels in a distribution network that can extend the network design alternatives able to provide

84



CHAPTER 8. CONCLUSIONS

differentiated service levels.

Regarding the use of critical level policy in a single-echelon inventory system for fast-moving

items we conclude that:

• the average savings induced by the critical level policy are greater with respect to separate

stock and round up policy,

• critical level policy leads to significant savings with respect to round-up when class 2 domi-

nates on mean and variance, the ordering cost is minimal, holding cost per unit and unit time

is maximum and difference between preset service levels (or shortage costs) is maximum,

• critical level policy leads to significant savings with respect to separate stock when class 2

dominates on mean, class 1 dominates on variance, the ordering cost is minimal, holding cost

per unit and unit time is maximum and difference between preset service levels is maximum

(or difference between the shortage costs is minimal),

• the cost of increasing the service level of the high priority class is significantly greater than

the cost of increasing the service level of the low priority class.

Regarding the distribution network that include two class demand and fast-moving items, we

conclude that:

• the benefit of using a critical level policy in the configuration of a distribution network with

respect to global round-up and local round-up when tthe holding cost per unit and unit time is

high, and / or when the difference between the preset service levels for high and low priority

class is high;

• the benefit of using a critical level policy in the configuration of a distribution network with

respect to single class allocation when the holding cost per unit and unit time is maximum

and transport rate is minimum

• the benefit of using a critical level policy in the configuration of a distribution network with

respect to separate stock when the holding cost per unit and unit time is maximum and the

preset service level of the low priority class is maximum.

• the best policy was never the one that assigns to each distribution center a unique demand

class, i.e., the single class allocation is the worst policy performance in terms of total cost.
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A | Appendix Chapter 3

A.1 Proof of proposition 2

Lemma A.1.1. Let X, Y be two univariate continuous random variables, where Y has positive

support. Then, for any C we have

P(X + Y > C) ≥ P(X > C) .

Proof. We note that the set of realizations {ω | X(ω) > C} ⊂ {ω | X(ω) + Y(ω) > C}, which gives

the inequality P(X + Y > C) ≥ P(X > C). � �

Given the lemma A.1.1, the demonstration of proposition 2 is:

Proof. Let τr−C
R,D = min{τr−C

H,D, L} be the time to rationing, which corresponds to the amount of time

that elapses from the moment an order is placed until the critical level C is reached if this event

occurs during the lead time. If the hitting time τr−C
H,D does not occur during lead time then the time

to rationing is defined as τr−C
R,D = L. In this case, rationing coincides with the reception of the

replenishment batch, and therefore, to be precise, rationing is not produced.

Given a k > 0 we have that, for every demand realization ω, the hitting time satisfies τr−C
H,D(ω) <

τr+k−C
H,D (ω). This is because exactly k additional units of demand are necessary to reach C, and the

demand is a strictly increasing non-negative demand. This implies that for any k > 0 we have that

τr−C
R,D (ω) < τr+k−C

R,D (ω) ∀ω s.t. τr−C
H,D(ω) < L,

L = τr−C
R,D (ω) = τr+k−C

R,D (ω) ∀ω s.t. τr−C
H,D(ω) ≥ L .

From these relations we have that τr+k−C
R,D − τr−C

R,D ≥ 0 with probability 1, which combined with the

assumptions on the demand gives us D1(L − τr−C
R,D ) = D1(L − τr+k−C

R,D ) + D1(τr+k−C
R,D − τr−C

R,D ), where the
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last term is a positive support random variable when τr−C
H,D < L. We therefore have

α1(r,C) = P(D1(L − τr−C
R,D ) ≤ C)

= P(D1(L − τr−C
R,D ) ≤ C | τr−C

H,D ≥ L)P(τr−C
H,D ≥ L) + P(D1(L − τr−C

R,D ) ≤ C | τr−C
H,D < L)P(τr−C

H,D < L)

= P(D1(L − τr+k−C
R,D ) ≤ C | τr−C

H,D ≥ L)P(τr−C
H,D ≥ L)

+ P(D1(L − τr+k−C
R,D ) + D1(τr+k−C

R,D − τr−C
R,D ) ≤ C | τr−C

H,D < L)P(τr−C
H,D < L)

≤ P(D1(L − τr+k−C
R,D ) ≤ C | τr−C

H,D ≥ L)P(τr−C
H,D ≥ L) + P(D1(L − τr+k−C

R,D ) ≤ C | τr−C
H,D < L)P(τr−C

H,D < L)

= P(D1(L − τr+k−C
R,D ) ≤ C) = α1(r + k,C) .

Here the inequality uses lemma A.1.1 with X = D1(L − τr+k−C
R,D ) and Y = D1(τr+k−C

R,D − τr−C
R,D ).

We repeat the argument to show the tendency of α1(r,C) with respect to C. Given any k > 0

we have that τr−(C+k)
H,D (ω) < τr−C

H,D(ω) for any demand realization ω. Similarly, for any k > 0, we now

have

τr−(C+k)
R,D (ω) < τr−C

R,D (ω) ∀ω s.t. τr−(C+k)
H,D (ω) < L

L = τr−(C+k)
R,D (ω) = τr−C

R,D (ω) ∀ω s.t. τr−(C+k)
H,D (ω) ≥ L .

