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DISSIPATIVE MAGNETIZATION TEXTURES INDUCED BY SPIN-TRANSFER
TORQUES AND ALTERNATING MAGNETIC FIELDS

Los materiales ferromagnéticos a escala nanométrica pueden ser manipulados mediante tor-
ques por transferencia de espín y/o campos magnéticos oscilatorios. El torque por transferen-
cia de espín es el resultado de la interacción entre los espines de un material ferromagnético
y los espines de una corriente eléctrica que fluye por él. El objetivo de la presente tesis es
investigar las dinámicas de la magnetización inducidas mediante torques por transferencia de
espín y campos magnéticos oscilatorios.

En el primer capítulo se exponen la motivación del presente estudio, los objetivos y los
principales resultados. Los capítulos dos y tres de este trabajo introducen la descripción
micromagnética de la magnetización y los conceptos y métodos de la física no lineal, respec-
tivamente. En el cuarto capítulo se motivan y discuten de manera general los resultados de
la presente investigación, mientras que el quinto capítulo presenta las conclusiones generales
de la tesis. Los cinco capítulos siguientes (apéndices A, B, C, D y E) presentan los detalles
de nuestros resultados, en formato de publicación. En el Capítulo A, se describen estados
tipo patrón de la magnetización inducidos mediante torques por transferencia de espín. Estas
texturas, periódicas en el espacio, son descritas mediante ecuaciones para las envolventes de
los modos críticos. En el Capítulo B, se estudia la equivalencia entre el efecto de torque por
transferencia de espín y los sistemas macroscópicos con inyección de energía modulada en
el tiempo. En particular se demuestra que un ferromagneto forzado mediante torques por
transferencia de espín exhibe los mismos estados que un medio ferromagnético rotado me-
cánicamente. Empleando esta equivalencia, se logra predecir texturas tales como patrones
y estados localizados. En el Capítulo C, se analizan los efectos de una corriente de espín-
polarizado alternante en la dinámica de la magnetización. Como resultado de este estudio,
se demuestra analítica y numéricamente la existencia de una resonancia sub-armónica, y se
comprueba numéricamente la emergencia de estados similares a ondas de Faraday y solitones.
En el Capítulo D, se estudian sistemas macroscópicos en presencia de un forzamiento que os-
cila en el tiempo. Mediante un modelo fenomenológico para la envolvente de las oscilaciones,
se predice y caracteriza un nuevo tipo de estado fuera del equilibrio, este es un pulso que se
propaga sobre fondos periódicos. Estas soluciones se caracterizan por un incremento localiza-
do y viajero de la amplitud del estado patrón que las soporta. Se determina que el mecanismo
mediante el cual emergen los pulsos es una inestabilidad de Andronov-Hopf sub-crítica. Estos
comportamientos son estudiados en un hilo magnético forzado por un campo magnético que
oscila en el tiempo. En el Capítulo E, se estudian oscilaciones de patrones bidimensionales,
inducidas mediante torques por transferencia de espín. Se comprueba numéricamente que
los mecanismos que originan las oscilaciones son una bifurcación homoclina y una inestabi-
lidad de Andronov-Hopf. Finalmente, el Apéndice F presenta dos actas de conferencia con
resultados complementarios desarrollados en la tesis.
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DISSIPATIVE MAGNETIZATION TEXTURES INDUCED BY SPIN-TRANSFER
TORQUES AND ALTERNATING MAGNETIC FIELDS

Spin-transfer torques and oscillatory magnetic fields permit manipulating ferromagnetic ma-
terials at nanoscales. The spin-transfer effect is based on the interaction between the spins
of a ferromagnetic material and the spins of an electric current flowing through it. The aim
of this thesis is to investigate magnetization dynamics induced by spin-transfer torques and
oscillatory magnetic fields. In particular we study the formation of dissipative structures, that
is, states or dynamical behaviors of dissipative systems that can attract initial conditions in
phase space.

In the first Chapter we present the motivation, objectives and results of this thesis. Chap-
ters two and three introduce the micromagnetic description of magnetization and the concepts
and methods of nonlinear physics, respectively. In the fourth Chapter we motivate and discuss
our results in general terms, while we present our general conclusions in Chapter five.

The appendix Chapters A, B, C, D and E present in detail the results of this thesis in publi-
cation format. Chapter A describes magnetic pattern states driven by spin-transfer torques.
Patterns are spatially periodic textures, and they are usually described by equations for the
spatial mode envelopes. In Chapter B, we studied the equivalence between spin-transfer tor-
que driven nanomagnets and macroscopic systems with time dependent injections of energy.
In particular, we demonstrated that ferromagnets driven by spin-transfer torques exhibit the
same type of states as a mechanically rotated magnetic film. This equivalence permitted us to
predict a vast variety of magnetic textures such as patterns and localized states. In Chapter
C we analyzed the magnetization dynamics for the case of alternating spin-polarized electric
currents. As a result of this study, the existence of a sub-harmonic resonance was demonstra-
ted. Numerically, Faraday-like waves and solitons were observed. In Chapter D, we studied
parametrically driven one-dimensional media. Based on a phenomenological model for the
oscillation envelope, we predicted and characterized a new type of state, namely a traveling
pulse on a periodic background. This solution is characterized by a localized increment of the
pattern amplitude. We elucidated the formation mechanism of this state, which is a subcriti-
cal Andronov-Hopf instability of a spatially periodic texture. These behaviors are exemplified
on a ferromagnetic wire driven by an alternating magnetic field. In Chapter E, we studied
oscillatory two-dimensional patterns induced by spin-transfer torques, which emerge through
a homoclinic bifurcation and an Andronov-Hopf instability.

Finally, Appendix F presents two conference proceedings.
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Capítulo 1

Introduction

The possibility to couple and uncouple degrees of freedom associated to different physical
properties has always attracted the attention of physicists, because it permits developing a
more general understanding of interactions in nature and also because it allows generating
useful technological applications. Some examples are the transfer of momentum from elec-
tromagnetic fields to mechanical objects (radiation pressure [31]), transfer of energy from
a magnetic medium to its crystal lattice (magnetization relaxation [72]), electric field indu-
ced by friction (materials charging by rubbing [31]), among others. More recent appealing
examples in nano-magnetism include spintronics [53] or spin electronics, a recent branch
of science that studies and exploits the interaction between spins of conduction electrons
and of ferromagnetic media; spin-caloritronics [5], where electric charge, spin, energy and
entropy interact; spin-currents induced by mechanical rotations [3, 56]; anti-ferromagnetic
spintronics [61] which is similar to spintronics but uses anti-ferromagnetic media as the buil-
ding blocks for devices; and the interaction between topological magnetization structures [38],
such as skyrmions, and spins of electric currents. Hence, this is an exciting time for studying
non-equilibrium magnetism at nano-scales, for explaining and predicting novel physical ef-
fects emerging from the interaction of mechanical, electrical and magnetic degrees of freedom
of electrons, and for proposing fresh technological applications of all the above mentioned
effects.

The giant-magneto-resistance [72] and the spin-transfer torque [74, 6] are two remarkable
spintronic effects. When an electric current traverses a multilayer structure composed by
two or more ferromagentic materials, the electric resistance depends on the relative orienta-
tion of the magnetizations, this phenomenon is the giant-magneto resistance. On the other
hand, a spin-transfer torque appears when an electric current transfers spin-angular momen-
tum to a ferromagnet. Understanding spin-transfer torques involves challenges from both
the microscopic and the macroscopic approaches, due to the highly nonlinear magnetization
dynamics that emerges as the result of collective quantum mechanical interactions. Indeed,
spin-transfer torques generate microwave magnetic oscillations [41, 73, 46], magnetization
switching [46], chaos [7], stationary smooth textures [82, 42, 49], vortex lattices [81, 29],
localized states [51, 48], and domain walls movement [39]. Moreover, the technological ap-
plications promised by the spin-transfer torque effect are also appealing [70]. For instance it
is possible to use the spin-transfer torque to write information in magnetic random access
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memories, MRAM, and the generation of spin-waves with gigahertz frequencies to transmit
information.

Following the widespread goal of coupling different types of degrees of freedom and making
analogies between different physical systems, in this thesis we study magnetization dynamics
using the concepts and tools of Nonlinear Physics, which permits us to find similarities bet-
ween systems governed by different equations, such as vibrated fluids, driven granular media,
and forced optical systems [25]. In this context, we found that the mathematical form of
the spin-transfer torque is equivalent to the pseudo torque that appears when a rotating
reference frame is considered. Using this idea, we conceived an equivalence between macros-
copic systems driven by time-dependent forces and spintronics, even if the electric current
is continuous. This equivalence implies that under some reasonable approximations both ty-
pes of systems obey the same equations and exhibit the same type of dynamical behaviors.
Furthermore, the equivalence predicts localized states, usually known as dissipative solitons,
and spatially periodic textures or patterns. Figure 1.1 shows the magnetization profiles of
these two states. We also investigate magnetic media forced by alternating magnetic fields
and spin-transfer torques that oscillate on time, and we compare the dynamical responses of
these systems.

Next section presents in more detail the aims of this research work.

1.1. Objectives and main results of the thesis

The general goal of this thesis is to study the formation of dissipative states, such as
spatially periodic textures and localized states, in ferromagnetic media driven by spin-transfer
torques and alternating magnetic fields. In particular:

(A) To study the formation of magnetization textures induced by continuous spin-polarized
currents—spin transfer torques—. As a result of this analysis, we found and charac-
terized analytically a wide variety of states known as superlattices, which are textures
composed by several spatial modes [see Fig. 1.1(b)].

(B) To study the relation between spin-transfer torque induced textures and dynamics
exhibited by other non equilibrium systems. As a result of this work, we found an
equivalence between macroscopic systems with a time-dependent forcing and the fe-
rromagnetic materials driven by spin-transfer torques. Figure 1.1(a) shows a magnetic
dissipative soliton, which is one of the predictions resulting from the equivalence.

(C) To study the formation of textures when the spin-polarized current oscillates in time.
We found the conditions of the sub-harmonic resonance known as parametric instability,
and we obtained a reduced model for the magnetization excitation which permits us to
predict localized states and textures.

(D) To analyze instabilities of magnetization patterns in magnetic wires driven by alter-
nating magnetic fields. As a result of this study, we found and characterized traveling
pulses on a periodic background. This state is shown in Fig. 1.1(c). We also demons-
trated that the pulses are a general phenomenon of systems with a time-dependent
injection of energy.

2
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Figura 1.1: Magnetization textures induced by spin-transfer torques and oscillatory magnetic
fields. (a) Soliton are localized excitations. (b) Pattern are spatially periodic textures. (c)
Traveling pulses on periodic backgrounds are localized increments of a wave envelope.

(E) To study the dissipative structures that emerge when the stationary two-dimensional
patterns shown in Fig. 1.1(b) become unstable. As result of this study, we found oscilla-
tory patterns that alternate their shape and we revealed the mechanisms that originate
such states, namely an Andronov-Hopf instability and a homoclinic bifurcation.

1.2. Organization of the document

The thesis is organized as follows. Chapter 2 describes the magnetization dynamics at
nano-scales. We present a brief introduction to ferromagnetic media from the classical and
continuous approach known as micromagnetism, which describes the behavior of the ave-
raged magnetic moment density, that is, the magnetization. This chapter also introduces
the Landau-Lifshitz-Gilbert equation—a paradigmatic model that described the temporal
evolution of the magnetization—, time-dependent forcing and the spin-transfer effect.

In Chapter 3 we introduce the concepts and methods of nonlinear physics that permitted
us to analyze the Landau-Lifshitz-Gilbert equation. In particular we describe commonly
observed bifurcations—qualitative changes in the phase space—and the amplitude equation
method that reduces the number of degrees of freedom of the system under study.

The general discussions and conclusions of the results of the thesis are presented in chapters
4 and 5, respectively.

Appendix Chapters A, B, C, D, and E present the details of our results. Each chapter is
devoted to one of the research objectives described in the previous section.

Appendix F presents two conference proceedings.
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Capítulo 2

Magnetization Dynamics at nanoscales

Ferromagnetic materials at nano-scales are described in the classical continuum approach—
kown as micromagnetic theory—by the magnetic moment density magnetization M [22]

M ≡
∑

j Sj∑
j ∆Vj

,

where Sj represents the averaged magnetic moment in a region or domain of volume ∆Vj.
The sum is over all the magnetic domains. In the continuum approach, the spatial variations
of the magnetization field M must be slow, that is, the magnetization is constant at the
scales of a few atoms or molecules, and the average magnetic moment dS in a volume dV
can be approximated by dS = MdV . For spatial scales smaller than the exchange length, lex,
which is a material property and it usually takes values between 3−7 nm, the magnetization
can be assumed constant [22]. The exchange length is a relevant quantity in magnetism and
its precise definition will be given later on this chapter.

In thermodynamic equilibrium, the magnetization is stationary and its spatial configura-
tion depends on material properties and applied magnetic fields [57]. In the next subsection
we review the dominant physical effects that determine the equilibrium magnetization.

2.1. Magnetic Energy

Ferromagnetic Exchange.- At a quantum mechanical level, neighbor spins ŝk interact
through an exchange Hamiltonian of the form [72]

Ĥex = −2Jŝ1 · ŝ2,

where J is the exchange constant, and it depends on the overlap of spatial wave function
of electrons. One the one hand, if the exchange constant is positive, then the minimum
energy is obtained for spins pointing in the same direction. This is the case of ferromagnetic
media, where spins tend to align and a net magnetic momentum appears. The macroscopic
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description of a system of magnetic moments is conducted using the magnetization M. On
the other hand, when J is negative, the minimum energy configuration is obtained when
the spins are antiparallel. In that case the material is an antiferromagnet, and it has zero
magnetization. Along this work, we focus only on ferromagnetic media.

The magnetization is result of quantum mechanical interactions. However, a classical Ha-
miltonian description can be proposed after replacing the spin operators ŝk by classical mag-
netic moments Sk of magnitude S. We consider a simple cubic lattice of localized magnetic
moments. The position rk ≡ r(k) of each magnetic moment Sk is labeled by the discrete
index k. Then, we have

Hex = −J
∑

k

∑

j

Sk · Sj,

where the discrete index j labels the nearest-neighbors spins around Sk.

Hex = −J
∑

k

∑

j

(Sk · Sj +
1

2
S2
k −

1

2
S2
k +

1

2
S2
j −

1

2
S2
j) =

J

2

∑

k

∑

j

(Sk − Sj)
2 +H0,

where H0 = −(J/2)
∑

k

∑
j[S

2
k + S2

j ]. Using a Taylor series Sj ≈ Sk + a(ej,k · ∇)Sk, where
the unit vector ej,k ≡ (rj − rk)/a accounts for the direction between neighbor spins, and the
lattice constant a is the distance between nearest-neighbors spins. Then,

Hex =
Ja2

2

∑

k

∑

j

[(ej,k · ∇)Sk]
2 +H0,

Let us write the magnetic momentum in terms of the unit vector s, that is Sk = Ssk =
S(sx,kex + sy,key + sz,kez) in Cartesian coordinates, where {ex, ey, ez} are the unit vectors
along the {x, y, z} axes. Summing over the j index yields

Hex = Ja2S2
∑

k

[
(∇sx,k)2 + (∇sy,k)2 + (∇sz,k)2

]
+H0.

Considering the continuum limit
∑

k ∼
∫∫∫

, a3 ∼ dV and sk ∼ s(r), where dV is the volume
element. Then we have

Hex =

∫∫∫

V

JS2

a

[
(∇sx)2 + (∇sy)2 + (∇sz)2

]
dV +H0,

eliminating the constant H0, which is proportional to the volume of the ferromagnet V and
the spin magnitude square, that is H0 ∼ V S2. We obtain [57]

Hex =

∫∫∫

V

A

M2
s

|∇M|2,

where the integration domain is the ferromagnet and M = Mss is the magnetization. The
magnetization norm Ms ≡ |M| is the saturation magnetization. In the continuum limit the
ferromagnetic exchange favors smooth textures. Furthermore, at nano-scales the exchange
interaction is dominant and favors the parallel orientation of spins. Then the exchange inter-
action only permits rotation of the magnetization, while its norm |M| = Ms is constant [57].
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For instance, for Iron, Cobalt and Nickel the values 1 of µ0Ms, where µ0 is the vacuum per-
meability, are µ0Ms = 2,16 T, µ0Ms = 1,82 T and µ0Ms = 0,62 T [22, 8], respectively. The
norm conservation permits one to study the magnetization in different representations such as
spherical or stereographic coordinates. Moreover, |∇M|2 ≡ (∇Mx)

2+(∇My)
2+(∇Mz)

2, and
{Mx,My,Mz} are the Cartesian components of the vector M. The parameter A ≈ cJS2/a
is the exchange stiffness constant [22, 8]. The parameter c is of order one, and it accounts
for the details of the lattice [22, 8]. In the case of the simple cubic lattice studied here, we
have c = 1. For example, for Iron, Cobalt and Nickel [8] A ≈ 1,5 10−11 J/m. This constant
permits one to define the exchange length as

lex ≡
√

2A

µ0M2
s

.

The exchange lengths for Iron, Cobalt and Nickel are 2,8 nm, 3,4 nm, and 9,9 nm [8], res-
pectively.

Zeeman effect.- Another relevant interaction is the Zeeman effect [72], and it couples the
magnetization with an external magnetic field H0 through the Zeeman Hamiltonian, Hz,
given by

Hz = −
∫∫∫

V

µ0H0 ·M,

which is minimized when the magnetization points parallel to the external field. Since the
magnetization aligns with external magnetic fields, it is posible to manipulate the magnetic
state of materials by means of magnetic field pulses. During the last decades, this excitation
mechanism has been the key to record information in magnetic memories.

Magnetostatic fields.- Magnetization generates an irrotational magnetic fieldHD, usually
known as magnetostic or demagnetizing field. This field can be written as the gradient of a
scalar potential HD = −∇Φ, where [22]

Φ(r) =
1

4π

∫

V

ρm(r′)

|r− r′|dV
′ +

1

4π

∫

∂V

σm(r′)

|r− r′|dS
′,

where ρm ≡ −∇·M and σm = M ·nout are the the volumetric and surface magnetic density,
respectively, and nout is the outward normal vector at the material surface.

The Hamiltonian HD that describes the interaction between the magnetization and the
magnetostatic field is [57]

HD = −
∫∫∫

V

µ0
HD ·M

2
.

1It is usual to multiply the magnetization by the vacuum permeability to obtain units of magnetic field
B = µ0M , that is, Tesla [T].
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When the magnetization close to the sample surfaces is not important, the magnetic
medium is usually considered an uniformly magnetized infinite plane. In that case the mag-
netostatic energy can be simplified to

HD ≈ µ0

∫∫∫

V

1

2
M2

z ,

which is a shape anisotropy for the system. This simplification is known as the thin film
approximation. This is a rough approximation when the surface magnetic density σm is non
negligible in the lateral borders, that is, when an important part of the magnetization lies
on the sample plane. Moreover, several magnetization configuration are far from the uniform
limit. However, the use of the simplified form is widespread in literature because it permits
one to work with local energy contributions, and therefore analytic calculations and numerical
simulations become more accessible.

Magnetocrystalline anisotropies.- Materials are not necessarily isotropic, furthermore,
the crystalline structure and the coupling between spin and the spatial part of the wave
function usually generate one or more preferred directions for the magnetization. The Hamil-
tonian used to describe the magnetocrystalline anisotropy depends on the material. However,
a very commonly observed type of anisotropy is known as uniaxial anisotropy, and at leading
order this anisotropy is modeled as [8]

Hani = −µ0

∫∫∫

V

β

2
(k ·M)2 ,

where β is an anisotropy constant, and Hani is the Hamiltonian of the uniaxial anisotropy.
This energy favors configurations along the unit vector k when β is positive. In that case,
the direction of k is named an easy axis. When β is negative, the minimum energy state is
the magnetization direction in the plain perpendicular to k. In this case, the system has a
hard axis along k or an easy plane perpendicular to k.

Total Magnetic energy.- In general, the magnetic configuration is the result of the com-
petition among all the above mentioned effects. Indeed, the stationary magnetic equilibria
are minima of the following magnetic energy [57]

E =

∫∫∫

V

(
A

M2
s

|∇M|2 − µ0H0 ·M−
µ0

2
HD ·M− µ0

β

2
(k ·M)2

)
dV, (2.1)

where V is the volume of the ferromagnetic media. Several other terms can be added to the
Eq. (2.1) to model border anisotropies, chirality, impurities, among other effects.

The study of equilibrium magnetizations at nano-scales is based on the minimization of this
energy with the norm conservation constraint |M| = Ms. The temporal evolution of the mag-
netization requires a dynamical equation. In the next section we introduce Landau-Lifshitz
and Landau-Lifshitz-Gilbert equations which governs the dynamics of the magnetization.
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2.2. Landau-Lifshitz and Landau-Lifshitz-Gilbert equa-
tions

The model that describes the magnetization evolution was proposed in 1935 by Landau
and Lifshitz, and since then, this equation has proved to be an excellent model to describe
a vast variety of phenomena, including ferromagnetic resonance, magnetization switching,
and precessional dynamics (see [57] and references therein). The phenomenological equa-
tion proposed in 1935 is known as Landau-Lifshitz equation, and it is based on two basic
considerations: the norm conservation of the magnetization |M| = Ms and the temporal evo-
lution of the magnetic energy, that contains a conservative and a dissipative part. The norm
conservation ∂t|M|2 = 2M · ∂tM = 0 requires M and ∂tM to be orthogonal.

Regarding the temporal evolution of the magnetic energy, let us start by the simple case of
the Hamiltonian motions of the magnetization. The energy conservation implies that δE/δM
and ∂tM are orthogonal, that is

dE

dt
=

∫∫∫

V

δE

δM
· ∂tM ≡ 0⇒ ∂tM = f (M)× δE

δM
,

since the magnetization norm is conserved, the vector function f must be proportional to M,

⇒ ∂tM = [f (M)M]× δE

δM
≈ γLLM×

δE

δM
,

where the scalar function f (M) could depend on the magnetization and its gradients, and
it was approximated by its leading order contribution f(M) ≈ γLL. Hence, the precessional
motion of the magnetization is modeled by a torque simultaneously perpendicular to the
magnetization and to the energy gradients δE/δM [57]. It is worth noting that the conser-
vative magnetization equation is similar to the torque acting over loops of electric currents
in classical electromagnetism [75]. This equation can also be motivated from quantum me-
chanics [72], because the expectation value of the spin operator, <s>≡<ψ|s|ψ>, evolves as
∂t<s>= −γs<s>×B, where B is an external field and γs is a gyromagnetic constant.

In brief, the magnetization dynamics admits a conservative torque that generates osci-
llations around the energy gradient δE/δM. In the case of dissipative dynamics, a torque
with projection over δE/δM should be added to account for energy losses. In particular the
dissipation torque should have the form [57]

δE

δM
−
(
M · δE

δM

)
M

M2
s

=
1

M2
s

M×
(
M× δE

δM

)
,

where the projection of the dissipation torque on the magnetization has been subtracted
to ensure norm conservation [57]. Combining the precessional and dissipation torques, one
obtains the well-known Landau-Lifshitz (LL) equation

∂tM = −γLLM×Heff −
αγLL
Ms

M× (M×Heff) (2.2)
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where γLL ∼ 2,2 · 105 m/(As) is the gyromagnetic constant [57], and it is the ratio between
the magnetic moment and the angular momentum.The coefficient α is a phenomenological
damping parameter. The typical values of α are in the range 10−3 − 10−2. The effective field
is given by

Heff ≡ −
1

µ0

(
δE

δM

)
= H0 + β (k ·M)k + HD +

2A

µ0M2
s

∇2M (2.3)

The magnetic energy decreases to its minima2 at a rate proportional to α

dE

dt
= −αµ0γLL

Ms

∫∫∫

V

|M× heff|2dV.

Then, the dissipation torque decreases the energy monotonically. The magnetization that
minimizes the energy (dE/dt = 0) satisfies the Brown equation [57, 8]

M×Heff = 0.

In 1955 Gilbert wrote the dissipation vector in terms of the temporal derivative of the
magnetization [8, 30], that is,

∂tM = −γGM×Heff +
α

Ms

M× ∂tM, (2.4)

where γG = (1 + α2)γLL. This equation is known as the Landau-Lifshitz-Gilbert (LLG)
equation. Gilbert dissipation decreases the magnetic energy until it reaches a stationary
equilibrium ∂tM = 0,

dE

dt
= − αµ0

γGMs

∫∫∫

V

| ∂tM|2dV.

Both Landau-Lifshitz and Landau-Lifshitz-Gilbert equations are mathematically equivalent [57]
and widely used in the literature nowadays.

An important issue is the magnetization boundary conditions. Neumann boundary con-
dition are often used, and the magnetization derivative with respect to the direction of the
outward normal of the sample is zero, that is ∂M/∂(r · nout) = 0. It can be demonstrated [8]
that Neumann boundary condition is satisfied by equilibrium magnetization configurations—
it is necessary to minimize the magnetic energy of Eq. (2.1)— and then it is the natural choice
for the non-equilibrium process.

In brief, the magnetization will evolve until it reaches a stationary equilibrium that mi-
nimizes the energy, according to the Landau-Lifshitz equation. The manipulation of the
magnetization can be performed by considering a forcing mechanism in Eq.(2.4), such as

2Unless the magnetic field depends on time H0(t).
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magnetic field pulses, alternating magnetic fields, spin-polarized electric current, thermally
induced spin-currents, and mechanical rotations. The next two sections introduce the effect
of a magnetic field that oscillates in time and a spin-polarized electric current.

2.3. Oscillatory magnetic fields as a driving mechanism

Let us focus on a magnetic wire of length L along the z-axis. The magnetization obeys
the dimensionless Landau-Lifshitz-Gilbert equation,

∂m

∂t
= −m× heff + αm× ∂m

∂t
(2.5)

where the effective field is

heff ≡ −
1

µ0M2
s

δEw
δm

= hex − βmzez + ∂zzm,

the external magnetic field is h, and the term proportional to β accounts for the anisotropy
of the wire. Ew is the energy of the wire. We focus on the case β > 0 for which z is a hard
axis and x-y is an easy plane.

The Eq. (2.5) has two trivial states, m = ±ex. We concentrate here on the magnetization
dynamics near the state m = ex, which is favored by the Zeeman energy when h > 0. Due
to the norm conservation, only the Cartesian components of the magnetization (my,mz) will
be dynamical, and mx = [1−m2

y −m2
z]

1/2 ≈ 1− (m2
y +m2

z)/2 will be a slave variable.

For a constant external field h = H0 and negligible damping α = 0, the Eq. (2.5) reduces
to a Hamiltonian oscillator. Moreover, the macrospin or uniform magnetization dynamics of
(my,mz) is given by

d

dt

(
my

mz

)
≈
[

0 −H0 − β
H0 0

](
my

mz

)
,

or equivalently
d2my

dt2
= −H0 (H0 + β)my,

which predicts oscillations of the form
(
my

mz

)
= A0e

iω0t

(√
H0 + β
−i
√
H0

)
+ c.c.,

where ω0 =
√
H0(H0 + β) is the natural frequency, and c.c. stands the complex conjugate.

For H0 of order one and wires with easy plane anisotropy (CsN iF3 for instance) the natural
frequency is ω0 ∼ 100 GHz. The constant A0 is the amplitude of the oscillations and it
depends on the initial conditions.

In presence of dissipation, the magnetization behaves as a damped oscillator and therefore
it will converge to the energy minimum m = ex. The use of an an oscillatory field of the form
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h = H0 +h0 cos(ωt) permits injecting energy and exciting the system. A particularly efficient
mechanism is based on the use a alternating field with twice the natural frequency of the
system [2, 18, 79, 80, 50], that is, ω = 2(ω0+ν), where ν is a small detuning. Figure 2.1 shows
two types of responses of the magnetization to an oscillatory field, namely a soliton and a
pattern. Dissipative solitons are particle-like states described by a few parameters—position,
oscillation phase, maximum amplitude, and width—and they are asymptotic connections to
the uniform state ex,

ĺım
z→±∞

m = ex.

This property implies that solitons are stable only if their background ex is also stable. On
the other hand, patterns, or nonlinear waves, can emerge as the result of an instability, that
is, small perturbations around the m = ex state grow with a well defined wavelength and fre-
quency [see Fig. 2.1(b)]. The analytic description of this system is left to the subsection 3.3.2,
where approximate expressions for solitons and patterns are given.

2.4. Spin-transfer torque as a driving mechanism

In 1996, Slonczewski [74] and Berger [6] demonstrated that electric currents can transfer
spin-angular momentum to a ferromagnetic layer. This effect is known as the spin-transfer tor-
que and it based on the interaction between spins of an electric current and spins of magnetic
media. The spin-transfer torque has two important dynamical effects on the magnetization,
namely self-oscillations at gigahertz frequencies [41, 73, 46] and magnetic switching [46]. Both
behaviors could generate technological advances in the fields of information transmission and

1

0

-1
0 74z

mx

0 74z

1

0

-1

my

1

0

-1

mz

0 74z

a) b) 1

0

-1
0 74z

mx

0 74z

1
0

-1

my

1

0

-1

mz

0 74z

Figura 2.1: Dissipative structures induced by the alternating field. (a) A Soliton appears for
negative detuning, and they are a localized structure. (b) Patterns or Faraday-type waves
emerge for positive detuning and they are extended (and usually periodic) spatial structures.
Equation (2.5) was integrated using periodic boundary conditions and the following parame-
ter values: H0 = 3, α = 0,05, β = 20, the detuning and alternating filed are νsol = −0,4497,
hsol0 = 1,127 for the soliton and νpatt = 2 and hpatt0 = 1,53 for the pattern.
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recording.

From the microscopic point of view, the conduction electrons become spin-polarized when
they transverse a magnetic medium [75]. Such net spin-polarization of the electric current
interacts with the magnetization of another layer, which is free to evolve. The next two
subsections describe each process.

2.4.1. Spin-polarization of an electric current

Let us consider one electron inside a box of volume V in presence of a magnetic field. The
electron energy E given by

E = Ek ± Em =
~2k2

2me

± Em,

where k is the wavenumber,me is the electron mass, and {Ek, Em} are the kinetic and Zeeman
energies, respectively. If the magnetic moment of the electron points parallel to the magnetic
field, it will have a smaller Zeeman energy Em, and therefore a larger kinetic energy Ek,
which increases the number of available states [75]. Indeed, the density of states g(E) for an
electron with a defined spin orientation grows as g(E) ∼ E1/2

g(E) =
d

dE

(
4πk3

3k30

)
=

V

4π2

(
2me

~2

)3/2√
E,

where V = L3 is the volume and k0 = 2π/L is a normalization factor. Moreover, we can
define a density of states for electrons with magnetic moment pointing along (↑) and against
(↓) the magnetic field [75]

g↑(E) ≡ g(Ek[↑]) = g(E + Em),

g↓(E) ≡ g(Ek[↓]) = g(E − Em),

Hence, an electron with magnetic moment pointing parallel to the magnetic field has more
available states.

In the case of an ideal gas of electrons in presence of a magnetic field in thermodynamic
equilibrium, the number of particles at a state with energy E is given by the Fermi-Dirac
distribution

f(E) =
1

e(E−µ)/kBT + 1
,

where µ is the chemical potential. A low temperatures (T � µ/kB), almost all the states
with energy below the Fermi level3 are occupied. Then, if electrons have their magnetic
moment along the magnetic field, they will have more available states at a given energy, and
(almost) each one of those states will be occupied with an electron. Hence, the magnetic field

3The Fermi level is the largest single energy level occupied by a electron at zero temperature. In the case
of electric currents, most of the transport is done by electrons close the Fermi level.
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increases the number of electrons with magnetic moment along the magnetization direction.
This polarization of the ideal gas is usually described in terms of the polarization factor [75]

P (E) ≡ g↑(E)− g↓(E)

g↑(E) + g↓(E)
.

The above description of a spin-polarized ideal gas of electrons can be used as a toy model
to understand the polarization of an electric current traversing ferromagnetic materials. In
this idealization, conduction electrons interact with a magnetic field—the magnetization of
the media— and the result is a band-splitting into two channels, namely the majority elec-
trons that point along the magnetization, and the minority electrons that point against the
magnetization. The polarization of the current is given by the number of states available at
the Fermi level [75]

Pcurrent ≡ P (EF ) =
g↑(EF )− g↓(EF )

g↑(EF ) + g↓(EF )
.

In more realistic descriptions, the density of states can have contributions from different
bands [76], and therefore the splitting due to the magnetization affects the number of electrons
in each channel and, at the same time, the scattering processes between different bands
become spin-dependent. The result is an increment in the resistance of the minority electrons
due to the scattering process. A complete description of spin-dependent transport processes,
particularly in transition metals, can be found in the book Magnetism of J. Stöhr and H. C
Siegmann, Ref. [76].

2.4.2. Spin-transfer torque (STT)

Let us consider a spin-valve device. Spin-valves are metallic multilayer structures composed
by at least two ferromagnets separated by a non-magnetic spacer. Usual lateral dimensions
are in the range 50− 200 nm. An electric current transverses spin-valves perpendicularly to
the plane of the layers. This type of setup is known as a Current-Perpendicular to plane
device (CPP). Figure 2.2 shows a typical spin-valve, where a magnetization M is fixed and
another one m is free to evolve in time.

The magnetization M filters or polarizes the spins of the electric current, and its orienta-
tion is maintained constant by means of the coupling with an antiferromagnetic anchoring,
obtained the use of a thick material (one order of magnitude thicker than the free film ty-
pically), or large magnetic anisotropies. The other layer is free to evolve according to an
appropriate Landau-Lifshitz-Gilbert equation. Moreover, as the result of the electric current
that becomes spin-polarized after traversing the fixed layer, the equation for the normalized
magnetization m has an additional torque, which is the spin-transfer torque [57].

According to the discussion of the last subsection, after the current passes through the fixed
layer, it is spin-polarized and then it has a net magnetic moment nin, which is proportional
to the angular momentum per electron ~/2 and to the number of electrons traversing the
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media per unit of time I/e. All the transport details, such as the efficiency of the polarizer
(the Pcurrent coefficient) and spin-dependent superficial scattering, can be summarized in a
factor f . Then nin has the following form [85]

nin = f
~
2

I

e
M,

After the current traverses the free layer, only the component parallel tom of the incoming
magnetic moment is present [85]

nout = f
~
2

I

e
(M ·m)m.

The difference between the polarization of the electric current is absorbed by the ferro-
magnetic material. Indeed, the angular momentum conservation takes the form [85]

τ + nout − nin = 0, (2.6)

where τ is the total torque applied by the electric current to the ferromagnetic medium.
Subtracting the final and initial magnetic moments and using the mathematical relation
A× (B×C) = (A ·C)B− (A ·B)C one obtains

nin − nout = f
~
2

I

e
[M− (M ·m)m] = f

~
2

I

e

[
Mm2 − (M ·m)m

]
= f

~
2

I

e
[m× (M×m)] .

Then, the torque acting on the ferromagnetic medium per unit of volume τSTT ≡ τ/V is
given by [74, 70, 57, 86, 87]

τSTT ≡
τ

V
= gm× (m×M) . (2.7)

J

mM

Figura 2.2: Spin-valve structure. The two blue (dark) layers are ferromagnetic films. One
magnet has a fixed magnetization M, and it is used to polarize the electric current. The
magnetization m is free to evolve according to the Landau-Lifshitz-Gilbert equation with
an additional term that accounts for the spin-polarized current. Usually, the fixed layer is
ticker than the free magnet, for instance in the experiment of Kiselev and coworkers [41], their
thickness are 40 nm and 3 nm, respectively. The thickness of the spacer between ferromagnets
is usually about 10 nm, which permits to neglect the RKKY [72] and the dipolar interactions
between M and m. The rest of the structure is composed by non-magnetic metals, which
permits to dissipate most of Joule heating, see Refs. [89, 33, 34, 88, 32] for a detailed discussion
on Joule heating in spin-valves and magnetic nanowires.
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where the prefactor is [85]

g = f (m ·M)
1

V

~
2

I

|e| = f (m ·M)
~
2

J

|e|d , (2.8)

and d is the ferromagnet width. The f function, which accounts for the microscopic details
of electronic transport, is known as the angular dependence of the spin-transfer torque, and
it has the general form of [86, 87]

f (m ·M) =
q+

A+Bm ·M +
q−

A−Bm ·M , (2.9)

where the parameters {q+, q−, A,B} account for spin-dependent transport process [86, 87].
The simplest approximation for the angular dependence is to consider f as a constant, f = η0,
this is known as the sine-approximation. This approximation is widely used in literature. Furt-
hermore, the sine-approximation simplifies analytic calculations and it also provides better
agreement than the full g function for certain devices [87, 47, 40].

The magnetization dynamics in presence of spin-polarized currents are studied by adding
the torque (2.7) to the Landau-Lifshitz-Gilbert Eq. (2.4). It is worth noting that the spin-
polarized current has a different dynamical effect on the magnetization, because it injects
and dissipates energy depending on both the value of the electric current J and the magnetic
configuration. Then, a spin-transfer torque is different from the precessional torque and the
Gilbert dissipation.

2.5. Spin-transfer driven nanopillar with in-plane polari-
zer and in plane magnetic field

We present here the particular configuration that we studied in this thesis. Let us consider
a free layer driven by a spin-polarized current and an external magnetic field. There are several
possible orientations for the fixed magnetization M and the external magnetic field H0, the
case in which both vectors point along a single in-plane direction deserves special attention,
because the external field and the spin-transfer torque can enforce each other or have an
opposite effect. Accordingly, we choose the fixed layer magnetization and the external field
to point along the x-axis (see Fig. 2.3).

