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Abstract. We construct a finite analogue of classical Siegel’s Space. This
is made by generalizing Poincaré half plane construction for a quadratic field
extension E ⊃ F , considering in this case an involutive ring A , extension of the
ring fixed points A0 = AΓ , (Γ an order two group of automorphisms of A), and
the generalized special linear group SL∗(2, A), which acts on a ∗−plane PA .
Classical Lagrangians for finite dimensional spaces over a finite field are related
with Lagrangians for PA . We show SL∗(2, A) acts transitively on PA when A
is a ∗− euclidean ring, and we study extensibly the case where A = Mn(E).
The structure of the orbits of the action of the symplectic group over F on
Lagrangians over a finite dimensional space over E are studied.
Mathematics Subject Classification 2010: Primary 20G40; Secondary 11E16,
14M20, 17B10.
Key Words and Phrases: Finite Siegel half space, star-analogue.

1. Introduction

As a motivation for the construction below, we consider a second degree
extension of fields E ⊃ F . We recall that finite Poincaré half plane, more precisely
the double cover of finite Poincaré half plane, may be realized as the set of lines
through the origin in the usual plane E2 = E × E , whose slope does not lie
in F ∪ {∞} . Lines through the origin are however just the Lagrangians for the
symplectic bilinear form determinant on E2 , and the constraint that the slope
of a Lagrangian L does not lie in F ∪ {∞} amounts to saying that the form hE
given by Galois twisting of the determinant, that is, given by

hE(x, y) = x̄1y2 − x̄2y1

(equivalently we may consider the form hE(x, y) = x1ȳ2 − x2ȳ1)

for x = t(x1, x2), y = t(y1, y2) in E , is non degenerate when restricted to L .
Indeed, if the constraint on L is fulfilled, we may take a representative vector of
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the form t(z, 1) ∈ L (z ∈ E), so that L = { t(zx2, x2)|x2 ∈ E} and then hE on L
is given by

hE(

(
zx2

x2

)
,

(
zy2

y2

)
) = x̄2(z̄ − z)y2,

so hE non degenerate means just z 6= z̄ .

When E is finite, under the action of SL(2, F ) in the set LE,2 of all
Lagrangians (see example 2 below) we have the generic orbit consisting of all
Lagrangians on which hE is non degenerate and the residual orbit consisting of all
Lagrangians on which hE is degenerate, equivalently, hE is null on the subspace.
This holds if z = z̄ , i.e. z ∈ F or z = ∞ . One of the aims of this work is to
extend this example to a more general setting.

Classical Siegel’s half space is a clever generalization of Poincaré’s half plane.
In [10], the starting idea is to replace the real base field R by the full matrix ring
M(n,R). Then, Siegel’s half space which consists of all symmetric complex n× n
matrices whose imaginary part is positive definite, may be seen as a set of ”slopes”
of lines in Mn(R)×Mn(R).

Our approach to obtain the finite analogue of Siegel’s half space is to extend
the universal (double cover of) Poincaré’s half plane construction given in [12]) to
the case where the field E is replaced by a ring A with involution denoted ∗ . A
ring with involution is also called involutive ring, as in [6, 7]. Instead of the groups
SL(2, E), SL(2, F ) we have now their star-analogues [7], SL∗(2, A), SL∗(2, A0)
(A a Galois extension of A0). A natural SL∗(2, A)− space is the ∗−plane PA

consisting of all points x = t(x1, x2) ∈ A2 = A × A whose coordinates x1 and
x2 star-commute, i.e. x∗1x2 = x∗2x1 . Notice en passant the analogy with Manin’s
q−plane, whose points have coordinates that anti-commute.

We introduce the A−valued canonical ∗−anti-hermitian form ωA on A2

given by
ωA(x, y) = x∗1y2 − x∗2y1 (a)

for all x, y ∈ A2. We have then

ωA(y, x) = −ωA(x, y)∗

for all x, y ∈ A2, and we see that the ∗−plane PA consists of all isotropic vectors
for ωA. We also notice that if we write

x∗ = (x∗1, x
∗
2)

for x = t(x1, x2) ∈ PA , then we have ωA(x, y) = x∗Jy where

J =

(
0 1
−1 0

)
A way to stratify the ∗−plane PA is to choose a suitable equivalent relation

on the set of left ideals in A so that the family of subsets PA(K) of PA given by
the condition Ax+Ay = C(K) for each K left ideal in A , is a SL∗(2, A) invariant
partition of PA . In section 6 we explicit this point of view for the ring A = Mn(E)
endowed with the transpose map.
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In this note we show SL∗(2, A) acts transitively on PA(A) for any ∗−eu-
clidean ring A . For the particular case, A = Mn(E), a consequence of a theorem
of Witt give us that SL∗(2, A) acts transitively on PA(K), for an arbitrary ideal
K . One of our main results yields the orbits structure of the group SL∗(2, A0)
(A0 = Mn(F )) in PA(A), this is presented in section 6. A consequence of our
result is an analysis of the set of inner anti-involutions of Sp(n, F ).

2. Preliminaries and main result

2.1. General setup.

Let (A, ∗) be an involutive ring. We will consider below the SL∗(2, A)− space
PA = {x : x = t(x1, x2) ∈ A× A, x∗1x2 = x∗2x1}. Define Aut(A) to be the group of
automorphisms or anti-automorphisms of A . Let G = {idA, τ} be a subgroup of
Aut(A) of order 2, and let A0 = AG = {x ∈ A : τ(x) = x} . We have

Lemma 1. A ⊃ A0 is a Galois extension, i.e., A0 = AAutA0
(A) .

Proof. It is clear that AAutA0
(A) ⊃ A0 . On the other hand, if x ∈ A\A0 , then

τ(x) 6= x . So x cannot be an element of AAutA0
(A) .

In what follows, the elements of A2 will be considered as column vectors and A2

as a left A−module.

Remark 1. PA is the additive subgroup of A2 consisting of the ωA−isotropic
vectors.

Definition 1. For a matrix M = (mij) in Mn×m(A) we set M∗ = (m∗ji), which
lies in Mm×n(A).

Set J =

(
0 1
−1 0

)
. According to [8], we recall the group

Definition 2. SL∗(2, A) = {g ∈M2(A) : g∗Jg = J}

Lemma 2. PA is stable by the natural (left) action of SL∗(2, A) on A2 .