The demand can be now separated D1(L − τr−(C+k)
R,D ) = D1(L − τr−C

R,D ) + D1(τr−C
R,D − τ

r−(C+k)
R,D ), where

for every demand realization ω this last term satisfies D1(τr−C
R,D − τ

r−(C+k)
R,D )(ω) ≤ k. This because

τr−C
R,D (ω) − τr−(C+k)

R,D (ω) ≤ τr−C
H,D(ω) − τr−(C+k)

H,D (ω) and D1(τr−C
H,D − τ

r−(C+k)
H,D ) ≤ D(τr−C

H,D − τ
r−(C+k)
H,D ) = k by

definition of hitting time. This gives

α1(r,C) = P(D1(L − τr−C
R,D ) ≤ C) = P(D1(L − τr−C

R,D ) ≤ C | τr−(C+k)
H,D ≥ L)P(τr−(C+k)

H,D ≥ L)

+ P(D1(L − τr−C
R,D ) ≤ C | τr−(C+k)

H,D < L)P(τr−(C+k)
H,D < L)

= P(D1(L − τr−(C+k)
R,D ) ≤ C + k | τr−(C+k)

H,D ≥ L)P(τr−(C+k)
H,D ≥ L)

+ P(D1(L − τr−(C+k)
R,D ) ≤ C + D1(τr−C

R,D − τ
r−(C+k)
R,D ) | τr−(C+k)

H,D < L)P(τr−(C+k)
H,D < L)

≤ P(D1(L − τr−(C+k)
R,D ) ≤ C + k | τr−(C+k)

H,D ≥ L)P(τr−(C+k)
H,D ≥ L)

+ P(D1(L − τr−(C+k)
R,D ) ≤ C + k | τr−(C+k)

H,D < L)P(τr−(C+k)
H,D < L)

= P(D1(L − τr−(C+k)
R,D ) ≤ C) = α1(r,C + k) .
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Here we add a k in the first term of the second equality because D1(L − τr−(C+k)
R,D ) = D1(0) when

τr−(C+k)
H,D ≥ L, so that first probability equals 1. The inequality comes from the fact that P(D1(τr−C

R,D −

τr−(C+k)
R,D ) ≤ k) = 1. �

A.2 Partial derivative of α1(r,C) with respect to C

Here we give the expression of ∂α1(r,C)
∂C

in the case when the demands for both classes are normally

distributed and the density function of the hitting time τr−C
H,D is given by equation (3.19). We denote

by ϕ̄µ,σ2(x) the density function of a normal random variable with mean µ and variance σ2. The

partial derivative then can be expressed as:

∂α1(r,C)
∂C

=

∫ L

0

(
r −C + µτ

2τ
− C + µ1(L − τ)

2(L − τ)

)
ϕ̄µ1(L−τ),σ2

1(L−τ)(C)ϕ̄µτ,σ2τ(r −C)dτ . (A.1)

93



APPENDIX A. APPENDIX CHAPTER 3

94



APPENDIX B. APPENDIX CHAPTER 5

B | Appendix Chapter 5

B.1 Glossary of terms

Sets Definition
I Set of retailers indexed by i

J Set of candidate DC sites indexed by j

K Set of class demand indexed by k, with k = 1, 2
Nk Set of retailers that belong to the class k, with k = 1, 2

Parameters
µi mean demand per unit time at retailer i

σi Standard deviation of demand per unit time at retailer i

αk preset service level for class k, with α1 > α2

f j Fixed (per unit time) cost of locating a DC at candidate site j

di j Cost per unit to ship between retailer i and candidate DC site j

ci j transport rate between retailer i and candidate DC j

a j Cost per unit to ship between external supplier and candidate DC site j

S j Ordering cost from candidate DC site j

h j Holding cost per unit time at candidate DC site j

L j Constant replenishment lead time at candidate DC site j

ni Class of retail i

Variables
X j 1 if we locate a DC in candidate site j, and 0 otherwise
Yi j 1 if retailer i is served by the DC at candidate site j, and 0 otherwise
r j reorder point at candidate DC site j

C j critical level at candidate DC site j

Variable functions
µ j =

∑
i µiYi j ≥ 0 mean demand per unit time at candidate DC j

σ j =

√∑
i σ

2
i
Yi j ≥ 0 standard deviation of demand per unit time at candidate DC j

µk j =
∑

i∈Nk
µiYi j ≥ 0 mean demand per unit time of class k at candidate DC j

σk j =

√∑
i∈Nk
σ2

i
Yi j ≥ 0 standard deviation of demand per unit time of class k at candidate DC j

Q j =

√
2S j

h j

∑
i µiYi j replenishment order at candidate DC j

Table B.1: Glossary of terms

B.2 Proof of proposition 8

To prove that equations (5.1) and (5.2) are general expressions for the service level type I under

rationing we must show that these equations remain valid in the absence of one of the two class

demand. In order to simplify the notation, we suppress the subscript j.
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Proof. The conditions to fully meet the demand of class 1 in a replenishment cycle when the DC

only provides class 1 is that demand of class 1 during the lead time is less or equal to the reorder

point r, i.e., D1(L) ≤ r. Therefore, the service level provided to the high priority class when the DC

only provides service to class 1 is:

α1(r,C) = P(D1(L) ≤ r). (B.1)

Equation (B.1) is equal to equation (5.1) when D2(τ) = 0 for any τ > 0, because

P(D1(L) ≤ r) =P(D1(L) ≤ r | D1(L) ≤ r −C))P(D1(L) ≤ r − C) + P(D1(L) ≤ r | D1(L) > r −C))P(D1(L) > r −C)

=P(D1(L) ≤ r − C) + P(D1(L) ≤ r | D1(L) > r −C))P(D1(L) > r −C)

=P(D1(L) ≤ r − C) + P(D1(L) ≤ r −C + C | τr−C
H,D1
< L)P(τr−C

H,D1
< L)

=P(D1(L) ≤ r − C) + P(D1(L) ≤ D1(τr−C
H,D1

) + C | τr−C
H,D1
< L)P(τr−C

H,D1
< L)

=P(D1(L) ≤ r − C) + P(D1(L − τr−C
H,D1

) ≤ C | τr−C
H,D1
< L)P(τr−C

H,D1
< L)

=P(D1(L) ≤ r − C) + P(D1(L − τr−C
H,D1

) ≤ C ∩ τr−C
H,D1
< L).