We use the following adimensionalization t→ t/(γMs), r→ lexr. Moreover, we normalize
the magnetization vector m ≡ m/Ms and all4 the fields hj = Hj/Ms by the saturation
magnetization Ms. Then, the magnetic energy per unit of area is

Em =

∫∫ [
−h0mx −

βx
2
m2
x +

βz
2
m2
z +
|∇m|2

2

]
dxdy, (2.10)

and the Landau-Lifshitz-Gilbert equation becomes the Landau-Lifshitz-Gilbert-Slonczewski
equation (LLGS)

∂tm = −m× heff + gm× (m× ex) + αm× ∂tm, (2.11)

4The exchange, external, magnetocrystalline and magnetostatic fields.

15



ha

x
y

z

J S

m

M
: up
: down

Figura 2.3: Nanopillar with in plain polarizer. We focus on
the configuration where both the polarization magnetization
M and the external field h0 lie in the x-axis.

where the effective field is

heff = (h0 + βxmx) ex − βzmzez +∇2m . (2.12)

The parameter g is negative for electrons flowing from the fixed to the free layer. The coeffi-
cients βx and βz are the anisotropy constants for the x-axis (easy axis) and the z-axis (hard
axis).

The model has two trivial equilibria, they are m = ±ex. They are named the parallel
(+) and the antiparallel (-) states, because of the relative orientations between the fixed
magnetization M and the equilibrium of the free magnetization m.

Justification of the minimal model Eq. (2.11).- For the sake of simplicity we have
included only the dominant order effects. However, it is possible to consider several other
torques, that account for thermal fluctuations, nonlocal dipolar fields, border anisotropy,
Oersted fields, eddy currents, the polycristalline nature of the free layer, the angular de-
pendence of the spin-transfer and field-like spin-transfer torques. On the one hand such a
complete approach could give rise to more realistic and detailed simulations and obtain a
better agreement with experiments; one the other hand, it will be hard to obtain simple
analytic approximations, analogies and explanations. Indeed, Equation (2.11) is a balance
between simple enough to admit the use of several perturbation methods—modal decompo-
sition, stability analysis, weakly nonlinear analysis, among others—and at the same time, it
is complicated enough to predict complex dynamics such as chaotic states.

In this scenario, it is a natural strategy to start studying the simple model first, and to
analyze more realistic equations later on.

2.5.1. LLGS equation in Cartesian representation

A straightforward decomposition of the magnetization vector is the Cartesian representa-
tion,

m = mxex +myey +mzez.
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Replacing the above expression into Eq. (2.11), one obtains

∂tmx =
(
α
[
h0 + βxmx +∇2mx

]
− g
) [
m2
y +m2

z

]
+ dzy + βzmzmy

+αβzmxm
2
z − αmx

(
mz∇2mz +my∇2my

)
,

∂tmy = −(h0 + αg)mz + (g − αh0)mxmy − (βx + βz)mxmz − αmy(βxm
2
x − βzm2

z)

+dxz + αmxdxy + αmzdzy,

∂tmz = (h0 + αg)my + (g − αh0)mxmz + βxmxmy − αmz

(
βzm

2
y + (βx + βz)m

2
x

)

+dyx + αmxdxz + αmydyz, (2.13)

where dab = ma∇2mb−mb∇2ma. The above set of equations has to be integrated considering
the norm conservation constrain m2

x +m2
y +m2

z = 1.

The numerical errors generated by the integration of the Cartesian representation could
deviate the magnetization norm from 1. To avoid this problem, it is possible to implement
several routines (see [57] and references therein). Another possibility to surpass the norm
conservation problem is to represent the magnetization using only two variables. In the next
subsection we introduce two useful decomposition of the magnetization vector, namely the
spherical and steoregraphic representations.

2.5.2. LLGS equation in spherical representation

The spherical angles are the natural variables to describe the motions on the spherical
surface [57]. Let us introduce the following change of variables illustrated on the Fig. 2.5.1

m = sin (θ) [cos (φ) ex + sin (φ) ey] + cos (θ) ez.

Replacing this decomposition in Eq. (2.11), one obtains after straightforward calculations

mx
my

mz

mθ

φ

Figura 2.4: Spherical representation of the magnetization. In this representation, spherical
angles are used to label the magnetization space.
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∂τθ = − (h0 + αg) sin (φ)− βx
2

sin (θ) sin (2φ) + (αh0 − g) cos (φ) cos (θ)

+
α

2
sin (2θ)

[
βz + βx cos2 (φ)

]
+ 2 cos (θ)∇φ · ∇θ

+ sin (θ)∇2φ+ α∇2θ − α

2
sin (2θ) (∇φ)2 , (2.14)

sin (θ) ∂τφ = (g − αh0) sin (φ)− αβx
2

sin (θ) sin (2φ)− (αg + h0) cos (φ) cos (θ)

− 1

2
sin (2θ)

[
βz + βx cos2 (φ)

]
+ 2α cos (θ)∇φ · ∇θ

+ α sin (θ)∇2φ−∇2θ +
1

2
sin (2θ) (∇φ)2 , (2.15)

where the re-normalized time is τ = (1 + α2) t. It is worth noting that the use of spherical
coordinates allows to represent the magnetization space with spherical angles {θ, φ}. On the
other hand, the physical space is labeled by the position vector, r = xex + yey, which is
decomposed in the Cartesian axes.

There are three disadvantages of the spherical decomposition. The first one is the coor-
dinate singularity at sin (θ) = 0. This implies that the magnetization motion cannot include
points in the vecinity of the north and south poles. The second problem is the φ→ φ+ 2πnφ
and θ → θ+2πnθ invariances, because a discontinuity in the angles {θ, φ} will generate errors
when calculating the spatial derivatives. This drawback is easily surpassed using continuous
functions as initial conditions, or calculating spatial derivatives in the Cartesian representa-
tion and then projecting over the spherical variables. The third problem is that trigonometric
functions decrease the numerical calculation speed.

2.5.3. LLGS equation in stereographic representation

The stereographic [57, 43] representation is shown in Fig. 2.5.3(a), and it consist on a the
projection of the spherical surface on a complex equatorial plane through [see 2.5.3(b)]

ψ =
my + imz

1 +mx

. (2.16)

The complex field ψ quantifies the deviations from the parallel state. The Cartesian magne-
tization components can be expressed in terms of ψ

(mx,my,mz) =
1

1 + |ψ|2
(
1− |ψ|2, ψ + ψ̄, i

[
ψ̄ − ψ

])
. (2.17)

Replacing the above stereographic representation in the LLGS equation, after straightfor-
ward calculation one obtains
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Figura 2.5: Stereographic representation of the magnetization. (a) The spherical surface is
mapped to a equatorial complex plane. (b) Stereographic change of variables.

(i + α) ∂Tψ = (ig − h0)ψ −
βz
2

(
ψ − ψ

) 1 + ψ2

1 + |ψ|2 − βxψ
1− |ψ|2
1 + |ψ|2 +∇2ψ − 2

ψ

1 + |ψ|2 (∇ψ)2 .

(2.18)
This is a Generalized complex Ginzburg-Landau equation. Ginzburg-Landau models appear
in several contexts, in particular they are used to describe the envelopes of nonlinear wa-
ves in dissipative media. Indeed, the use of the stereographic representation facilitates the
comparison between magnetization dynamics and dynamics of a wide variety of physical
systems.

When the angular dependence of the spin-transfer torque is considered, the g factor is
replaced by g (|ψ|2).

The equation for the complex field ψ can be decomposed using the real and imaginary
parts of ψ. Replacing ψ = u+ iv into Eq. (2.18) yields

∂tu =
(
g − αh0 + α∇2

)
u+

(
∇2 − h0 − αg

)
v

+
αβxu

3 + (βx + βz) v
3 + 2 (v − αu)

{
(∇u)2 − (∇v)2

}
− 4∇u · ∇v (u+ αv)

1 + u2 + v2

+
−αβxu− (βx + βz) v + (βx − βz)u2v + α (βx + 2βz)uv

2

1 + u2 + v2
, (2.19)

∂tv =
(
h0 + αg −∇2

)
u+

(
g − αh0 + α∇2

)
v

+
−βxu3 + α (βx + βz) v

3 + 2 (u+ αv)
{

(∇u)2 − (∇v)2
}

+ 4∇u · ∇v (v − αu)

1 + u2 + v2

+
βxu− α (βx + βz) v + α (βx − βz)u2v − (βx + 2βz)uv

2

1 + u2 + v2
. (2.20)

The change of variables {mx,my,mz} → {u = Re (ψ) , v = Im (ψ)} can be very efficient to
simulate because the stereographic representation automatically preserves the magnetization
norm. Furthermore, the functions involved are not trigonometric as in the case of spherical
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coordinates. A disadvantage of stereographic representation is that the antiparallel state
m ≡ −ex is mapped to infinity, thus dynamics close to this state are not accurately described.
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Capítulo 3

Mathematical methods to study
nonlinear magnetization dynamics

Physical systems kept out of thermodynamic equilibrium self-organize into dissipative
structures [25, 77, 66]. Even if the dissipative states emerge in different branches of science,
they usually have similar features, such as intrinsic lengths and frequencies. This regularity in
the morphogenesis processes of physical systems is beyond nano-magnetism, and it motiva-
tes the quest for a universal theory for pattern formation in non-equilibrium systems. There
are three well-known general approaches to study such systems, they are discrete maps [62],
cellular automata [4, 71], and differential equations [25, 77]. In the first case, the state of the
system is described by continuous variables that evolve in discrete time steps. In the second
case, the dynamical object is known as cellular automaton, and it has a discrete phase space
and evolves in discrete steps. Both approaches are ideal to model inherently discrete systems,
and they are efficient to simulate complex dynamics. The third approach, differential equa-
tions, is based on differential and integral calculus, and it has demonstrated the capacity to
model, explain and predict several phenomena in a wide spectrum of ares of knowledge. The
treatment of nonlinear differential equations can be conducted in a unified framework known
as bifurcation theory [25, 77, 66]. A bifurcation is a qualitative change in the phase space
of the system [66], and then it is responsible for all the qualitative aspects of the dynami-
cal behavior. Moreover, in complicated systems that involve partial differential equations of
several variables, a few transformations of variables usually permit one to obtain a reduced
representation of the dynamics at the onset of the bifurcation. This minimal representation
takes the form of one or a few variables—known as order parameters [66]— that satisfy sim-
ple equations—normal forms [25, 77, 66]—and they allow one to explain and predict various
phenomena. Even if in some cases the normal form is difficult to derive1, it is still possible
to obtain a deep insight by means of phenomenological models based on normal forms and
the symmetries of the system.

In this thesis, we study ferromagnetic media forced by spin-polarized currents and alter-
nating magnetic fields by means of differential equations. This approach is the natural one

1For instance, some states are highly nonlinear and therefore perturbation analysis is not admissible. In
this situation the derivation of a normal form is more complicated.
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to study continuous ferromagnetic media at nano-scales, where the exchange interaction is
dominant and it smooths the magnetization textures. Moreover, we use bifurcation theory
to predict states, to find analytic expressions for equilibria, and to characterize the phases
diagram. On the one hand, this viewpoint permits us to use well known analytic methods of
nonlinear physics to characterize magnetic systems, and on the other hand, we find analo-
gies between the magnetization dynamic and other physical systems, such as vibrated fluids,
driven optical media, fluid mixtures heated from bellow, to mention a few.

The rest of this section introduces briefly concepts and methods of nonlinear science, as
well as the most commonly observed bifurcations by means of well-known prototype models.

3.1. Equilibrium and Stability

Let us consider a physical system described by the following dimensionless model
du

dt
= f (u) , (3.1)

where u = u(t) is a real-valued function of time, and it accounts for the dynamics of the
system. The equilibria (also known as fixed points, or steady states) of Eq. (3.1) satisfy
du/dt = 0. Lets u0 denote one of those solutions. An important property of states is their
capacity to attract or repeal nearby trajectories. We consider the decomposition u(t) = u0 +
δu(t), where δu is a small perturbation function, to verify if state u0 attracts it neighborhood
or not. At dominant order the perturbation δu obeys the equation

dδu

dt
=

df

du
(u0) δu.

The solution of the above equation takes the form δu = δu(0)eλt, where the quantity λ =
(df/du) (u0) is the eigenvalue [77] of the state and it measures the growth (λ > 0) or decay
(λ < 0) rate of perturbations. The general (approximate) solution of the model (3.1) close to
u0 is at dominant order

u(t) = u0 + δu(0)eλt.

If λ < 0, then nearby trajectories converge exponentially to u0. In that case, the state
u0 is said to be an attractor or an asymptotically stable equilibrium. On the other hand, if
λ > 0 the perturbations grow and trajectories move away from the unstable state u0. In the
critical situation λ = 0, the equilibrium is named a marginally stable state [66]. The capacity
of marginally stable points to attract or repeal nearby orbits is only accessible by nonlinear
analysis.

Let us review now the case of vector equations, where the state of the system is described
by two or more independent real-valued functions of time.

Vector equations.- We analyze here the vector state function u = u(t) that obeys the
following equation

du

dt
= f (u) . (3.2)
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Let’s name one of the steady states of the above model as u0. We study the dynamics of the
perturbations about this state by replacing the ansatz u = u0 + δu in Eq. (3.2). At linear
order on the perturbation δu we have

dδu

dt
=

[
∂f

∂u
(u0)

]
· δu,

where the matrix [∂f/∂u (u0)] is the Jacobian of f evaluated on the equilibrium u0. Since the
perturbation δu obeys the former linear equation, its solution is

δu = eλtv,

replacing this formula in model (3.2) one obtains
[
∂f

∂u
(u0)− λI

]
v = 0,

where I is the identity matrix. Such problem is soluble when

det

([
∂f

∂u

]
(u0)− λI

)
= 0, (3.3)

where det is the determinant. The expression (3.3) is known as the characteristic polyno-
mial equation or characteristic equation [77]. Notice that the left-hand side of Eq. (3.3) is a
polynomial function of λ, which has N a priory complex roots, where N is the number of
components of vector u. Figure 3.1 shows typical plots of eigenvalues in the complex plane,
this type of figure is usually known as the stability spectrum of the state u0. For vector
equations, the stability of a state is determined by the real part of the eigenvalues because
the imaginary part only generates oscillations at frequencies ω = Im(λ), that is

δu =
∑

j

eRe(λj)t︸ ︷︷ ︸
decay/growth

eiIm(λj)t︸ ︷︷ ︸
oscillations

vj,

where {λj}Nj=1 are the eigenvalues and {vj}Nj=1 are their respective eigenvectors. If there is
an eigenvalue with positive real part, then there is a direction of the phase space in which
perturbations grow. In that case, the equilibrium u0 is unstable [77]. If all the eigenvalues
have negative real part [see Fig. 3.1(a)], then the state is stable [77].

Let us consider a single control parameter ε. In general, the eigenvalues depend on the
control parameter λ = λ(ε), and then a change of sign of the real part of one eigenvalue can
be expected. This change in the stability of a state when a control parameter is increased or
decreased is an instability. Instabilities are examples of bifurcations. The eigenvector associa-
ted to the eigenvalue Re(λ) = 0 is named a critical mode, and its direction defines a center
subspace in the phase space. In a similar manner, we can define the unstable subspace or
manifold, as the subspace spanned by the eigenvectors satisfying Re(λ) > 0 [66, 84]2. Mo-
reover, at the onset of the instability the eigenvalue of the critical mode is small, Re(λ) ≈ 0,

2Some books name unstable subspace to the space spanned by the eigenvectors satisfying Re(λ) > 0 and
unstable manifold to the geometric deformation of the unstable subspace due to nonlinearities. Here we use
both expressions as synonyms
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Im(λ)(a) (b) (c)

Stable state Stationary instability Oscillatory instability

Figura 3.1: Stability spectra. The plots show the growth or decay rate λ of perturbations
δu = eλtv around an equilibrium u0. (a) Stable states are characterized by having all their
eigenvalues with negative real part, Re(λ) < 0. The general destabilization mechanisms are
the stationary and the oscillatory instabilities, shown in (b) and (c), respectively. When a
stationary instability takes place, one eigenvalue is zero λ = 0 for a critical value of a control
parameter ε = εc [see (b)]. When the control parameter is further increased ε > εc, the
critical eigenvalue becomes positive λ > 0 which exponentially increases the amplitude of
perturbations along the critical mode. In the case of oscillatory instabilities, also known as
Andronov-Hopf instabilities, two complex conjugate eigenvalue cross the imaginary axis and
destabilize the equilibrium. The imaginary part of the eigenvalue is an intrinsic frequency
ω = Im(λ). This frequency plays a key role in the generation of self-oscillations in magnetism.

and then the center manifold is characterized by a slow evolution. The rest of the phase
space is spanned by the other eigenvalues, this zone is the stable manifold, and in this region
the evolution is much faster than in the central manifold. This behavior at the onset of the
instability is known as a temporal scales separation; and it means that one or a few degrees
of freedom are dynamical while all the other evolve fast and become slave modes [66]. Sepa-
ration of scales permits one to describe the system at long times in terms of a few relevant
variables known as order parameters [66].

Other definitions of stability.- The linear stability analysis conducted above is an exam-
ple of asymptotic stability [66]. When an equilibrium is asymptotically stable, all trajectories
that were close enough to the equilibrium at the initial time will converge to it, that is
u(t)→ u0 if t→∞. Another definition is the one of the Lyapunov stability [66]. A solution
u0 of a system is said to be Lyapunov stable if all trajectories that were close enough to the
equilibrium at the initial time will remain close it. In other words,

(∀ε > 0) (∃δ > 0) (∀t > 0) |u(0)− u0| ≤ δ ⇒ |u(t)− u0| ≤ ε,

where the symbols ∀ and ∃ are read as for every and exist, respectively. In the rest of this
document we use the phrases asymptotically stable and stable as synonyms (unless explicitly
mentioned).

The next two sections are devoted to studying some bifurcations and instabilities.
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3.2. Bifurcations in Ordinary Differential Equations

Changes in a control parameter ε typically induce qualitatively different dynamical beha-
viors. The transition between these behaviors is named bifurcation [77, 66]. Bifurcations can
generate or destroy steady states and/or change their stability.

3.2.1. Saddle-Node bifurcation

The Saddle-node bifurcation is responsible for the emergence of new equilibria, and the
simplest equation that exhibits this mechanism is (saddle-node normal form) [25, 77]

du

dt
= ε− u2, (3.4)

Notice that there are two stationary states, namely u± = ±√ε, when ε is positive. On the
other hand, for negative values of ε there is no equilibrium. Figure 3.2 shows these two states
as function of the control parameter ε, this type of plot is known as bifurcation diagram [77].
The control parameter ε is called bifurcation parameter because it tunes the bifurcation (for
ε ≤ 0 there are no equilibrium, while for ε ≥ 0 there are two equilibria).

The linear stability of each state is obtained by introducing a perturbation u± = ±√ε +
δueλt, replacing this ansatz in Eq (3.4), and linearizing around the perturbation δu, we obtain

λ± = ∓2
√
ε

⇒ u±(t) = ±√ε+ δu(0)e∓2
√
εt,

therefore, the state u− is unstable because the perturbations around it grow, while u+ is
stable because the nearby perturbations decay.

An interesting feature of the saddle-Node bifurcation is the existence of a ghost [77], that
is, for small and negative values of ε, the dynamics around the origin of the phase space is
slow, and typical evolution times scale as ∆t ∼ |ε|−1/2. Then, in short experimental recordings
and numerical simulations, it is possible to observe trajectories close to the unstable state
u0.

0 1

0

-0.1

0.1
+u u

ε

-u

Figura 3.2: Saddle-Node bifurcation. This diagram shows the emergence of two solutions
u± = ±√ε. The state u+ (solid line) is stable while u− is unstable (dashed line).
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In several systems exhibiting the creation of two states, it is possible to construct a trans-
formation from the original set of equations to the Saddle-Node normal form (3.4). In such
case, u represents a relevant variable that accounts for a critical mode, that type of varia-
ble is known as order parameters. Critical modes can be stationary and uniform, stationary
and non-uniform, or even non-stationary non-uniform. Some recent examples of saddle-node
bifurcations include creation pulses [50, 27], localized patterns [10, 9] and oscillations in
systems driven by time-dependent forces [13, 19]. The generality behind the saddle-node bi-
furcation renders it a general mechanism, often called universal or robust phenomenon, for
the emergence of states.

3.2.2. Pitchfork bifurcation

Bifurcations can also involve the destabilization of states. Let us consider the following
prototype model (pitchfork normal form) [25, 77]

du

dt
= εu− u3, (3.5)

This systems has three steady states, namely u0 = 0, and u± = ±√ε. The two last equilibria
exist only for ε ≥ 0, as shown in the bifurcation diagram of Fig. 3.3.

The stability analysis of the trivial state u0 = 0 is quite simple, because its eigenvalue is

λ0 = ε

⇒ u(t) = δu(0)eεt.

Then, the trivial state is stable for negative values of ε, while it is unstable for ε > 0.
Perturbing close to the u± states, u = ±√ε+ δueλt, we obtain

λ± = −2ε

⇒ u±(t) = ±√ε+ δu(0)e−2εt,

Then, both u± states are stable. The stability of u− and u+ must be the same because the
Eq. (3.5) is invariant to reflection in the order parameter, that is u→ −u.

As it occurs for the Saddle-Node bifurcation, the variable u can account for the amplitude
of a wide variety of modes, such as spatially periodic patterns, oscillations, uniform states,
localized states, to mention a few.

-0.1

0.1

0 1

0

u +u

0u

-u
ε

Figura 3.3: Pitchfork bifurcation. The diagram shows the trivial state u0 = 0, which is stable
for ε < 0 and unstable for ε > 0, and the stable solutions u± = ±√ε.
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Figura 3.4: Cubic-Quintic stationary bifurcation. The bifurcation diagram shows the five
steady states of Eq. (3.6), for ν = 1. This diagram is characterized by biestability, that is,
both u++, u0 and u−− are stable for −ν2/4 ≤ ε ≤ 0. The states u+− and u−+ are unstable.

Supercritical and subcritical bifurcations.- In the example of Eq. (3.5) the sign of the
nonlinearity is negative, and therefore there is a continuous transition between the stable
states u0 and u± at ε = 0. This type of bifurcation is known as supercritical [77], or second
order phase transition, because the new equilibria u± emerge after the trivial state u0 is
unstable, that is, when the bifurcation parameter surpasses the critical value ε = 0. However,
in several systems the cubic nonlinearity has a positive sign. In that case, the bifurcation is
described by the (cubic-quintic equation)

du

dt
= εu+ νu3 − u5, (3.6)

where ν controls the sign of the cubic nonlinearity. A fifth order term was added to ensure
saturation (the state of the system should not go to infinity). The equilibria are u0 = 0 and

u±± = ±
√
ν

2
± 1

2

√
ν2 + 4ε.

The bifurcation diagram of this equation is shown in Fig. 3.4, as this figure illustrates, the
new states emerge before the trivial states becomes unstable. This bifurcation is known as
subcritical [77], or first order phase transition, and it is characterized by exhibiting hysteresis
loops.

A brief remark on bifurcations of reversible systems.- The saddle-node and pitchfork
equations described above are one variable first order equations and then they do not exhibit
oscillations. A similar analysis can be conducted for time-reversible systems after replacing
the first order derivative by a second order one, d/dt → d2/dt2, to obtain the symmetry
t→ −t. The stability analysis of time-reversible systems is quite similar to the one presented
previously; indeed, asymptotically stable points studied here become Lyapunov stable in
the reversible case and perturbations oscillate around the stable state; analogically unstable
points studied here remain unstable in the reversible case, and perturbations around the
unstable states, known as hyperbolic points.

Another interesting case is the one of the perturbed time-reversible systems, which typically
take the form of driven damped oscillators. In the next subsection we study an example of
that type of systems, and the well-known Andronov-Hopf [77] bifurcation that appears as
the result of the balance between injection and dissipation of energy.
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3.2.3. Andronov-Hopf bifurcation

Hamiltonian systems exhibit a family of oscillatory Lyapunov stable states—oscillatory
orbits—parametrized continuously by a one or a few conserved quantities. In the case of dis-
sipative systems, the balance between injection and dissipation of energy admits usually one
isolated stable oscillatory state, known as limit-cycle or self-oscillation. Stable self-oscillations
attract initial conditions that are close enough to them in the phase space. There are th-
ree main mechanisms that originate limit-cycles3, namely the saddle-node bifurcation, the
homoclinic bifurcation and the Andronov-Hopf instability. The two first cases are usually
complicated to characterize because the trajectories are large and a perturbation analysis
is not accurate, thus we review here the Andronov-Hopf instability, which admits a simple
mathematical treatment.

Let us consider the Van der Pol model [77, 25]

d2u

dt2
= −ω2

0u+ 2ε
du

dt
− u2du

dt
, (3.7)

where the first term of the right-hand side of Eq. (3.7) accounts for oscillations at frequency
ω0, the second term is a linear dissipation for ε < 0 and a linear gain for ε > 0. The third
term represents nonlinear damping. Notice that the time-reversion symmetry, t → −t, is
broken by both linear and nonlinear terms. The simplicity of this model renders it an ideal
example to study limit-cycles in other contexts. Indeed, analogies between the Van der Pol
equation and ferromagnets driven by spin-transfer torques have been established [73].

The Van der Pol oscillator admits only one steady state, u0 = 0, and its eigenvalues are

λ = ε±
√
ε2 − ω2

0 ≈ ε± iω0.

Figure 3.5(a) shows those eigenvalues. For ε < 0, the u0 = 0 state is stable and the system
3Sometimes, another bifurcation, known as Infinite period-bifurcation [77], is considered. However this is

not commonly observed.

Re(λ)

Im(λ)(a)

ω

ε

0

−ω0

ε<0 ε>0

u u

t t0 0

Figura 3.5: Andronov-Hopf instability. (a) Eigenvalues. (b) Decay ε = −0,1, and ω0 = 1. (c)
Decay ε = 0,1, and ω0 = 1.
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exhibits damped oscillations. On the other hand, if ε > 0, then oscillations increase their
amplitude [see Fig. 3.5(c)]. At ε = 0, the Andronov-Hopf instability takes place. As the
result of this instability, trajectories initially close to the stationary state u0 = 0 grow in an
oscillatory fashion until the nonlinearity of the equation saturates the oscillation envelope.
This decay for ε < 0 and growth for ε > 0 of the oscillation envelops is an example of scales
separation. Indeed, there is a fast time scale ∼ eiω0t, and a slow scale at which the oscillation
amplitude A(t) evolves. Furthermore the general solution of this system can be written as

u = A(t)eiω0t + Ā(t)e−iω0t +W (A, Ā, t),

where the two first terms are the solution to the linear part of the equation, and W is a small
nonlinear correction that depends on polynomials of the amplitudes (A, Ā). The function W
is constructed so as to satisfy the equation and at cubic order it reads

W = c3,0A
3e3iω0t + c2,1A|A|2eiω0t + c1,2Ā|A|2e−iω0t + c0,3Ā

3e−3iω0t,

where the cj,k coefficients have to be determined. This ansatz can be replaced in the Van der
Pol model, and after straightforward calculations4 one obtains at leading order

2iω0
dA

dt
eiω0t − ω2

0Aeiω0t − 2iω0
dĀ

dt
e−iω0t − ω2

0Āe−iω0t − 9ω2
0c3,0A

3e3iω0t − 9ω2
0c0,3Ā

3e−3iω0t

= −ω2
0

(
Aeiω0t + Āe−iω0t

)
+ 2iω0ε

(
Aeiω0t − Āe−iω0t

)
− iω0A

3e3iω0t + iω0Ā
3e−3iω0t

−iω0|A|2
(
Aeiω0t − Āe−iω0t

)
− ω2

0c3,0A
3e3iω0t − ω2

0c0,3Ā
3e−3iω0t. (3.8)

Notice that A and dA/dt are slow functions of time, that is, these functions are approximately
constants for time scales of order 2π/ω0. Due to the orthogonality of trigonometric functions
in Fourier space, we can decompose the above equation in the basis {e3iω0t, eiω0t, e−iω0t, e−3iω0t}.
Equating the terms proportional to eiω0t one obtains

dA

dt
= εA− 1

2
A|A|2.

This model is the well known Ginzburg-Landau equation [66] with real coefficients5. The
calculation conducted above is an example of weakly nonlinear analysis [25], and it permits
obtaining analytic expressions for the self-oscillation and approximate solutions for the Van
der Pol equation. Furthermore, the stationary equilibrium of the envelope A and its corres-
ponding oscillatory state in the original variable u are given by

A =
√

2εeiφ0 ,

u ≈ 2
√

2ε cos(ω0t+ φ0),

where φ0 is an oscillation phase.
4Let us assume that ε� 1 and that A is a slowly varying small function of time, that is |dA/dt| � |A| � 1.

Given this scaling,
only the dominant order terms in dA/dt and ε will be considered.
5The coefficients are real because the nonlinear term of the Van der Pol equation is proportional to du/dt,

that is, it breaks the time-reversion symmetry. In more general cases other terms appear, such as u3 and
u(du/dt)2, and the coefficients of the Ginzburg-Landau equation will be complex.
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In an analog manner, projecting Eq. (3.8) on the Fourier functions {e3iω0t, e−3iω0t} permits
obtaining the unknown coefficients {c3,0, c0,3}. Note that the terms proportional to {c3,0, c0,3}
are necessary to be included in the Ansatz to balance the nonlinearities of Eq. (3.8); otherwise,
the Ansatz is not a solution. On the other hand, the terms proportional {c2,1, c1,2} not
necessary because they do not appear in the projection equation. Then, we can eliminate
those terms by choosing c2,1 = c1,2 = 0.

3.3. Bifurcations in Partial Differential Equations

We extend here our analysis to fields u = u(t, x) that depend on time and one spatial
coordinate x. This type of systems can also exhibit saddle-node, pitchfork and Andronov-
Hopf bifurcations [25]. Moreover, for homogeneous and isotropic systems, that is, systems
that are invariant to spatial translations x → x + ∆x and spatial reflection x → −x, the
three above mentioned bifurcations take the following forms

∂tu = ε− u2 + ∂xxu,

∂tu = εu− u3 + ∂xxu,

∂ttu = −ω2
0u+ 2ε∂tu− u2∂tu+ ∂xxu,

where ∂t and ∂x are the partial derivatives for time and space, respectively. The Laplacian
operator accounts for diffusion or transport processes in the first order equations and disper-
sion in the second order equations. In that case, the homogeneous stationary equilibria of
each model are the same states discussed in the previous subsections. The stability analysis
should consider perturbations with different wavelengths k, that is,

δu = eλt+ikxv.

It is possible, however, to demonstrate that the critical modes responsible for the destabi-
lization of the system—leading modes—are homogeneous k = 0. Hence, all the results of
the saddle-node, pitchfork and Andronovh-Hopf bifurcations remain equal for typical space
dependent systems, where the spatial coupling is a Laplacian.

The situation changes drastically when the sign of the Laplacian is negative, because in
this situation the system exhibits non-uniform states. In the next subsection we study a
prototype model known as the Swift-Hohenberg equation where the diffusion coefficient is
negative. In that case the system self-organizes into patterns, which are spatially periodic
textures [35].

3.3.1. Spatial instability

Lets consider the following model (Swift-Hohenberg equation) [25, 66]

∂tu = εu− u3 − (q2 + ∂xx)
2u. (3.9)
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This equation has three homogeneous stationary states, u0 = 0, u± = ±(ε − q4)1/2. The
stability of the first solution u0 is given by the following eigenvalues [see Fig. 3.6(a)]

λ = ε− (q2 − k2)2, (3.10)

where k is the wavelength of the perturbation. As Fig. 3.6(a) illustrates, perturbations decay
exponentially for ε < 0, independently of their wavelength. However, perturbations with
wavenumber q are suppress in a slow rate λ(q) = ε. On the other hand, for positive values of
ε, the mode with wavenumber q will increase its amplitude and destabilize the u0 state. This
bifurcation is known as spatial instability, Turing instability in the context of chemical media,
and modulational instability in optics. Spatial instabilities are responsible for the emergence
of patterns.

The scales separation between fast and slow modes, as illustrated by Eq. 3.10, permits
one to study the envelope of the pattern for times τ ∼ 1/ε. Let us consider an ansatz similar
to the one used for the Andronov-Hopf instability,

u(x, t) = A(t)eiqx + Ā(t)e−iqx +W (A, Ā, x), (3.11)

where A is a slowly varying amplitude (the envelope of the spatial mode with wavenumber
q), and W is a small nonlinear correction of general form

W = c3,0A
3e3iqx + c2,1A|A|2eiqx + c1,2Ā|A|2e−iqx + c0,3Ā

3e−3iqx.

Let us assume that the parameter ε and the amplitude A are small. Replacing the an-
satz (3.11) in Eq. (3.9) one obtains the following expression at dominant order

dA

dt
eiqx +

dĀ

dt
e−iqx = εAeiqx + εĀe−iqx + 8c3,0A

3e3iqx

+ 8c0,3Ā
3e−3iqx −

(
A3e3iqx + 3A|A|2eiqx + 3Ā|A|2e−iqx + Ā3e−3iqx

)
. (3.12)

This equation can be separated into four equations by projecting over the Fourier series

{e3iqx, eiqx, e−iqx, e−3iqx}.

These projections allow one to find both the dynamics of A(t) and the form of the correction
W ,

dA

dt
= εA− 3|A|2A,

(a) (b)λ

k-q qε
0

0

u

x

Figura 3.6: Spatial instability in the Swift-Hohenberg equation. (a) Eigenvalue curve as fun-
ction of the wavenumber k. There are two maxima at k = ±q. (b) Pattern solution for
ε > 0.
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dĀ

dt
= εĀ− 3|A|2Ā,

c3,0 = c0,3 =
1

8
.

Then, the pattern amplitude obeys the real Ginzburg-Landau equation. This model has
known steady states A0 = (ε/3)1/2eiφ0 , where φ0 is a real constant. Then the pattern solution
up(x) reads at leading order

up(x) = 2

√
ε

3
cos(qx+ φ0).

3.3.2. Instabilities in systems driven by time-dependent forces

Here we discuss parametrically driven system, which are characterized by a response fre-
quency that is a half of the forcing frequency, that is, their dynamics is approximately
u ∼ Aei

ω
2
t + c.c, where ω is the driving frequency. An example of a parametrically dri-

ven system is a magnetic medium forced at twice its natural frequency. This type of system
exhibits a parametric resonance and several instabilities.

We consider the same model presented in Sec. 2.3, that is, a wire along the z-axis. The
magnetization is governed by the following model

∂m

∂t
= −m× [hex − βmzez + ∂ZZm] + αm× ∂m

∂t
, (3.13)

where the external field is given by h(t) = H0+h0 cos(2[ω0+ν)t), and ν is a detuning between
half the forcing frequency and the natural frequency. To grasp the dynamics of the Eq. (3.13),
it is convenient to approximate it by the leading order contributions

∂

∂t

(
my

mz

)
≈
[

0 ∂ZZ −H0 − β
H0 − ∂ZZ 0

](
my

mz

)

+
h0
2

(
e2i(ω0+ν)t + e−2i(ω0+ν)t

) [0 −1
1 0

](
my

mz

)

+
β

2
(m2

y +m2
z)

(
mz

0

)
− α

[
H0 0
0 H0 + β

](
my

mz

)
. (3.14)

We considered only the dominant order terms6 in this equation. To describe the behavior of
the oscillator, it is convenient to use the oscillation amplitude B(t, Z) as variable [79, 80, 50,
12, 11, 14] (

my

mz

)
= B(t, Z)eiω0tu + c.c.+ W, (3.15)

where B represents a slowly varying oscillation envelope, that is |∂zzB| ∼ |∂tB| � |B| � 1
and W = W(B, B̄, ∂ZZB, ∂ZZB̄, t) is a correction that comes from the nonlinear nature of

6This is equivalent to consider that operators, variables, and parameter scale as h0 ∼ α ∼ ν ∼ m2
y ∼

m2
z ∼ ∂ZZ � 1. and ∂t ∼ H0 ∼ β or order 1. Then, terms such as αm2

zmy and mymz∂ZZmz are higher
order corrections and we neglect them. Indeed, you can formalize the all the calculations by introducing an
expansion parameter and expressing all quantities in terms of this parameter.
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the problem, and it scales as |W| ∼ |B|3. Replacing the above Ansatz in Eq. (3.14), and
linearizing around the correction W, one obtains

L̂W = ∂tBu + (∂ZZ − iαω0)Beiω0t

(
i
√
H0√

H0 + β

)

+ i
β

2

√
H0 (4H0 + β)B|B|2eiω0t

(
1
0

)
+B3e3iω0tfct

− h0
2
B̄e2iνteiω0t

(
−i
√
H0√

H0 + β

)
+ c.c., (3.16)

where the vector fct collects all the constant of the cubic term B3, and the linear operator L̂
is

L̂ =

[
−∂t −H0 − β
H0 −∂t

]
.

The linear equation L̂W = grhs for the unknown W, where grhs is the right-hand side of
Eq. (3.16), can be solved only if grhs is in the image of the operator L̂. By the Freedholm
alternative [66], the equation L̂W = grhs can be solved if grhs is orthogonal to the elements
of the Kernel of the adjoint operator L̂†. We define the inner product of functions space

(f ,g) ≡ ω0

2π

∫ t0+2π/ω0

t0

(
f̄ · g

)
dt,

where the symbol · denotes the inner product of vectors with complex components, i.e. the
dot product of C2, and f̄ is the complex conjugate of the vector f . Then the operator L̂†
adjoin to L̂ is given by

L̂† =

[
∂t H0

−H0 − β ∂t

]
.