Proof. Let g be an element of SL∗(2, A) acting on A2 and x = t(x1, x2) in
PA . Then ωA(gx, gx) = (gx)∗Jgx = x∗g∗Jgx = x∗Jx = ωA(x, x) = 0.

For each order two subgroup G = {idA, τ} we define a ∗ -τ -antihermitian form
on A2 with values in A , which we denote by hG , by

hG(x, y) = ωA(τ(x), y) x, y ∈ A2. (1)

We observe that when we pick x = t(x1, x2) , y = t(y1, y2), z ∈ A , with
x1 = zx2, y1 = zy2 , we have
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hG(x, y) = τ(x2)∗(τ(z)∗ − z)y2. (2)

hG(xp, yp) = τ(p)∗hG(x, y) p, forx, y ∈ A2, p ∈ A. (3)

We would like to point out that each level set {x ∈ PA : hG(x, x) = c} is
SL∗(2, A0)− invariant.

2.2. ∗−Euclidean Rings.

Definition 3. A unitary ring with involution ∗ is called a ∗−euclidean ring
if given a, c ∈ A such a∗c = c∗a and Aa + Ac = A, there is a finite sequence
s0, s1, ..., sn−1 ∈ Asym = {s ∈ A : s∗ = s} and r1, r2, ..., rn ∈ A, with rn ∈ A× such
that

a = s0c+ r1

c = s1r1 + r2

. = .

. = .

. = .

rn−2 = sn−1rn−1 + rn.

(1)

Examples of such rings are, among others, the integers endowed with the identity
as involution and EndE(V ), endowed with ∗ map the associated adjoint map
coming from a non-degenerate symmetric bilinear form on the finite dimensional
space V ( [11] page 154, lemme 2).

Lemma 3. Let A be a ring with involution. Let a, c ∈ A be such that a∗c = c∗a
and let q, r ∈ A, with q a symmetric element, be such that c = qa + r . Then
a∗r = r∗a.

Proof. Since r = c− qa we have a∗r = a∗c− a∗qa and r∗a = (c∗− a∗q)a , from
which the result follows.

Lemma 4. Let Ac+ Aa = A, assume q is symmetric so that c = qa+ r .
Then Aa+ Ar = A.

Proof. There exist x, y ∈ A such that 1 = xa + yc , so 1 = xa + y(qa + r),
which implies 1 = (x+ yq)a+ yr . Thus, the lemma follows.

Lemma 5. If Aa + Ac = A, a∗c = c∗a , c = qa + r , a = q1r + r1 with q, q1

symmetric, and r1 invertible, then there exist b, d ∈ A such that

g =

(
a b
c d

)
belongs to SL∗(2, A).

Proof. We have r1 = a − q1r = a − q1(c − qa) = (1 + q1q)a − q1c , then
1 = r−1

1 (1 + q1q)a− r−1
1 q1c .
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We set b = (r−1
1 q1)∗ and d = (r−1

1 (1 + q1q))
∗ , then 1 = d∗a− b∗c . From lemma 3

we obtain r∗r1 = r∗1r , which yields (r∗1)−1r∗ = rr−1
1 . Next, we show

i) ab∗ = ba∗

ii) cd∗ = dc∗

iii) b∗d = d∗b

Then, in accordance with [8], this shows g belongs to SL∗(2, A). So, we verify i),
ii) and iii).
i) ab∗ = ar−1

1 q1 = (q1r + r1)r−1
1 q1 = (q1rr

−1
1 + 1)q1

ba∗ = q1(r∗1)−1a∗ = q1(r∗1)−1(r∗q1 + r∗1) = q1(r∗1)−1r∗q1 + q1,

hence ba∗ = q1rr
−1
1 q1 + q1 and we have verified i).

ii) Since c = qa+ r = q(q1r + r1) + r we have c∗ = (r∗1 + r∗q1)q + r∗ .

hence, cd∗ = (qq1r + qr1 + r)(r−1
1 (1 + q1q)) and

dc∗ = (1 + qq1)(r∗1)−1(r∗1q + r∗q1q + r∗) = (1 + qq1)(q + rr−1
1 q1q + rr−1

1 )
after we compute the multiplications we obtain ii).
iii)We have b∗d = r−1

1 q1(1 + qq1)(r∗1)−1 and d∗b = r−1
1 (1 + q1q)q1(r∗1)−1 .

Proposition 1. Let A be a ∗− euclidean ring. If Aa+Ac = A and a∗c = c∗a,
then there exist b, d in A such that

g =

(
a b
c d

)
belongs toSL∗(2, A)

Proof. Given that A is a ∗−euclidean ring, there is a finite sequence of sym-
metric elements q0, q1, ..., qn−1 and r1, r2, ..., rn ∈ A , with rn ∈ A× such that

a = q0c+ r1

c = q1r1 + r2

. = .

. = .

. = .

rn−2 = qn−1rn−1 + rn.

Applying lemmas 3 and 4 to the sequence, yields Arn−2 +Arn−3 = A , r∗n−3rn−2 =
r∗n−2rn−3 .
On the other hand, rn−3 = qn−2rn−2 + rn−1 and rn−2 = qn−1rn−1 + rn where
qn−2, qn−1 are symmetric and rn invertible.
We can apply then lemma 5 to get bn−2, dn−2 such that

gn−2 :=

(
rn−2 bn−2

rn−3 dn−2

)
belongs toSL∗(2, A).

We multiply on the left this last equality by the element
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(
1 qn−3

0 1

)
of SL∗(2, A), to get

(
1 qn−3

0 1

)
gn−2 =

(
rn−4 −dn−3

rn−3 −bn−3

)
for some bn−3, dn−3 ∈ A.

By proposition 3 of [8]

gn−3 :=

(
rn−3 bn−3

rn−4 dn−3

)
belongs toSL∗(2, A).

This process, applied n − 2 times, give us b, d ∈ A such that

(
a b
c d

)
belongs

to SL∗(2, A).

From which the proposition follows.

Definition 4. Given t(a, c) ∈ PA , with Aa + Ac = A. The generic vector
line L( a

c ) in PA is the subset of A2 consisting of all right multiples t(a, c)r where

r runs over the set of invertible elements of A. We write P1
×(PA) for the set of

generic vector lines.

Corollary 1. For an Euclidean ring A, the group SL∗(2, A) acts transitively
on the set P1

×(PA).