Furthermore, in subsection 5.2.2 we show that in the absence of demand for class 1, α1(r∗,C∗) =

1 > α1, where (r∗,C∗) are the optimal reorder point and critical level respectively. Therefore,

equation (5.1) is a general expression for the service level provided to the high priority class.

The conditions to fully meet the demand of class 2 in a replenishment cycle, when the DC only

provides service to class 2 is that demand of class 2 during the lead time (D1(τ) = 0 for any τ > 0)

is less or equal to the reorder point r, i.e., D2(L) ≤ r. Therefore, the service level provided to the

high priority class when the DC only provides service to class 2 is:

α2(r,C) = P(D2(L) ≤ r). (B.2)

Equation (5.2) is equal to equation (B.2) when D2(τ) > 0 for any τ > 0, D1(τ) = 0 for any τ > 0

and C = 0. In subsection 5.2.2 we show that when D1(τ) = 0 for any τ > 0, then the optimal critical

level is equal to zero, i.e., C∗ = 0. Furthermore, in subsection 5.2.2 we show that in the absence of

demand for class 2, α2(r∗,C∗) > α2. Therefore, the equation (5.2) is a general expression for the

service level provided to the low priority class. �
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B.3 Proof of proposition 9

Proof. Let C2(r) be the maximum critical level, given a reorder point r, that ensures a service level

α2, i.e., C2(r) = max{C | α2(r,C) ≥ α2}. In chapter 3 we showed that α2(r,C) is increasing in

r (and decreasing in C), therefore, C2(r) is solution of α2(r,C) = α2. Then, C2(r) = r − r0
2 =

r − µL − zα2σ
√

L. In the same way we define C1(r) as the minimum critical level, given a reorder

point r, that ensures a service level α1, i.e., C1(r) = min{C | α1(r,C) ≥ α1}. Let r0
i

be the minimum

reorder point r such that the service level provided to the class i, given a critical level C = 0, is

greater than or equal to his preset service level αi, i.e., r0
i
= min{r | αi(r, 0) ≥ αi}, with i = 1, 2.

(a) If µ1 = σ
2
1 = 0, from equation (5.1) we have for any r > C ≥ 0 that α1(r,C) = P(D2(L) ≤

r − C) + P(τr−C
H,D2

< L) = P(D2(L) ≤ r − C) + 1 − P(D2(L) ≤ r − C) = 1. Therefore,

α1(r,C) = 1, ∀C ≥ 0 and C1(r) = 0, ∀r. On the other hand, C2(r) = r − µ2L − zα2σ2

√
L.

Once C1(r) and C2(r) are defined, the feasible region of SLP problem where all (r,C) satisfies

α1(r,C) ≥ α1, α2(r,C) ≥ α2 and r > C ≥ 0, when µ1 = σ
2
1 = 0, is the intersection of the areas

above C1(r), below C2(r) and strictly below r = C. The feasible region is shown in figure

(B.1a).

From figure (B.1a) we conclude that the minimum reorder point that guarantees a service

level α2 provided to the low priority class is r0
2. Therefore, r∗ = r0

2 = µ2L + zα2σ2

√
L and

C∗ = 0.

(b) If µ2 = σ
2
2 = 0, it valid that α1(r,C) = α1(r, 0), ∀C ≥ 0. Therefore, C1(r) = 0 for any r ≥ r0

1.

On the other hand, C2(r) = r − r0
2 = r − µ1L − zα2σ1

√
L. The feasible region of SLP problem

where all (r,C) satisfies α1(r,C) ≥ α1, α2(r,C) ≥ α2 and r > C ≥ 0, when µ2 = σ
2
2 = 0, is

the intersection of the areas above C1(r), below C2(r) and strictly below r = C. The feasible

region is shown in figure (B.1b).

From figure (B.1b) we conclude that the minimum reorder point that guarantees a service

level α1 provided to the high priority class is r0
1. Therefore, r∗ = r0

1 solution of α1(r, 0) = α1

and for convenience C∗ = 0. Note that α2(r∗, 0) > α2 because r0
2 < r0

1.

�
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C2(r)

r0
2 r

C

r = C

Feasible
Region

(a) Feasible region of SLP problem when µ1 = σ
2
1 = 0 and

µ2, σ
2
2 > 0

C2(r)

r0
2 rr0

1

C

r = C

Feasible
Region

(b) Feasible region of SLP problem when µ2 = σ
2
2 = 0 and

µ1, σ
2
1 > 0

Figure B.1: Feasible region of SLP problem under normally distributed demand and single class demand.
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B.4 Numerical results for test sets

Solution approach
Parameters First solution Second solution Critical level policy Global Round-up △cost

Data Set Vary α2 h j ci j ♯ DC FOP0(X∗
α2
, Y∗
α2

) Time(s) ♯ DC FOP0(X∗
α1
, Y∗
α1

) Time(s) LB FO∗ Gap(%) ♯ DC Time(s) FOP1(α1) ♯ DC Time(s) (%)
49-nodes Case base 0.75 0.25 0.01 12 8766.65 1.40 12 8766.65 1.78 8709.91 8766.65 0.65 12 3.18 8819.29 12 1.79 0.60