The kernel of L̂† is given by L̂†
[
eiω0tv

]
= L̂†

[
e−iω0tv̄

]
= 0, where v = (

√
H0, i
√
H0 + β)T ,

and the symbol T stands for the transpose. Then projecting the right hand side of Eq. (3.16)
over eiω0tv and equaling to zero, after straightforward calculations one obtains

2ω0∂tB = −i
β

2
(ω2

0 + 3H2
0 )B|B|2 − i(2H0 + β)∂ZZB

− αω0(2H0 + β)B + i
βh0
2

e2iνtB̄. (3.17)

Introducing the following normalization for the envelope

B(t, Z) =

√
4ω0

β (ω2
0 + 3H2

0 )
A(t, Z)eiνt+iπ/4,

in Eq. (3.17), we obtain

∂tA = −i
(
νA+ |A|2A+ ∂zzA

)
− µA+ γĀ, (3.18)
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where µ ≡ α (2H0 + β) /2 and γ ≡ βh0/(4ω0) account for the dissipation and the parametric
injection, respectively. The spatial coordinate z is z ≡

√
2ω0/(2H0 + β)Z. This is the well-

known parametrically driven, damped nonlinear Schrödinger equation (PDNLS) [13, 11]. This
model describes several systems, such as vibrated fluids [58], parametrically driven optical
resonators [52], spin-transfer nano-oscillators [48, 19], among others.

It is worth noting that the equation (3.18) is quite simple or minimal, because it considers
only one term for each physical effect involved (frequency, nonlinearity, disspersion, dissipa-
tion and injection). This simplicity renders the PDNLS equation a very general model that
explains and predicts dynamics in a wide variety of physical systems.

Solutions of the PDNLS equation.- There are two natural decompositions for the
complex amplitude A of the PDNLS equation, they are the real and imaginary parts A =
u+ iv, and the modulus and phase A = Reiφ. In the first case we have

∂tu = (γ − µ)u+ (ν + ∂xx)v + v(u2 + v2),

∂tv = −(ν + ∂xx)u− (γ + µ)v − u(u2 + v2). (3.19)

The stability of the trivial state u = v = 0 is determined by its eigenvalues

λ± = −µ±
√
γ2 − (ν − k2)2, (3.20)

which describes two bifurcations, the first one is a stationary instability that takes place
when γ ≥

√
ν2 + µ2. The zone of the parameter space where the trivial equilibrium A = 0 is

unstable because of this stationary instability is known as Arnold tongue (see Fig. 3.7).

Spatially periodic textures.- When injection of energy surpasses dissipation γ ≥ µ and
the detuning is possitive ν ≥ 0, the eigenvalue λ+ can be positive, and then the A = 0 state
becomes unstable. This bifurcation induces patterns with wavenumber

√
ν. It is possible to

Arnold
tongue

γ

ν

γ = ν + μ
2

2

2

γ=μ 0 61x

u
-0.6

0.6
0

1.2

-0.3
0

0 61x

u

Figura 3.7: Bifurcation diagram of the PDNLS model. The insets show dissipative solitons
and patterns obtained from Eq. (3.19). Parameter values are γ = 0,5, µ = 0,45, and ν = −0,5
and ν = 1 for solitons and patterns, respectively.
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characterize the emergence of patterns in the weakly nonlinear regime in analogy to what was
done for the Swift-Hohenberg equation in last subsection. Indeed, introducing the ansatz7

(
u
v

)
= T ei

√
νx

(
1
0

)
− 3

2µ
T |T |2ei

√
νx

(
0
1

)
+
T 3

8ν
e3i
√
νx

(
1
0

)
+ c.c.+ ..., (3.21)

in Eq. (3.19), where T stands for the envelope of the pattern, one obtains the amplitude
equation [23]

∂tT = (γ − µ)T − 9

2µ
T |T |4. (3.22)

It is worth noting that the amplitude equation does not contain cubic nonlinearities. This is
because the nonlinear saturation of a pattern is induced by dissipation, and there is no cubic
dissipation. Equation (3.22) predicts the formation of a stable pattern for γ ≥ µ. The inset
of Fig. 3.7 shows this solution, which at leading order reads A ≈ 2(2µ(γ−µ)/9)1/4 cos(

√
νx).

Localized states.- In the modulus and phase representation, A = Reiφ, the PDNLS model
becomes

∂tR = −µR + 2∂xR∂xφ+R∂xxφ+ γR cos(2φ), (3.23)
R∂tφ = −νR−R3 − ∂xxR +R(∂xφ)2 − γR sin(2φ), (3.24)

which admits the following localized states solution

sin(2φs) = µ/γ,

Rs(x) =
√

2δsech(
√
δ[x− x0]), (3.25)

where δ = −ν +
√
γ2 − µ2, and x0 is the soliton position. This is a particle-like stationary

solution in the PDNLS model, and it represents a localized oscillatory state in the Landau-
Lifshitz-Gilbert equation [cf. Fig. 2.1(a)]. In 2011, it was demonstrated that the the uniform
phase soliton given by formula (3.25) is stable only for systems with small lateral dimen-
sions [15, 21, 20, 17]. Indeed, for system size above a critical value, the phase variable φs
becomes a function of space [15].

3.3.3. Galerkin Expansions

The analytic methods studied in the previous sections are valid at the onset of a bifurcation
or resonance. However, in several other cases it is not possible to describe a phenomenon in
terms of a normal form, because there is not a suitable expansion parameter, or because the

7A general ansatz should consider several higher order corrections. Those higher order terms are nonlinear
in the amplitude T and its complex conjugate, T̄ , and they can be separated in terms of order three and five
in the amplitude |T |. The ansatz presented here considers a particular form of the cubic nonlinear correction,
which was obtained after replacing the general ansatz in the PDNLS equation and balancing the cubic order
terms.

35



state of the system is highly nonlinear, or just due to the large number of spatial modes
involved. In such cases, it is possible to conduct a modal decomposition where the equations
are projected into one or a few arbitrarily selected modes. This type of projection is known
as the Garlerkin expansion [67], and it does not require a bifurcation, solvability condition,
or an expansion parameter.

Let us consider the following partial differential equation

∂tu = f
(
r,u,∇2u

)
,

where f is in general a function of space coordinates r, and u is system variable. We introduce
an Ansatz of the form

u =
N∑

j=1

Aj(t)gj (r) ,

where {gj}Nj=1 is an appropriate set of orthonormal functions for a given inner product
(gj,gk) = δjk. Such variables are usually chosen motivated by experimental or numerical
results. {Aj}Nj=1 are time dependent amplitudes associated to the corresponding modes. Re-
placing the ansatz in the equation for u, and projecting over gk, we obtain the following set
of equations

dAk
dt

= (f ′,gk) ,

where f ′ is the function f evaluated on the ansatz [67]. Let us mention a few remarks about
this kind of expansions,

• This modal decomposition does not require separation of spatiotemporal scales. Indeed,
the spatial modes {gj}Nj=1 are arbitrarily chosen. Then, it is necessary to have some
previous knowledge about the solutions.
• If the function f is nonlinear, then a nonlinear correction W should be added to the

ansatz. Since this is not usually done in Galerkin expansions, the Galerkin method can
be less precise than normal forms.
• In the normal form approach, the solvability condition completely determines the struc-

ture of the amplitude equations8. For instance, the equations for most spatial instabi-
lities take the form of relaxation equations. On the other hand, Galerkin expansions
do not have such constrains. This permits one to describe a wide variety of behaviors,
such as chaos and oscillations, that are prohibited for some normal forms [60].
• We have described here the simplest type of Galerkin expansion. This method can be

generalized in several ways [67], for instance it is possible to use spatio-temporal modes
gj = gj(t, r) and slowly varying space dependent amplitudes Aj = Aj(t, r).

8Solvability condition is usually written as L̂W = grhs, whereW is a nonlinear correction and the function
grhs depends on the amplitude of the critical modes. The form of all the admissible terms of amplitude
equations is determined by the linear operator L̂. Thus, the nonlinear behavior of a system strongly depends
on its linear behavior at the bifurcation point. See Ref. [28] for more details.
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Some examples of Galerkin expansions can be found in Refs. [60, 36, 63, 44, 16], where
the complicated spatiotemporal behavior is represented in terms of the relevant modes.

3.4. Numerical methods to study nonlinear magnetiza-
tion dynamics

It is well-known that several differential equations are non-integrable, that is, their so-
lutions cannot be expressed in terms of integrals. Indeed, a wide variety of systems exhibit
chaos, an universal behavior where the predictability is restricted to short times [77]. This
motivates the use of numerical methods to solve differential equations. Moreover, the nume-
rical exploration of a model can be seen as a numerical experiment, and it permits one to
discover new types of solutions and to develop a deep intuition about complicated equations.

There are several methods to conduct numerical integration. We present here a commonly
used scheme based on a Runge-Kutta algorithm for the temporal evolution and finite differen-
ces for the space discretization. This is, perhaps, one the the simplest numerical integration
strategies, and at the same time, this method provides both precision and efficiency for most
equations.

Runge-Kutta algorithm for temporal integration Let us consider the following first
order differential equation

du

dt
= f(t,u),

where the N -components vector u ∈ RN is a function of time. Time evolves in discrete steps,
t → tn, where n is an integer number. The evolution of the function un ≡ u(tn) can be
obtained by means of a Taylor expansion of the form un+1 ≈ un + dtf(t,un) +O(dt2), where
the step size is dt ≡ tn+1 − tn. A more precise expression can be obtained by combining
several Taylor expansions—explicit method—, among them let us mention the fifth order
Runge-Kutta scheme

un+1 = un +
37

378
k1 +

250

621
k3 +

125

594
k4 +

512

1771
k6 +O(dt6),

where the kj vectors are given by [68]

k1 = dtf (tn,un) ,

k2 = dtf

(
tn +

1

5
dt,un +

1

5
k1

)
,

k3 = dtf

(
tn +

3

10
dt,un +

3

40
k1 +

9

40
k2

)
,

k4 = dtf

(
tn +

3

5
dt,un +

3

10
k1 −

9

10
k2 +

6

5
k3

)
,
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k5 = dtf

(
tn + dt,un −

11

54
k1 +

5

2
k2 −

70

27
k3 +

35

27
k4

)
,

k6 = dtf

(
tn +

7

8
dt,un +

1631

55296
k1 +

175

512
k2 +

575

13824
k3 +

44275

110592
k4 +

253

4096
k5

)
.

This choice of coefficients to sum Taylor expansions is known as Cash-Karp parameters [68].
The above scheme can be used to integrate a set of ordinary differential equations using
a constant step size dt. However, the characteristic time scale in which out of equilibrium
systems evolve strongly depends on the control parameters and states. Then, it is much
more efficient to adapt the step size to obtain a desired integration error. Numerical errors
can be estimated by comparing the results of two Runge-Kutta routines of different orders.
For instance, along this thesis we estimate errors by comparing the un+1 functions obtained
from both a fourth and a fifth orders Runge-Kutta schemes (see Ref. [68] for the detail
implementation).

It is worth noting that the variable step-size fifth order Runge-Kutta algorithm is only one
example of the several routines for the integration of differential equations. Other methods
are the symplectic, predictor corrector, and Runge-Kutta schemes of order four or six [68].
However, for most dissipative physical systems the variable step-size fifth order Runge-Kutta
algorithm is both efficient and accurate.

Finite differences for spatial discretization Let us discretize the spatial coordinate x
into a set of positions, xj = j∆x, where the index j = 0, 1, 2... takes discrete values and
it labels positions. The constant ∆x stand for the distance between two adjacent positions
∆x = xj+1−xj. Functions of space f = f(x) also become discretized fj = f(xj). This scheme
is known as finite differences, and it permits to approximate the derivative and laplacian
operators by the following expressions [37]

1

60
fi+3 −

3

20
fi+2 +

3

4
fi+1 −

3

4
fi−1 +

3

20
fi−2 −

1

60
fi−3 = dx · ∂xfi +

dx7

140
f
(7)
i ,

1

90
fi+3 −

3

20
fi+2 +

3

2
fi+1 −

49

18
fi +

3

2
fi−1 −

3

20
fi−2 +

1

90
fi−3 = dx2 · ∂xxfi +

dx8

560
f
(8)
i .

Notice that if f (8)
i ∼ 1 and dx ∼ 0,1, then the last term of the right-hand side of the

laplacian expression is of order dx8f
(8)
i /560 ∼ 10−11.
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Capítulo 4

Discussion

We present here a general motivation and discussion of the main results of this thesis,
while all details are presented in Chapters A, B, C, D, and E. Those five chapters are the
manuscripts generated by this research work.

4.1. Ferromagnetic layer in presence of a direct spin-polarized
electric current

Let us consider the spin-valve described in Sec. 2.5. The free magnetization obeys the
Landau-Lifshitz-Gilbert equation, that takes the following form in the stereographic repre-
sentation (see subsection 2.5.3)

(i + α) ∂Tψ = (ig − h0)ψ −
βz
2

(
ψ − ψ

) 1 + ψ2

1 + |ψ|2 − βxψ
1− |ψ|2
1 + |ψ|2 +∇2ψ − 2

ψ

1 + |ψ|2 (∇ψ)2 ,

(4.1)
where the complex field ψ = (my + imz)/(1 + mx) accounts for deviations from the parallel
state m = ex. The parameters h0 and g are the external field along the x-axis and the
spin-polarized electric current with polarization direction on the x-axis, respectively. The
coefficients {βx, βz} are the anisotropy constants for the x-axis (easy axis) and the z-axis
(hard axis). The phenomenological coefficient α is Gilbert’s damping.

A particularly interesting limit of model (4.1) is obtained under the following assumptions:

• The deviations from the parallel state ψ = 0 are small (ψ � 1). This permits us to
consider only the dominant nonlinearity—third order terms—and neglect higher order
nonlinearities.

• The magnetization varies slowly in space, that is |∇2ψ| � k|∇ψ| � 1, where k is a
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characteristic wavenumber. This allows considering just one dispersion term

∇2ψ − 2
ψ

1 + |ψ|2 (∇ψ)2 ≈ ∇2ψ.

• We assume that the perpendicular anisotropy coefficient βz is small, which is valid
for devices where the perpendicular magnetocristalyne anisotropy partially cancels the
demagnetization effect (see [69] and references therein),

βz
2

(
ψ − ψ

) 1 + ψ2

1 + |ψ|2 ≈
βz
2

(
ψ − ψ

)
.

• In common devices composed by hard magnetic materials, the dissipation and spin-
transfer torque coefficients are small, α ∼ |g| � 1, while the in-plane anisotropy coef-
ficient βx and the external field h0 are of order 1.

Under these assumptions, Eq. (4.1) is approximated by

i∂Tψ ≈ (ig − h0[1 + iα])ψ − βz
2

(
ψ − ψ

)
− βxψ

(
1 + iα− 2|ψ|2

)
+∇2ψ.

The above equation scales as |ψ|2 ∼ ∇2 ∼ α ∼ |g| � 1 and h0 ∼ βx ∼ 1. Introducing a change
of variables for the amplitude A ≡ ψeiπ/4/

√
2βx + βz ≈ ψeiπ/4/

√
2βx, the above equation

takes the form of the well-known parametrically driven, damped nonlinear Schrödinger model
(see subsection 3.3.2)

∂tA = −i
(
νA+ A|A|2 +∇2A

)
− µA+ γĀ,

where the parameter ν ≡ −ha − βx − βz/2 ≈ −ha − βx is the analog of the detuning bet-
ween half the forcing frequency and the response frequency in parametrically driven systems.
Moreover, µ ≡ −g − αν ≈ −g is the dissipation, and γ ≡ βz/2 accounts for the parametric
injection. The PDNLS model is a paradigmatic equation for macroscopic systems at the on-
set of the subharmonic 2:1 resonance. This resonance is responsible for the destabilization of
A = 0 state, and for the creation of localized states and patterns.

Pattern formation.- Since the PDNLS model is a limit of the Landau-Lifshitz-Gilbert
equation, one expects to observe patterns and localized states in the numerical simulations of
the magnetic equations. Indeed, in the regions of the parameter space where the PDNLS sca-
ling applies, several dissipative states emerge, such as spatially periodic patterns, dissipative
solitons, breathers, non-monotonic domain walls, stationary uniform equilibria, to mention a
few.

In the case of patterns, the PDNLS limit predicts the formation of textures as the result of
a spatial instability. The particular shape of patterns is not obvious and it strongly depends on
the nonlinearities. To adequately understand the formation of textures, we used the method
of amplitude equations (see subsection 3.3.1) to derive approximate analytic expressions for
a wide variety of patterns and to study their linear stability. For small negative applied fields,
−4(βx + βz/2) < h0 < −βx − βz/2, we found the following magnetization stable equilibrium

my ≈ 2

[
4βz(βz/2 + g)

(6βx + 3βz − 2q2)2

]1/4
cos (q · r) ,
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mz ≈ −my,

mx ≈ 1− m2
y +m2

z

2
,

where q ≡ |q| =
√
ν =

√
−h0 − βx − βz/2 is the wavenumber. For larger negative fields

h0 < −4(βx + βz/2), the magnetization is composed by the sum of several spatial modes
(cosine functions) oriented along the directions admitted by the boundary conditions. This
type of pattern is usually called a superlattice [35], because it is composed by several modes
(8 independent modes, for instance). The transition that occurs at h0 = −4(βx+βz/2), where
a pattern with one mode interchanges stability with a superlattice, is a roll-superllatice bifur-
cation. It is worth noting that the patterns amplitude grows as (g−gc)1/4, where gc = −βz/2.
It is not usual to observe this growth law in pattern forming systems, where the envelopes
typically grow following a square root law. Note also that the critical value of the electric
current is fixed by the perpendicular anisotropy coefficient βz. Then, systems where the mag-
netocrystaline anisotropy partially cancels the demagnetization are the best experimental
setups to study our predictions [69]. The results in pattern formation are presented in detail
in Chapter A.

Parametric equivalence.- Patterns are just one example of the states exhibited by fe-
rromagnetic layers driven by the spin-transfer torque. Some other examples include localized
states, uniform equilibria, and domain walls. Chapter B is devoted to the study of such
structures in one and two spatial dimensions.

A natural question is, why do parametrically driven systems and spin-valve devices exhibit
similar states? Or, why is the PDNLS model a limit of the magnetization equation? From the
mathematical point of view, the answer is quite simple, the perpendicular anisotropy breaks the
rotational invariance in the (my,mz) plane in the same way as a time-modulated injection
of energy in an oscillator breaks the time-translation symmetry. Hence, both systems can
distinguish the phase of their order parameter A. At leading order, this symmetry-breaking
produces a term of the form γĀ in the equations of both systems.

If the γĀ term comes from the anisotropy effect, which is the role of the spin-transfer
torque? Spin-transfer torques just permit us to separate the effective parameters µ and ν.
Indeed, some magnetic systems that do not have spin-polarized currents are also described
by the PDNLS equation. However, since the dissipation coefficient must be positive in the
PDNLS model, µ = −αν > 0, the detuning must be negative which forbids the existence of
patterns. Then, spin-transfer torques permits one to recover the whole parameter space of
parametrically driven damped systems.

From a physical viewpoint, the rotational symmetry breaking induced by the perpendicular
anisotropy implies that systems that mechanical rotations can generate a parametric injection
of energy. Using this simple idea, we constructed the equivalence between magnetic films that
rotate mechanically and free layers. The equivalence between this two types of systems is
described in detail in Chapter B.

An angular velocity Ω0 of rotating plates causes a spin-transfer torque term of the form
g ∼ αΩ0, then the mechanical rotations needs to reach angular velocities in the terahertz
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range to produce the same effect as a spin-transfer torque of order g ∼ α. Then, it is not mea-
ningful to study experimentally the effects of spin-transfer torques through rotating plates.
However, this equivalence permitted us to find simple analogies and to explain the existence
of dissipative solitons and patterns.

4.2. Ferromagnetic layer in presence of an alternating
spin-polarized electric current

In the previous section we showed that a direct electric current generates states that are
usually found in parametrically driven systems. This motivates the following questions: can we
induce sub-harmonic resonances by means of an alternating electric current (a time-varying
spin-transfer torque)? What dissipative states emerge as the consequence of this forcing
mechanism? How do these states compare to those predicted by the parametric equivalence?
In this section we answer those questions.

Let us start mentioning that a direct electric current can generate self-oscillations. This
subject has been intensively studied during the last two decades (see [57] and references
therein). The emergence of self-oscillations is easily understood by means of the linearized
Landau-Lifshitz-Gilbert equation. Let us write the LLGS equation in terms of one of its
components,

d2my

dt2
= −ω2my − 2µ̃

dmy

dt
,

where ω2 = (1 + α2) [(h0 + βx) (βz + h0 + βx) + g2], µ̃ = α (h0 + βx + βz/2) − g, and my =
m · ey. This is the equation of a damped oscillator, where the coefficients ω and µ̃ are the
natural frequency and the dissipation, respectively. Moreover, the stability spectrum of this
system is given by

λ2 + 2µ̃λ+ ω2 = 0,

which predicts a stationary instability when frequency ω becomes a complex number, that is
when (h0 + βx + βz/2)2 + g2− (βz/2)2 = 0. Another instability takes place when the dissipa-
tion changes its sing at α (h+ 1/2)−g = 0. This instability is the Andronov-Hopf bifurcation,
and it generates a similar dynamics to those exhibited by the Van der Pol oscillator; indeed,
at linear order both equations are the same. Using the same methods presented in subsec-
tion 3.2.3 one could analytically characterize the oscillation by means of a slowly varying
envelope B and higher order corrections W (B, B̄),

my(t) = B(t)eiωt + B̄(t)eiωt +W (t, B, B̄).

The oscillation envelope B obeys the Complex-Ginzburg-Landau equation

dB

dt
= µ̃B + ηB|B|2,

where the parameter η is complex and its real part accounts for nonlinear dissipation and
the imaginary part comes from the magnetic energy.
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Let us consider a spin-polarized electric current with both a direct and an alternating
contribution,

g(t) = g0 + g1 sin(ωt),

where g0 is the continuous part of the current and it will generate self-oscillations through an
Andronov-Hopf instability; and the parameter g1 accounts for the oscillatory part of the spin-
transfer effect, and this term will generate the parametric injection of energy with forcing
frequency ω = 2(ω0+ν), and natural frequency ω2

0 = (1 + α2) [(h0 + βx) (βz + h0 + βx) + g20].
Then, our attempt will be to couple the alternating current g1 to the self-oscillations favored
by g0. To understand the effect of the alternating current we introduce the following ansatz

my = my,0e
i(ω0+ν)tA(r, t) + c.c.+Wy,

we replace this ansatz in the Landau-Lifshitz-Gilbert equation and after some straightforward
calculations, one gets

∂A

∂t
= −iνA− i |A|2A− µA+ γĀ− i∇′2A,

where µ = α
(
h+ 1

2

)
−g0 stands for linear dissipation, and γ = αg1/[4

√
(h0 + βx)(h0 + βx + 2βz)]

represents the forcing amplitude, and the operator ∇′ is a normalization of the spatial deri-
vatives, ∇′ = [(2h0 + βx + βz)/(2ω0)]

1/2∇.

Hence, alternating currents can produce sub-harmonic resonance. Since this resonance is
mathematically described by the PDNLS model, this system exhibits localized states and
patterns. Those states are described in detail in Chapter C.

In brief, dissipative solitons and patterns can be induced by two mechanisms, namely a
purely direct current and a current that combines a direct and an alternating contribution.
Moreover, the states generated by both mechanisms are described by the same equation,
the PNDLS model. However, there are differences between these two cases. The first one is
that most of the states induced by the direct current are stationary states (static magnetic
configurations), while all the states induced by the alternating current oscillate with the fre-
quency ω0. A second difference is that in the case of an alternating current, all the relevant
parameters of the PDNLS equation—that is injection, dissipation and detuning—are con-
trolled by the electric current. On the other hand, in the case of the parametric equivalence
the injection amplitude is fixed by a device property—the total perpendicular anisotropy
γ = −βz/2—while the detuning is controlled by the external field. Then, the spin-transfer
effect only permits us to manipulate dissipation coefficient µ in the parametric equivalence.

4.3. Traveling pulse on periodic patterns

The Andronov-Hopf instability of a uniform state generates limit-cycles and dissipati-
ve waves. In the last case, waves can be extended or localized, and they can be standing
or traveling. From a theoretical point of view, the oscillation amplitude is governed by a
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Ginzburg-Landau equation, which usually permits the characterization of waves, pulses and
holes (see review [1] and references therein). On the other hand, the Andronov-Hopf instabi-
lity of stationary textures can induce localized standing waves surrounded by the stationary
pattern, traveling structures, among other behaviors. In this section we discuss a traveling
pulse that propagates on a periodic pattern, this pulse is the result of a subcritical Andronov-
Hopf instability of a Faraday-type pattern.

Let us follow the approach of Coullet and Iooss [24], and consider the differential equation,

∂tu = f (u, ∂xu, ∂xxu) , (4.2)

which admits two symmetries: spatial reflection x→ −x and spatial translation x→ x+∆x.
In addition, we assume that model (4.2) has a spatially periodic patterns up(x) = up(x+2π/q)
as solution, where q is the pattern wavenumber. The stability around this state is obtain by
perturbing the pattern with a small function δu(t, x) which obeys the linear equation

∂tδu =

[
∂f

∂u
(up, ∂xup, ∂xxup)

]
δu, (4.3)

where [∂f/∂u (up, ∂xup, ∂xxup)] is the Jacobian matrix of f evaluated in the pattern state.
Equation (4.3) is a space-dependent eigenvalue problem, and the temporal evolution of the
perturbation δu can be reduced to an exponential function, that is δu(t, x) = eλtv(x), where
the eigenvalue λ can be a real or a complex number [24]. Increasing or decreasing a control
parameter can produce a change of sign in the real part of one eigenvalue λc. In this scenario
perturbations grow with a well defined spatial structure given by the eigenfunction vc(x),
and possibly a frequency if Im(λc) 6= 0. Hence, patterns display similar instabilities compared
to those of uniform states, namely stationary and oscillatory instabilities1. At the onset of
the Andronov-Hopf instability of the pattern, several states can emerge: standing waves,
traveling waves, and localized waves; the system could also reach another equilibrium far
from the pattern solution.

Andronov-Hopf instability of Faraday-type waves.- Let us consider the specific ca-
se of parametrically driven systems. Close to the sub-harmonic resonance, the oscillation
envelope obeys the PNDLS equation, which exhibits patterns or Faraday-type waves (see
subsection 3.3.2). The PDNLS model is valid when spatial variations of the envelope are slow
(|∂xxA| � |∂xA| � |A| � 1). If the pattern wavelength is smaller, then the PDNLS model
might be corrected to account for the fast spatial variations of the order parameter. One
possible amended-PDNLS equation (APDNLS) is

∂tA = −i
(
νA+ |A|2A+ ∂xxA

)
− µA+ γĀ+ iδĀ (∂xA)2 , (4.4)

1Patterns in an infinite medium—or in a system with periodic boundary conditions—are a continuous
family of solutions parametrized by a constant phase φ0, up(x+φ0). The phase is a neutral mode associated to
the space translation invariance. At the onset of a pattern instability, the phase usually becomes a dynamical
variable that couples to the unstable modes. This generates drifts or changes in the wavelength of the
pattern [24]. Then, even if pattern instabilities are similar to the bifurcations of uniform states, the phase
increases the center manifold and then a rich variety of structures can be expected.
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Figura 4.1: Andronov-Hopf instability of a pattern. (a) Stationary pattern state of the
APDNLS Eq. (4.4), where solid and dashed lines account for the real and imaginary parts
of A = u + iv, respectively. (b) Stability spectrum of the pattern. Two complex conjugate
eigenvalues are close to the imaginary axis, those eigenvalues are responsible for the destabi-
lization of the pattern state. Note that there is a zero eigenvalue, λ = 0, which comes from
the neutral mode x→ x+ ∆x. (c) Eigenfunctions corresponding to the critical modes of the
Andronov-Hopf instability. The eigenfunctions break the reflection symmetry x→ −x.

where the last term of Eq. (4.4) is phenomenological and it was introduced to account for
non-negligible spatial gradients. Moreover, this term emerges naturally in magnetic media
[see Eq. (4.1) for instance]. Since the term proportional to δ is nonlinear, it cannot change
the instabilities of the state A = 0. Then both the PDNLS and the APDNLS model exhibit
a spatial instability for ν > 0 and γ ≥ µ.

Figure 4.1(a) shows the pattern state obtained from Eq. (4.4). The stability analysis of
this equilibrium is shown in Fig. 4.1(b). As this figure illustrates, the pattern is close to an
Andronov-Hopf instability. The eigenfunctions of the bifurcation (of the critical eigenvalues)
are shown in Fig. 4.1(c). According to Coullet and Iooss [24], the Andronov-Hopf instability
of the pattern can be described by Ginzburg-Landau amplitude equations coupled to a phase
equation. In our case, the critical modes break the spatial reflection invariance, which pro-
duces a right and a left-traveling wave. The direct numerical integration of the model (4.4)
reveals that the traveling waves emerge subcritically—there is an abrupt passage from the
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Figura 4.2: Traveling pulse on a periodic background. The left panel shows the profile of the
pulse numerically calculated from from Eq. (4.4), where u = Re(A). The right panel shows
the spatiotemporal diagram of the traveling state; the dashed line of the diagram shows the
moment when the graphic of the left was obtained.
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stationary pattern to the traveling waves. Close to the transition, localized states are observed
(see Fig. 4.2). Those pulses are the analog of the Ginzburg-Landau stationary pulses [78, 1]

An example of a pulse traveling in a periodic background is presented in Chapter D, where
a ferromagnetic wire is driven by an oscillatory magnetic field.

4.4. Limit-cycles of two-dimensional patterns

Spin-transfer torques induce stationary patterns in magnetic films [49]. Those patterns are
stabilized by an electric current that transfers angular momentum from the fixed magnetiza-
tion to the free one. Then decreasing the electric current will cause a loose of stability of the
stationary textures. In this section we study the self-oscillations that emerge when patterns
are unstable.

The typical magnetization behavior that we have observed for current values where statio-
nary patterns are unstable is shown in Fig. 4.3. This figure illustrates a texture that alternates
between quasi-vertical and quasi-horizontal rolls in time. This is an example of an alternating
pattern. This type of patterns have been studied in fluid convection [60, 36, 63, 45, 59, 83,
65, 54, 55, 26], and vertically vibrated fluids [64].

Some analytic methods of nonlinear science, such as amplitude equations, cannot account
for the permanent dynamics alternating patterns. Indeed, if the pattern amplitude is calcula-
ted at the onset of a spatial instability, one typically obtains a relaxation equation which fails
to predict oscillatory instabilities. This drawback of singular approaches (such as the one des-
cribed in Ref. [28]) motivates the use of a more general analytic description in terms of some
relevant spatial modes, that is, a Galerkin expansion (see subsection 3.3.3 and Ref. [60]). The
selection of spatial modes is usually motivated by numerical simulations and experimental
observations, then the spatiotemporal dynamics is projected into those modes to obtain a set
of time-dependent amplitudes.
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By means of an appropriate Galerkin expansion, we transformed the LLGS equation into
a set of four ordinary differential equations. This permitted us to conduct efficient nume-
rical simulations and observe trajectories in the reduced phase space. We also determined
that there are two bifurcations that create alternating pattern in spin-valve systems, namely
an Andronov-Hopf instability and a homoclinic bifurcation. The details of this subject are
presented in Chapter E.
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Capítulo 5

Conclusions

The control of ferromagnetic media at nano-scales has attracted considerable attention
during last decades. The physical description of ferromagnets has several challenging issues,
from two perspectives: the microscopic approach (transport phenomena) and the dynamical
systems approach (magnetization dynamics).

In this theses, we have studied the nonlinear magnetization dynamics of a spin-valve by
means of the Landau-Lifshitz-Gilbert-Slonczesky equation. Using concepts and methods of
nonlinear science, we showed in Sec. 4.1 that the form of the spin-transfer torque is equivalent
to a non-inertial force, and that a perpendicular anisotropy is equivalent to a time-modulated
injection of energy (parametric injection). This simple idea allowed us to predict a plethora
of states usually found in macroscopic systems with dissipation and parametric injection of
energy, such as uniform equilibria, stationary solitons, oscillatory solitons, spatially periodic
patterns, stationary domain walls, moving domain walls, among others. Hence, a ferromag-
netic film forced by a direct spin-polarized current belongs to the family of parametrically
driven systems. In addition we studied the coupling between the magnetic self-oscillations
induced by a direct spin-polarized current and an alternating current. A sub-harmonic re-
sonance was found for forcing frequencies close to twice the self-oscillation frequency. The
aforementioned dynamical behaviors increase the versatility of the spin-transfer torque as
a mechanism for controlling the magnetization. Furthermore, the observed multistability of
spin-transfer torque driven systems could allow the use of spin-valves as memory units with
several information states.

Physical systems self-organize into Faraday-type patterns and dissipative solitons at the
onset of the sub-harmonic resonance. Such states emerge in several contexts, in particular,
we have demonstrated here that such states also emerge in spin-valves. However, the insta-
bilities of patterns and dissipative solitons are less known. In this context we studied the
subcritical Andronov-Hopf instability of a one-dimensional Faraday-type wave by means of a
phenomenological model for the oscillation envelope. We found traveling pulses on patterns,
which are localized increments of the pattern amplitude. We also determined that nonlinear
gradients are a necessary ingredient to observe pulses. We provided an example of this beha-
vior in a magnetic wire driven by an oscillatory magnetic field. We expect that this type
of solutions will be observed in other systems with nonlinear gradients, such as degenerate
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optical parametric oscillators and vibrated fluids.

We studied the emergence of oscillatory two-dimensional patterns in spin-valves. Those
states appear in regions of the parameter space where the stationary patterns are unstable. By
means of direct numerical simulations we showed that there are two mechanisms or routes that
generate oscillatory patterns in this magnetic system, they are an Andronov-Hopf oscillation
of stationary patterns and a global bifurcation known as homonclinic bifurcation.

In brief, the interaction of spins of conduction electrons with other degrees of freedom
produce several effects. Some of those effects permit controlling the magnetization and then
they promise to generate novel technological applications. However, an essential preliminary
step is to predict and characterize the possible behaviors of the magnetization. This thesis
is an effort in such direction. We used a simplified magnetization equation to observe and
characterize several states, and to compare this systems with other ones. We expect that
some of our results will be tested experimentally and/or by means of realistic micromagnetic
simulations in near the future. However, since most of the predicted states are result of
resonances or instabilities, one expects to observed them—perhaps with quantitative changes
and in a slightly different region of the parameter space—independently of the microscopic
details
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Macroscopic magnetic systems subjected to external forcing exhibit complex spatiotemporal behaviors as
result of dissipative self-organization. Pattern formation from a uniform magnetization state, induced by the
combination of a spin-polarized current and an external magnetic field, is studied for spin-transfer nano-oscillator
devices. The system is described in the continuous limit by the Landau-Lifshitz-Gilbert equation. The bifurcation
diagram of the quintessence parallel state, as a function of the external field and current, is elucidated. We have
shown analytically that this state exhibits a spatial supercritical quintic bifurcation, which generates in two spatial
dimensions a family of stationary stripes, squares, and superlattice states. Analytically, we have characterized
their respective stabilities and bifurcations, which are controlled by a single dimensionless parameter. This
scenario is confirmed numerically.

DOI: 10.1103/PhysRevE.89.022908 PACS number(s): 05.45.Yv, 89.75.Kd

I. INTRODUCTION

Macroscopic systems maintained out of equilibrium, under
the influence of injection and dissipation of energy and
momenta, are characterized by exhibiting self-structuring phe-
nomena [1–5]. In the course of the last decades, much effort has
been devoted to the study of pattern formation or dissipative
structures arising in diverse branches of natural sciences (see
the textbooks [4–7] and the references therein). These patterns
are the result of the interplay between the linear gain and the
nonlinear saturation mechanisms. In many physical systems,
these structures emerge as a spatial instability of a uniform state
when a control parameter is changed and surpasses a critical
value, which usually corresponds to an imbalance of forces.
Thus, these bifurcations correspond to spontaneous symmetry
breaking [3,8]. Near the instability there is a separation of
time scales between the evolution of critical and slave spatial
modes, whose amplitudes grow or decrease exponentially,
respectively. This separation of scales reduces the dynamics
into a few spatial modes, which lead the behavior of the system
under study (see [1–4,8–10]). Close to the spatial instability, a
unified description of pattern formation can be achieved with
the method of amplitude equations.

In one-dimensional extended systems, the dynamics at the
onset of bifurcation are generally described by a complex am-
plitude. The magnitude of the amplitude, at equilibrium, satis-
fies a power law as a function of the bifurcation parameter [11].

The above scenario changes drastically in two spatial
dimensions as result of spatial isotropy. A large number of
critical modes can be activated, which correspond to the stripe
patterns with different orientations, initially creating several
domains separated by local and extended defects. Later on,
domains and defects evolve until they reach an equilibrium

*aoleon@dfi.uchile.cl
†marcel@dfi.uchile.cl
‡saliya.coulibaly@univ-lille1.fr

state [2,2–5]. Near the bifurcation, these equilibria are formed
by combinations of a few spatial modes, such as stripes,
squares, and hexagons [3,4,8]. Far from the spatial bifurcation,
the equilibria observed are more elaborate structures such as
quasipatterns [12,13], superlattices [8], and labyrinths [14].
All these stationary states are composed by a large number
of modes. The fundamental tools for the understanding of
these states are the theory of groups, defects interactions, and
amplitude equations.

The control of magnetization in ferromagnetic nanopillars
has been the subject of intensive study in recent years [15–17]
for its technological applications, such as magnetic sensors,
magnetic read heads, data memory, magnetic switching, and
spin transistors. In such devices, an electric current J applied
through the spin-valve transfers spin angular momentum to a
ferromagnetic layer from another film with fixed magnetiza-
tion. This effect is known as the spin-transfer torque [18–22].
When the direct current overcomes a critical value, spin-
transfer torque switches the magnetization and/or carries it into
a stable precession in the radio-frequency domain. Recently, it
has been shown that large precessional magnetic motions can
be destabilized by patternlike perturbations in nanopillars [23].
Figure 1(a) represents schematically a spin-valve structure
composed by two magnetic layers (dark layers), the free and
the fixed one, separated by a metallic nonmagnetic spacer
(light layers).