Proof. We observe first that t(1, 0) defines a generic line. Owing to the propo-
sition, given a generator of a generic line Lt(a,c) , there exists b, d ∈ A so that(
a b
c d

)
∈ SL∗(2, A). Since

(
a b
c d

)(
1
0

)
=

(
a
c

)
, the corollary follows.

Remark 2. We have that L( a
c ) = L(

a′

c′

) if and only if a′ = ar, c′ = cr for an

invertible element r in A.

2.3. The full matrix ring case.

We now specialize to the case where the involutive ring (A, ∗) is the full
matrix ring Mn(E) over a finite field E , endowed with the transpose mapping.
We assume that E is a quadratic extension of a subfield F with Galois group
Γ := {Id, τ} . Then τ extends to an automorphism τ of A = Mn(E), and A is
a Galois extension of A0 = Mn(F ), with Galois group Γ := {Id, τ} . Thus, we
have two special linear groups, defined respectively, over the rings A and A0 , the
group SL∗(2, A) and the special linear group obtained restricting the coefficients
from A to the fixed subring A0 . From now on, we write τ(x) =: x̄ . Henceforth,
we consider the symplectic vector space E2n, of column vectors, endowed with the
canonical symplectic form ω , that in terms of the canonical basis e1, · · · , e2n for
E2n is given by ω(ej, en+j) = −ω(en+j, ej) = 1, j = 1, . . . , n and ω(ek, es) = 0 for
|k − s| 6= n .
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It follows from [6] that the elements of SL∗(2, A) = Sp(n,E), are described as the
2n× 2n matrices(

A B
C D

)
A,B,C,D ∈Mn(E) :

tAD − tCB = 1, tAC = tCA, tBD = tDB. (SE)

We have an analogous description for SL∗(2, A0) = Sp(n, F ).
The set of classical Lagrangian subspaces for ω in E2n is denoted by LE,2n .

A generic vector line L(a,b) ⊂ PMn(E) may be readily identified with classical
Lagrangians. Indeed, in [6] a Lagrangian subspace L in E2n is described as
L = L(a,b) = L( a

b ) = 〈Pa + Qb〉 (a, b ∈ A,Aa + Ab = A, a∗b = b∗a) where the

(row) vectors P and Q are given by P = (e1, · · · , en), Q = (en+1, · · · , e2n) and
〈u〉 stands for the vector subspace of E2n spanned by the components u1, ..., un
of any u ∈M = (E2n)n . We have

L(a,b) := L( a
b ) :=

{(
ax
bx

)
, x ∈ En

}
.

(2.3.1) We recall L(a,b) = L(c,d) if and only if there exists p ∈ GLn(E) so that
a = cp, b = dp . This is so, owing to the simple fact that two liner transformations
s, t from one vector space into other, have the same image if and only if there
exists an invertible linear operator p on the initial vector space such that s = tp .
Therefore, remark 2, allow us to conclude: the generic vector line L(a,c) can be
identify with the Lagrangian L(a,c) , Thus, the classical Lagrangian set LE,2n is in
bijective correspondence with the space P1

×(PMn(E)) of non commutative vector
lines through the origin in PMn(E) .

The group SL∗(2,Mn(E)) = Sp(n,E), acts in both spaces P1
×(PMn(E)),

LE,2n , obviously the map L(a,b) 7→ L(a,b) is equivariant. In Corollary 1, we have
shown that the group Sp(n,E) acts transitively on the set of generic vector lines
P1
×(PMn(E)), hence it acts transitively in the space LE,2n . This last observation is

also a consequence of a theorem of Witt.

It is known that for a finite field E and a hermitian form (W,h) on a finite
dimensional vector space W over E , there always exists an ordered basis w1, . . . of
W and a nonnegative integer r so that h(wk, ws) = δks (δij is as usual Kronecker
delta) for k, s ≤ r and h(wk, ws) = 0 for k > r or s > r . In this situation we
define the type of the form (W,h) to be r.

We denote the set of n × n symmetric matrices with coefficients in E by
Sym(En). The isotropy subgroup for the subspace L+ spanned by e1, . . . , en is
the semidirect product of the subgroups

K :=

{(
A 0
0 tA−1

)
, A ∈ GLn(E)

}
(4)

P+ =

{(
I B
0 I

)
, B ∈ Sym(En)

}
(5)
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On the other hand, the isotropy subgroup for the subspace L− spanned by the
vectors en+1, . . . , e2n is the semidirect product of K times the subgroup

P− =

{(
I 0
B I

)
, B ∈ Sym(En)

}
(6)

Let L : Sym(En)→ LE,2n be the Siegel map defined by the formula

L(Z) =

{(
Zx
x

)
, x ∈ En

}
= L(

Z
In

) (7)

The Siegel Lagrangian L(Z) = LZ,In in the notation of [6] . L− = L0,In .

Remark 3. Whenever F = R, we have that L(Z) is equal to the action on the
subspace L− of the exponential of the Lie algebra element (0, Z, 0, 0) ∈ sp(n,C).

We define, the bar−anti-hermitian form hE on E2n by the equality

hE(v, w) = ω(v̄, w) = tx̄s− tȳr, v, w ∈ E2n, v =

(
x
y

)
, w =

(
r
s

)
. (8)

Then, hE is a non-degenerate, bar−anti-hermitian form, i.e, hE(x, y) = −hE(y, x̄),
we have Sp(n, F ) = U(E2n, hE) ∩ Sp(n,E).

Proposition 2. We have the decomposition into Sp(n, F )−invariant subsets

LE,2n =
⋃

0≤r≤n

Hr,

where Hr stands for the set of all W ∈ LE,2n such that the type (rank) of hE
restricted to W ×W is r .

In order to carry out the proofs of the results, it is going to be useful to consider
the hermitian form

h0 : E2n × E2n → E (9)

defined so that the canonical basis is an orthogonal basis for h0 , h0(ej, ej) = −1
for 1 ≤ j ≤ n and h0(ej, ej) = 1 for n+ 1 ≤ j ≤ 2n .