α2 0.55 0.25 0.01 12 8745.29 1.35 12 8745.29 1.77 8663.21 8745.29 0.94 12 3.11 8819.29 12 1.79 0.84
0.65 0.25 0.01 12 8755.40 1.52 12 8755.40 1.79 8685.30 8755.40 0.80 12 3.32 8819.29 12 1.79 0.72
0.85 0.25 0.01 12 8780.73 1.42 12 8780.73 1.77 8740.71 8780.73 0.46 12 3.19 8819.29 12 1.79 0.44
0.95 0.25 0.01 12 8804.37 1.64 12 8804.37 1.76 8792.48 8804.37 0.14 12 3.41 8819.29 12 1.79 0.17

h j 0.75 0.005 0.01 12 6188.71 0.38 12 6188.71 0.31 6187.53 6188.71 0.02 12 0.69 6189.77 12 0.32 0.02
0.75 0.1 0.01 12 7642.65 0.47 12 7642.65 0.50 7619.95 7642.65 0.30 12 0.97 7663.70 12 0.50 0.27
0.75 0.35 0.01 11 9320.38 2.76 10 9318.37 3.04 9242.65 9318.37 0.81 10 5.80 9386.98 10 3.03 0.73
0.75 0.50 0.01 10 9992.74 10.15 9 9995.60 16.86 9885.64 9992.74 1.07 10 27.02 10088.43 9 16.72 0.95
0.75 0.75 0.01 9 10890.68 43.02 9 10890.68 67.19 10733.56 10890.68 1.44 9 110.22 11029.92 9 68.04 1.26
0.75 1.00 0.01 7 11589.59 163.53 7 11589.59 141.39 11410.71 11589.59 1.54 7 304.92 11761.83 7 140.84 1.46
0.75 1.25 0.01 7 12206.26 233.89 6 12197.85 145.95 11982.67 12197.85 1.76 6 379.85 12387.38 6 147.86 1.53

ci j 0.75 0.25 0.005 6 6558.11 6.30 6 6558.11 7.74 6517.31 6558.11 0.62 6 14.03 6597.14 6 7.76 0.59
0.75 0.25 0.015 13 10476.10 0.81 12 10475.07 0.83 10415.98 10475.07 0.56 12 1.64 10527.71 12 0.82 0.50
0.75 0.25 0.02 18 11552.20 1.16 18 11552.20 1.27 11487.46 11552.20 0.56 18 2.43 11620.44 18 1.30 0.59

α2, h j 0.55 0.5 0.01 10 9952.95 9.61 9 9957.92 16.44 9798.06 9952.95 1.56 10 26.05 10088.43 9 16.72 1.34
0.55 1.00 0.01 7 11519.14 238.56 7 11519.14 140.71 11260.81 11519.14 2.24 7 379.26 11761.83 7 139.37 2.06
0.55 1.25 0.01 7 12118.20 450.61 6 12120.36 147.49 11795.28 12118.20 2.66 7 598.10 12387.38 6 147.16 2.17
0.95 0.5 0.01 9 10062.13 14.57 9 10062.13 16.57 10040.00 10062.13 0.22 9 31.14 10088.43 9 16.71 0.26
0.95 1.00 0.01 7 11713.94 201.50 7 11713.94 140.23 11675.76 11713.94 0.33 7 341.72 11761.83 7 139.37 0.41
0.95 1.25 0.01 6 12334.61 226.86 6 12334.61 146.32 12292.57 12334.61 0.34 6 373.17 12387.38 6 147.41 0.43

α2, ci j 0.55 0.25 0.005 6 6542.14 5.57 6 6542.14 7.75 6483.23 6542.14 0.90 6 13.32 6597.14 6 7.73 0.83
0.55 0.25 0.015 12 10243.91 0.82 12 10243.91 0.71 10161.83 10243.91 0.80 12 1.53 10317.91 12 0.73 0.72
0.55 0.25 0.02 19 11531.42 1.33 18 11524.42 1.34 11429.38 11524.42 0.82 18 2.67 11620.44 18 1.28 0.83
0.95 0.25 0.005 6 6586.31 6.75 6 6586.31 7.69 6577.57 6586.31 0.13 6 14.44 6597.14 6 7.76 0.16
0.95 0.25 0.015 12 10302.99 0.77 12 10302.99 0.71 10291.10 10302.99 0.12 12 1.48 10317.91 12 0.71 0.14
0.95 0.25 0.02 18 11601.27 1.18 18 11601.27 1.26 11587.85 11601.27 0.12 18 2.44 11620.44 18 1.29 0.16

h j, ci j 0.75 1.25 0.005 4 9023.39 1477.19 4 9023.39 3508.15 8858.55 9023.39 1.83 4 4985.34 9193.62 4 3537.09 1.85
0.75 1.25 0.015 12 14271.58 21.546 11 14264.62 24.368 13987.86 14264.62 1.94 11 45.91 14521.85 11 24.973 1.77
0.75 1.25 0.02 12 15770.25 2.16 12 15770.25 1.71 15486.53 15770.25 1.80 12 3.88 16033.43 12 1.796 1.64
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Solution approach
Parameters First solution Second solution Critical level policy Global Round-up △cost

Data Set Vary α2 h j ci j ♯ DC FOP0(X∗
α2
, Y∗
α2

) Time(s) ♯ DC FOP0(X∗
α1
, Y∗
α1

) Time(s) LB FO∗ Gap(%) ♯ DC Time(s) FOP1(α1) ♯ DC Time(s) (%)
88-nodes Case base 0.75 0.25 0.01 15 15831.84 14.80 15 15831.84 23.98 15750.57 15831.84 0.51 15 38.78 15914.42 15 24.45 0.52