Most of previous research has focused on the study of uni-
form magnetization dynamics. This approach is known as the
macrospin approximation [21]. A natural question that arises
is whether the spin-transfer process is capable of generating
self-organized stationary structures from an homogeneous
current. This phase transition can become important because it
generates nonuniform stationary configurations for parameter
values where the parallel state was predicted to be stable by
the macrospin model.

The aim of this manuscript is to characterize the formation
of patterns from a uniform magnetization state in one and two
spatial dimensions in spin-transfer nano-oscillators induced

1539-3755/2014/89(2)/022908(9) 022908-1 ©2014 American Physical Society
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FIG. 1. (Color online) Nanopillar device. (a) Schematic repre-
sentation of the spin-transfer torque nano-oscillator setup. The dark
(blue) and light (yellow) layers represent magnetic and nonmagnetic
metal films, respectively. Electrons are depicted schematically with
their respective spins. J and ha are the electric current through the
spin valve and the external magnetic field, both effects are parallel to
the easy axes of the ferromagnetic layer under study. Mo stands for the
magnetization of the fixed layer. (b) Spherical representation of the
magnetization m.

by the combination of a spin-polarized current and an external
magnetic field.

The system is described in the continuous limit by the
Landau-Lifshitz-Gilbert equation with a spin-transfer torque
term. Through a linear analysis we characterize entirely the
bifurcation diagram of the parallel state submitted to an
external magnetic field. Based on amplitude equations we
show that the system has a quintic supercritical bifurcation. In
two spatial dimensions, we observe the emergence of stripes
or superlattices at the onset of the bifurcation. Analytically,
we characterize the respective bifurcation diagram, which is
controlled by a single parameter. This scenario is qualitatively
and quantitatively verified numerically.

The manuscript is organized as follows. In Sec. II, the
dynamics of the free magnetic layer in the spin-valve with spin-
polarized current are described theoretically. The bifurcation
diagram of the one-dimensional configuration is studied in
Sec. III. The spatial bifurcation exhibited by the system is
characterized by means of amplitude equations. The patterns in
the two-dimensional configuration are studied in Sec. IV. The
dynamics of four-modes and their conjugates are analyzed in
detail. Our conclusions and remarks are left to the final section.

II. SPIN VALVE WITH SPIN-TRANSFER TORQUE

Let us consider a nanopillar device with pinned layer
magnetization along the positive x axis as depicted by Fig. 1(a).
The energy E of the free magnetic layer has the form [24]

E = 1
2µ0M

2
s (∇m)2 + 1

2µ0M
2
s βz(m · ẑ)2

− 1
2µ0M

2
s βx(m · x̂)2 − µ0M

2
s m · ha, (1)

where M(r,t) is the magnetization in the free magnetic layer
and {r,t} stand for the spatial and temporal coordinates, respec-
tively. m(r,t) = M/Ms is the unitary magnetization vector, MS

is the saturation magnetization. βx and βz are combinations of
the normalized anisotropy and demagnetization constants with
respect to the appropriate axes, where βx (βz) favors (disfavors)
the free magnetization in the x axis (z axis). µ0M

2
s /2 is the

shape anisotropy energy of the thin film, and ha = hax̂ is the

external magnetic field that we set to point along the x axis [see
Fig. 1(a)]. The gradient operator is ∇ ≡ x̂∂X + ŷ∂Y + ẑ∂Z and
distances are nondimensionalized with respect to the exchange
length lex ≡

√
2A/(µ0M

2
s ) where A is the exchange coupling

in the ferromagnet.
The dynamics of the magnetization of this free layer can

then be described by the Landau-Lifshitz-Gilbert equation
(LLG) under the influence of a spin-transfer torque term [25]

∂m
∂t

= γ

Ms
m × δE

δm
+ g m × (m × x̂) + αm × ∂m

∂t
, (2)

with
δE

δm
= −1

2
µ0M

2
s [(ha + βxmx)x̂ − βzmzẑ + ∇2m], (3)

and γ is the gyromagnetic ratio. The spin-transfer torque
coefficient is defined by g ≡ P(!/2)(J/d|e|)f (m · x̂), where
P describes the electron polarization at the interface between
the magnet and the spacer, J the current density, d the thickness
of the layer, and e the electric charge. The parameter g
is negative when the electrons flow from the fixed to the
free layer. The first term of the right-hand side of Eq. (2)
accounts for precessions, the second one gives account of the
spin-transfer effect and the last one is the Gilbert damping,
which accounts for dissipation of the energy. The parameter α
rules the intensity of the damping. We note that in the present
analysis the nonlocal effects of demagnetization fields have
been approximated by a renormalization of the anisotropy
coefficients. This simplifies drastically the equations, allowing
us to have access to analytical calculations. Moreover, we have
considered this approach because it is a good approximation
for thin film systems with dimensions in the nanometer range
[26] and also in the case where the magnetization has small
deformations with respect to the uniform state [24].

The dynamics of LLG are characterized by the conservation
of the magnitude of magnetization ∥m∥, since m and ∂tm
are perpendicular. Hence, the dynamics of Eq. (2) consist of
rotations of m. The LLG model, Eq. (2), admits two natural
steady and uniform states: m = ±x̂, which represent a free
magnetization that is parallel (+) or antiparallel (−) to the fixed
magnetization M0 [see Fig. 1(a)]. Both states correspond to
extrema of energy Eq. (1). Hereafter, for the sake of simplicity,
we will consider the following scaling and dimensioning of
units µ0M

2
s /2 = 1, γ /Ms = 1 and ∥m∥ = 1 without loss of

generality.
The specific form of the angular dependence of spin-

transfer function f (m · x̂) is sensitive to all the spin-transport
parameters and much theoretical effort has been involved
in establishing its relation with microscopic properties
[18,27–30]. For the sake of simplicity, we consider the case
f ≃ 1, which is valid for certain types of nanopillars [31,32].

A. Spherical representation of LLG model

Due to the conservation of the magnitude of the free mag-
netization, the numerical integration of Eq. (2) in the Cartesian
representation for the magnetization can be a nontrivial task.
Let us introduce the following spherical representation of the
free magnetization

m = sin θ (cos ϕx̂ + sin ϕŷ) + cos θ ẑ, (4)
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where the angles are outlined in Fig. 1(b) and the north pole
lies on the mz axis. Introducing the previous representation in
Eq. (2), one obtains the following set of equations

∂τ θ = sin θ∇2ϕ + 2 cos θ∇ϕ · ∇θ + α∇2θ

− α

2
sin 2θ (∇ϕ)2 − (ha + αg) sin ϕ

− βx

2
sin θ sin 2ϕ + (αha − g) cos ϕ cos θ

+ α

2
sin 2θ [βz + βx cos2 ϕ],

sin θ∂τϕ = α sin θ∇2ϕ + 2α cos θ∇ϕ · ∇θ − ∇2θ

+ 1
2

sin 2θ (∇ϕ)2 + (g − αha) sin ϕ

−α
βx

2
sin θ sin 2ϕ − (αg + ha) cos ϕ cos θ

− 1
2

sin 2θ [βz + βx cos2 ϕ], (5)

where τ = t/(1 + α2). To complement the theoretical study of
the dynamics exhibited by the nanopillar, we have conducted
numerical simulations with the spherical representation of
Eq. (5) in order to preserve the magnitude of the magnetization.
In all numerical simulations performed throughout this work,
the space is discretized with finite differences where spatial
differential operators are approximated with centered schemes
of order 6. The magnetization for each element of the grid
is obtained by solving Eq. (5) by means of a fourth-order
Runge-Kutta algorithm. With this discretization, each volume
of the layer interacts with twelve of its neighbors through
the ferromagnetic exchange torque. Notice that the nonlocal
demagnetization is not a mechanism of spatial coupling,
because it has been approximated by the hard-axis anisotropy
term proportional to βz in Eq. (1).

Numerical simulations have also been conducted with
stereographic representation [33], an alternative method that
guarantees the preservation of the magnitude of m. The results
provided by both representations are equal. Both Periodic and
Neumann boundary conditions are used.

III. ONE-DIMENSIONAL NANOPILLAR

The parallel state, m ≡ mp = x̂, is a trivial steady state of
LLG equation. Since the external magnetic field is parallel to
the easy axis, ha = hax̂, ha > 0 will produce a torque that
favors the parallel configuration. On the other hand, fields
pointing against x̂ will stabilize the antiparallel state. For near-
parallel configurations, electric current flowing from the fixed
to the free layer, g < 0, will contribute to the stabilization of
the parallel state. Therefore, the self-organization dynamics
appears as a balance between two opposite effects: the current
stabilizing the parallel state and the external field destabilizing
it. In this section, we analyze the bifurcation diagram of the
parallel state in the one-dimensional configuration.

A. Linear stability analysis of parallel state

The parallel state in the spherical representation takes the
form (θ,ϕ) = (π/2,0). To study the dynamics around the

parallel state we consider a perturbated state of the form
(

θ (x,t)
ϕ(x,t)

)
=

(
π/2

0

)
+

(
δθk(t)
δϕk(t)

)
eikx + c.c.,

where the small amplitudes {δθk(t),δϕk(t)} account for Fourier
modes and the symbol c.c. represents the complex conjugate.
Considering the above perturbation in Eq. (5) at linear order,
we obtain

d

dt

(
δθk

δϕk

)
=

[
g − αa −(a − βz + αg)
a + αg g − α(a − βz)

](
δθk

δϕk

)
, (6)

with a ≡ ha + βx + βz + k2. Introducing an eigenmode
ansatz δθk(t) = δθke

λt and δϕk(t) = δϕke
λt , we find the fol-

lowing characteristic polynomial

λ2 + bλ + c = 0, (7)

where

b ≡ α(2a − βz) − 2g,

c ≡ (g − αa)(g − α(a − βz)) + (a + αg)(a + αg − βz).

For simplicity we study first the parameter region where the
inhomogeneous perturbations decay and the bifurcating mode
is homogeneous (k = 0). If b = 0 and c > 0, then the system
exhibits an Andronov-Hopf bifurcation [34]. In the space
of parameters {g,ha} the Andronov-Hopf instability curve
is represented by the tilted straight line (see Fig. 2). Then,
the parallel state becomes unstable through an oscillatory
precession with frequency

√
c. This type of dynamics has

g

ha

BT
BT

BT
LP

TH

ha

g

ha=-12

g=-0.5

ha
c

Andronov-Hopf
Stationary
Spatial instability

FIG. 2. (Color online) Bifurcation diagram of parallel state in the
parameters space {g,ha}. The parallel state is stable in the dark region.
The thick diagonal line accounts for the Andronov-Hopf bifurcation.
The horizontal curve realizes stationary instability. {BT,LP,T H }
represent the codimension two points associated to Bogdanov-
Takens, Lifshitz-point, and Turing-Hopf instabilities, respectively.
The vertical dashed line accounts for the spatial instability curve.
The inset represents the bifurcation diagram in the case where spatial
effects are ignored.

022908-3
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been reported on a nanopillar, where the frequency is typically
of the order of the microwave [20].

In the case where the parameter c vanishes and b ̸= 0,
the system exhibits a stationary bifurcation for the parallel
state [34]. This instability is characterized by a curve in the
{g,ha} plane (see the inset in Fig. 2). In this region of the
parameters space, the parallel state becomes unstable and
eventually saturates into other states. Simultaneous confluence
of a stationary instability and Andronov-Hopf bifurcation is
a codimension two point, usually called Bogdanov-Takens
[35]. This instability is characterized by two eigenvalues
simultaneously crossing the origin of the complex plane
with a single associated eigenvector. At this point we have
b = c = 0. This point in the {g,ha} plane is denoted BT
in Fig. 2. In other terms, since we have ignored the spatial
dependences, the system exhibits two Bogdanov-Takens points
as illustrated in the inset of Fig. 2. It is important to note that the
experimental report made in Ref. [20] is performed around the
Bogdanov-Takens point. In addition, this bifurcation diagram
clearly emphasizes that when both the magnetic field and the
spin-polarized current are positive, they favor and disfavor the
parallel state mp.

The above scenario changes drastically when spatial effects
are considered, k ̸= 0, i.e., when one considers the exchange
processes. The eigenvalues will become a function of wave
number, λ(k). The typical curve of the growth rate as a
function of wave number [Re(λ(k))] and the dispersion relation
[Im(λ(k))] are illustrated in Fig. 3(a). Note that the maximum
Re(λ) has no-null wave number (kc). Then changing the
parameters of the system, it can exhibit a spatial instability,
which analytically corresponds to impose the condition [3]

∂λ

∂k

∣∣∣∣
k=kc

= 0,
∂2λ

∂2k

∣∣∣∣
k=kc

< 0, and λ(kc) = 0.

The first relation determines the critical wave number and
the other the respective condition of instability. Applying the
above conditions, we find the following length and critical
condition

k2
c = −ha −

(
βx + βz

2

)
,

(8)

gc = −βz

2
.

Since k2
c ! 0, the external field must point against the

parallel equilibrium for this bifurcation. The expression above
corresponds to a vertical segment on the {g,ha} plane, which
is represented by the dashed line of Fig. 2. In that zone, the
external field ha destabilizes the parallel state and g < 0 favors
it through the current transport the magnetic moment from the
fixed layer. The instability occurs when the current is not strong
enough to balance with the external field and maintain the
magnetization parallel. The emergence of a spatial instability
with a divergent wavelength is generated from a Lifshitz point
[3,36]. This critical point is characterized by the confluence
of stationary instability and a spatial bifurcation. This is a
codimension three point introduced for phase transitions in
helicoidal ferromagnetic states [36]. Figure 2 represents this
point with the symbol LP . Analogously spatial instability may
coincide with the Andronov-Hopf bifurcation at a point of
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FIG. 3. (Color online) (a) Growth rate as a function of wave
number [Re(λ(k))] and the dispersion relation [Im(λ(k))]. (b) mz(x)
for the parameter values g = −0.4976, ha = −2.5, βx = 0.5, βz = 1,
α = 0.05. The size of the box is chosen to admit 8 wavelengths.
(c) Spin representation of one wavelength of the above state.

codimension two, which is usually denominated Turing-Hopf
point [37,38]. Around this point the system is characterized
by the emergence of waves. Figure 2 depicts this point by the
symbol T H .

In physical units, the wavelength is + =
2π lex/

√
|ha| − βx − βz/2. Notice that the parameter ha

permits the wavelength to vary between the the size of the
device and the exchange length lex , in this last situation the
continuous description becomes questionable.

When one crosses the dashed vertical line, the parallel
state mp becomes unstable giving rise to the appearance
of a spatial pattern. Figure 3(b) shows an example of the
observed stationary pattern. In order to understand this pattern
analytically in Sec. III B we will carry out a weakly nonlinear
analysis close to the spatial instability. This nonlinear analysis
is based on the amplitude equations method [9].

B. Weakly nonlinear analysis

To characterize the dynamics of the pattern close to the
spatial instability, we consider the following approximation
for the free magnetization

(
θ

ϕ

)
≈

(
π/2

0

)
+ [T (x,t)eikcx + T̄ (x,t)e−ikcx]

(
1
1

)
, (9)
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where ϵ ≡ g − gc is the bifurcation parameter. T (x,t) de-
scribes the slowly varying amplitude of the critical spatial
mode mc(x), which corresponds in a Cartesian representation
to the vector

mc =

⎛

⎜⎝
1

T (x,t)eikcx + T̄ (x,t)e−ikcx

−T (x,t)eikcx − T̄ (x,t)e−ikcx

⎞

⎟⎠ , (10)

T̄ stands for the complex conjugate of T , and h.o.t. accounts
for the higher-order corrections. Introducing the above ansatz
Eq. (9) in Eq. (5), and imposing a solvability condition
after calculations we obtain (quintic real Ginzburg-Landau
equation)

∂t T = ϵT −
(
6βx + 3βz − 2k2

c

)2

4βz

T |T |4 + 4k2
c

βz

∂xxT . (11)

To obtain this equation we have considered the following
scaling T ∼ ϵ1/4, ∂t ∼ ϵ, and ∂x ∼ ϵ1/2. Then, this amplitude
equation is of order ϵ5/4 and the corrections are of order ϵ7/4.
Then the characteristic time scale of patterns will be ϵ−1, or, in
physical units of [γMs(g − gc)]−1. Equation (12) has uniform
solutions of the form

T (x,t) =
[

4βz

(g − gc)
(
6βx + 3βz − 2k2

c

)2

]1/4

, (12)

which represents the pattern amplitude as a function of
the physical parameters. Note that this amplitude increases
with 1/4 power of the bifurcation parameter, |T | ∼ ϵ1/4.
Numerically from the LLG equation Eq. (5), we have verified
this prediction. Indeed, we have represented in Fig. 4 the
amplitude of the pattern (dotted) and formula Eq. (12). As can
be seen from this figure, the two results are in good agreement.
Far from the threshold the numerical and analytical results
start to disagree. The higher-order terms are responsible for
this difference.

Generically, the amplitude of the patterns near the spatial
bifurcation follows a power law of the square root type [3,11],
due to the cubic nonlinearity. However, in the nanopillar oscil-
lator the pattern is controlled by the quintic nonlinearity. Al-
though supercritical quintic bifurcations are less common than
supercritical cubic instabilities in the context of parametric

0.1

1 2
10-4

0.2

g

|T|

FIG. 4. Pattern amplitude as a function of the spin-polarized
current. Points are obtained by numerical simulations of the LLG
model for ha = −2.5, βx = 0.5, βz = 1, and α = 0.05. The total
length of the simulation box is chosen to admit 8 critical wavelengths.
The dotted curve is a fit with a power law where the exponent found
is 0.25.

instabilities such bifurcations are generic [39,40] and even
this has been reported experimentally [41].

Note that the coefficient of the quintic term is modified with
the external magnetic field, ha through its dependence on kc

(cf. Eqs. 8). There is a critical value of the external magnetic
field,

hc
a = −4

(
βx + βz

2

)
, (13)

for which the quintic coefficient vanishes. The dynamics
around this point is led by the seventh nonlinearity in the
amplitude equation. Notwithstanding, the quintic coefficient
always is semidefined positives, that is the spatial instability is
always supercritical.

Notice that the parallel state is related with antiparallel one
through the transformation (g,ha,ϕ) → (−g,−ha,ϕ + π ).
Therefore, the antiparallel state of the free magnetization has a
analogous phase diagram to the parallel state with the opposite
sign of the external magnetic field and spin-polarized current.

IV. DYNAMICS IN TWO DIMENSIONS:
STRIPES AND SUPERLATTICES

Let us consider a spatial transversal extension of the
nanopillar in two dimensions, then the magnetization becomes
a field defined in the xy plane, m(x,y,t). The stability analysis
presented in Sec. III remains valid, where the only instability
that is modified is the spatial one, due to the presence of an
infinite number of critical spatial modes with wave number
|k| = kc. Figures 5 and 7 show the typical pattern observed
at the onset of the spatial bifurcation. Unexpectedly, the
observed pattern near the bifurcation reveals a greater spatial
complexity in comparison to those usually reported at the onset
of the spatial instability such as stripes, squares, and hexagons
patterns [1–5]. Figure 5 illustrates the number of coupled

mz

−3 0 3

3

0

-3

0.01

0.05

Kx

ky

x

0.2

-0.2

0.0

0

45

90
45

90

FIG. 5. (Color online) The component mz of the magnetization
in a 90 × 90 grid, it was obtained by numerical simulations of
the LLG model for g = −0.4999, ha = −6, βx = 0.5, βz = 1, and
α = 0.05. The space is divided into squares of lateral dimension
dx = 0.141 195. The inset shows the Fourier transform of mz, and
the circumference shows the critical wavelength kc.
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modes, which corresponds to four spatial modes and their
respective conjugate modes. These types of patterns are usually
denominated as superlattices [8]. In order to understand the
emergence of these patterns analogously to the study that we
have conducted on one spatial dimension, we will carry out a
weakly nonlinear analysis.

A. Amplitude equations

In two spatial dimensions, the linear stability analysis is
similar to those presented in Sec. III. The perturbation of the
parallel state reads

(
θ (r,t)
ϕ(r,t)

)
=

(
π/2

0

)
+

(
δθk(t)
δϕk(t)

)
eik·r + c.c.,

where r = (x,y) stands for the transverse coordinates of the
free magnetic layer. Then we obtain the same characteristic
polynomial (7) where k is replaced by |k|. Imposing the
conditions of spatial instability we obtain

|kc|2 = −ha −
(

βx + βz

2

)
, gc = −βz

2
. (14)

Therefore, all spatial modes having the same magnitude |kc|
are critical modes.

To study the dynamics of these critical modes we have
considered the following ansatz

(
θ

ϕ

)
=

(
π/2

0

)
+ R

N∑

j=1

Aj (r,ϵt)eikj
c ·r

(
1
1

)
+ c.c. + h.o.t.,

(15)

where Aj accounts for the amplitude of the critical spatial
mode kj

c , which we assume is a slow variable in space and
time, and N stands for the number of critical spatial modes.
Finally, R is a characteristic scale for the amplitude of the
patterns given by

R = 4

√
4βzϵ

(6βx + 3βz − 2q2)2
. (16)

Introducing the above ansatz (15) in Eq. (5), and imposing
the condition of solubility after straightforward calculations
we obtain the following set of amplitude equations (coupled
Newell-Whitehead-Segel equations [2,3,42])

∂tAj = Aj − Aj |Aj |4 − 8
3

1
1 − D

Aj

N∑

l ̸=j

|Al|4

+ L̂nws(∇j )Aj − 8
3

2 − 3D

1 − D
Aj |Aj |2

N∑

l ̸=j

|Al|2

− 8Aj

N∑

l ̸=j,m̸=j,m̸=l

|Al|2|Am|2, (17)

with

L̂nws(∇j ) ≡ 4
βz

(
|kc|

∂

∂x∥j

− i

2
∂2

∂x2
⊥j

)2

(18)

is the spatial operator, {x∥j
,x⊥j

} are, respectively, the longitu-
dinal and the transverse coordinates with respect to the vector
kj

c and

D ≡ 2
3

q2

2βx + βz

= 2|ha| − 2βx − βz

6βx + 3βz

. (19)

Note that there is only one parameter, D, which characterizes
the dynamics of the system. The above set of equations
have derived considering the scaling |Aj | ∼ ϵ1/4, ∂t ∼ ϵ,
x∥ ∼ ϵ−1/2x, and x⊥j

∼ ϵ−1/4x. Equation (17) accounts for the
dynamics of all critical modes. Nevertheless, the size effects
discretizing and privilege certain critical modes [8].

B. Size effects in the pattern formation

In the case of considering Neumann boundary conditions,
and transverse dimensions Lx and Ly , respectively, the
critical spatial modes compatible with the boundary conditions
have the form km,n

c = (πm/Lx,πn/Ly) with {m,n} integer
numbers. Therefore the critical spatial modes must satisfy the
relation

π2
(

m2

L2
x

+ n2

L2
y

)
= |ha| −

(
βx + βz

2

)
. (20)

As a result of this discretization—owing to size effects—few
couplings between patterns are allowed, such as one mode
(stripe pattern), two modes (square pattern), four modes
(superlattice pattern), six modes (superlattice pattern), and
so forth, and their respective conjugates. Hence, the number
of critical modes considered in ansatz (15) are such that
N = 1,2,4,6,8,12, . . . . Patterns generated by an odd number
of critical modes such as hexagons (three modes and their
conjugates) are not observed because the system has no
quadratic terms [2,3]. These terms are not allowed in the LLG
equation due to the symmetries ϕ → −ϕ and θ → −θ .

The relevant question that emerges is: how can we under-
stand the observed equilibria at the onset of the bifurcation? To
resolve this question one must study the stability of the stripe
state. If this state is unstable then for symmetry reasons the
system will display squares or superlattices equilibrium state,
consistent with the boundary conditions. In the next section,
we will perform the stability analysis of the stripe pattern
when one considers few coupled modes and their respective
conjugate modes.

C. Bifurcation diagram

To clarify the phase diagram we consider the dynamics
of four modes and their complex conjugates (N = 4) in
ansatz (15), and neglecting their spatial coupling, then the
amplitude of these modes satisfies

∂tA1 = A1 − 8
3

2 − 3D

1 − D
A1|A1|2(|A2|2 + |A3|2 + |A4|2)

−A1(|A1|4 + 8(|A2|2|A3|2 + |A3|2|A4|2

+ |A2|2|A4|2)) − 8
3

1
1 − D

A1(|A2|4 + |A3|4 + |A4|4).

(21)
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The equations for the other amplitudes are obtained just
by interchanging the indexes, for instance, ∂tA2 is obtained
with the replacement (1,2,3,4) → (2,1,3,4). Notice that the
bifurcation diagram is characterized entirely by the line
D ! 0. This parameter describes the competition between
the external magnetic field, anisotropies, exchange, and the
critical spin-polarized current. Since the coefficients of the
above set of equations are real, then only the magnitudes of
the amplitudes are coupled and their respective phases are
completely decoupled. Hence, the effective dynamical system
that accounts for the pattern formation is of dimension 4.

The above set of equations admits four types of equilibria,
one describes the stripe patterns |A1| ̸= 0, Ak = 0 (k =
{2,3,4}), rhombs |A1| = |A2| ̸= 0, A3 = A4 = 0, hexagons
|A1| = |A2| = |A3| ̸= 0, A4 = 0, and finally the the superlat-
tice. The superlattice pattern is composed by the four modes
|A1| = |A2| = |A3| = |A4| = 1

This superlattice pattern is illustrated in Fig. 5. On the other
hand, the stripe patterns correspond to a nonzero amplitude
while the other amplitudes are zero, for example A1 = 1,
and A2 = A3 = A4 = 0. This pattern corresponds to a rolls
structure in the k1 direction.

To study the stability of the stripe pattern, we consider
the following perturbation A1 = 1 + χ1(t), A2 = χ2(t), A3 =
χ3(t), A4 = χ4(t) (χi ≪ 1) and linearizing with respect to the
perturbation we get

∂tχ1 = −4χ1, ∂tχ2 = − 5 + 3D

3(1 − D)
χ2,

∂tχ3 = − 5 + 3D

3(1 − D)
χ3, ∂tχ4 = − 5 + 3D

3(1 − D)
χ4.

Then for D < 1 (D > 1) the stripe pattern is stable (unstable),
and for D > 1 the system exhibits stable superlattice patterns.
The corresponding bifurcation diagram of the system is
shown in Fig. 6. For D = 1, the quintic saturation vanishes
and higher-order nonlinearities are required. Associated with
D = 1, the system has an external magnetic field value hc

a ,
which is highlighted in Fig. 3.

If one performs the same analysis with N = 2,6,8,12, . . .
modes the stability analysis obtained is exactly the same.
Hence, Fig. 6 sketches the bifurcation diagram of the system
and Fig. 7 illustrates the observed patterns for D > 1. Thus,
the region closer to stationary instability—the Lifshitz point—
exhibits striped patterns whose saturating mechanism is given
by the anisotropies βx and βz. In contrast, when |ha| > |hc

a|

D(ha)D(ha)=1c

Zone of roles
0.2

-0.2

0.0

Super-lattice zone

FIG. 6. (Color online) Bifurcation diagram for four-mode
models (21). In the left part (D < 1), only rolls are stable. For
D > 1, the four-modes state is stable. A more general scenario for
D > 1 is illustrated in Fig. 7.

(a) 0.15

0.0

-0.15

(b)
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-0.15

0.0

0.07

0.0
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0.0

0.2

-0.2

0.0

0.04

0.0

0.2

-0.2

0.0

0.04

0.0

(c) 0.2

-0.25

0.0

0.0

0.035

FIG. 7. (Color online) The system size selects the stability
of the stationary equilibria for D > 1. (a) Squares. The top
(down) solution is obtained with dx = 0.126 289 (dx = 0.133 949).
(b) Superhexagons. A dx = 0.157 861 (dx = 0.223 25) was used for
the top (down) state. (c) Eight-mode superlattices, dx = 0.254 543.
The other parameters are the same that we considered in Fig. 5.

the system exhibits superlattice patterns. Since large negative
magnetic fields penalize configurations near the parallel state,
then all admitted modes grow. Pattern solutions obtained for
the same parameters that were used on Fig. 5. The exchange
free energy term grows as (∇m)2 ∼ q2|Aj |2 ∼ |ha||Aj |2, then
it makes the superlattices saturate. As one continues increasing
the bifurcation parameter ϵ, by means of decreasing the
modulus of the spin-polarized current g, patterns exhibit
complex spatiotemporal behavior. Work in this direction is
in progress.

V. CONCLUSIONS AND REMARKS

Macroscopic magnetic systems subjected to external forc-
ing exhibit self-organization phenomena as a result of
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injection, transport, and dissipation of energy and momenta.
For extended systems, natural self-organization states are
spatial structures. In this work, we have studied the formation
of spatial patterns from a uniform magnetization state in one
and two spatial dimensions in a spin-transfer nano-oscillator
induced by the competition of a spin-polarized current and
an external magnetic field. This system is described in the
continuous limit by the Landau-Lifshitz-Gilbert equation. This
model incorporates the uniaxial anisotropy, the demagnetiza-
tion in thin film approximation, the ferromagnetic exchange
that provides the spatial coupling, the dissipation, and a spin-
transfer torque term. The bifurcation diagram of the parallel
state to external magnetic field is revealed. It is important
to note that the bifurcation diagram of the antiparallel state
is similar to that exhibited by the parallel state, since the
parallel state is related with the antiparallel one through the
transformation (g,ha,ϕ) → (−g, −ha,ϕ + π ).

We have shown analytically that the parallel state has a
spatial supercritical quintic bifurcation. Numerical simulations
at the onset of spatial bifurcation verify these theoretical
results. In addition, we have determined that there is a
critical value for the external magnetic field, hc

a , in which
the transition becomes seventh type. For |ha| < |hc

a|, the
dominant mechanism that makes the pattern saturate is the
anisotropy, however for |ha| > |hc

a|, the mechanism that drives
the dynamics is the ferromagnetic exchange. In two spatial
dimensions the system shows the emergence of stripe patterns
or superlattices at the onset of bifurcations. Analytically,
we have characterized its respective bifurcation diagram,
which is characterized by a single control parameter, which

accounts for the competition between the external magnetic
field, anisotropy, exchange, and the critical spin-polarized
current. This scenario is confirmed numerically. Therefore,
when the anisotropy is the dominant mechanism (|ha| < |hc

a|)
the system exhibits striped patterns, however, in the case of
the exchange driving the dynamics (|ha| > |hc

a|), the system
presents superlattice as stable equilibria. Indeed, exchange
favors the formation of more complicated structures.

For typical experimental setups, the anisotropies are about
βx = 0.5 and βz = 1, and the exchange length is of the order of
3.5 nm. Then for external fields of magnitude Ha = Ms |ha| =
1.5Ms , the wavelength of the pattern is typically of order + =
30 nm. One expects that self-organization exhibited in this
study persists for generalizations or variations of model (2).
For instance, the angular dependence of g [18,27–32] or the
use tensor form of magnetization damping [43] could change
the saturation mechanisms of patterns for some geometries
and materials, due to the inclusion of other terms. Work in this
direction is in progress.
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The equivalence between different physical systems permits us to transfer knowledge between them and to
characterize the universal nature of their dynamics. We demonstrate that a nanopillar driven by a spin-transfer
torque is equivalent to a rotating magnetic plate, which permits us to consider the nanopillar as a macroscopic
system under a time-modulated injection of energy, that is, a simple parametric resonator. This equivalence
allows us to characterize the phases diagram and to predict magnetic states and dynamical behaviors, such as
solitons, stationary textures, and oscillatory localized states, among others. Numerical simulations confirm these
predictions.
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I. INTRODUCTION

Current-driven magnetization dynamics have attracted
much attention in recent years because of both the rich
phenomenology that emerges and the promising applications
in memory technology [1]. A remarkable example occurs when
a direct spin-polarized current applies a torque to nanoscale
ferromagnets, an effect known as spin-transfer torque [2,3].
This effect has been confirmed experimentally [4–9], and, in
particular, the observation of magnetization reversal caused by
spin-transfer torques was reported in Refs. [6,7,10,11]. Spin-
transfer effects are usually studied in the metallic multilayer
nanopillar, or spin-valve, depicted in Fig. 1(a), where two
magnetic films (light layers), the free and the fixed, are
separated by a nonmagnetic spacer (darker layer). In such a
nanopillar, an electric current J applied through the spin-valve
transfers spin angular momentum from the film with fixed
magnetization to the free ferromagnetic layer.

When the direct current overcomes a critical value, the
spin-transfer torque destabilizes the state in which both
magnetizations point parallel, and the free magnetization
switches or precesses in the microwave-frequency domain.
Most scientific efforts have focused on this regime, in which
the free magnetization behaves as a self-oscillator with
negative damping [12]. Another interesting case is when
there is an external field that disfavors the parallel state and
the spin-polarized current favors it; under this regime, it is
expected that the system will generate complex dynamics as a
result of both opposing effects.

The aim of this article is to show that nanopillars under
the effect of a spin-polarized direct electric current exhibit
the same dynamics present in systems with a time-modulated
injection of energy, known as parametric systems [13].
Parametric systems oscillate at half of the forcing frequency,
a phenomenon known as parametric resonance. Examples
of parametric systems include a layer of water oscillating
vertically [14], localized structures in nonlinear lattices [15],
light pulses in optical fibers [16], optical parametric oscilla-
tors [17], and easy-plane ferromagnetic materials exposed to
an oscillatory magnetic field [18].

*aoleon@dfi.uchile.cl
†marcel@dfi.uchile.cl

To understand the parametric nature of the spin-transfer-
driven nanopillars, we put in evidence that this system is
equivalent to a simple rotating magnetic plate subjected to
a constant magnetic field applied in the rotation direction
[see Fig. 1(b)], where the electric current intensity on the
nanopillar corresponds to the angular velocity in the equivalent
rotational system. We analytically show that the magnetization
dynamic of a nanopillar under the effect of a spin-transfer
torque is well described by the parametrically driven, damped
nonlinear Schrödinger equation (PDNLS). This equation is
the paradigmatic model of parametric systems with small
injection and dissipation of energy [19]. Based on this model
we predict that the spin-transfer torque generates equilibria,
solitons, oscillons, patterns, propagative walls between sym-
metric periodic structures, and complex behaviors, among
others. Numerical simulations of the Landau-Lifshitz-Gilbert
equation confirm these theoretical predictions.

The manuscript is organized as follows. In the next section
we present the nanopillar and the equation of motion of an
homogeneous free magnetization. In Sec. III, we analyze the
relation between the nanopillar and parametric systems. In
Sec. IV we explore the inhomogeneous dynamics predicted
by the parametric nature of the spin-transfer torque effect at
dominant order. Finally, in Sec. V, we give the conclusions
and remarks.

II. MACROSPIN DYNAMICS OF THE FREE LAYER

Consider a nanopillar device, with fixed layer magnetiza-
tion M0 along the positive x axis as depicted by Fig. 1; this
ferromagnet has a large magnetocrystalline anisotropy or it is
thicker than the free layer, and therefore it acts as a polarizer
for the electric current. Let us assume that the free layer is
a single-domain magnet, that is, the magnetization rotates
uniformly m(r,t) = m(t).

Hereafter, we work with the following adimensionalization:
The magnetization of the free layer M → Msm and the
external field Ha → Msha are normalized by the saturation
magnetization Ms ; moreover, the time t → γMst is written in
terms of the gyromagnetic constant γ and Ms . For instance,
in a cobalt layer of 3 nm thickness, Ms � 1.4×106 A/m, and
the characteristic time scale is (γMs)−1 � 3.2 ps [20].

1098-0121/2015/91(1)/014411(7) 014411-1 ©2015 American Physical Society
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FIG. 1. (Color online) Equivalent physical systems. (a)
Schematic representation of the spin-transfer torque nano-oscillator
setup. The light (blue) and dark (green) layers represent magnetic
and nonmagnetic metal films, respectively. J and ha are the electric
current through the spin-valve and the external magnetic field, both
effects are parallel to the easy axes of the ferromagnetic layer under
study. Mo stands for the magnetization of the fixed layer. (b) Rotating
magnetic plate with an easy axis in the rotation direction, subjected
to a constant magnetic field, h′

a.

When the free magnetization is homogeneous, the normal-
ized magnetic energy per unit of volume is [20]

E

μ0M2
s

= −m · ha − 1

2
βxm

2
x + 1

2
βzm

2
z, (1)

and the external magnetic field ha = haex points along the
x axis (see Fig. 1). The coefficients βx and βz are combinations
of the normalized anisotropy and demagnetization constants
with respect to the appropriate axes, where βx (βz) favors
(disfavors) the free magnetization in the x axis (z axis).

The dynamic of the magnetization of the free layer is de-
scribed by the dimensionless Landau-Lifshitz-Gilbert equation
(LLG) with an extra term that accounts for the spin-transfer
torque [2,6,7,20,21],

dm
dt

= −m×heff + αm×dm
dt

+ g m×(m×ex). (2)

The first term of the right-hand side of Eq. (2) accounts for the
conservative precessions generated by the effective field,

heff ≡ − 1

μ0M2
s

δE

δm
= (ha + βxmx)ex − βzmzez. (3)

The second and third terms of Eq. (2) are the phenomeno-
logical Gilbert damping and the spin-transfer torque respec-
tively. The dimensionless prefactor g is given by [11] g ≡
P(mx)(�/2)(J/d|e|)(1/μ0M

2
s ), and P describes the electron

polarization at the interface between the magnet and the spacer,
J the current density of electrons, d the thickness of the
layer, and e < 0 the electric charge. The current density of
electrons J and the parameter g are negative when the electrons
flow from the fixed to the free layer. There are different
expressions for the polarization P(mx) in the literature
[2,22–25]. For certain types of nanopillars, a better agree-
ment with experimental observations is obtained if P(mx) is
constant, see Refs. [24,26,27] for more details.