We define the group

Sp0(n, F ) := U(E2n, h0) ∩ Sp(n,E). (10)

Later on, for a finite field F in proposition 3, we recall a generalized Cayley
transform, C in Sp(n,E), studied by [11], i.e., we show there exists an element
which conjugates Sp(n, F ) into Sp0(n, F ). That is, C−1Sp0(n, F )C = Sp(n, F ),
a well known result for F = R . Actually, we verify in (conf),

h0(Cv,Cw) = cnhE(v, w). (11)
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Among the objectives of this note are, for a finite field F , to determine the or-
bits of both groups Sp(n, F ), Sp0(n, F ) in LE,2n and the intersection of each orbit
with the image of the Siegel map. When F = R, E = C this problem has been
considered and solved by [14], [5] and references therein. In [3] a description
for Sp(n, F )\Sp(n,E)/P0 , is given, here P0 is a minimal parabolic subgroup for
Sp(n,E). See also [9]. In [4], the computation of the compression semigroup of
each of the orbits is treated for the case F = R .

Let Or the set of Lagrangian subspaces W ∈ LE,2n so that the form h0 restricted
to W is of type r . Obviously Sp0(n, F ) leaves invariant the subset Or and
LE,2n = On ∪ On−1 ∪ · · · ∪ O0.
One of the main results of this work is:

Theorem 1. Assume F is a finite field, then

• The orbits of Sp0(n, F ) in LE,2n are exactly the sets Oj, j = 0, · · · , n.

• The orbits of Sp(n, F ) in LE,2n are exactly the sets Hj, j = 0, · · · , n.

• Any orbit of either Sp(n, F ) or Sp0(n, F ) intersects the image of the Siegel
map.

• Except for n = 1 and the orbit O0 , no orbit of Sp0(n, F ) is contained in the
image of the Siegel map.

• Hn is the unique orbit of Sp(n, F ) contained in the image of the Siegel map.

• CHj = Oj .

Next, we reformulate the classical statements in theorem 1, in the language
of the form hΓ defined in (1). To begin with, we point out the equality

tx̄ hΓ(( r
s ) , ( t

u )) y = hE(( rx
sx ) , ( ty

uy )), forx, y ∈ En, r, s, t, u ∈Mn(E).

Hence, for x ∈ PMn(E) the rank of the matrix hΓ(x, x) is equal to the rank of the
form hE restricted to the lagrangian subspace Lx . Thus, Hr is equal to the image,
under the map Lx 7→ Lx , of the set H̃r defined by L ∈ P1

×(PMn(E)) so that rank
of hΓ(x, x) is equal to r for some representative x of L . Since the map Lx 7→ Lx

is equivariant, the second affirmation in theorem 1 may be stated as: The group
SL∗(2, A

Γ) acts transitively in H̃r .

For the orbits Or we have a somewhat similar way to restate the fact that
Sp0(n, F ) acts transitively. For this, we consider the form H0 on A2 defined by

H0(v, w) = − tx̄r + tȳs = hΓ(v, ι(w)), v =

(
x
y

)
, w =

(
r
s

)
. Here ι(a, b) =

(b, a). Since h0(x, y) = hE(x, ιy), it readily follows that

tx̄ H0(( r
s ) , ( t

u )) y = h0(( rx
sx ) , ( ty

uy )), forx, y ∈ En, r, s, t, u ∈Mn(E).

It follows from (11) and the two previous equalities that the Cayley transform
C is a conformal map between (A2 × A2, hΓ) and (A2 × A2, H0). Thus, the
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subgroup Sp0(n, F ) of Sp(n,E) is the subgroup SL∗(2, H0) of SL∗(2,Mn(E)) of
elements leaving invariant the form H0 . Now, we consider the set Õr defined by
L ∈ P1

×(PMn(E)) so that rank of H0(x, x) is equal to r for some representative x
of L . Since the map Lx 7→ Lx is SL∗(2, H0) = Sp0(n, F )−equivariant, the first
affirmation in theorem 1 may be stated as: The group SL∗(2, H0) acts transitively
on Õr .
In the setting PA , the image of the Siegel map turns out to be the set SA of
vector lines L(a,b) so that b ∈ A× = GLn(E). Some of the remaining statements

are restated as: For n > 1, the orbit H̃n is contained in SA and the orbits
H̃r, r = 0, . . . n− 1 intersects non trivially SA as well its complement.

3. Proofs

In order to write down the proof of theorem 1 and some of its consequences, we
need to set up some notation and recall some known facts.

Following Siegel, we write sometimes (A,B,C,D) for the 2n× 2n matrix(
A B
C D

)
A,B,C,D ∈Mn(E).

tA denotes the transpose of the matrix A . Vectors v in Ek are column vectors,
so that we write tv for the row vector corresponding to v .
In particular, we will use

E2n 3 v =

(
x
y

)
, x, y ∈ En, E2n 3 w =

(
r
s

)
, r, s ∈ En.

Let In denote the n× n identity matrix and 0 denotes the zero matrix. We set

J :=

(
0 In
−In 0

)
.

Hence, ω(v, w) = txs− tyr = tvJw . Let Gn(E2n) denote the Grassmannian of the
n−dimensional subspaces of E2n . Hence, any of the groups Sp(n,E), Sp(n, F ),
Sp0(n, F ) acts on Gn(E2n) by TW = T (W ).

A n−dimensional linear subspace W of (E2n, ω) is a Lagrangian subspace
if and only if for every v, w ∈ W, tvJw = 0, if and only if txs − tyr = 0 for
every v, w ∈ W . For R, S ∈ En×n the subspace L(R,S) is Lagrangian, if and only
if tRS − tSR = 0 and the matrix ( R

S ) has rank n . Actually, any Lagrangian
subspace may be written as in the previous example (see also [8]). Particular
examples of Lagrangian subspaces are L+, L− = L(0),L(Z), (Z ∈ Sym(En)).
Needles to say, the image of L is equal to the orbit L− under the subgroup P+ ,
hence, Bruhat’s decomposition yields that the image of L is ”open and dense” in
LE,2n. Let p : E2n → En denotes projection onto the second component. That is,
p ( x

y ) = y . It follows that:

(3.1) A subspace W ∈ Gn(E2n) belongs to the image of L if and only if W is
Lagrangian and p(W ) is equal to En . Since p(L(a,b)) = Im(b) = b(En), we have
L(a,b) belongs to image of the Siegel set if and only if b is an invertible matrix. We
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obtain,
(3.2) For (A,B,C,D) ∈ Sp(n,E), Z ∈ Sym(En), the subspace
(A,B,C,D)L(Z) = L(AZ+B),CZ+D) belongs to the image of L if and only if
(CZ +D) is an invertible matrix. Therefore,
(3.3) Let G be either Sp(n, F ) or Sp0(n, F ) and fix Z ∈ Sym(En). Then the orbit
GL(Z) is contained in the image of L if and only if for every (A,B,C,D) ∈ G
the matrix (CZ + D) is invertible. In this case, (A,B,C,D)L(Z) = L((AZ +
B)(CZ +D)−1). We give a necessary and sufficient condition on g ∈ Sp(n,E) so
that g.L(Z) belongs to the image of the Siegel map in proposition 6.