α2 0.55 0.25 0.01 15 15798.22 20.80 15 15798.22 24.31 15680.62 15798.22 0.74 15 45.10 15914.42 15 24.45 0.73
0.65 0.25 0.01 15 15814.13 15.64 15 15814.13 24.16 15713.71 15814.13 0.63 15 39.80 15914.42 15 24.45 0.63
0.85 0.25 0.01 15 15853.98 16.64 15 15853.98 24.22 15796.70 15853.98 0.36 15 40.86 15914.42 15 24.45 0.38
0.95 0.25 0.01 15 15891.18 18.49 15 15891.18 24.03 15874.25 15891.18 0.11 15 42.52 15914.42 15 24.45 0.15

h j 0.75 0.005 0.01 21 11549.66 1.49 21 11549.66 1.42 11547.71 11549.66 0.02 21 2.91 11551.56 21 1.40 0.02
0.75 0.05 0.01 20 13105.64 2.24 20 13105.64 2.23 13087.70 13105.64 0.14 20 4.47 13123.96 20 2.24 0.14
0.75 0.1 0.01 19 14052.27 3.71 19 14052.27 4.04 14016.88 14052.27 0.25 19 7.75 14087.74 19 3.97 0.25
0.75 0.40 0.01 13 17015.56 47.11 11 17010.60 31.30 16890.26 17010.60 0.71 11 78.42 17126.94 11 31.345 0.68
0.75 0.5 0.01 11 17623.92 38.89 11 17623.92 53.30 17477.97 17623.92 0.83 11 92.19 17769.34 11 54.37 0.82
0.75 0.75 0.01 11 18951.74 117.66 11 18951.74 220.41 18732.82 18951.74 1.16 11 338.07 19169.86 11 220.11 1.14
0.75 1.00 0.01 11 20094.59 771.74 10 20094.23 4414.24 19802.70 20094.23 1.45 10 5185.98 20376.72 10 4320.96 1.39
0.75 1.25 0.01 10 21059.36 2608.21 10 21059.36 10812.15a 20717.83 21059.36 1.62 10 13420.36 21412.47 10 10809.80a 1.65

ci j 0.75 0.25 0.005 10 11719.49 72.59 10 11719.49 116.68 11651.18 11719.49 0.58 10 189.27 11790.11 10 118.12 0.60
0.75 0.25 0.015 23 18449.29 8.43 22 18442.41 10.19 18346.98 18442.41 0.52 22 18.62 18538.83 22 10.16 0.52
0.75 0.25 0.02 28 20274.77 2.49 28 20274.77 2.72 20164.00 20274.77 0.55 28 5.21 20382.88 28 2.67 0.53

α2, h j 0.55 0.05 0.01 20 13098.21 2.12 20 13098.21 2.23 13072.22 13098.21 0.20 20 4.36 13123.96 20 2.21 0.20
0.55 0.4 0.01 13 16964.89 27.29 11 16962.91 30.51 16783.70 16962.91 1.06 11 57.81 17126.94 11 31.08 0.96
0.55 1.00 0.01 11 19975.36 693.47 10 19978.26 4419.15 19553.91 19975.36 2.11 11 5112.62 20376.72 10 4385.18 1.97
0.55 1.25 0.01 10 20914.40 2908.11 10 20914.40 10810.67a 20421.25 20914.40 2.36 10 13718.78 21412.47 10 10810.03a 2.33
0.95 0.05 0.01 20 13118.74 2.21 20 13118.74 2.24 13115.07 13118.74 0.03 20 4.45 13123.96 20 2.21 0.04
0.95 0.4 0.01 11 17094.85 34.68 11 17094.85 31.34 17069.80 17094.85 0.15 11 66.02 17126.94 11 31.38 0.19
0.95 1.00 0.01 10 20299.07 2073.77 10 20299.07 4225.10 20240.49 20299.07 0.29 10 6298.87 20376.72 10 4330.09 0.38
0.95 1.25 0.01 10 21315.41 10809.19a 10 21315.41 10809.53a 21242.19 21315.41 0.34 10 21618.73 21412.47 10 10809.46a 0.45

α2, ci j 0.55 0.25 0.005 10 11690.49 48.93 10 11690.49 115.82 11591.86 11690.49 0.84 10 164.75 11790.11 10 117.62 0.84
0.55 0.25 0.015 23 18409.14 6.99 22 18403.29 10.33 18260.95 18403.29 0.77 22 17.31 18538.83 22 10.32 0.73
0.55 0.25 0.02 28 20230.91 2.49 28 20230.91 2.66 20070.54 20230.91 0.79 28 5.15 20382.88 28 2.67 0.75
0.95 0.25 0.005 10 11770.70 200.16 10 11770.70 117.83 11756.05 11770.70 0.12 10 317.99 11790.11 10 116.97 0.16
0.95 0.25 0.015 22 18511.46 9.17 22 18511.46 10.29 18492.58 18511.46 0.10 22 19.46 18538.83 22 10.27 0.15
0.95 0.25 0.02 28 20352.21 2.89 28 20352.21 2.76 20329.23 20352.21 0.11 28 5.66 20382.88 28 2.72 0.15

h j, ci j 0.75 1.0 0.005 7 15100.30 10812.81a 7 15100.30 10808.06a 14875.43 15100.30 1.49 7 22110.88 15337.88 7 10816.931a 1.55
0.75 1.0 0.015 17 23868.85 3949.97 16 23862.61 10520.11 23535.58 23862.61 1.37 16 14470.09 24189.39 16 10274.19 1.35
0.75 1.0 0.02 22 26387.26 370.98 22 26387.26 311.39 26018.35 26387.26 1.40 22 682.37 26772.94 22 311.59 1.44

a Suboptimal solution obtained for 3 h limit.