The dynamics of LLG are characterized by the conservation
of the magnetization magnitude ‖m‖ = 1, since m and dm/dt

are perpendicular. The LLG model, Eq. (2), admits two natural
equilibria m = ±ex , which represent a free magnetization that
is parallel (+) or antiparallel (−) to the fixed magnetization
M0 [see Fig. 1(a)]. Both states correspond to extrema of the

free energy E. We will concentrate on the equilibrium m = ex ;
nevertheless due to the symmetries of the LLG equation, the
same results hold for m = −ex when replacing (g,ha) with
(−g,−ha).

III. EQUIVALENT PHYSICAL SYSTEMS

Let us consider a rotating magnetic plane with angular
velocity � = �0ex and an easy axis in the rotation direction,
subjected to a constant magnetic field applied in the rotation
direction ha

′ = (ha + �0)ex [see Fig. 1(b)].
This rotating ferromagnet can be described in both the co-

movil frame S, defined by the vectors {ex,ey,ez}, or in the iner-
tial frame S ′, defined by {e′

x,e
′
y,e

′
z}. Note that the ferromagnetic

easy axis is described by the same vector in the both frames
(e′

x = ex); nevertheless, unit vectors ey(t) = cos(�0t)e′
y +

sin(�0t)e′
z and ez(t) = − sin(�0t)e′

y + cos(�0t)e′
z rotate

together with the magnetic plate [see Fig. 1(b)].
In the co-movil system the normalized magnetic energy will be
the same of Eq. (1); however, in the inertial frame the energy
depends explicitly in time,

E′

μ0M2
s

= −m · ha
′ − 1

2
βxm

′2
x + 1

2
β ′

zz(t)m
′2
z

+ 1

2
β ′

yy(t)m′2
y + 1

2
β ′

yz(t)m
′
ym

′
z, (4)

where the time varying coefficients β ′
zz= βz[1+ cos(2�0t)]/2,

β ′
yy = βz[1 − cos(2�0t)]/2, and β ′

yz = −βz sin(2�0t) act as a
parametric forcing. Note that the frequency of the forcing is
twice the frequency of the rotations. Therefore, this system
presents a subharmonic parametric resonance [13].

The dynamics of the magnetic plane in the inertial frame S ′
is described by the Landau-Lifshitz-Gilbert equation

dm
dt

∣∣∣∣
S ′

= −m×h′
eff(t) + αm× dm

dt

∣∣∣∣
S ′

, (5)

where h′
eff = −(1/μ0M

2
0 )(δE′/δm). Let us now write the

Eq. (5) in the noninertial frame S, where the time derivative
operator in the rotating system takes the form ∂t |S ′ = ∂t |S +
�× [13], thus the dynamics of the rotating magnetic plate in
the noninertial frame S reads

dm
dt

∣∣∣∣
S

= −m×heff + αm× dm
dt

∣∣∣∣
S

−α�0m×(m×ex), (6)

where the effective field heff is the same of formula (3).
Therefore, the dynamics of the rotating magnetic plate in the
noninertial frame S, Eq. (6), is a time-independent equation,
which is equivalent to the dynamics of a nanopillar under
the effect of a spin-transfer torque generated by a uniform
electric current, Eq. (2). In this equivalence, the intensity of
the spin-transfer effect on the nanopillar g corresponds to the
angular velocity by the dissipation parameter, −α�0. Indeed,
the two physical systems depicted in Fig. 1 are equivalent. In
the next sections, we will apply the well-known understanding
on parametric systems to the nano-oscillator.
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Parametrically driven damped nonlinear
Schrödinger equation

To obtain a simple model that permits analytical cal-
culations around the parallel state, we use the following
stereographic representation [28]:

ψ(r,t) = my + imz

1 + mx

, (7)

where ψ is a complex field. This representation corresponds
to consider an equatorial plane intersecting the magnetization
unit sphere. The magnetization components are related with
the complex field by mx = (1 − |ψ |2)/(1 + |ψ |2), my = (ψ +
ψ̄)/(1 + |ψ |2), and mz = (i(ψ̄ − ψ))/(1 + |ψ |2), where ψ̄

stands for the complex conjugate of ψ . Notice that the parallel
state m = ex is mapped to the origin of the ψ plane. The LLG,
Eq. (2) or Eq. (6), takes the following form:

(i + α)
dψ

dt
= (ig − ha) ψ − βz

2
(ψ − ψ)

1 + ψ2

1 + |ψ |2

−βxψ
1 − |ψ |2
1 + |ψ |2 . (8)

This is a complex Ginzburg-Landau-type equation, which
describes the envelope of a nonlinear dissipative oscillator.

An advantage of the stereographic representation is to
guarantee the magnetization normalization and to consider
the appropriate degrees of freedom. Notice that the switching
dynamic between parallel and antiparallel state is not well
described, since the antiparallel state is represented by infin-
ity [28]. This kind of dynamics is not considered in the present
work. To grasp the dynamical behavior exhibited by the previ-
ous model, let us consider that the complex amplitude is small
and that the parameters α,βz/2 are also small. Introducing
the renormalized amplitude A(r,t) = ψ(r,t)eiπ/4√2βx + βz,
after straightforward calculations, Eq. (8) is approximated at
dominant order by

dA

dt
= −iνA − i|A|2A − μA + γ Ā, (9)

where μ ≡ −g − αν, ν ≡ −ha − (βx + βz/2), and γ ≡ βz/2.
Thus under the above assumptions the nanopillar resonator is
described by Eq. (9), which is known as the PDNLS equation
without space. This model has been used to describe parametric
resonators [13].

The coefficient γ is the intensity of the forcing in usual
parametric systems. For instance, it is proportional to the
amplitude of the oscillation in vibrated media or the intensity
of time-dependent external fields. In the case of the nanopillar
γ = βz/2 is not a control parameter. In the context of the
PDNLS amplitude equation γ breaks the phase invariance,
i.e., A � Aeiφ0 . A change of variables of the form A =
Beiωt (rotating frame) permits us to restore the explicit
time-dependent forcing,

dB

dt
= −i(ν + ω)B − i|B|2B − μB + γ e−2iωt B̄. (10)

Moreover, in this representation the parametric nature of
the PDNLS equation is evident. The parameter μ > 0 accounts
for dissipation in parametric systems and it models radiation,
viscosity, and friction, depending on the particular physical

g

ha

gc
(g,h )a c

62 4

FIG. 2. (Color online) Bifurcation diagram of the parallel state
m = ex , in the dark zone m = ex , is stable. The elliptical-like light
zone delimited by g2 + [ha − (βx + βz/2)]2 = β2

z /4 is known as
Arnold’s tongue. In this region there are four equilibria and the
parallel state is unstable. On the left of Arnold’s tongue and above
the segmented curve g = −βz/2 there are six equilibria.

context. In our case, this dissipation is the combination of
the Gilbert damping and the spin-polarized current. Finally,
the detuning ν accounts for the deviation from a half of the
forcing frequency. In the case of the nanopillar, ν is controlled
by the external field.

To obtain Eq. (9) we have assumed that α,βz/2 � 1 and
that the amplitude is a slowly varying amplitude (|A| � 1),
that is, we have the scaling |A|2 ∼ ν ∼ μ ∼ γ ∼ ∂t � 1.
Notwithstanding, the model, Eq. (9), is qualitatively valid
outside this limit.

The parallel state A = 0 is always a solution of Eq. (9).
Decomposing the amplitude into its real and imaginary parts
A(t) = u(t) + iv(t) and linearizing around them, we have

d

dt

(
u

v

)
=

[
γ − μ ν

−ν −(γ + μ)

](
u

v

)
. (11)

Imposing a solution of the form (u,v) ∼ eλ±t (u0,v0), we
obtain the growth rate relation λ± = −μ ±

√
γ 2 − ν2. The

stability condition, which corresponds to Ree(λ±) < 0 is
shown in dark areas in Fig. 2. The elliptical-like light zone
of Fig. 2 is known as Arnold’s tongue in the context of
parametric systems, and it accounts for the destabilization of
the parallel state for μ2 + ν2 = γ 2. The exact curve of the
Arnold’s tongue in terms of the original parameters can be
obtain from the LLG equation without neglecting α, that is,
g2 + [ha − (βx + βz/2)]2 = β2

z /4. Inside the Arnold’s tongue
this model has also the equilibria

A± = ±
(

1 − i

√
γ − μ

γ + μ

)√
γ + μ

2γ
(
√

γ 2 − μ2 − ν). (12)

In this region there are four equilibria (see Fig. 2); they are
the parallel state A = 0 (equivalently m = ex), the antiparallel
state (m = −ex) and A±. Crossing the curve of the Arnold’s
tongue for positive detuning

√
γ 2 − μ2 = ν > 0, the A± states

and A = 0 collide together through a pitchfork bifurcation. For
greater values of the detuning parameter ν, only the parallel
and antiparallel states exist.
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For negative detuning and γ > μ (above the dashed curve
in Fig. 2), and outside Arnold’s tongue

√
γ 2 − μ2 < |ν|, the

A± states exist and are stable. Since the A = 0 equilibrium
is also stable in this region, it is necessary to have other two
states A′

± that separate them in the phases space which have
the form

A′
± = ±

(
1 + i

√
γ − μ

γ + μ

) √
γ + μ

2γ
(−

√
γ 2 − μ2 − ν). (13)

In this region (the darkened area in Fig. 2), there are six equi-
libria. Thus the PDNLS equation describes the homogeneous
stationary solutions which have been studied the context of the
nano-oscillator [20,29].

When g ≤ −αν the coefficient that rules the dissipation
becomes negative, and the magnetization oscillates and moves
away from the parallel state. This instability is known as the
Andronov-Hopf bifurcation [30]. When it does not saturate
the magnetization switches to the antiparallel state or reaches
another stationary equilibrium. Precessions or self-oscillations
emerge when this instability saturates. In the past, this regime
has been extensively studied experimentally and theoretically
in the context of the spin-transfer torque resonator [8,10,12].
This instability does not occur in usual parametric systems
since the dissipation coefficient is always positive μ > 0.

In brief, the nanopillars driven by a spin-transfer torque
effect are equivalent to parametric systems, and then they
are well described by the paradigmatic model for parametric
systems, the PDNLS equation without space. We will see in
the next section the predictions of this model for the nanopillar
in the case of a variable magnetization.

IV. GENERALIZATION TO AN INHOMOGENEOUS
MAGNETIZATION DYNAMICS

The macrospin approximation permits us to understand sev-
eral features of the magnetization dynamics driven with spin
torque, but, even so, this approximation is not completely valid
because in general both the precession and magnetic reversion
are inhomogeneous [31]. There are several approaches to study
the nonuniform magnetization dynamics; nevertheless, we use
here a minimal model with a ferromagnetic exchange torque as
the dominant space-dependent coupling in order to understand
the emergence of a rich spatiotemporal dynamics.

In the case of an inhomogeneous magnetization m(r,t),
which corresponds to a spatial extension of the nano-oscillator,
the magnetic energy E = μ0M

2
s

∫
εdxdy of the free layer

is the integral of the following dimensionless density of
energy [20]:

ε = −m · ha − 1
2βxm

2
x + 1

2βzm
2
z + 1

2 |∇m|2, (14)

where {x,y} stands for the spatial coordinates of the free layer.
The spatial coordinates have been dimensionless r → lexr in
terms of the exchange length lex ≡ √

2A/(μ0M2
s ), where A

is the exchange coupling in the ferromagnet. The gradient
operator is defined on the plane of the film as ∇ ≡ ex∂x + ey∂y .
The βx and βz coefficients account for both the easy axis and
the demagnetization in the thin-film approximation [20]. In
this approximation, the contribution of the demagnetization
effect to the magnetic energy density is local, and the shape of

the thin film is taken into account by the Neumann boundary
condition for the magnetization.

The LLG equation and the effective field are

∂m
∂t

= −m×heff + αm×∂m
∂t

+ g m×(m×ex), (15)

heff ≡ − 1

μ0M2
s

δE

δm
= (ha + βxmx)ex − βzmzez + ∇2m.

(16)

Notice that gradients come from the ferromagnetic ex-
change energy, and then the spatial derivatives must be written
in terms of the coordinates that label the sample, even if it
rotates. Then the equation of the magnetization of the rotating
plate in its co-movil frame is Eq. (6) with an extra term for the
spatial dependence,

∂m
∂t

∣∣∣∣
S

= −m×heff + αm× ∂m
∂t

∣∣∣∣
S

−α�0m×(m×ex), (17)

where heff = (ha + βxmx)ex − βzmzez + ∇2m and the ∇ ≡
ex∂x + ey∂y operator is defined on the co-movil plane spanned
by (ex,ey). Thus the spatial dependence of m does not change
the equivalence between the nanopillar and the rotating magnet
presented in Sec. III. Using the same change of variable of
Eq. (7), the LLG Eq. (15) reads

(i + α)∂T ψ = (ig − ha)ψ − βz

2
(ψ − ψ)

1 + ψ2

1 + |ψ |2

−βxψ
1 − |ψ |2
1 + |ψ |2 + ∇2ψ − 2

ψ

1 + |ψ |2 (∇ψ)2,

(18)

which describes the envelope of coupled nonlinear oscillators.
Due to the complexity of this equation, we will consider a
simple limit, which permits us to grasp its dynamics. Using
the small amplitude that varies slowly in space A(r,t) =
ψ(r,t)eiπ/4√2βx + βz, we obtain

∂τA = −iνA − i |A|2 A − i∇2A − μA + γ Ā, (19)

which is the PDNLS model. The extra term with spatial
derivatives describes dispersion.

Parametric textures for nanopillars

The above model, Eq. (19) has been extensively used to
study the pattern formation; in particularly, this model exhibits
solitons, oscillons, periodic textures, and complex behaviors,
among others. To verify these predictions, we compare them
with the numerical solutions of Eq. (2) in two geometrical
configurations. The first is a one-dimensional free layer, that
is, a nanopillar for which m(r,t) ≈ m(x,t), and the second
is a two-dimensional nanopillar with a square cross section.
Different transversal lengths are used in simulations, all of
them displaying the same qualitative aspects of the solutions.
The simulations are conducted using a fifth-order Runge-Kutta
algorithm with a constant step size for time integration
and finite differences for spatial discretization. The spatial
differential operators are approximated with centered schemes
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of order 6 and specular (Neumann) boundary conditions are
used.

1. Dissipative solitons

Analytical solutions for the dissipative soliton are known
in one dimension [18,19,32]. In two dimensions dissipative
solitons are observed, however, without analytical expressions.
From this result and using the stereographic change of variable,
we find the following analytical form for magnetic dissipative
solitons in one dimension:

mx = 2βx + βz − R(x)2

2βx + βz + R(x)2
,

(
my

mz

)
= 2R(x)

√
2βx + βz

2βx + βz + R(x)2

(
cos ϕ0

sin ϕ0

)
, (20)

with sin(2ϕ0) ≡ 2g/βz, R ≡ √
2δsech[

√
δ(x − x0)], and δ ≡

ha + βx + βz/2 +
√

(βz/2)2 − g2. The width of the soliton is
controlled by the external field. The typical sizes are about
10lex.

Figures 3(a) shows the analytical results compared with
numerical simulations of the LLG equation, which presents
a quite good agreement for small amplitude solitons, i.e., for
δ � 1. Furthermore, Fig. 3(b) illustrates the dissipative solitons
observed numerically in two dimensions. We note that these
solitons are well described by a hyperbolic secant function,
which was obtained using variational methods [33].

Dissipative solitons are observed in the region of parameter
space bounded by β2

z /2 − (|ha| − (βx + βz/2))2 = g2 and
βz/2 = |g|. This region is analytically inferred from the
amplitude Eq. (19). Figure 4 shows the respective phase
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FIG. 3. (Color online) Dissipative solitons in one- and two-
dimensional nanopillars (with a square cross section) with βx = 0.5,
βz = 1, and α = 0.05. (a) One-dimensional soliton for g = −0.4999,
ha = −0.97; the points account for the numerical integration of
the LLG equation and the line accounts for the analytical solution
given by Eq. (20). (b) Soliton in two-dimensions, g = −0.49995,
ha = −0.99; the three-dimensional plot shows the profile of the
component my , while the insets show the mx and the mz components.

Soliton Breather PatternsSSH Oscillatory pattern

ha
-0.9-0.1

-0.2

-0.3

-0.4
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P

S

O
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A

FIG. 4. (Color online) Phase diagram of LLG model, Eq. (2).
“S-region” represents solitons region, “O-region” stands for breather
solitons (oscillons) region, and “A-region” is the Arnold’s tongue.
The In-region accounts for inhomogeneous dynamical states far from
the parallel configuration. In the zone P, only the parallel state is
observed.

diagram of the LLG equation, and the region of dissipative
solitons is denoted by “S-region.”

Increasing the difference between injection and dissipa-
tion, γ − μ, dissipative solitons undergo an Andronov-Hopf
bifurcation, generating oscillatory localized states or breather
solitons characterized by exhibiting shoulders in the amplitude
profile [34]. Figure 5 illustrates this kind of solution. Similar
solutions have also been reported in a magnetic wire forced
by a transversal uniform and oscillatory magnetic field [35],

(a)
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(b)
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FIG. 5. (Color online) Breather or oscillon solution for g =
−0.33, ha = −0.51. (a) The spatiotemporal diagram. (b) The mag-
netization components at the time for which mx reaches its minimal
position. Typical oscillation periods are about �t ≈ 16(γMs)−1,
which is about �t ≈ 51 ps for a 3-nm-thick cobalt free layer.
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FIG. 6. Dissipative structures for g = −0.37, ha = −0.75, inside
the Arnold’s tongue. [(a) and (b)] Pattern states. (c) Kink solution,
this domain wall is a slowly moving front connecting the (a) and (b)
patterns.

which corresponds to a parametric system. These oscillatory
solutions are observed in the O-region of the bifurcation
diagram shown in Fig. 4. Notice that, for spin-transfer torques
that favor the parallel state, the nanopillar can also behave as
a nano-oscillator.

2. Pattern states

Let us introduce the A-region of the bifurcation diagram
(cf. Fig. 4), which is circumscribed by the curve β2

z /2 −
[|ha| − (βx + βz/2)]2 = g2 in the Arnold’s tongue. Inside this
region the quiescent state A = 0 is unstable, giving rise to a
nonzero uniform state and stationary and oscillatory patterns.
Figures 6(a) and 6(b) show stable stationary patterns that exist
inside the Arnold’s tongue, and Fig. 6(c) shows a propagative
wall that connects the patterns. In addition, the PDNLS model
is characterized by exhibiting supercritical patterns at γ = μ

(βz/2 = |g|), growing with a power law 1/4 as a function
of the bifurcation parameter [36]. Recently, such dissipative
structures induced by spin-transfer torques in nanopillars have
been characterized numerically and theoretically [37], where
the spatial textures emerge from a spatial supercritical quintic
bifurcation. In one spatial dimension, the magnetic patterns
read at dominant order by

(
my

mz

)
≈ 2

[
4βz(g − gc)(

6βx + 3βz − 2k2
c

)2

]1/4 (
cos(kcx)

− cos(kcx)

)
, (21)

and mx ≈ 1 − (m2
y + m2

z)/2. Figure 7 shows a pattern solution.
The wavelength of the periodic structures, 2π/kc = 2π/√−ha − βx − βz, is controlled by the external field ha < 0.
In two spatial dimensions the system shows the emergence of
stripe patterns or superlattices at the onset of bifurcation [37].
The phases diagram of the textures is controlled by a single
parameter that accounts for the competition between the
external magnetic field, anisotropy, exchange, and the critical
spin-polarized current. When the anisotropy is dominant
over the external field the system exhibits striped patterns
[Fig. 7(b)]; however, when the external field drives the
dynamics, the system presents superlattice [Figs. 7(c) and 7(d)]
as stable equilibria. Indeed, external fields pointing against the
near parallel states favor the formation of more sophisticated
spatial textures. Since the electric resistance R[M0 · m] of the
nanopillar depends on the relative orientation [31] of the fixed
M0 and free m layers, and M0 · m = mx ≈ 1 − (m2

y + m2
z)/2

FIG. 7. (Color online) Patterns induced by the spin-polarized
current. (a) One-dimensional state for g = −0.49999, ha = −1.8, as
predicted by Eq. (21), my ≈ −mz. Notice that the norm conservation
implies that mx ≈ 1 − 0.5(m2

y + m2
z) oscillates with a half of the

wavelength of the other two components. (b) Bidimensional pattern
for the same parameters used in (a), and the component mz (not
shown) is the negative of my . (c) The magnetization component mx

for a superlattice pattern obtained with g = −0.4999, and ha = −6.
(d) The component my of the state of (c); the component mz ≈ −my .

the signature of the patterns is a time-independent resistance
that increases a square root of the current R = Rp + η(g −
gc)1/2 when g is negative and goes to zero. The parameter η

contains all the information of the applied field, anisotropies,
and geometry.

Notice that according to the PDNLS model, Eq. (9) and
Eq. (19), the parametric resonance occurs when ν ≈ 0 and
γ ≈ μ or, equivalently, (g,ha)c = −(βz/2,βx + βz/2). For a
3-nm-thick material with saturation magnetization similar to
cobalt [20], that is, Ms � 1.4×106 A/m, the critical current
density is Jc = J (gc) ≈ −βz×109 A/cm−2 for a constant
P(mx) ≈ 1 polarization function. Since localized states and
patterns appear for currents that are fractions of the critical cur-
rent |J | ∼ 3|Jc|/5, the smaller the βz parameters is, the smaller
the spin-polarized currents required to observe the parametric
phenomenology. Most of our results use βx = 1/2 and βz = 1;
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nevertheless, we have conducted numerical simulations for
different values of βz for βx in order to achieve the parametric
resonance at arbitrary small currents, and the predictions of
Eqs. (9) and (19) remain unchanged. The robustness of this
parametric phenomenology is a characteristic of systems near
their parametric resonance.

V. CONCLUSIONS AND REMARKS

We have shown that nanopillars under the effect of a direct
electric current are equivalent to simple rotating magnetic
plates. The latter system is characterized by displaying a
parametric instability. This equivalence permits us to transfer
the known results of the self-organization of parametric

systems to the magnetization dynamics induced by the spin-
transfer torque effect. In particular, we have shown that for
spin-polarized currents that favor the parallel state the system is
governed by the PNDLS equation, and then the magnetization
exhibits localized states and patterns both in one and two
spatial dimensions. Numerical simulations show a quite good
agreement with the analytical predictions.
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Ferromagnetic systems under the influence of spin-polarized currents exhibit rich spatiotemporal dynamics
at nanoscales. We study spin-transfer nano-oscillators driven by the combination of alternating and direct
spin-polarized electric currents. We show here that the alternating current induces parametric instabilities on
spin valves, that is, the magnetization responses at half the forcing frequency. A spatial self-organization
emerges as a result of the oscillatory current, which includes dissipative solitons and Faraday-type waves.
The parametric regime is described analytically by means of the Landau-Lifshitz-Gilbert-Slonczewski equation,
in good agreement with micromagnetic simulations including the full dipolar field.

DOI: 10.1103/PhysRevB.91.224426 PACS number(s): 75.78.Fg, 85.75.−d, 89.75.Kd

I. INTRODUCTION

Control of magnetization in spin valves has been the
subject of intense research in recent years [1–4]. In such
devices, a perpendicular to plane electric current transfers
spin angular momentum from one ferromagnetic film into
another one. This effect is known as the spin-transfer torque
[1,5,6], and it can generate magnetic switching or reversals,
and stable oscillatory states in the radio-frequency domain.
Furthermore, the addition of an alternating electric current,
in the radio-frequency domain, affects the reversal threshold
through a frequency locking mechanism. The injection of
combined radio-frequency and direct electric currents induces
other dynamical responses, such as synchronization, chaos [7],
and stochastic resonance [8].

Although the first predictions on current-induced dynamics
were made assuming a uniform magnetization (the macrospin
model), it is known that usually both switching and preces-
sional motions are nonuniform [9,10]. Moreover, a direct spin-
polarized electric current can induce static spatially periodic
textures in magnetic films [11,12]. Vortices are a classical
example of localized magnetization states [13]. In general,
vortex stability is related to the geometrical properties of the
sample [14]. A spatial distribution of the applied current can
also modify the magnetic states. For example, the case of
metallic point contact, in which the current is applied through
a small metallic cross section in contact with a continuous
magnetic film, exhibits nonuniform magnetization states [15].
In addition, magnetic solitonic modes in nano-oscillators have
been observed [16–18]. Recently, dissipative magnetic droplet
solitons were experimentally found and studied [19], after they
were theoretically predicted in Ref. [20].

The study of spatially self-organized structures is beyond
the specific case of magnetization dynamics; moreover, it
is a widespread topic in nonlinear science [21–30]. Among
the large variety of patterns generated by out-of-equilibrium
nonlinear systems, dissipative localized structures [21,22,29]
have always been of great interest and extensively studied for
their potential applications. In the context of spin transfer,
localized states can be of great advantage, since the energy lo-
calization that they produce is independent of the geometrical

properties of the system. Usually the existence of localized
structures is related to a subcritical bifurcation [31]. This is, for
example, the case of parametrically driven systems [29]. Para-
metric driving occurs when energy or momentum is injected in
a system by means of a temporal modulation of one or more pa-
rameters. Hence, resonance can produce a response frequency
different from the forcing frequency. The best known case is
the 2:1 resonance phenomenon, where the driving frequency
is close to twice the natural frequency of the system [32].
Parametric excitation of localized states arises in a wide range
of physical systems. Examples include vertically oscillating
layers of water, nonlinear lattices, optical fibers, Kerr-type
optical parametric oscillators, the magnetization in an easy-
plane ferromagnet exposed to an oscillatory magnetic field, and
a parametrically driven damped chain of pendula. In most cases
parametric forcing is made by modulating one of those param-
eters on which the natural frequency of the system depends.

In the context of spin-transfer nano-oscillators, current-
induced parametric excitations were recently observed in
point-contact spin-valve nanodevices [33,34]. Point contacts
inject direct and microwave currents into spin valves, thus
generating oscillating spin-transfer and Oersted-field torques
on magnetic moments. Both effects contribute to the para-
metrically excited dynamics. This inhomogeneous forcing
induces a fixed vortex. As a result of inhomogeneous forcing,
the dynamics of these systems corresponds to nonextended
parametric systems.

In this paper, we demonstrate theoretically and numerically
that a uniform alternating spin-polarized electric current can
produce parametric excitation in spin-valve devices. Figure 1
shows the typical dynamical response under parametric in-
jection, in which the magnetization oscillates at half the
forcing frequency. A parametrically induced resonance occurs
when the self-oscillation induced by the direct current couples
with the alternating current oscillation. A minimal model
describing the dynamics of the magnetization at the onset of
this resonance is given. We also show that such parametrically
driven spin-transfer nano-oscillators (PDSTNOs) generate
self-organized magnetic structures such as dissipative solitons
and Faraday-type waves. To verify the robustness of such

1098-0121/2015/91(22)/224426(7) 224426-1 ©2015 American Physical Society
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FIG. 1. (Color online) Schematic representation of the spin-
transfer nano-oscillator device and typical subharmonic response.
(a) A multilayer nanopillar with free magnetization m, and fixed
magnetization along Mfixed. (b) Parametrically induced oscillation
obtained from Eq. (1), where g is the dimensionless alternating current
parameter; the dynamical variables my and mz oscillate at half the
frequency of the electric current, while the magnetization component
mx ∼ 1 − (m2

y + m2
z)/2 precesses at the forcing frequency.

states, we conduct micromagnetic simulations including the
full dipolar field.

The paper is organized as follows. In Sec. II we investigate
the effect of a time-dependent spin-polarized current under
the approximation of a uniform magnetization. In Sec. III
we extend our study to nonuniform magnetization dynamics.
Finally, in Sec. IV we give our main conclusions and remarks.

II. PARAMETRICALLY DRIVEN SPIN-TRANSFER
NANO-OSCILLATORS IN THE MACROSPIN

APPROXIMATION

Let us consider a spin-valve or nanopillar device, composed
by two ferromagnetic layers separated by a nonmagnetic
conductor as depicted by Fig. 1(a). One magnetic film has a
fixed magnetization along the positive x̂ axis, while the uniform
magnetization of the second magnet M(t) is variable or free.
The free magnetization obeys the dimensionless Landau-
Lifshitz-Gilbert-Slonczewski (LLGS) equation [5,35,37]:

ṁ = −m × heff + αm × ṁ + g m × (m × x̂), (1)

where m = M/Ms is the normalized magnetization of the
free layer, Ms is its saturation magnetization, and ṁ stands
for the temporal derivative of m. Within the macrospin ap-
proximation, the vector m(t) is uniform. The time is rendered
dimensionless using Ms and the gyromagnetic constant γ ,
t → γMst . The first term of the right-hand side of Eq. (1)
favors precessions around the effective field heff:

heff = (h0 + βmx)x̂ − mzẑ, (2)

where β stands for the easy axis coefficient (in this case the
x axis), and h0 = H0/Ms is the normalized external magnetic

along the x axis. The last term of the effective field is the
demagnetization field, and it disfavors configurations along
the z axis. The second term of Eq. (1) accounts for the
phenomenological Gilbert damping. The spin-transfer torque
is modeled in Eq. (1) with the term proportional to g. The
coefficient g is defined by

g = �
2|e|d

PJ

μ0M2
s

,

where P describes the electron polarization at the interface
between the magnet and the spacer, J is the current density,
|e| is the modulus of the electric charge, and d is the thickness
of the layer. In the spin-transfer theory of Slonczewski [5],
the coefficient g is a function of the magnetization, g =
g(m · x̂). Let us focus on the small applied currents and small
amplitude oscillations around the x̂ axis; in this regime we can
approximate g(m · x̂) ≈ g(1); this approach is known as sine
approximation [37].

In a linear regime the dynamics of the magnetization can be
described by only one independent variable. Indeed, assuming
m2

y ∼ m2
z � 1, one obtains

mz = 1

1 + h

(
αg

1 + h
− 1

)
[ṁy + (αh − g)my], (3)

and

m̈y = −ω2my − 2μ̃ṁy + ġmy + αġ

1 + h
ṁy, (4)

with h = h0 + β, ω2 = (1 + α2)[h(1 + h) + g2], and μ̃ =
α(h + 1/2) − g. Thus, the magnetization satisfies the equation
of an oscillator.

In the case of a direct current (g = g0), the stabil-
ity analysis of Eq. (4) shows a stationary bifurcation at
(h + 1/2)2 + g2

0 − (1/2)2 = 0, and an Andronov-Hopf bifur-
cation at α(h + 1/2) − g0 = 0 [1,11]. The Andronov-Hopf
instability is responsible for the self-oscillations in spin-
transfer nano-oscillators. Let us consider a periodic time-
dependent current injection. In the linear approximation,
Eq. (4) is a Mathieu-type equation with a damping force.
Such a model is commonly solved by means of the classical
Floquet method [38], which allows the determination of
the instability regions—Arnold tongues—in parameter space.
Hence, parametric resonance occurs in regions where the
motion of the system is unstable with respect to driving
frequencies that are different from its natural frequency. In
what follows we will focus on the case where the driving
frequency is close to twice the natural frequency of the system.
In this case, a modal decomposition method [39] has been used
to solve Mathieu-type equations. More precisely, if we assume
a spin-polarized current of the form g(t) = g0 + g1 sin (ωt),
the parametric instability region can be obtained using the
following trial function (Galerkin expansion [40]):

my(t) = p0
1e

i ω
2 t + p0

3e
i 3ω

2 t + c.c., (5)

where the coefficients p0
1,3 are constants and the symbol c.c.

means complex conjugate. Introducing the ansatz (5) into
Eq. (4), we find the following solvability condition for nonzero
coefficients p0

1 and p0
3:

|a|�|2 + Lg2
1 |2 − b2|�|4g2

1 = 0, (6)
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FIG. 2. (Color online) Bifurcation diagram (left) and phase por-
traits (right) of the parametric resonance in the macrospin limit.
The parameters are h0 = 0.2, β = 0.05, g0 = 0.018, α = 0.025, and
g1 = 0.2. The detuning parameters are ν = − 0.005 in region (1),
− 0.0005 in region (2), and 0.05 in region (3). The solid line (red
curve) is given by the full equation using a trial function up to
the fifth harmonic and can be considered as the exact limit in the
quasireversible case. The solid black line is obtained from Eq. (6),
while the black dashed line comes from the amplitude equation (8).
The dashed red line gives the transition to the Faraday instability and
may be taken into account only in the micromagnetic limit.

where L = (|c|2 − iRe(c)b− b2) ¯ − Re( )a − | |2/2.
Here we have set ω2

0 � (1 + α2)[h(h + 1) + g2
0], a 2ω0

(ν − iµ ),b g0 − αω2
0/ (1 + h),c 2ω0[1− iαω0/ (1 + h)],

δ 4ω0(2ω0 − iµ ), µ � α(h + 1
2 ) − g0, = a + δ, and

ν = ω/2 − ω0 represents the detuning parameter. Notice
that in Eq. (6) we have considered only terms up to the
order of µ 0 � g0 � g2

1 � ν � α and α 1. The relationship
(6) is depicted by the black solid line in Fig. 2. We have
compared this curve with that given by the full numerical
solution obtained with a trial function up to the fifth harmonic
(gray line). These two curves are almost indistinguishable
in this figure. Hence, our reduced approximation provides
an excellent description of the boundaries of the parametric
instability. The region inside the curve accounts for the
Arnold tongue [41]. In this region, the steady magnetization
state, m = x̂, undergoes an instability, which is saturated
in a stable precessional state corresponding to a limit cycle
in phase space. Figure 1(b) shows the typical temporal
evolution of the magnetization components inside the Arnold
tongue. The right panel in Fig. 2 illustrates the precessional
and uniform states in the magnetization space. Outside this
tongue, in region (1) outlined in the left panel of Fig. 2, the
precessional state persists and coexists with the stable uniform
magnetization. The precessional state exhibits a saddle-node
bifurcation when going from region (0) to region (1).

The dynamics of parametrically forced systems can be
decomposed into fast and slow temporal scales at the onset
of their subharmonic resonance [21]. The fast scale is given by

the oscillation frequency ω0 ≈ ω/2, while the slow scale is the
evolution of the oscillation envelope. The description of the
PDSTNO at the onset of resonance, in terms of the oscillation
amplitude, is obtained by introducing the following ansatz:

my = my, 0[Aei (ω0+ ν)t + Āe− i (ω0+ ν)t] + Wy, (7)

where the normalized oscillation envelope A describes
the magnetization deviation from the homogeneous ori-
entation m = x̂. The normalization constant my, 0 =
−
√

2ω0/ (3N1 + ω2
0N2), where N1 [(1 + 2β)h + β]/2, and

N2 (1 + β)(h − 2)/ [2(h + 1)2] + β/ [2(h + 1)] describes
the characteristic scale of oscillations. Wy is a higher-order
correction that depends nonlinearly on A and its complex con-
jugate. Introducing formula (7) in Eq. (1), linearizing Wy and
applying the solvability condition, we get the parametrically
driven and damped nonlinear Schrödinger equation (PDNLS)
without space [21,29]:

Ȧ = − iνA − i |A |2A − µA + γ Ā, (8)

where µ = α(h + 1
2 ) − g0 stands for linear dissipation, and

γ = (b/2ω0)g1 ≈ αg1/ [4
√
h(1 + h)] represents the forcing

amplitude. In the conservative limit µ = γ = 0, the PDNLS
equation becomes the well-known nonlinear Schrödinger
equation, which describes the amplitude of Hamiltonian
oscillations. In the dissipative case µ,γ > 0, the balance
between injection and dissipation generates attracting states,
and permanent behaviors such as self-sustained precessions.
Note that in this representation the solutions can be obtained
analytically (see Ref. [12] and references therein). Moreover,
the bifurcation diagram of the PDNLS model is the same as
shown in the left panel of Fig. 2.

The amplitude Eq. (8) can be derived using symmetry
arguments. When there is no injection or dissipation, the mag-
netization dynamics are invariant under time reversion t � − t
and temporal translation t � t + . Hence, the amplitude A
must satisfy (t,A ) � (− t,Ā ) and (t,A ) � (t + − ).
Then, the amplitude equation at dominant order reads Ȧ =
ic1A + ic2|A |2A , where c1 and c2 are real constants. In
the presence of dissipation and parametric forcing, the time
inversion and translation symmetries are broken, respectively.
Taking into account these effects, the amplitude equation
fulfills Ȧ = ic1A + ic2|A |2A + c3A + c4Ā , where the extra
terms depend on damping and driving forces. Therefore, the
dynamical behaviors exhibited by PDSTNO belong to the
universality class of parametrically driven systems [21].

It is worth noting that all the parameters of the PDNLS
equation are controlled by the electric current. Furthermore,
under the scaling γ � µ � ν � | A |2 � d/dt 1 in Eq. (8),
the coupling between the time-varying injection γ and the
oscillation envelope A (t) is of the same order as the other
physical effects. This makes the parametric forcing an efficient
mechanism for controlling the magnetization dynamics.

III. PARAMETRICALLY INDUCED SPATIAL TEXTURES

Physical systems with a parametric forcing exhibit a large
variety of spatially self-organized states [21]. Hence, the feasi-
bility of PDSTNO devices to generate parametric instabilities
offers a great advantage for pattern forming studies in the
nanoscale domain with respect to other magnetic systems.
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In the next subsections we study the inhomogeneous
magnetic states m = m(r,t) induced by the alternating current.
Using a simplified magnetic model and the amplitude equation
approach we predict the existence of subharmonic standing
waves, or Faraday-type waves, and solitons. These predictions
are in agreement with our micromagnetic simulations.

A. Analytic approach to nonuniform dynamics

A minimal model can be obtained neglecting the effects of
the borders and approximating the demagnetizing energy by
its leading-order contribution in terms of a shape anisotropy.
The last approximation is valid when the magnetization has
small deformations with respect to the uniform state and the
free layer thickness is small compared with lateral sizes.