Example 1. Orbits of Sp0(1, F ) in the space of Lagrangians LE,2 . We assume F
is a finite field. Let N(e) = eē be the norm of the extension E/F . The hypothesis
on F implies N is a surjective map onto F . After a computation, we obtain that
Sp0(1, F ) is the set of matrices{(

α β
β̄ ᾱ

)
: α, β ∈ E,αᾱ− ββ̄ = 1

}
.

In this case LE,2 = G1(E2). Since h0(( z
1 ) , ( w

1 )) = 1− z̄w , it readily follows:

O1 = {L(z,1), z ∈ E,N(z) 6= 1} ∪ {L+} ,
O0 = {L(z,1), z ∈ E,N(z) = 1} .

For z so that N(z) 6= 1 we have (1− zz̄)−1 = tt̄, t ∈ E . For the matrix

A :=

(
t̄ zt
z̄t̄ t

)
we have AL(0,1) = L(zt,t) = L(z,1) . Obviously A ∈ Sp0(1, F ). We are left to
transform L(0,1) into L(1,0) . For this, we fix z 6= 0 such that N(z−1) 6= 1. Then,
by means of A the line L(1,0) is transformed into the line L(1,z̄) , which is equal to
the line L(z̄−1,1). Thus, Sp0(1, F ) acts transitively on O1 .
We now show Sp0(1, F ) acts transitively in O0 . We fix L(a,1) so that aā = 1.
Let L(b,1) in O0 . Then N(a) = N(b), owing to theorem 90 of Hilbert we have
a
b

= dd̄−1 . Since the characteristic of F is different from two, the pair of vectors
( a

1 ) , ( 1
−ā ), as well as ( b

1 ) ,
(

1
−b̄
)

determine two ordered basis for E2 . Let T
be the linear operator defined by T (( a

1 )) = d ( b
1 ) and T (( 1

−ā )) = d−1
(

1
−b̄
)
.

A short computation gives h0(T ( a
1 ) , T ( 1

−ā )) = h0(d ( b
1 ) , d−1

(
1
−b̄
)
) and that

ω(T ( a
1 ) , T ( 1

−ā )) = ω(d ( b
1 ) , d−1

(
1
−b̄
)
), hence T lies in U(E2, h0) ∩ Sp(1, E) =

Sp0(1, F ). Whence, O0 is an orbit of Sp0(1, F ).

Remark 4. The orbit O0 is contained in the image of the Siegel map, whereas
the orbit O1 does contain a point in the complement to the image of the Siegel map.
This observation shows that for a finite field F and n = 1 our conclusions are
in concordance with the results obtained by other authors for the case of F = R.
More precisely in the real case, O1 splits in the union of two orbits, one orbit is
the set of lines where h0 is positive definite and the other is the set of lines where
h0 is negative definite. In this case the orbit corresponding to the set of lines where
h0 is positive definite is contained in the image of the Siegel map, whereas the orbit
corresponding to the set of lines where h0 is negative definite is not contained in



1056 Pantoja, Soto Andrade, and Vargas

the image of the Siegel map. The orbit corresponding to the set of lines where h0

vanishes is contained in the image of the Siegel map.

Lemma 6. Z be an element of Sym(En). Then L(Z) belongs to Hr if and
only if the anti-hermitian form on En defined by Z − Z̄ has rank r .

Proof. In fact, the form hE on L(Z) is given by

hE(( Zx
x ) ,

(
Zy
y

)
) = tx̄(Z̄ − Z)y x, y ∈ En,

from which the lemma follows.

Example 1. For a finite field F, the orbits of Sp(1, F ) in LE,2 are Hr, r = 0, 1.
In fact,

H1 = {L(z,1) : z − z̄ 6= 0} and H0 = {L(z,1) : z ∈ F} ∪ {L+ = L(1,0)}.

Since J ∈ Sp(n, F ) we have that L(1,0) is in the orbit of L(0,1) . Since the
matrix (1, s, 0, 1) ∈ Sp(1, F ), s ∈ F and (1, s, 0, 1) t(0, 1) = t(s, 1) we have that
Sp(1, F ) acts transitively in H0 .
Next, we show that Sp(1, F ) acts transitively in H1 . Let L(z,1), L(w,1) so that
z − z̄ 6= 0, w − w̄ 6= 0, Since F is a finite field, there exists t0 ∈ E so that
z − z̄ = t0t̄0(w − w̄). We define

A :=
1

z − z̄

(
t0w − t̄0w̄ zt̄0w̄ − z̄t0w
t0 − t̄0 zt̄0 − z̄t0

)
The coefficients of A belong to F and

A ( z
1 ) =

z

z − z̄

(
t0w − t̄0w̄
t0 − t̄0

)
+

1

z − z̄

(
zt̄0w̄ − z̄t0w
zt̄0 − z̄t0

)
= t0

(
w
1

)
.

detA =
(z − z̄)(w − w̄)t0t̄0

(z − z̄)2
= 1.

We note that H1 is contained in the image of the Siegel map, whereas H0 is not.

3.1. Orbits of Sp(n, F ), Sp0(n, F ).

Lemma 7. Sp0(n, F ) acts transitively on On .

Proof. For a matrix A , we writte A? = tĀ . We have that L− = L(0) is an
element of On . First, we will prove that given L(Z) ∈ On , there is an element of
Sp0(n, F ) which carries L(Z) onto L− .

The matrix of the form h0 restricted to L(Z) is In− Z̄Z . Since L(Z) ∈ On , there
exists an invertible matrix A so that A(In −ZZ̄) tĀ = In . Set B := −AZ . Then,
since

A t(−AZ) = −AZ tA, andA tĀ− (−AZ)(− t(ĀZ) = A(In − ZZ̄) tĀ = In,
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the matrix (A,B, B̄, Ā) belongs to Sp0(n, F ) (it satisfies (SOR)).