Table B.2: Results for test set
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C.1 Pseudocodes

Algorithm 3 Pseudocode UB CQLRU

1: for i ∈ N1 do
2: Find j installed, serving class 1 and with smallest d̂i j

3: Set jmin1 = j

4: Set yi, jmin1 = 1
5: end for
6: for i ∈ N2 do
7: Find j installed, serving class 2 and with smallest d̂i j

8: Set jmin2 = j

9: Set yi, jmin2 = 1
10: end for
11: Evaluate V(CQLRU)
12: Obtain UB = V(CQLRU)

Algorithm 4 Lagrangian Relaxation Algorithm
1: Set k = 0, LB∗ = −∞, UB∗ = ∞
2: while |UB∗ − LB∗| > ǫ do
3: Obtain LB(k) using (6.34)
4: if LB(k) ≥ LB∗ then
5: Set LB∗ = LB(k)

6: end if
7: Obtain UB(k) using Algorithm 3
8: if UB(k) ≤ UB∗ then
9: Set UB∗ = UB(k)

10: end if
11: Update λ(k)

i

12: Set k = k + 1
13: end while
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C.2 Numerical results for test sets

Parameters Global Round Up Local Round Up Single Class Allocation Separate stock Critical level policy
Data Set Vary β2 h j ci j ♯ DC ZGRU Time(s) ♯ DC ZLRU Time(s) (%)gap ♯ DC ZS CA Time(s) ♯ DC ZS S P Time ♯ DC LB UB Time(s)
49-nodes Case base 0.750 0.250 0.010 12 8819.29 1.79 12 8813.02 372.40 0.000 16 9982.83 13.58 12 8795.97 1.53 12 8709.91 8766.65 3.18

β2 0.550 0.250 0.010 12 8819.29 1.79 12 8810.39 514.66 0.000 16 9957.41 13.49 12 8768.18 1.70 12 8663.21 8745.29 3.11
0.650 0.250 0.010 12 8819.29 1.80 12 8811.63 415.14 0.000 16 9969.44 15.64 12 8781.33 1.74 12 8685.30 8755.40 3.32
0.850 0.250 0.010 12 8819.29 1.78 12 8819.18 365.12 0.071 16 9999.59 13.38 12 8814.30 1.68 12 8740.71 8780.73 3.19
0.950 0.250 0.010 12 8819.29 1.79 12 8817.67 507.46 0.005 16 10027.77 12.59 12 8845.11 1.47 12 8792.48 8804.37 3.41

h j 0.750 0.005 0.010 12 6189.77 0.32 13 6189.84 556.83 0.055 19 6910.10 0.47 12 6189.30 0.34 12 6187.53 6188.71 0.69
0.750 0.100 0.010 12 7663.70 0.52 12 7661.13 311.66 0.008 16 8675.86 2.05 12 7654.38 0.50 12 7619.95 7642.65 0.97
0.750 0.350 0.010 10 9386.98 3.07 11 9390.62 495.16 0.099 14 10640.84 400.89 11 9359.54 3.80 10 9242.65 9318.37 5.80
0.750 0.500 0.010 9 10088.43 16.88 9 10090.01 725.18 0.016 12 11403.47 10800.388a 10 10056.96 17.99 10 9885.64 9992.74 27.02
0.750 0.750 0.010 9 11029.92 66.71 7 11033.80 1219.67 0.099 10 12348.67 5183.30 9 10985.40 8514.41 9 10733.56 10890.68 110.22
0.750 1.000 0.010 7 11761.83 137.55 7 11765.52 660.94 0.034 10 13170.57 11008.834a 7 11714.27 200.96 7 11410.71 11589.59 304.92
0.750 1.250 0.010 6 12387.38 149.51 6 12389.35 759.92 0.016 8 13845.32 11030.123a 6 12340.35 245.95 6 11982.67 12197.85 379.85

Ci j 0.750 0.250 0.005 6 6597.14 7.74 6 6597.59 669.90 0.007 8 7509.06 138.05 6 6585.74 6.47 6 6517.31 6558.11 14.03
0.750 0.250 0.015 12 10317.91 0.72 12 10311.73 321.00 0.000 19 11395.24 3.10 12 10294.60 0.70 12 10208.53 10265.27 1.49
0.750 0.250 0.020 18 11620.44 1.32 18 11592.26 423.93 0.034 22 12416.53 1.48 18 11577.71 1.33 18 11487.46 11552.20 2.43

β2, h j 0.550 0.500 0.010 9 10088.43 16.38 9 10090.01 580.74 0.020 11 11355.03 10800.309a 10 10000.47 17.16 10 9798.06 9952.95 26.05
0.550 1.000 0.010 7 11761.83 135.31 7 11765.52 491.11 0.093 10 13077.69 11080.337a 7 11612.39 4437.61 7 11260.81 11519.14 379.26
0.550 1.250 0.010 6 12387.38 146.00 6 12389.35 444.33 0.016 8 13736.82 11371.077a 6 12229.14 476.42 7 11795.28 12118.20 598.10
0.950 0.500 0.010 9 10088.43 16.26 9 10090.01 621.93 0.016 11 11474.06 1422.89 9 10153.79 16.63 9 10040.00 10062.13 31.14
0.950 1.000 0.010 7 11761.83 135.54 7 11765.52 515.56 0.056 9 13327.20 10952.904a 7 11894.40 240.91 7 11675.76 11713.94 341.72
0.950 1.250 0.010 6 12387.38 162.76 6 12389.35 534.35 0.016 8 14037.15 10917.027a 6 12536.97 296.97 6 12292.57 12334.61 373.17