For spatially varying magnetizations m(r,t), the LLGS
model and the effective field heff become [35]

∂m
∂t

= −m × heff + αm × ∂m
∂t

+ g m × (m × x̂), (9a)

heff = (h0 + βmx)x̂ − mzẑ + ∇2m, (9b)

where the last term of heff accounts for the ferromagnetic ex-
change, and it penalizes inhomogeneities in the magnetization.
The spatial operator ∇ = ŷ∂y + ẑ∂z is expressed in the unit of
the exchange length lex = √

2Aex/(μ0M2
s ) where Aex is the

exchange stiffness constant.
In this scenario the oscillation envelope A(r,t) can be

described using the following ansatz in Eq. (9a):

my = my,0e
i(ω0+ν)tA(r,t) + c.c. + Wy, (10)

After straightforward calculations, in a similar way to the
previous section, we obtain the PDNLS equation:

∂A

∂t
= −iνA − i|A|2A − μA + γ Ā − i∇′2A, (11)

where the last term of Eq. (11) accounts for the dispersion
with ∇′ = [(2h + 1)/(2ω0)]1/2∇. The sign of dispersion and
nonlinearity renders this equation to a focusing type [36].
Notice that the Laplacian term is the leading-order spatial
coupling that accounts for spatial reflection r → −r and
translation r → r + 	r symmetries.

The amplitude equation (11) is the prototype model describ-
ing the envelope of coupled nonlinear oscillators. Furthermore
the PDNLS equation allows us to relate the magnetization
dynamics of PDSTNO into the same phenomenology of a
wide spectrum of physical systems that ranges from nonlinear
optical systems to fluids dynamics under driving forces.

The amplitude Eq. (11) is characterized by exhibiting
Faraday-type waves and dissipative solitons [21]. The origin of
Faraday-type waves is a spatial instability of the parallel state
A = 0. As a result of this destabilization, the noise-induced
perturbations are exponentially amplified in time. The growth
rate σ of the small perturbations A ∼ eσ t+ik·r is obtained
linearizing Eq. (11) around zero:

σ = −μ ±
√

γ 2 − (|k|2 − ν)2, (12)

where k is the wave vector of the modes in which perturbations
are decomposed. For alternating currents above the critical
value γc = μ, the modes with wave number |k| = √

ν grow
and destabilize the uniform configuration. The zone where
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FIG. 3. (Color online) Phases diagram of the PDNLS model,
Eq. (11). (a) Detuning-injection plane; in zones (1) and (3) solitons
and standing waves exist. Region (2) is known as the Arnold tongue;
in this zone the parallel state A = 0 becomes unstable, and then
solitons also are unstable. Standing waves are the only steady states
observed in this region. In zone (3) standing waves emerge by
supercritical bifurcation. (b) Wavelength for Faraday-type waves as
a function of detuning. (c) Typical Faraday-type waves obtained
for γ = 0.055, μ = 0.05, and ν = 0.075. (d) Dissipative soliton,
parameters γ = 0.0505, μ = 0.05, and ν = −0.015.

Faraday-type waves exist is marked as (3) in Fig. 3(a). It is
worth noting that the necessary conditions γ > μ and ν > 0
to observe Faraday-type waves, as well as their wavelength
d = 2πlex/

√
ν, are completely controlled by the electric

current parameters {g1,g0,ω}, or equivalently the PDNLS
parameters {γ (g1),μ(g0),ν(ω)}. Figure 3(b) shows the typical
wavelengths, in units of the exchange length, as a function of
the detuning parameter. As this figure illustrates, for positive
detuning, typical wavelengths are of order d ∼ 15lex, which
is about dCo = 52(nm) and dPy = 85(nm) for cobalt and
Permalloy, respectively. Smaller wavelengths can be obtained
by increasing the forcing frequency ω.

At the onset of the spatial instability and after transients,
the standing wave is composed of one or a few Fourier
modes, compatible with boundary conditions and having a
wave number close to the critical value |kc| ≈ √

ν. Figure 3(c)
shows a typical standing wave of Eq. (11). In general, the
number of such modes, as well as the orientation of their wave
vectors, depend on the nonlinear saturation mechanisms of the
particular problem, material defects, and borders [42].

This type of instability was studied in spin valves for
the case of constant external field and direct spin-polarized
current [11,12]. A PDNLS model was derived [12] using
an appropriate time-independent change of variables of the
form A ∼ (my + imz)/(1 + mx). Even if the system under
study in Refs. [11,12] does not have parametric forcing, the
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magnetization obeys a PDNLS equation, and textures usually
found in parametrically driven systems emerge [12]. This
correspondence between parametric systems and spin valves
with direct current was called parametric equivalence. In the
parametric equivalence, the origin of the parametric injection
(term γ Ā) is related to anisotropy effects. The direct spin-
polarized current was responsible for the dissipation term μA.
It is worth noting that in the parametric equivalence most of the
magnetic textures are static and periodic in space. In opposi-
tion, when an alternating current is applied, the magnetization
oscillates both in space and time my ∼ eiω0t cos(ik · r) + c.c.
Since the anisotropies are fixed in usual setups, the only
control parameters in the parametric equivalent system are the
detuning (external magnetic field) and dissipation (the constant
electric current). In our present case, the amplitude g1 and fre-
quency ω of the alternating current and the direct current g0 are
the control parameters associated to the parametric injection
γ , detuning ν, and dissipation μ, respectively. In brief, the use
of an alternating current permits a more adequate control of
the parametric behaviors exhibited by the PDNLS model.

Dissipative solitons are another prominent example of
spatial self-organization in macroscopic nonlinear systems.
They can be described by particlelike attributes, such as
position and width [43].

The parametric forcing induces dissipative solitons that
connect asymptotically the quiescent state A = 0. Figure 3(d)
shows a soliton state, obtained from Eq. (11). There is
no analytic expression for this solution in PDNLS model,
nevertheless they can be approximated using the variational
method [44,45] by

Asoliton(r) = a0

√
λeiφ0 sech(b0

√
λ|r|), (13)

where λ ≡ −ν +
√

γ 2 − μ2, cos(2φ0) = μ/γ , a0 = 2.166,
and b0 = 0.933. This approximation gives a characteristic
amplitude a0λ

1/2, and a characteristic width b−1
0 λ−1/2. In

a similar way to the Faraday-type waves wavelengths, the
electric current parameters {g1,g0,ω} control the soliton
typical lengths.

We can see from formula (13) that, at dominant order,
the soliton decays exponentially to the parallel state A ∼
e−√

λ|r| → 0 far from the center of the soliton, that is, |r| �
λ−1/2. Since, soliton tails connect the homogeneous state,
solitons are observed only where the parallel state is stable.
These zones are labeled as (0) and (1) in Fig. 3. Hence, solitons
exist for negative detuning and injection amplitudes in the
range μ < γ <

√
μ2 + ν2, which corresponds to zone (1) in

Fig. 3(a).

B. Micromagnetic simulation of solitons and
Faraday-type waves

To investigate the robustness of the observed textures,
and to illustrate the parametric instability of spin valves,
we model a 500 × 500 × 2-nm3 Permalloy free layer sample
(Ms = 800 kA/m, K = 14.5 kJ/m3) with a discretization of
127 × 127 × 1 cells with a Neumann boundary condition. We
use an adaptive step size fifth-order Runge-Kutta scheme. The
effective field includes the full demagnetization term [46]

heff = (h0 + βmx)x̂ − ∇� + ∇2m, (14)

where the magnetic potential � is

�(r) = 1

4π

∫
V

ρm(r′)
|r − r′|d

3r ′ + 1

4π

∫
∂V

σm(r′)
|r − r′|d

2r ′, (15)

and the charge densities in the bulk ρm = −∇ · m and at the
surface σm = n̂ · m are the magnetic analog of electric charge
densities. The density ρm is induced by nonuniformly magnetic
distributions, while σm appears if the magnetization points
towards the outward normal n̂ at the sample borders [46].

We obtain the demagnetization field using the discrete
convolution [47] between the magnetization and the demag-
netization tensor. The demagnetization tensor components
are generated by the function included in the OOMMF code
[48,49]. We use an external field H = 0.2Ms and a direct
current density Jdc = 0.16 A/μm2; for a polarization factor
P = 0.3 we obtain the following reduced parameters: h =
0.2, β = 0.03, and g0 = 0.01. That is, the critical value of
the radio-frequency current for the parametric instability is
g1 = 0.034 (Jac = 0.55 A/μm2). In this configuration the
natural frequency is ω0 = 0.53 (�0 = 14.85 GHz) and for the
detunings ν1 = −0.004 (112 MHz below �0) and ν2 = 0.075
(2 GHz above �0) a localized state and Faraday-type waves are
expected, respectively. Fixing the effective alternate current at
g1 = 0.2 (3.22 A/μm2) we obtain different spatial structures
that can be seen from Figs. 4(a) and 4(b) for ν1 and ν2,
respectively. Hence, solitons and Faraday-type waves persist
when the demagnetizing effects are included [50]. Since
the magnetization is approximately in the x axis, the main
demagnetization contribution at the in-plane borders is a
surface magnetic charge of the form σm = ±m · x̂. Figure 5
shows the typical deviations induced by the effect of magnetic
charges.
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FIG. 4. (Color online) Parametrically induced textures. Dissipa-
tive solitons (a) and Faraday-type waves (b) obtained from sim-
ulations of the LLG equation with the effective field (14) for a
500 × 500 × 2-nm3 Permalloy sample with ν = −0.004 and 0.075,
respectively. The Gilbert damping parameter is fixed at α = 0.014.

224426-5
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FIG. 5. (Color online) Dissipative solitons in parametrically
driven spin valves obtained from Eq. (9b) using the effective field
(14). Solitons persist when the sample borders and the full dipolar
field are considered.

IV. CONCLUSIONS AND REMARKS

We have shown that a spin-polarized electric current, with
both constant and oscillatory components, induces paramet-
ric instabilities in spin valves. In the case of macrospin
approximation, additional equilibria and precessional states

emerge. This scenario changes when the spatial variations of
the magnetization are considered. In particular, our analysis
shows that the free magnetic layer exhibits a wide class
of robust self-organization phenomena observed in driven
systems, such as dissipative solitons and Faraday-type waves.
These states are robust when additional effects, such as the
dipolar field or the sample borders, are considered. Hence, the
use of alternating spin-polarized currents opens the possibility
to control transitions from the parallel state to uniform
precessions or dissipative solitons and Faraday-type waves.
These behaviors could open novel and fresh functionality to
spin-valve devices.
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Apéndice D

Traveling pulse on a periodic background
in parametrically driven systems

This chapter presents a traveling pulse solution that propagates over Faraday-type pat-
terns. This state emerges in system with a parametric injection of energy.
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Macroscopic systems with dissipation and time-modulated injection of energy, parametrically driven systems,
can self-organize into localized states and/or patterns. We investigate a pulse that travels over a one-dimensional
pattern in parametrically driven systems. Based on a minimal prototype model, we show that the pulses emerge
through a subcritical Andronov-Hopf bifurcation of the underlying pattern. We describe a simple physical system,
a magnetic wire forced with a transverse oscillatory magnetic field, which displays these traveling pulses.
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Physical systems kept out of thermodynamic equilibrium
exhibit pattern formation [1]. This morphogenesis, or transi-
tion from a uniform state to a pattern when a control parameter
is varied, is understood in terms of a spontaneous symmetry
breaking instability of the uniform state (see [1,2], and
references therein). Far from the aforementioned transition, the
stationary patterns can become unstable, which typically in-
duces rich dynamical behaviors. For example, Andronov-Hopf
instabilities originate vacillating-breathing states [3], while
the stationary parity-breaking bifurcation induces global [4]
or localized drift patterns [5]. These dynamical behaviors
can coexist in a large range of parameters [3,6,7]. From a
theoretical point of view, Coullet and Iooss [8] classified the
generic instabilities of static periodic patterns in one spatial
dimension, and described them with amplitude equations for
the critical modes. This theory was generalized [9,10] to
explain experimental observations, such as topological defects
and localized drifting domains.

Let us consider the specific case of parametrically driven
systems, that is, systems in which the injection of energy or
momentum is time modulated [11]. For a forcing frequency
close to twice their natural frequency, parametric systems are
known to show a subharmonic resonance [11]. This instability
in extended systems is characterized by the formation of
subharmonic spatially periodic patterns, such as the well-
known Faraday waves of vibrated fluids [12]. At the onset
of subharmonic resonance, the dynamical evolution of the
amplitude of oscillations can be described by the para-
metrically driven, damped nonlinear Schrödinger equation
(PDNLS). This prototype model has been used to study self-
organization in several physical systems, such as a vertically
oscillating layer of water [13,14], ferromagnetic media driven
by an oscillatory magnetic field [15–17], parametrically driven
nonlinear oscillators [18], localized structures in nonlinear
lattices [19], light pulses in optical fibers [20], optical
parametric oscillators [21], and spintronic devices [22], to
mention a few. Despite the success of the prototype PDNLS

*aoleon@dfi.uchile.cl
†marcel@dfi.uchile.cl
‡saliya.coulibaly@univ-lille1.fr

model, it fails to predict localized states with damped spatial
oscillations of parametrically forced ferromagnets and coupled
oscillators [17,18]. To recover the dynamical properties of the
original system, the PDNLS equation must be amended by
taking into account higher order terms.

The instabilities of patterns in parametrically forced sys-
tems, as well as the dissipative structures and spatiotemporal
behaviors induced by these bifurcations, are not entirely
well understood. In the context of vertically driven granular
media, the emergence of secondary drift instability of standing
waves has been reported [23]. In the case of a rectangular
water container subjected to vertical vibrations, preliminary
observations show for forcing amplitudes above a critical
value, the amplitude of Faraday waves becomes modulated
by a nonpropagative localized structure [cf. Fig. 1(a)] [24].
Traveling pulses on stationary periodic structures have been
observed in directional solidification [25]. Theoretically, this
type of dynamical behavior has been described in a unified
manner by considering the coupling of counterpropagative
wave envelopes [10].

The aim of this Rapid Communication is to theoretically
and numerically investigate traveling pulses immersed in a
one-dimensional pattern in parametrically driven systems.
The pulses over patterns are characterized by a localized
increment of the amplitude of the spatially periodic back-
ground. Figures 1(b) and 1(c) show this type of solution for a
parametrically driven ferromagnetic wire. Using an adequate
amplitude equation, we show that pulses appear as results
of a subcritical Andronov-Hopf bifurcation of the underlying
pattern. This minimal approach allows us to predict this
dynamical behavior in different physical systems. We show
that a magnetic wire forced with a transverse oscillatory
magnetic field, displays these traveling pulses.

Unified description of traveling pulses. Let us describe
the envelope of the oscillations of a parametric system by
a complex order parameter, A(t,z), that obeys the following
amended parametrically driven damped nonlinear Schrödinger
equation (APDNLS),

∂tA = −i(νA + |A|2A + ∂zzA) − μA + γ Ā + iδĀ(∂zA)2,

(1)
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(a)

(b)

(c)

FIG. 1. (Color online) Pulses over a periodic background or
pattern in parametrically driven systems. (a) Experimental snapshot
of a nonpropagative hydrodynamic pulse supported by Faraday
waves [24]. Numerical simulation of a magnetic wire forced with
a transverse oscillatory magnetic field, Eq. (2), with H0 = h0 = 2,
β = 4.8, α = 0.02, and ν = 4. (b) Spatiotemporal diagram of a
slowly traveling magnetic pulse and (c) instantaneous profile of the
magnetic pulse at time t = 0.

where t and z are the temporal and spatial coordinates.
The coefficient ν accounts for the detuning between half
of the forcing frequency and the response frequency, while
the parameters μ and γ account for the dissipation and the
parametric injection, respectively. For δ = 0, Eq. (1) is the
usual PDNLS model, used to describe the parametrically
driven systems for small injection and dissipation of energy—
quasireversible limit [26]. Hence, parameters and operators
of the above equation scale as ν ∼ μ ∼ γ ∼ |A|2 ∼ ∂zz ∼ ∂t .
The term proportional to δ in this limit is a higher order
correction. Notice that the instabilities of the quiescent state
A = 0 are not modified by the amending term iδĀ(∂zA)2,
because it is nonlinear.

Numerical simulations of the APDNLS equation (1) exhibit
spatially periodic patterns for a given forcing amplitude and
positive detuning. When γ is increased, the model displays
traveling pulses over the pattern state. Figure 2 illustrates a
single left-traveling pulse, and multiple pulses. Due to the x →
−x invariance, the same solutions with a right-traveling pulse
exist. All numerical simulations of the above equation have
been performed with a space discretization of finite differences
centered schemes of sixth order, and a fifth order controlled
step size Runge-Kutta scheme [27] for temporal evolution.

Multiple pulses can move in the same direction or counter-
propagate. In the latter case, the result of the collisions depends
on the parameters: the first possibility is that one of the pulses
is destroyed after the collision, while in the second case they
reemerge from collisions with their particlelike characteristics
unchanged [see Fig. 2(c)]. The speed of traveling pulses
decreases with the amplitude of the forcing γ following a
square-root power law (see Fig. 3). For small injections of
energy γ < γc, traveling pulses are not stable, and the pulselike

FIG. 2. (Color online) Pulse solutions obtained with different
initial conditions. The top profiles of the variable Re(A) are taken
from the dashed line of the respective spatiotemporal diagram.
(a) Solitary left-traveling pulses over spatially periodic patterns.
(b) Two left-traveling pulses. (c) Collision of two counterpropagative
pulses. Parameters are γ = 0.5, μ = 0.4, ν = 4.5, and δ = 2. The
simulations use N = 500 points with a spatial step size dx = 0.1185.

initial conditions decay to a pattern with a characteristic
time �t ∼ (γc − γ )−1/2 (cf. inset of Fig. 3). Then, these two
features allow us to conjecture that the traveling pulses appear
through a saddle-node bifurcation mechanism. Likewise,
increasing the parameter γ > γc, the pattern that supports the
pulses becomes unstable for γ ≥ 	c, and multiple pulselike
structures emerge spontaneously and invade the system.

FIG. 3. Speed of the traveling pulses as a function of forcing
parameter γ . Points are obtained from numerical simulations of
Eq. (1) with ν = 4.5, δ = 2.0, and μ = 0.4. The solid line V (γ ) =
[−a2 −

√
a2

2 − 4a1(a3 − γ )]/(2a1) fits the speed of the pulse with
a1 = 0.9124, a2 = −7.588, and a3 = 16.26. The inset shows the
typical time in which a pulse decays into a pattern state for
γ < γc. The solid curve �t(γ ) = 2b1/[−b2 −

√
b2

2 − 4b1(b3 − γ )]
fits the decaying times with b1 = −14.227, b2 = 0.007 650 4, and
b3 = 0.484 76.
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FIG. 4. (Color online) Andronov-Hopf bifurcation of patterns
state of amplitude equation (1). (a) Stationary pattern for γ = 0.48,
μ = 0.4, ν = 4.5, δ = 2, and dx = 0.1185. The real and imaginary
parts of the amplitude A(x,t) are represented by a continuous and
dashed curve, respectively. (b) Eigenvalues of the pattern represented
in the complex plane.

The existence, stability properties, and dynamical evolution
of traveling pulses immersed in patterns is closely related to
the amending term of Eq. (1). Indeed, in the limit δ → 0, the
APDNLS model, Eq. (1), only exhibits stationary spatially
periodic patterns for positive detuning and small amplitude
forcing γ , and vacillating-breathing patterns for higher values
of γ . Hence, traveling pulses have not been observed in
the limit of the parametrically driven nonlinear Schrödinger
equation. It is worth noting that in the region where patterns
exist, the gradients on the amplitude |∂zA| ∼ q|A| are not small
(where q is the pattern wave number), and then the terms like
iĀ(∂zA)2, i|A|2∂zzA, iA2∂zzĀ, and iA|∂zA|2 become relevant
in the dynamics of Eq. (1). However, we have observed pulse
solutions only when the amending term iĀ(∂zA)2 is included.

Formation mechanism of traveling pulses. At leading order,
the pattern that supports the pulses reads A ≈ T (t,z)eiqz +
c.c., where q = √

ν and the slowly varying amplitude of the
pattern satisfies ∂tT = (γ − μ)T − (δν − 3)2T |T |4/(2μ) +
(2ν/μ)∂zzT . Notice that for δ → 0 we recover the amplitude
equation of patterns in parametric systems [26,28]. One of
the effects of the nonlinear gradient term in the APDNLS
equation (1) is to introduce a critical point at ν ≡ 3/δ for
which the quintic order saturation vanishes, changing the type
of bifurcation. The dynamics of T (t,z) is of relaxation type,
that is, the amplitude evolves minimizing a functional. Conse-
quently, permanent behaviors such as oscillatory patterns and
traveling pulses are prohibited, and it is necessary to use the
full model, Eq. (1), to understand the formation of traveling
pulses.

The analytical stability analysis of the spatially periodic
pattern states from Eq. (1) is a tricky task. However, its
numerical study is easily accessible. Figure 4 shows the typical
stationary pattern solution and its corresponding eigenvalues.
When the γ parameter is increased, two complex conjugate
eigenvalues cross the imaginary axis, as illustrated in Fig. 4(b).
This instability corresponds to an Andronov-Hopf bifurcation.
Hence, the critical modes of this instability are of the type

FIG. 5. (Color online) Bifurcation diagram of APDNLS equa-
tion (1). In zone I the state A = 0 is the only equilibrium. Zone
V is Arnold’s tongue; inside this region the trivial state A = 0 is
unstable. The pattern states are observed in zones II, III, and V. The
squares denote the transition from stationary patterns to oscillatory
patterns. Traveling pulses are observed in zone III.

of left- and right-traveling waves, which can be written in
the form Ac,±(t,z) = B±(T ,Z)ei(ωt±kz)fq(±z), where k is a
real constant, fq is a complex-valued q-periodic function, and
B±(T ,Z) is a slowly varying envelope in time T and space Z.
When the spatially periodic pattern [B±(T ,Z) = 0] is unstable,
multiple pulselike structures emerge spontaneously and invade
the system, which is equivalent to having an inhomogeneous
profile in B±(T ,Z). Uniform profiles in B±(T ,Z) are not
numerically observed. It is important to note that this parity-
breaking discontinuous or subcriticalsecondary bifurcation is
numerically found for ν > 3/δ. Figure 5 shows the phase
diagram of APDNLS equation (1). In zone I only the quiescent
state A = 0 is observed for positive detuning. If one increases
the forcing parameter γ , the system exhibits the emergence of
patterns, zone II, through a supercritical bifurcation at γ = μ.
These spatially periodic patterns correspond to subharmonic
waves in original parametrically driven systems. The pattern
states are observed in zones II, III and V. Furthermore,
for sufficiently large values of γ and ν, patterns become
oscillatory, zone IV, through a subcritical Andronov-Hopf
bifurcation. In this zone the system exhibits traveling waves.
As a result of the subcritical Andronov-Hopf bifurcation, trav-
eling pulses are observed in the region of coexistence between
stationary and oscillatory patterns, zone III. Decreasing δ, both
regions of oscillatory patterns with broken x → −x symmetry,
and traveling pulses move to larger detuning. Therefore,
in quasireversible limit, δ = 0, those areas vanish from the
bifurcation diagram.

Parametrically driven magnetic wire. Let us consider a fer-
romagnetic wire along the z axis. In the continuous framework,
the material is described by its normalized magnetization m =
m(t,z), where {z,t} are the spatial coordinates along the wire
and the time, respectively. The evolution of the magnetization
obeys the Landau-Lifshitz-Gilbert equation [29],

∂m
∂t

=−m × heff + αm × ∂m
∂t

. (2)

The first term on the right-hand side of Eq. (2) accounts for
the conservative precessions generated by the effective field,
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heff ≡ hex − βmzez + ∂zzm, where {ex,ey,ez} denote the unit
vectors along the respective Cartesian axis and h is the intensity
of the external field h = hex . The coefficient β > 0 accounts
for the anisotropy of the wire and it penalizes the magnetization
along the z axis. Finally, the Laplacian of the magnetization
stands for the ferromagnetic exchange interaction and it favors
the homogeneous magnetic configurations.

The second term of Eq. (2) is the phenomenological Gilbert
damping. Equation (2) has two trivial equilibria, m = ±ex .
For positive external field, h > 0, m = ex is the most favored
state. The dynamics around this equilibrium is characterized
by damped oscillations with frequency ω0 = √

H0(H0 + β).
Considering a combination of a constant and a periodic
external magnetic field, h(t) = H0 + h0 cos[2(ω0 + ν)t], the
magnetic wire behaves as a parametrically driven oscillatory
medium. Therefore, in a certain range of parameters the system
must exhibit traveling pulse immersed in patterns. Figure 1
shows the profile and spatiotemporal evolution of traveling
pulses observed in the magnetic wire.

To understand the origin of these pulses, we consider the
following ansatz:

(
my

mz

)
=

√
4ω0

β
(
ω2

0 + 3H 2
0

)A(t,z)eiφ(t)

(√
H0 + β

−i
√

H0

)

+ c.c. + �W, (3)

with mx=
√

1 − m2
y − m2

z , φ(t)=ω0t + νt + π/4, the symbol

c.c. stands for complex conjugate, and �W is a small correction
vector that accounts for the higher order terms in the amplitude
A. Replacing the above ansatz in Eq. (2), linearizing in �W ,
and imposing a solvability condition, after straightforward
calculations, we obtain

∂tA =−i(νA + |A|2A + ∂ξξA) − μA + γ Ā + ic1|A|2∂ξξA

+ ic2A
2∂ξξ Ā + ic3A|∂ξA|2 + ic1Ā(∂ξA)2, (4)

where μ ≡ α(2H0 + β)/2, γ ≡ βh0/(4ω0), c1 =
dβ(4H0 − β)/2, c2 = −d(β2 + 12H0β + 16H 2

0 )/4,
c3 = −d(β2 + 4H0β + 8H 2

0 ), d = 4ω0/[βH0(2H0 +
β)(4H0 + β)], and the spatial coordinate ξ is related to
the original coordinate by ξ ≡ √

2ω0/(2H0 + β)z. In the
quasireversible limit, the last four terms in the above equation
are negligible. In this limit the forcing magnetic wire is
described by the PDNLS equation. This equation allows
one to study different localized states such as dissipative
solitons [15,30–35] and localized waves [17,36]. Both Eqs. (1)
and (4) share the same pattern instability and traveling pulses.
Hence, the magnetic wire forced with a transverse oscillatory
magnetic field can be modeled phenomenologically by the
amplitude equation (1).

In conclusion, we have studied the emergence of trav-
eling pulses immersed in one-dimensional patterns in the
context of parametric systems. As results of the subcritical
parity-breaking Andronov-Hopf bifurcation of the stationary
pattern, the system exhibits a coexistence region between
stable stationary and unstable oscillatory patterns. Within this
coexistence region, we observe traveling pulses. Depending
on the initial condition, we found a single and multiple
pulses solutions. A simple PDNLS-like model allows us to
explain the pulses dynamics as an effect of the nonlinear
gradients of the full system. This simple model also allows
us to predict traveling pulses in a magnetic wire forced with
an external transverse oscillatory magnetic field.
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Abstract

Nanomagnets driven with uniform electric currents exhibit a wide variety of spatial textures. In the present work, we investigate
alternating superlattice states in nanomagnets, which are spatially periodic textures composed by several spatial modes that oscillate
in time. The magnetic system is described in the continuum approach by the Landau-Lifshitz-Gilbert-Slonczewski equation, and
direct numerical simulations of this model allow us to characterize the alternating patterns. As a result of this temporal oscillation,
textures alternate between different shapes. In particular, we focus on two types of textures, namely a superhexagon and a square-like
pattern, which are composed by six and two dominant Fourier modes, respectively. Based on an appropriate modal decomposition,
we reveal that the mechanism that originates the alternating superhexagon is a homoclinic bifurcation. In addition, we show that the
oscillatory square-like texture emerges through a supercritical Andronov-Hopf bifurcation.

1. Introduction

Macroscopic systems exhibit spatial patterns as a result of the competition between dissipation and injection of energy, momentum
and particles [1, 2]. Examples of patterns can be found in different branches of science and within a wide range of spatial scales,
such as stripes in zebra’s skin, ocean waves, vegetal population spots, sand ripples, convection rolls in fluids, to mention a few. From
the mathematical point of view, regular patterns are spatially periodic states composed by spatial modes with one or a few intrinsic
wavenumbers [2]. At the onset of the spatial bifurcation that originates the patterns, the dynamical evolution of the system is governed
by the critical modes of the instability, while all the other degrees of freedom are slave variables and then they are functions of the
critical modes. In two spatial dimensions, the most common observed patterns are stripes (one roll-like mode), squares (two roll-like
modes), and hexagons (three roll-like modes). On the other hand, superlattices are an example of more sophisticated structures
because they are composed by at least four interacting modes [2]. The analytical description of pattern forming systems is usually
performed by means of amplitude equations [1]. This approach permits predicting the shape of the pattern and obtaining simple
mathematical expressions for the mode envelopes as functions of the physical parameters of the system. In the case of stationary
spatial instabilities, amplitude equations usually take the form of relaxation equations, and therefore they only predict steady states.

When the energy injection is increased, stationary patterns might become dynamic states, which is a secondary bifurcation of
the system [1]. An example of dynamic textures is alternating patterns, in which the dissipative structure oscillates in time, and the
envelopes of spatial modes alternate between large and small values. Alternation between simple lattices were observed in Rayleigh-
Bénard experiments [3, 4], where a fluid mixture is heated from below and cooled from the top. In this case, the fluid alternates
between two types of convection patterns, namely rolls and squares, as a result of a supercritical Andronov-Hopf instability of a
stationary square texture. This type of secondary bifurcation is described by the well known Ginzburg-Landau equation, however the
derivation of this equation requires to know the analytical expression of the stationary pattern, which is usually unknown. Therefore,
the derivation of the corresponding amplitude equations is a complicated task. An alternative strategy to study secondary instabilities
is by means of a truncated modal decomposition of the equations into an arbitrary number of modes, this approach is known as
the Galerkin expansion. For the case of Rayleigh-Bénard experiment, the alternating patterns were studied theoretically using the
Galerkin method [5]; which permitted transforming of the spatiotemporal dynamics into a set of Lorentz-type equations, where the
analytical calculations and the numerical characterization become easier. During last decade, several other examples of alternating
patterns have been observed and studied in the context of fluid convection [6–12]; the mechanisms that originate the oscillatory states
are homoclinic bifurcations, homoclinic gluing, and Andronov-Hopf instabilities. Another example of alternating patterns appears in
vertically vibrated fluids [13], where the profile of the fluid surface exhibits an hexagon-stripe-hexagon temporal sequence. Vibrated
fluids are an example of parametrically driven systems, where the forcing mechanism oscillates in time.
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Figure 1: (Color online) Spin-valve device composed by two ferromagnets and one spacer. The thicker material with fixed magnetization p polarizes or filters the
spins of the electric current, while the other ferromagnetic layer with free magnetization m interacts with the current and the external field h0; we are interested in the
dynamics of this magnet. The two materials are separated by a nonmagnetic metal to avoid magnetostatic interactions between them. The rest of the structure (not
shown) is composed by non-magnetic metals.

Let us consider the particular case of driven magnetic systems. At nano-scales, magnetic devices can be kept out of the thermody-
namic equilibrium by means of spin-transfer torques [15, 16]. The spin-transfer torque effect is based on the interaction between the
spins of the magnetic medium and the spins of the electric current. The dynamical responses of nanomagnets to spin-transfer torques
include limit-cycles [17–19], magnetic reversions [19], chaos [20], patterns [21–23], vortex lattices [24, 25], solitons [14, 26], among
others. This versatility of the spin-transfer torque renders it the ideal effect to manipulate magnetization, read and record information,
and generate micro-frequency spin-waves [27]. Recently, a relationship between parametrically driven systems and nanomagnets
forced with direct electric current has been established [14]. Moreover, both systems can be described by the same normal form
equations and they show similar states such as solitons and patterns, even if the electric current is constant in time for the forced
magnet. Therefore, driven nanomagnets can exhibit alternating patterns which are found in vibrated fluids.

The aim of this article is to study alternating superlattice textures in nanomagnets driven by spin-transfer torques. In particular,
we focus on two states, superhexagons and square-like patterns. Using an appropriate modal decomposition of the magnetization
equations, we show that the alternating superhexagons emerge through a homoclinic bifurcation. In the case of square-like patterns,
the origin of the oscillations is a supercritical Andronov-Hopf instability. The article is organized as follows: in the next section
we describe the physical system and the spatial instability responsible for pattern formation. In Sec. 3 we describe alternating
superhexagons by means of direct numerical simulations and a modal decomposition. The last approach permits us to explain the
emergence of dynamical patterns in terms of low-dimensional bifurcations. In Sec. 4 we study an oscillatory square-like state that
emerges through an Andronov-Hopf instability. Finally, the conclusions are presented in Sec. 5.

2. Driven nanomagnets and magnetic textures formation

Let us consider a spin-valve device, which is metallic structure composed by two ferromagnets and one spacer between them. A
schematic setup is shown in Fig. 1. Spin-valves usually have lateral dimensions of L ∼ 100nm. One ferromagnet is thicker than the
other and it has a fixed magnetization that filters or polarizes the spins of the current towards the fixed magnetization direction p. The
other ferrromagnet is a thin film known as free layer, and it interacts with the current and external fields. The rest of the structure is
composed by conducting materials. We are interested in the dynamics of the free layer, which is described by its magnetization field
vector M = M(T,R). We consider two forcing mechanisms, namely an external magnetic field h0 = h0ex and a spin-transfer torque
generated by an electric current g that flows perpendicular to the planes of the layers. The magnetization dynamics are described by
the dimensionless Landau-Lifshitz-Gilbert-Slonczewski equation [15, 28–30]

∂m
∂t

= −m ×
[
(h0 + βxmx)ex − βzmzez + ∇2m

]
+ gm × (m × ex) + αm × ∂m

∂t
, (1)

where m = M/Ms such that Ms is the saturation magnetization. The variables t = T/(γMs) and r = R/lex = xex + yey stand for
the dimensionless time and space coordinates over the layer, respectively. Here the characteristic temporal γMs and spatial lex scales
are material properties. For example, for a cobalt layer of 3nm of thickness, Ms ' 1.4 106A/m, and the characteristic scales are
(γMs)−1 ' 3.2ps, and lex ' 3.4nm [28]. The gradient operator is defined as ∇ ≡ ex∂x + ey∂y. The unitary vectors {ex, ey, ez} are
oriented along the corresponding Cartesian axis (see Fig. 1).

In addition, the coefficients of anisotropy βx and βz stand for the preferred directions of the magnetization, and they are combina-
tions of the magnetocrystalline and demagnetizing effects, moreover βx (βz) favors (disfavors) configurations along the x-axis (z-axis).
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Figure 2: (Color online) Alternating superlattice state with six dominant Fourier modes (with their respective complex conjugate). (a) Three figures of a normalized
magnetization component u = my/(1 + mx) are shown in the upper panel, while the lower panel illustrates the respective spatial Fourier spectra F[u]. The amplitude
of the Fourier modes of u are {a1, b1, c1, d1, e1, f1}, we can define in a similar manner another reduced magnetization component, v = mz/(1 + mx), and its respective
Fourier amplitudes {a2, b2, c2, d2, e2, f2}. The modes oscillate between large and small values, moreover for the time t2 the amplitude b1 of the Fourier peak located
on the diagonal almost disappears. (b) Trajectories a1(t), b1(t) and c1(t) are the envelopes of the modes shown in (a).

The coefficient βz is small for devices where the perpendicular magnetocristalyne anisotropy partially cancels the demagnetization
effect (see [44] and references therein). The laplacian term accounts for the ferromagnetic exchange and it smoothes nonuniformities.
The spin-polarized electric current is modeled by the term proportional to g, while α is a phenomenological dissipation coefficient.
The sample borders are taken into account using Neumann boundary conditions for the magnetization. Both the external field h0
and the polarization of the current p are to point along the x-axis direction, which permits one to switch the magnetization between
equilibria m = ex and m = −ex. We focus here on the regime in which the electric current stabilizes the state m = ex, and the
external field disfavors it; this competition of forces induces rich spatiotemporal dynamics. Let us remark that, here we only consider
the dominant order physical effects, however additional terms can be included into Eq. (1), such as the full non-local demagnetizing
field [41], and variable spin-transfer torque amplitude g = g(m) [29].

Equation (1) has been extensively studied to explain and predict the emergence of limit-cycles [17–19], patterns [21–25], soli-
tons [14, 26], among other states. Notice that the magnetization norm is a conserved quantity, ∂t |m|2 = ∂tm ·m = 0, and therefore
the magnetization can be written in different representations such as spherical [23, 28], canonical [28] and stereographic [28, 31]. In
the last case, the spherical surface is mapped to the equatorial plane mx = 0 through the relation A = (my + imz)/(1 + mx). In this
representation, A is a complex amplitude that accounts for the deviations from the m = ex solution. After straightforward calculation
one obtains the following generalized Complex Ginzburg-Landau equation

(i + α)
∂A
∂t

=
(
ig − ha

)
A − βz

2

(
A − A

) 1 + A2

1 + |A|2 − βxA
1 − |A|2
1 + |A|2 + ∇2A − 2

A
1 + |A|2

(∇A
)2 , (2)

where and Ā means the complex conjugate of A. The above model has been used to describe the dynamics of dissipative waves in
several contexts [1, 2]. An interesting limit of Eq. (2) is obtained for the scaling α � |A|2 ∼ ∂t ∼ ∂xx ∼ βz ∼ |g| ∼ |ν| � 1 and
|ha| ∼ βx ∼ 1, where −ν = h0 + βx + βz/2; in this case, the generalized Complex Ginzburg-Landau equation takes the form of the
well-known parametrically driven, damped nonlinear Schrödinger equation,

∂ψ

∂t
= −iνψ − i|ψ|2ψ − i∇2ψ − µψ + γψ̄, (3)

where ψ =
√

2βxeiπ/4A, µ = −g − αν , γ = βz/2. The aforementioned equation has been used to describe several systems in
presence of temporally-modulated forcings, known as parametrically driven systems. Furthermore, both driven nanomagnets and
parametrically driven systems exhibit states such as localized states [32–41] and patterns [41–43]. This equivalence [14] between
driven nanomagnets and parametrically forced systems suggests that the alternating textures found in vertically vibrated fluids [13]
should also emerge in spin-transfer torque driven magnets.