On the other hand,

(A,B,C,D)L(Z) =
{(

(AZ+(−AZ))x

(B̄Z+Ā)x

)
, x ∈ En

}
=
{(

0
Ā(In−Z̄Z)x

)
, x ∈ En

}
.

Since the matrix Ā(In − Z̄Z) is invertible, L(Z) belongs to the orbit of L− .

Next, we will show that if W := L(R,S) = {( Rx
Sx ) : x ∈ En} ∈ On , then there exists

an element g in Sp0(n, F ) so that gW ∈ Image(L).

In fact, we will show there exists g ∈ Sp0(n, F ) so that
gW = {(Cx,Dx) : x ∈ En} with C invertible, then, by means of a matrix
(0, dIn, d̄In, 0) we transform gW into an element of the image of the Siegel map.

Since W is in On, there exists an invertible matrix A such that

A(−R?R + S?S)A? = In.

Let us consider g = (−AR?, AS?, ¯AS?, ¯−AR?). Then

gW = {((A?)−1x, ( ¯AS?R− ¯AR?S)x)x ∈ En}.

Since
−AR?(−AR?)? − AS?(AS?)? = A(−R?R + S?S)A? = In

because W is a Lagrangian subspace, tRS = tSR , hence, we have
−AR? t(AS?) = −AR?S̄ tA = −A t̄SR̄ tA = AS? t(AR?), and so the matrix g
belongs to Sp0(n, F ). This concludes the proof that On is the orbit of L− under
the group Sp0(n, F ). We sketch a different proof in Note 1.

Proposition 3. There exists an element Cn in Sp(n,E) so that C−1
n conjugates

Sp0(n, F ) onto Sp(n, F ).

Proof. We follow the proof in [11]. We choose v, b ∈ E\F so that N(v) =
−1, and b+ b̄ = 0. Then, b(v2 − 1) is a square in E . We define

Dn :=
1√

b(v2 − 1)

(
vIn bIn
In vbIn

)
Then, Dn ∈ Sp(n,E) and a computation gives tD̄nDn =

√
v2

v
(0, In, In, 0). We

fix a square root i ∈ E of −1. Let Cn := diag(iIn, In)Dndiag(−iIn, In). Then
tC̄ndiag(−In, In)Cn = i

√
v2

v
J . Since conjugation by the matrix

diag(iIn, In) leaves invariant Sp(n,E) and any automorphism of Sp(n,E) is inner
[2], we obtain Cn ∈ Sp(n,E). Moreover, for a suitable element cn ∈ E we have,

h0(Cnv, Cnw) = cnhE(v, w). (conf)

Hence, conjugation by Cn carries Sp(n, F ) onto Sp0(n, F ).
When −1 is not an square in F , a Cayley transform is given by the matrix

Cn :=
1√
−2

(
iIn In
In iIn

)
From here the result
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Corollary 2. The group Sp(n, F ) acts transitively on Hn .

Proof. Since the groups Sp(n, F ) and Sp0(n, F ) are conjugated by the Cayley
transform and the Cayley transform is a conformal map for the pair of bilinear
forms h0, hE the corollary follows. We sketch a different proof for this corollary in
Note 1.

For a subset W of E2n , we define W = {w̄ : w ∈ W} . For the linear
subspace W , we denote by rW the rank of the form hE restricted to W .

Lemma 8. For a Lagrangian subspace W of E2n we have:

dim(W +W ) = n+ rW

dim(W ∩W ) = n− rW

Furthermore, W ∩W = (W +W )⊥ω = (W + W̄ )⊥hE .

Proof. We use the identities

Z⊥ω ∩ U⊥ω = (Z + U)⊥ω , (Z ∩ U)⊥ω = Z⊥ω + U⊥ω .

Since W,W are Lagrangian subspaces we have

W ∩W = W⊥ω ∩W⊥ω
= (W +W )⊥ω .

Fix y = z̄ ∈ W ∩W, z ∈ W, andx ∈ W , then hE(x, y) = ω(x, ȳ) = ω(x, z) = 0.
We have then, y ∈ W⊥hE . Next, for y ∈ W⊥hE , we have ω(x̄, y) = 0 for every
x ∈ W . The hypothesis W is Lagrangian forces ȳ ∈ W , hence y = ¯̄y ∈ W∩W .

Proposition 4. For a finite field F and k = 0, . . . , n, the group Sp(n, F ) acts
transitively on Hk .

Proof. We make the following induction hypothesis: for every m < n and for
every k ≤ m the group Sp(m,F ) acts transitively on the Hk determinated by the
corresponding form hE on (E2m, ω).

Since we have already shown that Sp(1, F ) acts transitively on Hk, k = 0, 1, the
first step of the induction process follows.

We recall also that for n and k = n we have shown that Sp(n, F ) acts transitively
on Hn . We are left to consider r < n .

We fix W,Y ∈ Hr with r = rW < n , we must find g ∈ Sp(n, F ) so that gW = Y .

Since each of the subspaces W ∩ W,W + ∩W are invariant under the Galois
automorphism, it follows that the subspaces are the complexification of, respec-
tively, F 2n ∩ W ∩ W,F 2n ∩ (W + ∩W ). We notice that the quotient space
(W + ∩W )/(W ∩ W ) is of dimension n + r − (n − r) = 2r < 2n. Now, by
above we have that the push forward to (W + W )/(W ∩W ) of the form ω is a
non degenerate form, and the same holds for hE .
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Thus, the inductive hypothesis gives a linear transform

T : F 2n ∩ (W +W )/(F 2n ∩W ∩W )→ F 2n ∩ (Y + Y )/(F 2n ∩ Y ∩ Y )

such that T ?ω = ω , and the complex extension transforms W/(W ∩ W ) onto
Y/(Y ∩ Y ). We lift T to a linear transform

T : F 2n ∩ (W +W )→ F 2n ∩ (Y + Y )

so that T ?ω = ω and the complex extension transforms W onto Y . Now we apply
the theorem of Witt to T to get an element g of Sp(n, F ) which carries W into
Y . This completes the induction process and we have the result

Corollary 3. Sp0(n, F ) acts transitively in Ok, k = 1, . . . , n.

(3.1.1) Corollary 3 together with Proposition 4 show the first and second statement
in Theorem 1.