β2,Ci j 0.550 0.250 0.005 6 6597.14 7.76 6 6597.59 702.99 0.007 8 7487.36 109.10 6 6563.50 8.01 6 6483.23 6542.14 13.32
0.550 0.250 0.015 12 10317.91 0.70 12 10309.09 318.91 0.000 19 11364.97 2.90 12 10266.80 0.74 12 10161.83 10243.91 1.53
0.550 0.250 0.020 18 11620.44 1.31 18 11578.00 362.78 0.031 22 12384.69 1.41 18 11544.44 1.42 18 11429.38 11524.42 2.67
0.950 0.250 0.005 6 6597.14 7.71 6 6597.59 620.40 0.007 8 7547.43 134.87 5 6624.34 8.23 6 6577.57 6586.31 14.44
0.950 0.250 0.015 12 10317.91 0.71 12 10316.38 248.14 0.121 19 11448.77 3.45 12 10343.73 0.70 12 10291.10 10302.99 1.48
0.950 0.250 0.020 18 11620.44 1.32 18 11617.47 383.12 0.092 22 12472.81 1.30 18 11636.53 1.43 18 11587.85 11601.27 2.44

h j,Ci j 0.750 1.250 0.005 4 9193.62 3644.97 4 9193.59 537.04 0.161 5 10412.83 10800.318a 4 9150.76 2234.08 4 8858.55 9023.39 4985.34
0.750 1.250 0.015 11 14521.85 24.28 12 14503.93 456.41 0.000 15 16226.68 4642.50 12 14418.18 42.13 11 13987.86 14264.62 45.91
0.750 1.250 0.020 12 16033.43 1.69 12 16002.63 324.10 0.000 18 17650.49 67.13 12 15916.85 1.99 12 15486.53 15770.25 3.88

a Suboptimal solution obtained for 3 h limit.
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Parameters Global Round Up Local Round Up Single Class Allocation Separate stock Critical level policy
Data Set Vary β2 h j ci j ♯ DC ZGRU Time(s) ♯ DC ZLRU Time(s) (%)gap ♯ DC ZS CA Time(s) ♯ DC ZS S P Time ♯ DC LB UB Time(s)
88-nodes Case base 0.750 0.250 0.010 15 15914.42 23.88 15 15914.42 893.433 0.089 19 18605.93 813.43 15 15893.80 20.64 15 15750.57 15831.84 23.98

β2 0.550 0.250 0.010 15 15914.42 24.51 15 15914.42 1050.204 0.093 19 18566.99 952.77 15 15848.04 18.55 15 15680.62 15798.22 24.31
0.650 0.250 0.010 15 15914.42 23.84 15 15914.42 1087.851 0.093 19 18585.41 960.53 15 15869.69 20.85 15 15713.71 15814.13 24.16
0.850 0.250 0.010 15 15914.42 24.61 15 15914.42 1097.435 0.091 19 18631.61 832.88 15 15923.98 20.36 15 15796.70 15853.98 24.22
0.950 0.250 0.010 15 15914.42 23.78 15 15914.42 998.654 0.089 19 18674.78 2136.72 15 15974.71 24.31 15 15874.25 15891.18 24.03

h j 0.750 0.005 0.010 21 11551.56 1.43 20 11565.00 750.779 0.126 26 14036.30 2.29 21 11550.92 1.44 21 11547.71 11549.66 1.42
0.750 0.100 0.010 19 14087.74 4.01 19 14089.97 1065.931 0.029 21 16673.70 28.12 19 14077.51 3.93 19 14016.88 14052.27 4.04
0.750 0.350 0.010 13 16769.94 42.34 13 16769.94 1637.537 0.000 18 19559.21 8555.95 13 16744.00 53.30 13 16551.55 16661.19 84.42
0.750 0.500 0.010 11 17769.34 55.24 11 17769.34 1086.833 0.082 17 20744.98 10962.41a 11 17736.74 45.34 11 17477.97 17623.92 53.30
0.750 0.750 0.010 11 19169.86 217.92 11 19169.86 1353.314 0.067 16 22371.99 10813.32a 11 19120.97 176.01 11 18732.82 18951.74 220.41
0.750 1.000 0.010 10 20376.72 4953.21 10 20376.72 1395.378 0.016 15 23733.96 10964.12a 10 20318.57 3014.58 11 19802.70 20094.23 5185.98
0.750 1.250 0.010 10 21412.47 10812.62a 10 21412.47 908.486 0.005 14 24879.66 10909.89a 10 21339.78 9398.08 10 20717.83 21059.36 10812.15a

Ci j 0.750 0.250 0.005 10 11790.11 114.49 10 11781.57 680.967 0.005 14 13962.29 10801.8a 9 11783.86 10800.40a 10 11651.18 11719.49 116.68
0.750 0.250 0.015 22 18538.83 10.33 22 18534.04 740.848 0.075 28 21883.62 221.32 22 18504.10 9.27 23 18346.98 18442.41 10.19
0.750 0.250 0.020 28 20382.88 2.71 28 20361.57 645.032 0.036 40 23792.41 34.72 28 20332.13 3.06 28 20164.00 20274.77 2.72

β2, h j 0.550 0.500 0.010 11 17769.34 54.21 11 17769.34 911.339 0.073 16 20699.34 10802.864a 11 17653.07 36.23 11 17353.58 17564.30 89.62
0.550 1.000 0.010 10 20376.72 4490.93 10 20376.72 1454.485 0.059 15 23614.70 10987.232a 11 20152.89 1379.38 11 19553.91 19975.36 4419.15
0.550 1.250 0.010 10 21412.47 10810.86a 10 21412.47 1239.571 0.070 15 24728.21 10890.89a 10 21135.88 5048.98 10 20421.25 20914.40 10810.67a

0.950 0.500 0.010 11 17769.34 54.49 11 17769.34 1482.631 0.073 17 20872.78 11070.09a 11 17884.68 46.39 11 17697.91 17729.23 95.78
0.950 1.000 0.010 10 20376.72 4646.05 10 20376.72 1689.813 0.046 15 24020.24 10863.60a 10 20606.97 10800.75a 10 20240.49 20299.07 4225.10
0.950 1.250 0.010 10 21412.47 10811.81a 10 21412.47 1080.587 0.001 13 25177.33 10956.82a 10 21699.98 10809.79a 10 21242.19 21315.41 10809.53a