Stationary patterns appear in spin-valves through a supercritical spatial instability of the uniform state ψ = 0 (see Refs. [14, 23]).
In this bifurcation, small perturbations with wavenumber q2 = ν = −(h0 + βx + βz/2) are amplified in time when g ≥ −βz/2. The
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existence of a real wavenumber q2 ≥ 0 is fulfilled when the external field is negative h0 ≤ −(βx + βz/2) < 0, that is, when the vector
h0 points against the equilibrium m = ex. Hence, patterns are the result of the competition between the spin-polarized current that
stabilizes the ψ = 0 state and the external field that disfavours it (h0 < 0). Using a normal form approach, it was obtained a general
set of equations describing the critical modes compatible with the boundary conditions [23]. This analysis revealed that for applied
fields above a critical value, that is h0 > hc

0 ≡ −4(βx + βz/2), stripes are the only stable pattern. On the other hand, when the field is
below the critical value h0 < hc

0, all modes compatible with the boundary conditions grow and reach the same nonzero amplitude. In
this scenario, a wide range of stationary superlattices emerges.

For negative external fields h0 < 0, the electric current can switch the magnetization from m = +ex to m = −ex when g varies from
negative to positive values. Hence, all the dissipative structures close to the equilibrium m = +ex in the phase space must become
unstable when the current is increased. Indeed, increasing the control parameter g, which is equivalent to diminish dissipation [14]
or increase injection, the system self-organizes into alternating superlattices (see Fig 2). The particular attractor usually depends on
the external field h0, the current g, the lateral dimension L and the initial condition. However, among the plethora of alternating
textures that emerge in this system, two of them deserve special attention due to their regularity in Fourier space. The first one is the
alternating superhexagon shown in Fig. 2, which is composed by six Fourier modes. We observe this texture for small applied fields
close to h0 = −2.5. The second alternating texture is a square-like pattern state. Square-like states exhibit a spectrum with two large
peaks and several smaller peaks (cf. Fig. 7). They appear for large applied fields close to h0 = −6. These states emerges through an
Andronov-Hopf bifurcation of the stationary square-like texture. The next two sections are devoted to the description of such states.

3. Alternating superhexagons

Let us consider applied fields close to h0 = −2.5. In this case, the typical oscillatory state is composed by six interacting modes,
which gives the appearance of a temporal alternation between patterns of different shapes, namely a square, a supersquare and a
superhexagon. Figure 2 illustrates this dissipative structure, which was obtained for the parameter values g = −0.4911, βx = 1/2,
βz = 1, and α = 0.05. The numerical simulation was conducted by dividing the sample into a grid of 90 × 90 squares of side
length dx = 0.230571 (approximately 0.8 nm for cobalt). The spatial differential operators are approximated with centered schemes
of order-6, while the time integration is performed using a fourth order Runge-Kutta algorithm with constant step-size ∆t = 0.01
(approximately 0.03 ps for cobalt).

A simple physical quantity that characterizes the dynamics in time is spatial average of the magnetization, given by

mav(t) ≡ 1
L2

¨

m(t, r)dxdy. (4)

Figure 3(a) shows the temporal evolution of this average. The oscillation period is around ∆t ∼ 350, which is about 1 ns for common
devices. The trajectories are characterized by sharp peaks, moreover, they are far from the shape of sinusoidal functions. This type
of dynamical behavior suggests a homoclinic bifurcation as the creation mechanism of alternating superhexagons [45]. In systems
with a homoclinic bifurcation, a limit-cycle approaches a saddle-point when a control parameter is varied, the limit-cycle eventually
collides with the hyperbolic fixed point and it disappears. The signature of this bifurcation is that the oscillations evolves slowly in
the vicinity of the saddle-point or stagnation point [45].
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Figure 3: Temporal evolution of the average magnetization, magnetic energy, and average resistance for g = −0.4945. (a) Components of the average magnetization
vector mav. (b) Magnetic energy. The time series EM(t) is shown on the left, while the normalized temporal Fourier transform Ft = F[EM− < EM >]( f ) is shown on
the right panel, where f = 1/t is the frequency. (c) Average resistance profile δr(t) (left) and its normalized temporal Fourier transform Ft[δr]( f ) (right).
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Figure 4: Temporal evolution of the Fourier modes of an alternating superhexagon. (a) The magnetization is projected into the three Fourier modes a, b and c (cf.2).
The graph of the left panel illustrates the general form of the phase space of alternating superhexagons. (b) Temporal series of the modes envelopes. The solid lines
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A relevant quantity of ferromagnetic materials is the magnetic energy [28],

EM =
1
L2

¨

[
−mxh0 − 1

2
βxm2

x +
1
2
βzm2

z +
1
2

(
|∇mx|2 + |∇my|2 + |∇mz|2

)]
dxdy. (5)

The magnetic energy EM(t) is a global indicator that only depends in time, and then it provides information regarding the dynamics of
the whole device. Figure 3(b) shows the temporal evolution of the energy. The energy remains close to the energy of films uniformly
magnetized along m = +ex, that is E+1

M = −h0 − βx/2. Let us define the normalized Fourier spectrum of the magnetic energy as

Ft ≡ Ft[EM− < EM >]( f ), (6)

where Ft is the normalized Fourier transform (that is, its maximum value is 1), and < EM > is the energy mean value. The spectra
are characterized by one dominant peak at a frequency of f0 = 2.77× 10−3 (which is in the gigahertz domain for typical devices), and
several harmonic peaks at frequencies n f0, where n = 2, 3, ...

Another relevant dynamical indicator is the reduced magnetoresistance of the device,

δr ≡ R[mx] − R[1]
R[−1] − R[1]

=
1
L2

¨

1 − mx

2
dxdy, (7)

where R is the electrical resistance of the spin-valve, which can be measured experimentally. The spatial average used in formula (7)
is the generalization of the magnetoresistance calculated for uniformly magnetized free layers. Figure 3(c) illustrates the behavior of
the reduced resistance and its normalized Fourier spectrum (obtained with an expression similar to formula (6)). Hence, the signature
of alternating super-hexagons is a dominant frequency close to f0 in the magnetoresistance.

Let us focus on the modal decomposition of Fig. 2. In the context of nanomagnetism the device lateral dimensions are small, that is
L ∼ 50−100nm, and then a few wavenumbers are admitted inside the ferromagnetic layer; this favors a defect-free texture. Moreover,
as the lower panel of Fig. 2 shows, the dominant Fourier peaks are close to the critical wavenumber of the spatial instability |k| ≈ q,
while the amplitude of the other modes are negligible. This is because the primary and the secondary bifurcations, responsible
of the emergence of stationary and oscillatory patterns respectively, occur for close values of the electric current. The Fourier
spectrum is characterized by large peaks at the following wavevectors q1 = ∆k(−4, 1), q2 = ∆k(−1, 4), q3 = ∆k(1, 4), q4 = ∆k(4, 1),
Q1 = ∆k(−3, 3), and Q2 = ∆k(3, 3), and their negative counterparts. The geometrical factor ∆k = 2π/L accounts for the minimal
wavenumber that is admitted by the boundary conditions.

We observe that the envelopes of the pattern evolve in twin pairs, that is, a1 = d1, b1 = e1, and c1 = f1. Figure 4(b) illustrates
the typical correlated trajectories. The same holds for the spectrum of the imaginary part of A, that is, a2 = d2, b2 = e2, and c2 = f2.
Therefore, the effective degrees of freedom of this system are the amplitudes of three interacting square lattices. Figure 2(b) shows
the temporal evolution of the envelopes of each square.

The texture oscillations become slower and more regular when the electric current approaches the value gc = −0.4953. Moreover,
for electric currents below the critical value gc, the limit-cycle is not observed and the magnetization self-organizes into a stationary
pattern. In this region, the numerical integration of the system is time-consuming, which makes difficult to elucidate the formation
mechanism of the alternating structures. In the next subsection we obtain a reduced representation of the superhexagon by means of
a Galerkin expansion.

3.1. Four-modes Galerkin expansion
The normal form approach allows one to obtain a set of amplitude equations dA j/dt = −δH/δĀ j for different types of pat-

terns [23], where the Lyapunov function H is minimized along the evolution of the system. This method permits one to characterize
stationary structures at the onset of the bifurcation, however, permanent behaviors, such as chaos and oscillations, are forbidden.
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Figure 5: Phase portrait of Galerkin modes. (a) limit-cycle in the modes representation. (b) Trajectories of the Galerkin modes.

Another strategy to simplify the dynamics is to project the equations into a few relevant modes, a Galerkin expansion. This type
of modal decomposition allows the study permanent dynamics, because they are not subjected to the minimization of a Lyapunov
function [5].

Following the Galerkin approach of Ref. [5], we decompose the spatiotemporal magnetization dynamics into a few trajectories
for the relevant observed modes, using the following ansatz for the stereographic projection A(t, r) = Ar + iAi

(
Ar

Ai

)
=

( −a1
a2

) [
cos(q1 · r) + cos(q2 · r) + cos(q3 · r) + cos(q4 · r)

]
+

( −b1
b2

) [
cos(Q1 · r) + cos(Q2 · r)

]
, (8)

where the real-valued functions a1(t) and a2(t) are the envelopes of the supersquare pattern given by the wavevectors {q1,q2,q3,q4}.
For the sake of simplicity, we use the same amplitude for the square sub-lattices given by {q1,q3} and {q2,q4}. The variables b1(t)
and b2(t) are the real-valued amplitudes of the square pattern defined by the wavevectors {Q1,Q2}. Writing Eq. (2) into its real and
imaginary parts, using expression (8), and projecting over the spatial modes (using the inner product for Fourier spaces), we obtain a
simple dynamical system of the form

dX
dt

= F(X), (9)

where X = (a1, a2, b1, b2)T . Due to the long expression of F, its explicit form and the details of the projection method are given in
AppendixA. In order to understand and characterize the origin mechanism of the alternating superlattice states described in Sec. 3,
we integrate the set of Eqs. (9) using a fifth-order Runga-Kutta routine with variable step size and the same parameter values as in
Sec. 3. Figure 4 shows the typical limit-cycle solution obtained for g = −0.4911. The trajectories are characterized by a slow motion
in a determined region of the phase space (stagnation point, close to a1 = a2 = 0), moreover, when the current is decreased, the time
that the trajectories spend in this region is increased.

Notice that we use an ansatz with only four amplitudes, which is the minimal modal decomposition that permits obtaining
qualitative agreement with the magnetic equations and, at the same time, provides the possibility to identify the formation mechanism
of superhexagons. A more general decomposition with more modes is required to obtain a better quantitative agreement with the
magnetic equations. However, this four-modes expansion is complete enough to obtain information of the alternating superhexagons.

The characteristic limit-cycle amplitude and period are shown in Fig. 3.1. As it can be seen, the amplitude appears abruptly, which
agrees with the direct numerical simulations of the magnetic equations. Moreover, decreasing the control parameter g, the oscillation
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Figure 6: (Color online) Characteristic limit-cycle amplitude (left) and period (right). There is no limit-cycle for electric currents below a threshold (darker zone in
the amplitude plot), the oscillations emerge abruptly for g = −0.494. At the onset of the emergence of the oscillations, the amplitude is finite and the period T has a
logarithmic divergence. The inset shows a comparison between the data of the numerical integration (dots) and fitting curve T ' 113.21 log[1/(g+0.49361)]−398.54.
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period diverges with a logarithmic law T ' 113.21 log[1/(g − gc)] − 398.54, where gc = −0.49361. This particular divergence law
permits us to conclude that the mechanism is a homoclinic bifurcation.

The Galerkin expansion f will have only odd nonlinearities because model (2) is invariant under inversions of the order parameter
(A→ −A). According to our simulations, the quintic term is necessary to observe limit-cycles. Therefore, the relevant nonvariational
interaction between modes occurs through a coupling of fifth order.

In the previously studied spin-transfer torque induced limit-cycles [17–19], the dissipation α plays an important role. Indeed,
limit-cycles are the result of the balance between the dissipation α and the injection g > 0. However, in the case of alternating
superlattices, we observe that the dissipation coefficient α does not produce relevant changes in the dynamics. Furthermore, in the
limit α = 0 the oscillatory states do not change appreciably. Hence, we conclude that the spin-transfer torque is the dominant
dissipation mechanism of alternating superlattices.

4. Oscillatory square-like texture

A different scenario occurs for large applied external fields, where the alternating patterns are composed by a few dominant
modes. For external fields around h0 = −6, the typical oscillatory structure is a square-like pattern. Figure 7 illustrates this texture
which was obtained for g = −0.41, and spatial and temporal step-sizes are dx = 0.157861 (approximately 0.51 nm) and ∆t = 0.004
(approximately 0.013 ps), respectively. As it can be seen from this figure, the envelopes of the horizontal and the vertical rolls
oscillate in time. The two rolls have orthogonal wavectors q1 = q(1, 0), q2 = q(0, 1), where q is the critical wavenumber of the
spatial instability found in Ref. [23]. This oscillatory state is similar to the one observed in fluids heated from bellow [3, 4], where
the two-mode texture oscillates in time.

The temporal evolution of the two dominant modes is approximately sinusoidal [see Fig. 7(b)], with period around ∆t = 100,
which is about 0.32 ns for cobalt. In addition, the amplitude of the temporal oscillation of each mode decreases monotonically when
g is decreased, until the oscillations disappear at g′c ≈ −0.43, see Fig. 8. These two features are the signature of a supercritical
Andronov-Hopf bifurcation [45]. This instability is usually characterized by the complex Ginzburg-Landau equation, which contains
the dominant order terms compatible with the symmetries of the physical system and the instability [1]

dH
dt

= (g − g′c)H − (Γ0 + ic)H|H|2, (10)

where the order parameter H(t) stands for the oscillation envelope, Γ0 is the nonlinear coefficient, which is positive. The parameter c
accounts for the coupling between the oscillation frequency and amplitude. The stationary solutions of the above model have modulus
|H| = [(g − g′c)/Γ0]1/2. Figure 8 shows the solution of the Ginzburg-Landau model using Γ0 = 4.9383 (solid line) and the oscillation
envelope obtained from direct numerical simulations of the magnetic equations (points). The agreement is fairly good.
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The oscillations of the magnetization spatial average mav(t) are shown in Fig. 9(a) and they are very close to the steady state
m = +ex. Notice that the nonlinear transformation between the dynamical variables (stereographic representation) and the Cartesian
components

(
mx,my,mz

)
=

1
1 + |A|2

(
1 − |A|2, A + Ā, i[Ā − A]

)
, (11)

generates additional frequencies (harmonics) in the temporal Fourier spectrum. Hence, both the magnetic energy and the average
resistance will have extra frequencies. Figure 9(b) shows the temporal evolution of the energy, which again is close to the value
E+1

M = −h0 − βx/2. The energy spectrum is characterized by two dominant peaks at a frequency of f1 = 0.01 and f2 = 2 f1 (which is
in the gigahertz domain for typical devices), and several other peaks at frequencies n f1, where n = 2, 3, ..; Figure 9(c) illustrates the
behavior of the average resistance and its normalized Fourier spectrum.

5. Conclusions and remarks

In recent decades, most scientific efforts have concentrated on understanding primary spatial instabilities. However, due to
the complex spatiotemporal behavior exhibited by secondary instabilities, several questions still remain unanswered. Here, we
have investigated alternating superlattices—oscillatory patterns with several Fourier modes—induced by spin-transfer torques. The
envelopes of the modes alternate between small and large values, which produces textures of different shapes. We focused mainly on
alternating superhexagons and square-like patterns, which are oscillatory states composed by six and two dominant spatial modes,
respectively. Using a simple modal decomposition, we showed that superhexagons emerge through a homoclinic bifurcation. We
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have considered only four modes and it provides a qualitative understanding of the dynamics. Notice that in the present case, it is
necessary to use several modes to get a better quantitative agreement. Moreover, the lack of control expansion coefficient in the
Galerkin method renders it a less precise strategy than amplitude equations. To have a deep unified understanding of the dynamic
behavior of secondary bifurcations, novel concepts and theoretical tools are required, which represents a challenge to nonlinear
science.

For large applied fields, square-like states emerge. They have two dominant Fourier modes that oscillate harmonically. The
mechanism that originates the square-like patterns is a supercritical Andronov-Hopf instability. This texture is similar to the ones
reported previously for the Rayleigh-Bénard experiments [3, 4]. We expect that increasing the electric current will induce complex
dynamical behaviors, such as chaos and spatiotemporal chaos, in the textures. Work in this direction is in progress.

The observation of alternating patterns in nanomagnetism enforces the hypothesis regarding the equivalence between driven
nanomagnets and systems with time-dependent forcing, namely parametrically driven systems. Moreover, alternating patterns offers
the opportunity to generate and eventually manipulate a wide variety of spin-waves in the gigahertz domain. On the one hand, this
promises to increase the technological applications of spin-valve devices, on the other hand, it becomes necessary to study alternating
patterns using more general and more realistic approaches. Some generalizations include the use of circular or elliptical devices, a
complete treatment of the non-local demagnetizing fields, the use of thermal torques, among others; work in this direction is left as
an open problem.
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AppendixA. Galerkin Expansion of the Magnetization equations

Due to the spatial regularity of the alternating superhexagons, we introduce the following ansatz

Ar = a1
[
cos(q1 · r + γr1) + cos(q2 · r + γr2) + cos(q3 · r + γr3) + cos(q4 · r + γr4)

]

+ b1
[
cos(Q1 · r + Γr1) + cos(Q2 · r + Γr2)

]
,

Ai = a2
[
cos(q1 · r + γi1) + cos(q2 · r + γi2) + cos(q3 · r + γi3) + cos(q4 · r + γi4)

]

+ b2
[
cos(Q1 · r + Γi1) + cos(Q2 · r + Γi2)

]
, (A.1)

where the functions {a1(t), a2(t), b1(t), b2(t)} are the magnitude of the amplitude of the respective mode, and {γr j(t), γi j(t),Γik(t), γik(t)}
for j = 1, 2, 3, 4 and k = 1, 2, are the phases of the modes. Since we consider Neumann boundary conditions, the admisible values
for the phases are 0 and π. We use here the numerically observed values of the phases:γr1(t) = γr2(t) = γr3(t) = γr4(t) = Γr1(t) =

Γr2(t) = π, and γi1(t) = γi2(t) = γi3(t) = γi4(t) = Γi1(t) = Γi2(t) = 0. In this case, the ansatz (A.1) reduces to formula (8). Writing
Eq. (2) into its real and imaginary parts, ∂tA = Gr + iGi, using ansatz (A.1) or equivalently (8), and considering the inner product for
Fourier spaces, we obtain after straightforward calculations the following set of Eqs.,

8ȧ1 ≡ 8
L2

ˆ ˆ

cos(q1 · r)Gr(r, a1, a2, b1, b2)dxdy

= −∆k2[2176b5
1 + 6690a1a2b2

1b2 + b3
1(−476 + 4352a2

1 − 649a2
2 + 3885b2

2) + 2a1a2b2(1189a2
1 + 144(−2 + 3a2

2 + 3b2
2))]

− ∆k2[b1(2176a4
1 + a2

1(−476 + 1507a2
2 + 1729b2

2) − 8(17 + 27a4
2 + 36b2

2 − 81b4
2 − 18a2

2(2 + 3b2
2)))] + 8b1βx

− 84a2
1b1βx + 640a4

1b1βx − 16a2
2b1βx + 666a2

1a2
2b1βx + 36a4

2b1βx − 84b3
1βx + 1280a2

1b3
1βx + 222a2

2b3
1βx

+ 640b5
1βx − 32a1a2b2βx + 444a3

1a2b2βx + 144a1a3
2b2βx + 1332a1a2b2

1b2βx − 48b1b2
2βx + 666a2

1b1b2
2βx

+ 216a2
2b1b2

2βx + 1110b3
1b2

2βx + 144a1a2b3
2βx + 180b1b4

2βx + 8b1βz − 84b3
1βz + 640a2

1b3
1βz + 111a2

2b3
1βz

+ 640b5
1βz + 666a1a2b2

1b2βz − 48b1b2
2βz + 333a2

1b1b2
2βz + 108a2

2b1b2
2βz + 1110b3

1b2
2βz + 72a1a2b3

2βz

+ 180b1b4
2βz + 8a1g + 8b1h0 − α{128a5

1(−17∆k2 + 5βx) + 6a2
1a2b1b2(−1115∆k2 + 111(2βx + βz))

+ a3
1(∆k2(476 − 3885a2

2 − 4352b2
1 + 649b2

2) − 84βx + 1110a2
2βx + (640b2

1 + 111b2
2)(2βx + βz)) + 8a1(βx + h0)

+ 2b1(36a3
2b2(−12∆k2 + 2βx + βz) + a2b2(∆k2(288 − 1189b2

1 − 432b2
2) + 2(−8 + 111b2

1 + 36b2
2)(βx + βz)) − 4g)

+ a1(−∆k2(648a4
2 + 68(−2 − 7b2

1 + 32b4
1) + (288 + 1507b2

1)b2
2 − 216b4

2 + a2
2(−288 + 1729b2

1 + 432b2
2)) + 180a4

2βx

+ 2(320b4
1 − 8b2

2 + 18b4
2 + b2

1(−42 + 333b2
2))(βx + βz) + 3a2

2(2(−8 + 111b2
1 + 36b2

2)βx + 3(37b2
1 + 12b2

2)βz))}, (A.2)
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4ȧ2 ≡ 4
L2

ˆ ˆ

cos(q1 · r)Gi(r, a1, a2, b1, b2)dxdy

= 72∆k2b2 + 108a2
2∆k2b2 − 180a4

2∆k2b2 + 272∆k2b2
1b2 − 396a2

2∆k2b2
1b2 − 1887∆k2b4

1b2 + 108∆k2b3
2 − 360a2

2∆k2b3
2

− 1260∆k2b2
1b3

2 − 180∆k2b5
2 − 4a3

1a2b1(539∆k2 − 111βx) + 4b2βx − 18a2
2b2βx + 50a4

2b2βx − 48b2
1b2βx + 216a2

2b2
1b2βx

+ 555b4
1b2βx − 18b3

2βx + 100a2
2b3

2βx + 360b2
1b3

2βx + 50b5
2βx + a4

1b2(269∆k2 + 111βx) + 4b2βz − 48b2
1b2βz

+ 108a2
2b2

1b2βz + 555b4
1b2βz − 18b3

2βz + 50a2
2b3

2βz + 360b2
1b3

2βz + 50b5
2βz + 4a2g + 4b2h0

+ a2
1b2(−2∆k2(136 + 234a2

2 + 809b2
1 − 198b2

2) − 16βx + 9(24a2
2βx + (37b2

1 + 4b2
2)(2βx + βz)))

− 2a1a2b1(2∆k2(−136 + 198a2
2 + 539b2

1 + 630b2
2) + 16βx − 3(24a2

2βx + (37b2
1 + 36b2

2)(2βx + βz)))
− α{a5

2(−180∆k2 + 50βx) − 72a1a2
2b1b2(35∆k2 − 3(2βx + βz)) + 2a3

2(18∆k2(3 − 35a2
1 + 11b2

1 − 10b2
2) − 9βx + 180a2

1βx

+ (18b2
1 + 25b2

2)(2βx + βz)) + 2b2(2a1b1(∆k2(136 − 539b2
1 − 198b2

2) + (−8 + 111b2
1 + 36b2

2)(βx + βz))
+ a3

1b1(−1078∆k2 + 111(2βx + βz)) − 2g) + a2(−∆k2(1887a4
1 − 269b4

1 + 4b2
1(68 + 117b2

2) + 2a2
1(−136 + 809b2

1 + 198b2
2)

+ 36(−2 − 3b2
2 + 5b4

2)) + 555a4
1βx + (111b4

1 − 18b2
2 + 50b4

2 + 8b2
1(−2 + 27b2

2))(βx + βz)
+ 3a2

1(2(−8 + 111b2
1 + 36b2

2)βx + 3(37b2
1 + 12b2

2)βz) + 4(βx + h0))}, (A.3)

8ḃ1 ≡ 8
L2

ˆ ˆ

cos(Q1 · r)Gr(r, a1, a2, b1, b2)dxdy

= 128a5
1(17∆k2 − 5βx) + 6a2

1a2b1b2(1115∆k2 − 111(2βx + βz)) + a3
1(∆k2(−476 + 3885a2

2 + 4352b2
1 − 649b2

2) + 84βx

− 1110a2
2βx − (640b2

1 + 111b2
2)(2βx + βz)) + b1(2a2b2(∆k2(−288 + 432a2

2 + 1189b2
1 + 432b2

2) + 16(βx + βz)
− 6((37b2

1 + 12b2
2)(βx + βz) + 6a2

2(2βx + βz))) + 8g) + a1(∆k2(648a4
2 + 68(−2 − 7b2

1 + 32b4
1) + (288 + 1507b2

1)b2
2

− 216b4
2 + a2

2(−288 + 1729b2
1 + 432b2

2)) − 180a4
2βx − 2(320b4

1 − 8b2
2 + 18b4

2 + b2
1(−42 + 333b2

2))(βx + βz)
− 3a2

2(2(−8 + 111b2
1 + 36b2

2)βx + 3(37b2
1 + 12b2

2)βz) − 8(βx + h0)) + α{∆k2(2176b5
1 + 6690a1a2b2

1b2

+ b3
1(−476 + 4352a2

1 − 649a2
2 + 3885b2

2) + 2a1a2b2(1189a2
1 + 144(−2 + 3a2

2 + 3b2
2))

+ b1(2176a4
1 + a2

1(−476 + 1507a2
2 + 1729b2

2) − 8(17 + 27a4
2 + 36b2

2 − 81b4
2 − 18a2

2(2 + 3b2
2)))) − 640b5

1(βx + βz)
− 666a1a2b2

1b2(2βx + βz) − b3
1(2(−42 + 640a2

1 + 111a2
2 + 555b2

2)βx + (−84 + 640a2
1 + 111a2

2 + 1110b2
2)βz)

− 4a1(a2b2(−8 + 111a2
1 + 36a2

2 + 36b2
2)βx + 18a2b3

2βz + 2g) − b1(2(4 + 320a4
1 − 8a2

2 − 24b2
2

+ 18(a2
2 + b2

2)(a2
2 + 5b2

2)a2
1(−42 + 333a2

2 + 333b2
2))βx + 3b2

2(−16 + 111a2
1 + 36a2

2 + 60b2
2)βz + 8(βz + h0))}, (A.4)

4ḃ2 ≡ 4
L2

ˆ ˆ

cos(Q1 · r)Gi(r, a1, a2, b1, b2)dxdy

= 10a5
2(18∆k2 − 5βx) + 72a1a2

2b1b2(35∆k2 − 3(2βx + βz)) + 2a3
2(18∆k2(−3 + 35a2

1 − 11b2
1 + 10b2

2) + 9βx − 180a2
1βx

− (18b2
1 + 25b2

2)(2βx + βz)) + 2b2(2a1b1(∆k2(−136 + 539b2
1 + 198b2

2) − (−8 + 111b2
1 + 36b2

2)(βx + βz))
+ a3

1b1(1078∆k2 − 111(2βx + βz)) + 2g) + a2(∆k2(1887a4
1 − 269b4

1 + 4b2
1(68 + 117b2

2) + 2a2
1(−136 + 809b2

1 + 198b2
2)

+ 36(−2 − 3b2
2 + 5b4

2)) − 555a4
1βx − (111b4

1 − 18b2
2 + 50b4

2 + 8b2
1(−2 + 27b2

2))(βx + βz)
− 3a2

1(2(−8 + 111b2
1 + 36b2

2)βx + 3(37b2
1 + 12b2

2)βz) − 4(βx + h0))
− α{(−∆k2b2(−72 + 180a4

2 − 272b2
1 + 1887b4

1 + 36(−3 + 35b2
1)b2

2 + 180b4
2 + 36a2

2(−3 + 11b2
1 + 10b2

2)) + 4b2βx

− 18a2
2b2βx + 50a4

2b2βx − 48b2
1b2βx + 216a2

2b2
1b2βx + 555b4

1b2βx − 18b3
2βx + 100a2

2b3
2βx + 360b2

1b3
2βx + 50b5

2βx

+ 4a3
1a2b1(−539∆k2 + 111βx) + a4

1b2(269∆k2 + 111βx) + 4b2βz − 48b2
1b2βz + 108a2

2b2
1b2βz + 555b4

1b2βz − 18b3
2βz

+ 50a2
2b3

2βz + 360b2
1b3

2βz + 50b5
2βz + a2

1b2(−2∆k2(136 + 234a2
2 + 809b2

1 − 198b2
2) − 16βx

+ 9(24a2
2βx + (37b2

1 + 4b2
2)(2βx + βz))) + 2a1a2b1(−2∆k2(−136 + 198a2

2 + 539b2
1 + 630b2

2) − 16βx + 3(24a2
2βx

+ (37b2
1 + 36b2

2)(2βx + βz))) + 4a2g + 4b2h0), } (A.5)

where ḟ = d f /dt. We remark that, the partial differential equation that describes magnetic media was reduced to a set of ordinary
differential equations with four variables. This decomposition admits a geometrical description of the oscillations, and an efficient
numerical characterization. A more general ansatz involving more modes might be used to obtain a better quantitative agreement with
the magnetic equations. However, this four-modes expansion is complete enough to obtain a qualitative description of the alternating
superhexagons.
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Abstract. Magnetic systems forced with external fields or electric currents exhibit a rich
spatiotemporal dynamics. A well known example is the one of spin-transfer torque driven
textures, which includes switching, precessions, dissipative solitons, and periodic textures.
Using different expressions that model the spin-transfer torque —angular dependence of the
spin-transfer— we obtain analytic solutions for static spatially periodic states, study their
stability, and elucidate the role that the angular dependence plays in the formation of
textures. We demonstrate that the type of bifurcations changes from supercritical to subcritical,
depending on the particular type of torque. Numerical simulations confirm this scenario. Thus,
magnetoresistance measurements could permit to determine the form of the torque.

1. Introduction
Ferromagnetic materials subjected to dissipation and injection of energy or momentum self-
organize in dissipative structures, such as solitons, skyrmions, periodic textures, and domain
walls. The usual driving mechanisms are the couplings between the magnetization of the
ferromagnetic material and external magnetic fields and electric currents. In 1996, Slonczewski[1]
and Berger [2] predicted that a spin-polarized (SP) electric current exerts a torque in
ferromagnetic nano-layers, effect known as spin-transfer torque [3, 4, 5]. Since then, the interest
on excitations driven by SP currents has grown considerably, both from the scientific and
the technological viewpoints [4]. A typical configuration to study spin-transfer torques is the
multilayer nanopillar, or spin-valve, that consists on ferromagnetic conducting films separated by
non-magnetic conductors as shown in Fig. 1(a). When an electric current is applied, it transfers
spin angular momentum from one relatively thick layer with fixed magnetization to a thin film
with free magnetization [4].

Spin-transfer torques are non-conservative effects, and therefore they can destroy, stabilize
or destabilize states. Moreover, in the case in which a SP current injects enough energy to
counterbalance the dissipation, the free magnetization switches or precesses with microwave
frequencies, both effects have been studied experimentally [6, 7, 8, 9] and theoretically [10, 11,
12, 13]. Hence, electric currents permit to manipulate small scale magnets and use them as
memory devices, or spin-wave emissors. The SP current can also stabilize configurations that
are energy maxima. In this scenario, the free magnetization exhibits the phenomenology of
the systems subjected to time-dependent driving forces [14]. This dynamic behaviors includes
solitons, domain walls, and spatially periodic textures or patterns. Typical spin-transfer torque
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Figure 1. Nanopillar device and magnetic textures. a) Schematic spin-valve setup. The layers
labeled as FM are the ferromagents, the rest of the structure is composed by nonmagnetic
conductors; J is the SP electric current while h0 is the external magnetic field, both effects are
parallel to the easy-axes of the ferromagnetic layer under study. Mo stands for the magnetization
of the fixed layer. b) Typical patterns induced by the spin-transfer torque effect. The parameters
are h0 = −6, g = −0.4999, βz = 1, βx = 0.5, α = 0.05, and dx = 0.126289. The parameters
of the torque are ∆ = b = 0, this is the sinus-approximation case. c) The same as b) with
the Slonczewski torque, it is, ∆ = 0 and b = 0.35. Note the relation between the magnetic
components my ≈ −mz. Since mx ≈ 1−(m2

y+m2
z)/2, the component mx has spatial oscillations

at twice the wavenumber of my and mz.

induced patterns are shown in Figs. 1(b) and 1(c), they emerge due to an imbalance between
the spin-polarized current and an external magnetic field [15]. The typical wavelength of these
patterns is 20− 30nm.

In the classical approach, the free layer magnetization is described by the Landau-Lifshitz-
Gilbert equation with an extra term that accounts for the interaction between the spin-polarized
electric current and the ferromagnet [3, 4, 5]. Since the transport of the conducting electrons
depends on the relative orientations of the free and fixed layers, the torque induced by the
SP current can also depend on this orientation. This dependence is known as the angular
dependence of the spin-transfer torque. Analytic expressions for this angular dependence have
been proposed and studied for several geometries [1, 16, 19, 17, 18, 20]. In certain regions of the
parameter space, the dynamics of the precessional states change quantitatively and qualitatively
with the use of different torque terms, which permits to test the angular dependence for a
given geometry [17, 18, 21, 22]. The textures predicted in Refs. [14, 15] are an alternative
dynamical regime which permits to compare the predictions of the different spin-transfer models.
In Ref. [15], a simplified version of the torque was used, and a more general study is required.

The aim of this article is to study the role of the angular dependence of the spin-transfer
torque in pattern formation. We obtain analytic solutions for the spatially periodic patterns and
elucidate their stability. It is found that the magnetic textures change strongly with the angular
dependence. The manuscript is organized as follows: in Sec. 2, we describe the magnetization



dynamics of the free layer. In Sec. 3, we obtain the amplitude equation for the patterns, and
analyze the role of the angular dependence. The conclusions and remarks are left to the final
section.

2. Free layer magnetization dynamics
Consider a square cross-section nanopillar device, with fixed layer magnetization M0 along the
positive x-axis, this material is thicker than the free layer, and acts as a spin filter or spin
polarizer for the electric current. Lateral sizes L in the transverse directions are around 100
nanometers for typical devices. Hereafter, we adimensionalyze the magnetization of the free
layer M → Msm and the external field H0 → Msh0 by the saturation magnetization Ms; the
time t → γMst is written in terms of the gyromagnetic constant γ, and Ms; and the spatial
coordinates (x, y) → lex(x, y) in terms of the exchange length lex ≡

√
2A/(µ0M2

s ) where A is
the exchange coupling in the ferromagnet. For example, in a 3nm thick Cobalt layer, Ms ' 1.4
106A/m, and the characteristic time and space scales are (γMs)

−1 ' 3.2ps and lex ≈ 3.4nm,
respectively [5].

For thin films, the magnetic energy is given by [5]

E =
µ0M

2
s

L2

∫ L

0

∫ L

0

[
−m · h0 −

1

2
βxm

2
x +

1

2
βzm

2
z +

1

2
|∇m|2

]
dxdy, (1)

an external magnetic field h0 = h0ex points along the x-axis. The coefficients βx and βz are
combinations of the anisotropy constants with respect to the appropriate axes, where βx (βz)
favors (disfavors) the free magnetization in the x-axis (z-axis). Since the free layer is thin, the
demagnetization field can be approximated by a shape anisotropy, and it is incorporated in the
βz coefficient.

The dynamic of the free layer magnetization is modeled by the dimensionless Landau-Lifshitz-
Gilbert equation (LLG) with an extra term that accounts for the spin-transfer torque [5]

∂m

∂t
= −m× heff + αm× ∂m

∂t
+ ηg0 m× (m× ex). (2)

The first term of the right hand side of Eq. (2) accounts for the conservative precessions generated
by the effective field,

heff ≡ −
L2

µ0M2
s

δE

δm
= (h0 + βxmx) ex − βmzez +∇2m. (3)

The second and third terms of Eq. (2) are the phenomenological Gilbert damping and the
spin-transfer torque, respectively. The dimensionless parameter g0 is

g0 ≡
~J

2d|e|µ0M2
s

, (4)

where J is the electric current density, d the thickness of the layer and e < 0 the electric charge.
The parameters J and g0 are negative when the electrons flow from the fixed to the free layer.
The dimensionless function η = η(m · ex) is known as the spin-torque efficiency, this function
depends on the relative orientation of the ferromagentic films, and the device geometry and the
physical properties of the layers, it has the general form of [4, 17, 18]

η(m · ex) ≡
(
1− b2

)

1− b+ ∆(1 + b)

(
1

1 + bmx
+

∆

1− bmx

)
. (5)



The coefficient ∆ measures the anisotropy between ferromagnetic layers of the spin-valve.
In the case of an symmetric structure (identical ferromagnetic layers and leads) ∆ vanishes.
Additionally, for short leads, ∆ can be neglected. In these cases, the efficiency is just
η = (1 + b)/(1 + bmx), which is term originally proposed by Slonczewski [1, 16]. The constant
b accounts for the strength of the spin scattering at the free layer interface. Notice that the
η function is η(1) = 1 in the parallel configuration. The approximation η(mx) ≈ η(1) = 1
for mx ≈ 1, which is equivalent to impose b = 0 in the formula (5), is known as the sinus
spin-transfer torque, because the torque ||ηg0 m× (m× ex)|| ∼ | sin(Ψ)|, where Ψ is the angle
between the free and fixed magnetizations. This approximation is widely used in literature. We
will compare the SP-driven dynamics in the case of a general torque (b,∆ > 0), a symmetric
torque (∆ = 0), and a sinus torque (b = 0).