Note 1. A different proof for Corollary 2 runs as follows, let W,U be elements of
Hn . Since E is a finite field, there exists a linear isometry t : (W,hE)→ (U, hE).
Owing to lemma 9, we have the orthogonal decompositions for the form hE ,
E2n = W ⊕W = U ⊕U. Thus, we may and will extend t to a linear operator T of
E2n by the formulae T (w1, w̄2) = (t(w1), t(w2)). Thus, T ∈ U(E2n, hE) and since
T commutes with the bar linear operator we have T ∈ Sp(n, F ). A similar proof
can be carried out for Lemma 7, replacing U for ι(U) and hE for h0 .

3.2. Relative position between orbits and image Siegel map. Let g ∈
Sp0(n, F ), then g−1 = diag(−In, In) tḡ diag(−In, In). Therefore, the elements of
Sp0(n, F ) are the matrices(

A B
B̄ Ā

)
A,B ∈Mn(E), tĀB = tBĀ, tAĀ− tB̄B = I (SOI)

Since Sp0(n, F ) is invariant under the map g 7→ tg , we get the characterization of
Sp0(n, F ) obtained by [10], namely,

(R, S, T, V ) ∈ Sp0(n, F ) if and only if

T = S̄, V = R̄, R tS = S tR, R tR̄− S tS̄ = In. (SOR)

A simple computation shows:

Sp0(n, F ) ∩KP+ = Sp0(n, F ) ∩KP− = {diag(A, Ā), A ∈ U(n,E)}.

(3.2.1) Next, assuming that F is a finite field, we show: any set Or intersects
nontrivially the image of the Siegel map, and for r > 0, Or contains a point in
the complement of the image of the Siegel map.

We observe that the form h0 restricted to L(diag(d1, . . . , dn)) is the form

(1− d1d̄1)x̄1y1 + · · ·+ (1− dnd̄n)x̄nyn.
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Thus, for r = 0, 1, . . . , n, L(diag(0, . . . , 0, 1, . . . , 1)) (r zeros) belongs to Or.

We fix 0 < r ≤ n and d ∈ E\F such that dd̄ = 1. Let Wr denote the subspace
spanned by the vectors e1, . . . , er, der+1 + en+r+1, . . . , den + e2n . Then, Wr is
n−dimensional and isotropic for ω . The matrix of the form h0 restricted to Wr ,
on the defining basis for Wr , is diag(−1, . . . ,−1, 0, . . . , 0), (here −1 appears r -
times) yields Wr belongs to Or . Moreover, for 0 < r and p defined in (3.1), the
dimension of p(Wr) is n− r < n . Therefore, Wr does not belong to the image of
the Siegel map and we have verified (3.2.1).

(3.2.2) We show for n > 1 that O0 contains points in the complement to the image
of the Siegel map.

To begin with, we consider n = 3. We fix d, c ∈ E so that 0 = 1 + cc̄ + dd̄ and
cd̄ ∈ F . We set

A :=

1 0 −c
0 1 −d
c̄ d̄ 1

 B :=

1 0 0
0 1 0
c d 0


Then,

tAB =

1 + cc̄ c̄d 0
cd̄ 1 + dd̄ 0
0 0 0

 , tBA =

1 + cc̄ cd̄ 0
c̄d 1 + dd̄ 0
0 0 0


Given that c̄d ∈ F , tAB = tBA and hence the subspace L(A,B) is Lagrangian.

tĀA =

1 + cc̄ cd̄ 0
c̄d 1 + dd̄ 0
0 0 cc̄+ dd̄+ 1

 , tB̄B =

1 + cc̄ c̄d 0
cd̄ 1 + dd̄ 0
0 0 0

 ,

hence, the hypothesis gives that both matrices are equal, and therefore h0 re-
stricted to L(A,B) is the zero form. Also, detA = 1+dd̄+cc̄ = detB = 0. Whence,
L(A,B) is an element of O0 which is not in the image of the Siegel map.

In order to produce an element of O0 in the complement of the image of the
Siegel map for odd n with n > 3, we write n = 3 + n − 3. Then the subspace
L(A,B) ⊕ E(e4 + en+4)⊕ · · · ⊕ E(en + e2n) satisfies the requirement.

Next, we consider n even and we construct an element in O0 in the complement
of image of the Siegel map. We fix b ∈ E such that bb̄ = −1. For arbitrary c ∈ E .
We set

A :=

(
−bc −b
c 1

)
B :=

(
1 0
b 0

)
Then tAB = tBA = (0, 0, 0, 0), and, L(A,B) := {(Ax,Bx), x ∈ E2} is a Lagrangian
subspace. Given that tĀA = tB̄B = (0, 0, 0, 0), we see that, h0 restricted to L(A,B)

is the null form, that is, L(A,B) ∈ O0 . Furthermore, neither A nor B is invertible,
hence, L(A,B) is not in the image of the Siegel map. For n = 2k , it readily follows
that the subspace L(A,B) ⊕ · · · ⊕ L(A,B) (k−times) belongs to O0 and it does not
belong to the image of the Siegel map. Thus, we have concluded (3.2.2).

(3.2.3) Obviously, the subspace L(In) is an element of O0 . Hence, (3.2.1), (3.2.2)
and example 1 imply the third and fourth item in theorem 1 for the orbits Or .
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(3.2.4) For any permutation matrix T ∈ GLn(E), the matrix ( tT−1, 0, 0, T ) be-
longs to Sp(n, F )0 ∩ Sp(n, F ).

Lemma 9. Hn is contained in the image of the Siegel map.

Proof. Let W ∈ Hn . We write W = L(R,S) = {( Rx
Sx ) , x ∈ En} with tRS −

tSR = 0, ( R
S ) of rank n . Since W ∈ Hn the matrix tR̄S− tS̄R is invertible. The

matrix S has rank r , with 0 ≤ r ≤ n. We show r = n . For this, after a change of
representative (R, S) for W , we choose two n× n permutation matrices P,Q in
GLn(F ) such that

PSQ =

(
B1 B2

B3 B4

)
where B1 is an invertible r × r matrix and each of B2, B4 is the null matrix. We
may write W = {

(
RQx
SQx

)
, x ∈ En} and(

(tP )−1 0
0 P

)
W =

{(
(tP )−1RQx

(B1,B2,B3,B4)x

)
, x ∈ En

}
.