β2,Ci j 0.550 0.250 0.005 10 11790.11 119.83 10 11777.12 2560.345 0.069 13 13894.60 10802.91a 10 11734.79 105.58 10 11591.86 11690.49 115.82
0.550 0.250 0.015 22 18538.83 10.37 22 18528.95 1308.505 0.078 28 21840.58 157.11 22 18451.71 10.31 23 18260.95 18403.29 10.33
0.550 0.250 0.020 28 20382.88 2.68 29 20354.71 2584.432 0.030 40 23738.52 23.27 28 20275.31 2.71 28 20070.54 20230.91 2.66
0.950 0.250 0.005 10 11790.11 130.20 10 11794.77 1809.364 0.036 13 13945.97 10848.296a 9 11860.61 10825.35a 10 11756.05 11770.70 117.83
0.950 0.250 0.015 22 18538.83 10.34 22 18543.05 2409.453 0.050 28 21959.71 189.12 22 18596.73 10.25 22 18492.58 18511.46 10.29
0.950 0.250 0.020 28 20382.88 2.71 29 20385.47 1012.548 0.072 40 23887.69 19.47 28 20432.57 3.51 28 20329.23 20352.21 2.76

h j,Ci j 0.750 1.250 0.005 6 16117.16 10824.96a 7 15887.24 2070.478 0.068 10 18937.21 10801.701a 6 16049.31 10827.02a 6 15653.97 15837.63 10812.99a

0.750 1.250 0.015 16 25459.96 10800.54a 16 25429.84 2146.011 0.050 19 29244.21 10809.53a 17 25390.37 10822.34a 16 24644.08 25051.48 10802.19a

0.750 1.250 0.020 20 28257.18 2740.27 21 28228.63 2036.999 0.097 27 32563.90 10810.67a 21 28088.44 1487.33 20 27327.69 27802.25 4697.15
a Suboptimal solution obtained for 3 h limit.

Table C.1: Results for test set
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D.1 Data for illustrative example

Candidate DCs Customers
Location f j Location Demand

DC X Y (US $/day) Customer Class X Y µi (kg/day) CVi

1 -9.47 21.02 191 1 1 -7.37 10.71 4647.33 0.53
2 -6.22 15.53 200 2 1 -18.23 0.11 1616.67 0.42
3 -6.67 15.92 195 3 1 -13.31 -12.01 1275.33 0.85
4 -7.98 16.39 206 4 2 -9.38 10.96 504.67 0.63
5 -8.60 16.71 206 5 2 -11.15 -3.24 430.00 0.59
6 -7.59 16.18 202 6 1 -5.27 1.55 882.00 0.93
7 -7.56 15.23 211 7 2 -6.13 4.23 248.00 0.36
8 -7.10 14.90 206 8 1 2.19 1.11 4880.00 0.78
9 -6.45 14.93 211 9 2 4.13 -0.22 386.67 0.78
10 -6.89 14.03 206 10 1 -8.16 13.68 1256.67 0.44
11 -5.97 13.62 244 11 1 -13.15 5.45 1476.67 0.61
12 -4.91 11.62 237 12 2 -2.48 6.04 176.00 0.17
13 -3.56 12.01 233 13 1 -8.32 10.19 700.67 0.15
14 -0.89 10.31 233 14 2 7.18 4.45 230.00 0.58
15 -4.49 9.56 255 15 1 -6.40 5.12 872.67 0.80
16 -4.35 9.29 255 16 2 -8.81 -9.94 196.00 0.94
17 -3.64 5.38 233 17 2 -7.05 0.22 388.00 0.22
18 -6.87 10.81 211 18 2 1.18 -9.12 176.00 0.61
19 -9.55 10.16 222 19 2 -11.24 -38.33 456.67 0.52
20 -10.27 10.08 211 20 2 -6.86 -12.23 114.00 0.11
21 -10.64 10.15 206 21 2 -2.61 -6.45 156.00 0.40
22 -10.65 9.79 217 22 2 -7.05 -18.35 250.67 0.25
23 -11.08 9.89 211 23 2 7.65 0.00 144.67 0.81
24 -11.87 9.55 203 24 2 -7.51 -18.12 321.33 0.38
25 -12.34 8.76 208 25 2 -10.55 -33.96 194.67 0.58
26 -22.13 2.04 200 26 2 4.04 -18.35 174.67 0.25
27 -12.88 2.72 222 27 2 -23.59 -19.68 168.00 0.64
28 -13.07 2.92 222 28 2 -2.71 -2.78 198.00 0.34
29 -13.10 2.53 211 29 2 -28.49 -26.02 150.67 0.69
30 -13.09 2.14 195 30 2 -12.41 -7.45 111.33 0.72
31 -12.32 2.31 211 31 2 9.77 7.78 100.00 0.77
32 -9.31 1.59 228 32 2 6.07 -6.12 88.67 0.51
33 -8.72 1.51 228 33 2 -8.59 -10.30 186.00 0.18
34 -6.93 -6.22 228 34 2 -4.37 7.78 154.00 0.31
35 -5.07 -3.42 217 35 2 -26.55 -25.24 264.67 0.92
36 -6.47 -8.86 222 36 2 2.56 -9.90 233.33 0.24
37 -6.98 -9.36 208 37 2 4.33 3.14 222.00 0.84
38 -6.49 -9.47 208 38 2 4.23 -20.35 109.33 0.58

Table D.1: Data for illustrative example
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