Notice that the LLG Eq. conserves the magnetization norm ‖m‖ = 1, since m and ∂tm are
perpendicular. This permits us to use a spherical representation of the free magnetization

m = sin(θ) [cos(φ)ex + sin(φ)ey] + cos(θ)ez. (6)

Introducing this representation in Eq. (2), one obtains the following set of equations

∂τθ = −(h0 + αηg0) sin(φ) + (αh0 − ηg0) cos(φ) cos(θ) +
α

2
sin(2θ)

[
βz + βx cos2(φ)

]

−βx
2

sin(θ) sin(2φ) + sin(θ)∇2φ+ 2 cos(θ)∇φ · ∇θ + α∇2θ − α

2
sin(2θ) (∇φ)2 ,

sin(θ)∂τφ = (ηg0 − αh0) sin(φ)− (αηg0 + h0) cos(φ) cos(θ)− 1

2
sin(2θ)

[
βz + βx cos2(φ)

]

−αβx
2

sin(θ) sin(2φ) + α sin(θ)∇2φ+ 2α cos(θ)∇φ · ∇θ −∇2θ +
1

2
sin(2θ) (∇φ)2 , (7)

where τ = t/
(
1 + α2

)
, and η = η(sin(θ) cos(φ)). The simplest equilibria of Eq. (2) are m = ±ex,

which represent a free magnetization parallel (+) or anti-parallel (−) to the fixed magnetization
M0. Both states correspond to extrema of the free energy E. In spherical coordinates, the
parallel and anti-parallel states are (θ, φ) = (π/2, 0), and (θ, φ) = (π/2, π) respectively. From
the technological viewpoint, when both equilibria are stable, the spin-valve can be seen as a
two-states system capable of saving information. Resistance measurements permit to read such
data from the valve, and the spin-transfer torque induced switching allows one to write on the
device. This is the basis of the spin-transfer torque based RAM memories [4].

For the rest of the manuscript we will concentrate on the parallel equilibrium m = ex.

3. Periodic patterns
Note that the linear stability analysis around the mx = 1 state is independent of the
parameters b and ∆ because the angular dependence is constant around the parallel state,
η(mx) = η(1) + O(m2

y + m2
z) ≈ 1. The instabilities of this state have been subject of several

studies the last decades [3, 4, 5, 15]. There are three main types of bifurcations: the Andronov-
Hopf instability that generates self-oscillations, the stationary instability in which the system
goes to other stationary equilibra, and the spatial instability (see Ref. [15] for more details);
this last bifurcation is the motivation of the of this work. The spatial instability is characterized
because the perturbations that destabilize the parallel state are non-uniform and generally give
rise to periodic patterns. In the case of a spin-valve, when g0, h0 < 0, the SP current favors the
parallel state while the external field disfavors it. The competition of these opposing effects is
the physical origin of the spatial instability. Considering a critical perturbation of the form

(
θ
φ

)
≈
(
π/2
0

)
+ eλt

[
A0e

iq·r + Ā0e
−iq·r]

(
1
1

)
, (8)



where the groth rate is λ = βz/2 + g0. The norm q of the wave-vector q is controlled by the
external magnetic field through q = −h0 − βx − βz/2, and it exists for h0 < −βx − βz/2 < 0.
The complex amplitude A0 is a constant fixed by the initial conditions, and Ā0 is the complex
conjugate of A0. The spatially periodic perturbations are amplified on time for g0 > −βz/2,
or decay to zero for g0 < −βz/2. Notice that since the nanopillar has a square cross-section,
there can be several admitted modes with wave-numbers q, which will grow and interact for
g0 > −βz/2.

In the critical situation g0,c ≡ −βz/2, there is no exponential grow or decay of the
perturbations, and the modes of formula (8) exhibit a slow dynamics given by the nonlinear
corrections. At the onset of the spatial bifurcation, it is possible to obtain the equations for the
critical modes by introducing the following ansatz

(
θ
φ

)
=

(
π/2
0

)
+
[
A(t)eiqx +B(t)eiqy + Ā(t)e−iqx + B̄(t)e−iqy

]( 1
1

)
+ W(A,B, Ā, B̄, r),

(9)
where the amplitudes A(t) and B(t) are slowly varying functions of time, and W is a small
correction that appears due to the nonlinear nature of the problem, and it depends nonlinearly
on the amplitudes A and B. We have considered just two modes by the sake of simplicity,
and the amplitudes A(t) and B(t) are the envelops of the spatial oscillations along the x−axis
and y−axis, respectively. Replacing the above ansatz in Eq. (7), linearizing in W, and after
imposing a solvability condition [23] , we obtain

dA

dt
= (g0 − g0,c)A− ΓA

(
|A|2 + 2|B|2

)
,

dB

dt
= (g0 − g0,c)B − ΓB

(
|B|2 + 2|A|2

)
, (10)

where the coefficient of the nonlinearity is

Γ =
3

2

βzb

1− b2
(1− b)2 −∆(1 + b)2

1− b+ ∆(1 + b)
. (11)

The above set of equations describes the growth of the pattern for g0 > g0,c, with a nonlinear
interaction between modes, and a nonlinear saturation (or nonlinear gain) for Γ > 0 (Γ < 0).
Let us start with the case of a nonlinear saturation Γ > 0. Notice that the set of Eqs. (10)
is phase invariant, it is, they remain unchanged under transformations of the form (A,B) →
(Aeiψ1 , Beiψ2) for arbitrary real constants ψ1 and ψ2. This motivates the use of reduced real
valued variables a1(t) =

√
Γ|A(t)|, and a2(t) =

√
Γ|B(t)| for the case of nonlinear saturation,

da1
dt

= εa1 − a1
(
a21 + 2a22

)
,

da2
dt

= εa2 − a2
(
a22 + 2a21

)
. (12)

where ε ≡ g0 − g0,c For negative ε, the spatially periodic perturbations decay to the
homogeneous solution (a1, a2) = (0, 0), which is linearly stable. Hence, the parallel state is
stabilized by the current for negative enough values of g0.

Figure 2 shows the phase portrait of Eq. (12) for positive values of ε. The 4 steady states
of the system are the parallel state (a1, a2) = (0, 0), the roll patterns (a1, a2) = (

√
ε, 0) and

(a1, a2) = (0,
√
ε), and finally the square texture (a1, a2) = (

√
ε/3,

√
ε/3). Given the amplitude
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Figure 2. Phase portrait of amplitude Eq. (12), which describes the pattern formation driven by
a Slonczewski spin-transfer torque. Insets show the magnetic component my of the equilibrium
states. For g0 > g0,c the vertical and horizontal roll equilibria (black circles) are stable for the
Slonczewski form of the torque. The Square pattern and the uniform solution (empty circles)
are unstable.

Eq. (12), the linear stability analysis of the patterns becomes a trivial task. This analysis reveals
that the roll states are stable (black circles in Fig. 2) and the square is unstable (empty circle).
Thus, after transients, the magnetization converges to the horizontal or vertical rolls of the form

mx ≈ 1− 4 (g0 − g0,c)
[

1− b2
βzb

1− b+ ∆(1 + b)

(1− b)2 −∆(1 + b)2

](
1− cos (q · r)

3

)
,

my ≈ mz ≈ 2
√
g0 − g0,c

√
2

3

1− b2
βzb

1− b+ ∆(1 + b)

(1− b)2 −∆(1 + b)2
cos (q · r) , (13)

where q · r = qx or q · r = qy. Fig. 1(c) shows this state. This roll-like functions are the typical
magnetic configurations for the most general spin-torque.

In the next subsections, we discuss the different types of instabilities that arise with each spin-
transfer torque term. These transitions correspond to supercritical (Γ > 0), quintic supercritical
(Γ = 0), and subcritical (Γ < 0).

3.1. Slonczewski limit (Γ > 0)
If the spin-valve has equal ferromagnetic films and equal leads, then ∆ = 0 and the η(mx)
function is the same as proposed originally by Slonczewski in Refs. [1, 16]. In this case, the
saturation coefficient takes the form

Γ =
3

2

βzb

1 + b
. (14)

Figure 1(c) illustrates the rolls for b = 0.35. This type of bifurcation is known as a supercritical
transition. It is worth noting that the saturation is independent of the external field h0
and easy-axis anisotropy constant βx. Figure 3(a) compares the numerical solution of the

Landau-Lifshitz-Gilbert equation with the predicted amplitude 2|A|(ε) ∼ 2 (ε/Γ)1/2 of rolls
my ≈ −mz ≈ 2|A| cos(q ·r). In order to integrate the LLG equation, space was discretized using
a finite differences centered scheme of order six, and the temporal evolution was obtained with
a fifth order variable step size Runge-Kutta.



The magnetoresistance δr permits to compare predicted textures with experimental data.
Hence, it is an adequate physical quantity for characterizing magnetic configurations in spin-
valves. For uniform magnetized free layers, the magnetoresistance depends only on the relative
orientation between the free and fixed layers, δr = δr(mx). For nonuniform magnetic states, the
average indicator δr ≡ δr(mav

x ) is commonly used [24], where mav
x is the average magnetization

along the x-axis. Consequently, for symmetric spin-valves the average resistance will be
independent of external field and anisotropy coefficient βx.

3.2. Sinus-aproximation (Γ = 0)
In the sinus approximation (b = 0), the function η is constant and the cubic coefficients of the
set of Eqs. (10) vanishes. In order to quantify the saturation, it is necessary to include higher
order corrections into the amplitude equation. This case was studied in detail in Ref. [15]. Let
us summarize the main results of Ref. [15], and compare them with the predictions of other
type of spin-transfer torques. In a similar way of the previous section, we consider a two modes
ansatz of the form
(
θ
φ

)
≈
(
π/2
0

)
+R

[
A(t)eiq1·r +B(t)eiq2·r + Ā(t)e−iq1·r + B̄(t)e−q2·r]

(
1
1

)
+W′(A,B, Ā, B̄, r),

(15)
where the wave-vectors q1 and q2 have norm q, and their orientation is fixed by the border of
the sample. The prefactor R is the characteristic scale for patterns induced by a sinus torque,
which is defined as

R ≡ 4

√
4βz

(6βx + 3βz − 2q2)2
. (16)
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Figure 3. Comparison between analytic calculations (solid lines) and micromagnetic
simulations (crosses and circles). (a) Pattern amplitudes for the Slonczewski spin-transfer torque
with b = 0.55, and ∆ = 0. The solid line is the solution roll solutions of Eq. (10), while crosses
+ and circles • stand by the maximum of the Fourier transform of mz and my, respectively.
It is worth noting that at dominant order |my| ≈ |mz| ≈ |φ| ≈ |θ − π/2|. The fields (my,mz)
were obtained with the direct integration of the LLG Eq. (2) with h0 = −6, βx = 0.5, βz = 1,
α = 0.05, and spatial step size dx = 0.126289. (b) The same as in (a) for a sinus spin-
transfer torque (b = 0). At the onset of the spatial instability, the amplitudes of follow the law
|A| ∼ ε1/4 predicted by the amplitude equation (17), nevertheless far from the bifurcation the
square pattern becomes unstable giving rise to the stationary pattern of the inset.



Replacing the ansatz (15) in the LLG equation and imposing solvability condition, we get

dA

dt
= εA− 8

3

2− 3D

1−D A|A|2|B|2 −A|A|4 − 8

3

1

1−DA|B|
4,

dB

dt
= εB − 8

3

2− 3D

1−D B|B|2|A|2 −B|B|4 − 8

3

1

1−DB|A|
4, (17)

with ε ≡ g0 − g0,c. Note that the modes interaction is mediated by quintic nonlinearities. This
type of transition is known as quintic supercritical bifurcation. The parameters D accounts for
the competition between the external magnetic field and the anisotropies

D ≡ 2

3

q2

2βx + βz
=

2|h0| − 2βx − βz
6βx + 3βz

. (18)

The above set of equations admits roll solutions of the form (|A|, |B|) = (ε1/4, 0) and (|A|, |B|) =
(0, ε1/4). The phase portraits of the set of Eqs. (17) are shown in Fig. 4. These solutions
are linearly stable when the field |h0| is small compared with the anisotropy constants (or
equivalently D < 1). For intense fields (D > 1) the rolls become unstable. In the last case, the
square-like equilibrium A = B = (ε/9)1/4 is linearly stable. Figure 1(c) shows a square pattern
obtained for h0 = −6, where D > 1. The phase portrait of this case is in Fig. 4(b). For the
critical value of the external field h0,c = −2(2βx + βz) the quintic saturation vanishes, and the
analysis of pattern formation requires higher order corrections.

Since the saturation is given by the quintic order nonlinearities, then the equilibrium states
grow as my ∼ mz ∼ (g0 − g0,c)1/4 as illustrated in Fig. 3(b). Moreover, the mx magnetization

component follows the law mx ∼ (g0 − g0,c)
1/2. Note that the square pattern of Fig. 1(c)

becomes unstable when g0 is surpasses a critical value; in this situation additional modes grow
and interact. In the context of dynamical systems this bifurcation is known as a secondary
instability of the underlying pattern. A different pattern appears from this instability as shown
in the inset of Fig. 3(b).

In brief, the case of the sinus approximation: the equilibrium magnetization depends on the
external field and the anisotropies; there is a transition for a critical value of the external field,
in this transition the roll solutions interchange stability with the square-like pattern. Finally,
the margnetoresistence depends on the square-root of the current δr ∼ (g0 − g0,c)1/2.
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|B|
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|B|
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4
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√ε
4
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Figure 4. Phase portrait of amplitude Eq. (17), where a sinus-approximation for the spin-
transfer torque has been considered. Black circles stand for stable pattern equilibria, while
empty circles are for unstable states. a) Small external field (D < 1) favors the formation of
rolls. b) High external magnetic field (D > 1) favors the square equilibrium.
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Figure 5. Hysteresis loop for asymmetric spin-valves. (a) The spatial average mav
x of mx, at

equilibrium, is obtained integrating the LLG Eq. (2) with b = 0.55, ∆ = 0.2, h0 = −6, βx = 0.5,
βz = 1, α = 0.05, and spatial step size dx = 0.126289. (b) mx component of the equilibrium
magnetization for g0 = g0,c.

3.3. Hysteresis (Γ < 0)
A completely different scenario occurs for highly asymmetric spin-valves. If the coefficient ∆
surpasses the critical value ∆c = (1− b)2/(1 + b)2, the cubic nonlinearities amplify the pattern
and higher order corrections must be included in Eq. (10). In such case the spatial instability
is subcritical, and patterns exist even for g0 < g0,c. Physical systems with subcritical spatial
instabilities are characterized by an hysteresis region close to the critical point (in this case
g0 = g0,c), it is, both the parallel state and patterns are stable. Figure 5 illustrate the hysteresis
for the spatial average of the magnetization component mx at equilibrium, mav

x . Hence, in the
case of asymmetric enough spin-valves, the magnetoresistence has a discontinuity.

From the viewpoint of dynamical systems, subcritical spatial instabilities generate a wide
variety of states, such as domain walls, localized patterns, and interacting solitary structures [23],
among others. The self-organization of highly asymmetric spin-valves forced with spin-polarized
currents is an open problem, which could be interesting for memory technologies.

4. Conclusions and remarks
We have studied the formation of periodic textures in spin-valves, with a general type of
spin-transfer torque. Using the weakly nonlinear analysis, we have found that the type of
spatial instability changes from supercritical, to quintic supercritical and subcritical bifurcations
depending on the form for the spin-transfer. The sinus approximation gives a pattern growing
law of (g0 − g0,c)1/4, the magnetoresistance depends on the anisotropies and the external field.
In opposition, for the Slonczewski spin-transfer torque and the general spin-transfer torque,
the textures grow as (g0 − g0,c)1/2, and the magnetoresistance is independent of the external
field and the easy-axis anisotropy βx. Moreover, for highly asymmetric spin-valves, the spatial
instability that creates patterns becomes subcritical, which generate hysteresis loops. Numerical
simulations of the Landau-Lifshitz-Gilbert equation confirm these predictions. We expect that
the formation of textures will permit to have an additional dynamical test to the spin-transfer
torque terms, as well as possible application of pattern states in technology.
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Parametric Phenomena in Magnetic
Nanostripes

Alejandro O. León

Abstract Systems with a time-modulated injection of energy self-organize into
patterns and solitons. Magnetic systems forced by a direct spin-polarized current
and a constant external field are equivalent to parametrically driven systems. This
parametric equivalence implies that both systems are described by the same model,
the parametrically driven, damped nonlinear Schrödinger equation, and that they
exhibit the same parametric phenomena, which includes patterns and solitons. We
review here recent literature on the topic, and we investigate the case of long and
narrow magnets. This configuration reduces significantly the critical currents at which
self-organization emerges, and it allows the formation of bound states of solitons.

1 Introduction

In the presence of external forcing, magnetic materials exhibit a wide range of dynam-
ical responses which include self-oscillations [1, 2], chaos [3, 4], patterns [5], soli-
tons [6, 7], skyrmions [8] and rogue-waves [9]; this versatility renders magnetic
materials an ideal framework to study nonlinear dynamics and self-organization.
A particularly promising scenario occurs at nanoscales, where the magnetization
is manipulated by effects which are negligible in larger systems, such as the spin-
transfer torque. This effect occurs when the spins of an electric current interact with
the spins of a ferromagnetic medium [10–12]. When the spin of conduction electrons
have a preferred orientation—spin-polarized current—the spin-transfer torque can
generate self-oscillations with microwave frequencies and magnetic reversions [13].

From a dynamical systems viewpoint, spin-transfer torques are non-variational
effects that can inject or dissipate the ferromagnetic energy. The first case is important
for technological applications since energy injections can induce permanent behav-
iors such as limit cycles [2, 13] and chaos [14]. In addition, spin-polarized currents
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can switch the magnetization from one equilibrium to another, which is particularly
important for the development of memory technologies [12].

The presence of a dissipative spin-transfer torque permits to generate stationary
patterns [5], domain walls and dissipative solitons [6]. This rich variety of mag-
netization textures can be understood because a magnetic medium in presence of
spin-polarized direct currents obeys the same equations of macroscopic systems with
a time-dependent forcing [6], known as parametrically driven systems [15]. These
systems are characterized by oscillating at half the forcing frequency and exhibiting
sub-harmonic resonances [15]. In several cases, these resonances induce patterns or
Faraday-type waves [16] and solitons [17–20]. A few examples of parametrically
driven systems are vibrating fluids [17], nonlinear lattices [21], light pulses in opti-
cal fibers [22], optical parametric oscillators [23], and ferromagnetic materials under
oscillatory magnetic fields [24, 25]. Parametrically driven systems can be described
in a unified manner using the parametrically driven, damped nonlinear Schrödinger
equation (PDNLS) [26], this model is valid when the forcing frequency is close to
twice the natural frequency of oscillations, and the injection and dissipation of energy
are small. The PDNLS equation admits several analytic solutions for one-dimensional
systems, in particular, expressions for solitons [17, 27] and patterns [28] are known.
Hence, the equivalence between parametrically driven systems and magnets forced
by a direct spin-polarized current, has permitted to predict a large variety of states
in nanomagentism, and to use the PDNLS analytic solutions as approximations for
the magnetic states [6].

We review here the parametric equivalence, and apply it to large and narrow mag-
nets driven by spin-polarized currents. Some advantages of this configurations are
the stabilization of multiple localized states for long enough magnets, the reduc-
tion of critical currents at which patterns and solitons emerge, and the simplicity of
one-dimensional systems.

The chapter is organized as follows. In next section we describe the theoretical
model of a ferromagnetic medium under spin-polarized currents. In Sect. 3 we review
the parametric equivalence and its most important predictions. The discussions and
conclusions are left to the final section.

2 Theoretical Model for Magnetization Dynamics

In the continuum approach, magnetic nanostripes are described by their magnetiza-
tion vector M(x′, t) [1]. Time t′ = γ0Mst and the space coordinates x′ = lexx, where
x is the direction of the stripe, are written in terms of the following material prop-
erties: the gyromagnetic ratio γ0, the saturation magnetization Ms and the exchange
length lex. At nanoscales, the magnetization norm ||M|| = Ms is constant within
the material, and therefore the dynamical variable is the unitary vector m = M/Ms.
The following phenomenological model, known as Landau-Lifshitz-Gilbert (LLG)
dimensionless equation, describes the magnetization evolution [1]
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∂tm = −m × heff + αm × ∂tm, (1)

where the first term of (1) accounts for precessions around the effective field heff

defined by

heff ≡ − L0

μ0M2
s

δEM

δm
= ∂xxm + h0 + hD + βx0mxex, (2)

and

EM = μ0M2
s

L0

∫ L0

0

[
1

2
|∂xm|2 − m · h0 − 1

2
m · hD − βx0

2
m2

x

]
dx, (3)

the vectors ∂xxm and h0 stand for the exchange and external fields, respectively. The
magnetostatic field hD is usually a nonlocal function of the magnetization, and it is
obtained by solving Maxwell equations inside the material. The magnetocrystaline
anisotropy is given by βx0mxex, and it favors orientations along the x axis. EM is the
magnetic energy of the material. When the last term of (1) is zero, the magnetization
is a Hamiltonian oscillator and the energy is conserved.

The term proportional to α in (1) models dissipation mechanisms [1]. If the exter-
nal field h0 is independent of time, then the magnetic energy converges monotoni-
cally to its minima dEm/dt = −(αμ0M2

s /V0)
∫ |∂tm|2 ≤ 0 at a rate proportional to

α. Hence, magnetic materials are damped oscillators, and after transients the mag-
netization reaches its stable equilibrium. One possibility to break the relaxation-
type dynamic of the LLG equation is by using a time-dependent external field
h0 → h0(t). Under this parametric injection, ferromagnetic media exhibit Faraday-
type waves [28], fronts and several types of localized states [24, 26, 27, 29–33]. The
case of oscillatory fields has been extensively studied in the literature, and then we
will focus on another physical effect that permits to manipulate the magnetization,
namely the spin-transfer torque.

Spin-transfer torques emerge in multilayer nanopillars (see Fig. 1). This type of
metallic device is composed by two conducting ferromagnetic layers separated by
a nonmagnetic metal. The electric current is uniform and it flows perpendicular to
the plane of the layers. One magnetic film has fixed magnetization and it is used

m

spin-polarizer

spacer

ha

ex

eyezp

Fig. 1 Nanopillar device. This conducting structure is composed by two magnetic nanostripes and
a nonmagnetic spacer. The magnetization is fixed for one ferromagnet, and it is used to polarize
the electric current that flows perpendicular to the layers. We are interested on the magnetization
dynamics of the second material, which are affected by the electric current and an external field ha
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as a filter (polarizer) for the spins of the electric current. We are interested on the
magnetization dynamics of the second material, which is free and evolves according
to the LLG equation. Spin-polarized currents can be modeled as an additional torque
τstt in the (1). At leading order, this term reads

τstt = g′m × (m × p) , (4)

where p is the direction of the spins of the electric currents. The function g′(m · p),
known as spin-transfer efficiency, accounts for the details of the transport processes
of conduction electrons. There are several expressions in literature [10, 35–40] for g′,
the simplest one is to approximate g′(m · p) ≈ g′(1), this approach is known as sine-
approximation. In this chapter we use this approximation. The parameter g ≡ g′(1)

depends on the intensity of the applied electric current and device properties [34]

g = �
2|e|dz

η0J

μ0M2
s

,

where J is the current density of electrons, dz the thickness of the free layer and
e < 0 the electric charge. The current density of electrons J and the parameter g are
negative when the electrons flow from the fixed to the free layer. All other transport
properties of the materials are summarized in the η0 coefficient.

2.1 Simplified Model for Magnetization Dynamics
in Nanostripes

Let us focus on the nanostripe magnet of Fig. 1. A nanostripe is a large and narrow
thin film, satisfying dx � dy � dz for the lateral dimensions along the respective
Cartesian axis. We approximate the magnetostatic field by shape anisotropy terms
βx1 and βz, where βx1 (βz) favors (disfavors) configurations along the x axis (z axis).
We set both the external field direction h0 = h0ex and the spin-current direction
p = ex along the x axis. Under these assumptions, the LLG model simplifies to

∂tm = −m×[
(h0 + βxmx)ex − βzmzez + ∂xxm

]+αm×∂tm+gm×(m × ex) , (5)

where βx ≡ βx0 + βx1. This model admits two homogeneous stationary states:
m = ±ex in which the magnetization points parallel (+) and antiparallel (−) to
the polarization direction of the current. We concentrate on the first state, however
the dynamics of the antiparallel state are equivalent in the appropriate region of the
parameter space, due to the symmetry (ha, g) → −(ha, g) of (5).

It is worth noting that we study time-independent forcing mechanisms, namely
a direct electric current and a constant magnetic field, and then this systems is not
parametrically driven. Even so, using an appropriate change of variables, the system
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can be described by the PDNLS equation (as we will see in next section) and then
it exhibits the phenomena usually found in parametrically driven systems, such as
patterns and solitons [6].

3 Parametric Equivalence

3.1 Stereographic Projection

The Landau-Lifshitz-Gilbert equation conserves the magnetization norm ∂t|m| =
(m · ∂tm)/|m| = 0, and then it can be written in different coordinate systems such
as spherical [1, 5], canonical [1], and stereographic variables [1, 41]. In stereo-
graphic representation, the equations for magnetization dynamics take the form of
a generalized complex Ginzburg-Landau model, which is a paradigmatic descrip-
tion of nonlinear oscillators. Figure 2 shows the stereographic representation, which
is obtained by projecting the phase space—spherical surface—over the equatorial
plane mx = 0, according to [41]

a(x, t) = my + imz

1 + mx
. (6)

The complex field a represents deviations from the parallel state m = ex. Replacing
formula (6) in (5) and after straightforward calculations one obtains (the generalized
complex Ginzburg-Landau model)

(i + α) ∂ta = (ig − ha) a − βz

2
(a − a)

1 + a2

1 + |a|2 − βxa
1 − |a|2
1 + |a|2 + ∂xxa − 2

a (∂xa)2

1 + |a|2 , (7)

(a) (b)

Fig. 2 Stereographic representation. a The unitary spherical surface m2
x + m2

y + m2
z = 1 is mapped

to the equatorial plane defined by mx = 0. b The projections on the complex field a = (my +
imz)/(1 + mx)
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where the term proportional to βx is a nonlinear saturation. The term proportional to
βz breaks the phase invariant a → aeiφ0 , and it is usually associated to parametric
forcing. The coefficients α and g break the temporal reversion invariance (t, a) →
(−t, a). Notice that in the absence of spin transfers (g = 0 but α �= 0) the (7) has
the structure of a variational (relaxation type) wave equation.

3.1.1 PDNLS-Limit

A notable limit of (7) is obtained for small amplitude magnetic motions and gradients
|∂xa| 	 |a| 	 1 and small anisotropy βz 	 1; in this case we can replace A ≡
aeiπ/4/

√
2βx + βz into (7) and after simplifications one obtains the parametrically

driven, damped nonlinear Schrödinger equation

∂tA = −i
(
νA + A|A|2 + ∂xxA

) − μA + γ Ā, (8)

where ν ≡ −ha − βx − βz/2 is the detuning between half the forcing frequency and
the response frequency in usual parametrically driven systems. The dissipation and
parametric injection are given by μ ≡ −g − αν and γ ≡ βz/2, respectively. The
equation scales as ν ∼ μ ∼ γ ∼ |A|2 ∼ ∂xx ∼ ∂t , and all the higher order terms
have been neglected.

It is worth noting that in the present case the dissipation is an experimental control
parameter, while the injection γ ≡ βz/2 is not. The nanostripe geometry is between
two natural limits: the nanowire and the two-dimensional cross-section device. For
the nanowires we have dy ∼ dz 	 dx and the anisotropies are βz ≈ 0 and βx ≡
βx0 + βx1 ≈ βx0 + 1. In this case the injection γ is small and the required currents
are also small. On the other hand, for two-dimensional cross-section nanopillars, we
have dz 	 dy ∼ dx, and βz ≈ 1 and βx ≈ βx0. Then, the two-dimensional magnets
have a bigger parametric injection and higher electric currents are necessary to obtain
the scaling γ ∼ μ.

3.2 Interpretation in Terms of Equivalent Systems

The simple stereographic projection presented above permitted us to obtain the
PDNLS model in magnetic media forced by direct currents. Another approach to
derive this equation is to notice that the spin-transfer torque has the form of a pseudo
torque (non-inertial effect), and then the LLG equation can be transformed under an
appropriate change of reference frames into a rotating system.

Let us consider a stripe rotating with constant angular velocity along the x axis
direction Ω = Ω0ex, in presence of an external field h′

a = (ha + Ω0)ex, as shown
in Fig. 3. For this system, the magnetization equations can be written in two frames:
the inertial coordinate systems S′ defined by {e′

x, e′
y, e′

z} and the co-movil coordinate
system S given by the unit vectors {ex, ey, ez}, which is fixed to the stripe. In the first
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Fig. 3 Rotating magnetic stripe. The magnetization equations describe a parametrically driven
device in the inertial frame S′, on the other hand the magnetic equations in the co-movil frame S
are the same as (5)

frame we have
(

∂m
∂t

)∣∣∣∣
S′

= −m × h′
eff (t) + αm ×

(
∂m
∂t

)∣∣∣∣
S′

, (9)

h′
eff (t) = (h0 + Ω0 + βxmx)ex − βz (m · ez(t)) ez(t) + ∂xxm. (10)

Note that the projection over the fixed axis of the inertial frame produces a temporal
dependence of the form

(m · ez(t)) ez(t) = βz(− sin(Ω0t)m′
y + cos(Ω0t)m′

z)(− sin(Ω0t)e′
y + cos(Ω0t)e′

z).

Let us remark that the anisotropy field is a function of time, then, rotating stripes
are parametrically driven systems. Moreover, the frequency ω of the anisotropy
vector oscillations is close to twice the rotating frequency ω = 2(Ω0 + ν), where
ν is the detuning parameter defined in (8). Hence, the oscillation envelope of the
magnetization obeys the PDNLS equation (8).

The equation (9) can be written in the co-movil system S. After transforming the
temporal derivatives of vectors according to ∂t|S′ = ∂t|S + Ω× [15], we obtain

(
∂m
∂t

)∣∣∣∣
S

= −m × heff + αm ×
(

∂m
∂t

)∣∣∣∣
S

− αΩ0m × (m × ex), (11)

heff = (h0 + βxmx)ex − βzmzez + ∂xxm, (12)

where the last term of (11) is the non-inertial torque originated in the transformation
of the damping torque. The transformation of the left hand side of (9) is only a shift
of the external field. Note that (11) and (12) are exactly the same LLG model of the
spin-transfer driven stripe (5), where the intensity of the spin-transfer is proportional
to the angular velocity g = −αΩ0.

In brief, magnetic stripes driven by spin-transfer torques are equivalent to rotating
stripes without spin-transfer torques. Moreover, in an appropriate reference frame
both physical systems obey the same equations. Since rotating stripes are parametri-
cally driven systems, they exhibit sub-harmonic instabilities, solitons, and patterns.

The PDNLS amplitude equation has been used to predict self-organization in
several contexts. In the next subsection we review some of the solutions of this
equation and compare them with the phenomena observed in (5).
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Fig. 4 Bifurcation diagram of the PDNLS model. The right panel shows dissipative solitons and
patterns obtained from (8). Parameter values are γ = 0.5, μ = 0.45, and ν = −0.5 and ν = 1 for
solitons and patterns, respectively

3.3 Parametric Phenomena in Magnetic Nanostripes

We start writing the PDNLS equation in terms of the real and imaginary parts of the
amplitude A = u + iv,

∂tu = (γ − μ)u + (ν + ∂xx)v + v(u2 + v2),

∂tv = −(ν + ∂xx)u − (γ + μ)v − u(u2 + v2). (13)

The stability of the trivial state u = v = 0 is determined by its eigenvalues

λ± = −μ ±
√

γ 2 − (ν − k2)2, (14)

which predict several bifurcations. The first one, is an Andronov-Hopf instabil-
ity for μ ≥ 0. When this instability saturates, the system exhibits uniform self-
oscillations [13] with frequency ω0 = √

ν2 − γ 2. When the bifurcation is not satu-
rated, the magnetization switches to another equilibria. In this regime, the magne-
tization behaves as a nonlinear oscillator with negative damping [2]. Note that the
control parameter of this bifurcation requires is negative dissipation, which cannot
be obtained in parametrically driven systems.

Another bifurcation predicted by expression (14) is a stationary instability when
γ ≥ √

ν2 + μ2, this region is the well-known Arnold tongue (see Fig. 4). The critical
curve describing the Arnold tongue in the magnetic system is g2 + [ha − (βx +
βz/2)]2 = β2

z /4. Inside this region several states appear, such as localized states,
patterns, and domain walls [6, 26].
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3.3.1 Pattern Formation

The eigenvalues of expression (14) reveal a third bifurcation of the magnetic system,
which occurs for γ ≥ μ and positive detuning ν ≥ 0. This instability is characterized
by the emergence of spatially periodic patterns with intrinsic wavenumber

√
ν. At

the onset of this bifurcation, a reduced description in terms of the pattern amplitude
T(t) is obtained using standard techniques of weakly nonlinear analysis. Moreover
introducing the ansatz

(
u
v

)
= Tei

√
νx

(
1
0

)
− 3

2μ
T |T |2ei

√
νx

(
0
1

)
+ T 3

8ν
e3i

√
νx

(
1
0

)
+ c.c. + · · · , (15)

in (13), one gets the following Solvability condition for the envelope T (t) [28]

∂tT = (γ − μ)T − 9

2μ
T |T |4. (16)

This equation predicts the formation of a stable pattern for γ ≥ μ. Figure 4 shows
this solution, which at leading order reads A ≈ 2(2μ(γ − μ)/9)1/4 cos(

√
νx). This

bifurcation was studied in detail in [5] for both the one and two-dimenssions devices.
In the first case, the full solution of patterns obtained from (5) is [5]

my ≈ 2 4

√
4βz (g + βz/2)

(6βx + 3βz − 2ν2)2
cos(νx), (17)

where my ≈ −mz and mx ≈ 1 − (m2
y + m2

z )/2. This solution is exactly the same as
the PDNLS solution in the limit ν 	 1.

Let us remark that the critical current of the spatial instability is controlled by
the perpendicular anisotropy of the stripe g = βz/2. The perpendicular anisotropy is
fixed for square cross-section devices, but it can be significantly decreased for stripes
by adjusting the dy length.

3.3.2 Dissipative Solitons

The PDNLS equation (8) can be written in the terms of the modulus and phase of its
order parameter A = Reiφ , in this case

∂tR = −μR + 2∂xR∂xφ + R∂xxφ + γ R cos(2φ), (18)

R∂tφ = −νR − R3 − ∂xxR + R(∂xφ)2 − γ R sin(2φ), (19)

One simple solution of this equation is the uniform-phase soliton [24, 26]
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Fig. 5 Soliton-Antisoliton bound states. Snapshots of multiple localized solutions obtained from
the LLG (5). Parameters are g = −0.49781, ha = −0.939895, βx = 0.5, βz = 1, and α = 0.05

sin(2φs) = μ/γ,

Rs(x) = √
2δsech(

√
δx), (20)

where δ = −ν + √
γ 2 − μ2. The right panel of Fig. 4 shows the typical profile of

solitons given by the set of (20). Soliton amplitude and width are controlled by the
detuning and dissipation, or equivalently by the external field and the spin-polarized
current. Typical widths are about 30 nm. The uniform phase solitons ∂xφ = ∂xxφ = 0
become unstable when the size of the system surpasses a critical value, and a phase
structure emerges [27, 33]. According to our simulations, nanostrips are usually
small enough to ensure the stability of the uniform phase state. The magnetization
components take the following form for the soliton solution

mx = 2βx + βz − R2
s (x)

2βx + βz + R2
s (x)

,

(
my

mz

)
= 2Rs(x)

√
2βx + βz

2βx + βz + R2
s (x)

(
cos ϕs

sin ϕs

)
, (21)

One experimentally accessible quantity in nanopillars is the magentoresistance. The
magnetoresistance depends on the magnetic configuration, and it can be approxi-
mated in terms of the average magnetization mav

x along the polarization of the current,
δr = (1 − mav

x )/2. Hence, the soliton fingerprint is a magnetoresistance similar to
the one of the parallel state which increases with the square of the amplitude, it is
δr ∼ δ = ha + βx + βz/2 +

√
(βz/2)2 − g2. This is a prediction of the parametric

equivalence [6].
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3.3.3 Soliton-Antisoliton Bound States

In parametrically driven systems, multiple coexisting solitons can emerge and interact
among them [29, 42–46] and with walls [45–47]. The force between two remote
solitons has been studied experimentally and theoretically in [42]. This interaction
is attractive for soliton-soliton pairs [42], it is, for states that can be approximated
by R(x) ≈ Rs(x1) + Rs(x2) where x1 and x2 are the positions of soliton cores. As a
result of the attraction, solitons collapse [42, 43]. On the other hand, for solitons-
antisoliton pairs, where R(x) ≈ Rs(x1)−Rs(x2), the interaction is repulsive [42, 44].
At short ranges, a third possibility exists, namely the bound states [29]. In the case of
magnetic nanostripes, multiple soliton-antisoliton solutions can be found. Figure 5
illustrates these states, obtained from direct integration of (5). The multiple bumps
are observed in a wide region of the parameter space, while we have not observed
the soliton-soliton pair for this system. It is worth noting that this multi-stability
of solitary structures makes the nanostripe a magnetoresistive memory of multiple
levels.

4 Conclusions

Magnetic media forced by spin-polarized currents are equivalent to parametrically
driven systems. This equivalence explains the existence of a wide variety of states in
nanopillars, such as patterns and solitons. In this chapter we reviewed the parametric
equivalence of [6], and we applied it to nanostripes. This configuration admits a
one-dimensional description, moreover it reduces significantly the critical currents
at which self-organization emerges. We found that nanostripe geometry permits the
existence of soliton-antisoliton bound states. The creation and manipulation of soli-
tary structures could be important for further developments of memory technologies
and information carrying. Work in this direction is in progress.
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