We set A := (tP )−1RQ. Thus, W = {
(

Ax
(B1,0,B3,0)x

)
, x ∈ En} .

Write A := (A1, A2, A3, A4), with A1 ∈ Mr(F ), A4 ∈ Mn−r(F ). The hypothesis
W is a Lagrangian implies tA(B1, 0, B3, 0) = t(B1, 0, B3, 0)A, from which tA1 +
tA3B3 = A1 + tB3A3, A2 + tB3A4 = 0. The hypothesis the rank of (A, (B1, 0, B3, 0))
is n implies A4 is invertible.

Hence, replacing x by (diag(Ir), 0, 0, A
−1
r )x gives W = {( Cx

Dx ) , x ∈ En} , with
C = (A1, 0, A3, In−r) and D = (diag(Ir), 0, B3, 0). The matrix of hE in this new
coordinates is

tC̄D − tD̄C =

(
• 0
• 0

)
.

The hypothesis hE restricted W has rank n forces n− r = 0.

(3.2.4) For 0 ≤ k < n , the set Hk contain points in the complement to the image
of the Siegel map. Indeed, for k = 0 we have L+ ∈ H0 . For k positive, we
fix c ∈ E : c − c̄ 6= 0 and set Wk to be the linear subspace of E2n spanned by
e1 + cen, e2 + cen+1, . . . , ek + cen+k, ek+1, . . . , en . Then, Ek is lagrangian, and the
form hE restricted to Wk is (c̄ − c)(x̄1y1 + . . . , x̄kyk). Hence, Wk ∈ Hk . The
projection p(Wk) has dimension k < n , hence, Wk is not in the image of the
Siegel map.

(3.2.5) Next, we determine the intersection of each orbit Hk and the image of the
Siegel map L . For this, we write K(F ) = Sp(n, F ) ∩ K ≡ U(n, F ), P+(F ) =
P+ ∩ Sp(n, F ). Hence, K(F )P+(F ) is a parabolic subgroup for Sp(n, F ) and
obviously it acts on Hk ∩ Im(L). We now show,

Proposition 5. For 0 ≤ k < n, we have Hk∩Im(L) is the union of two orbits
for K(F )P+(F ).

(As a consequence we show that convenient representatives of the two orbits
of K(F )P+(F ) in Hk ∩ Im(L) are conjugated by the symplectic group of the
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F−plane spanned by ek, en+k+1 . For k = n we already have shown that the
intersection is equal to Hn , later on we show Hn an orbit of Sp(n, F )).

Proof. Once for all, we fix α ∈ E\F so that α2 ∈ F, ᾱ = −α . Hence,
{1, α} is a basis for the vector space E over F . We write, for a matrix En×n 3
Z = Z1 + αZ2 with Z1, Z2 ∈ F n×n . Let L(Z) be an element of Hk . Then,
(I,−Z1, 0, I)Z = (αZ2). Thus, Z2 is a symmetric matrix of rank k . Owing to
the theory of quadratic forms over F n there exists A ∈ Gl(n, F ) and c ∈ F ? so
that AZ2

tA = diag(1, . . . , 1, c, 0, . . . , 0), (0 repeats n − k times). We recall we
may arrange matters so that either c = 1 or c = α2 . Therefore, any element of
Hk ∩ Im(L) is conjugated by an element of K(F )P+(F ) to one of

L(αdiag(1, . . . , 1, 0, . . . , 0)), L(αdiag(1, . . . , 1, α2, 0, . . . , 0))

and we have shown the proposition. Carrying out the same computation as in
Example 2, for the symplectic group for the form ω restricted to the F−plane
spanned by ek, en+k+1 we obtain an element sn of Sp(n, F ) which transform the
first subspace into the second. The element sn is not in the subgroup K(F )P+(F ).

(3.2.6) Lemma 9, Proposition 5, (3.2.5) imply the third, fourth and fifth statement
in theorem 1 about the orbits Hr .

Note 2. For different reasons we would like to know, when for
g = (A,B,C,D) ∈ Sp(n, F ) or g ∈ Sp0(n, F ) and Z ∈ Sym(En) the matrix
CZ + D is invertible. According to (3.2.1) up to (3.2.5), lemma 9 and theo-
rem 1, an answer is: i) For any element Z ∈ Sym(En) such that Z − Z̄ is
invertible and for any (A,B,C,D) ∈ Sp(n, F ), the matrix CZ + D is invert-
ible. ii) For a symmetric matrix Z such that Z − Z̄ is not invertible, there
exists (A,B,C,D), (M,N,R, S) ∈ Sp(n, F ) such that CZ + D is invertible and
RZ + S is not invertible. iii) For n > 1 and any symmetric matrix Z there exists
(A,B,C,D), (M,N,R, S) ∈ Sp0(n, F ) so that CZ+D is invertible and RZ+S is
not invertible. From (3.2), we may recall, (A,B,C,D)L(Z) ∈ Im(L) if and only
if (CZ +D) is an invertible map. We obtain a somewhat more precise statement.

Proposition 6. We fix g ∈ Sp(n, F ) and Z ∈ Sym(En).
Then gL(Z) ∈ Im(L) if and only if g belongs to

K(F )P+(F )ESp(n,F )(L(Z)) ∪K(F )P+(F )snESp(n,F )(L(Z))

ESp(n,F )(L(Z) as defined in section 4.

Proof. Let g so that gL(Z) ∈ Im(L). We fix r so that Z ∈ Hr . Owing to
Proposition 5 there exists q ∈ K(F )P+(F ) so that gL(Z) = qL(Z) or gL(Z) =
qsnL(Z), then, the proposition follows.
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4. Isotropy subgroups

The purpose of this section is to explicitly compute the structure of Ok,Hk, k =
0, . . . , n as homogeneous spaces. For the real case, this has been accomplished by
[13] [14] and references therein.

An element of On−k is constructed as follows: we define Vk to be the subspace
spanned by the vectors e1 + en+1, . . . , ek + en+k, ek+1, . . . , en . Then, V0 = L+ . A
simple computation shows that the form hE restricted to Vk×Vk is the null form,
whereas the type of the form h0 restricted to Vk × Vk is n − k ,. Obviously Vk
is a lagrangian subspace. Henceforth, for x ∈ Sp(n,E), Ad(x) denotes the inner
automorphism defined by x . Let tk be the partial Cayley transform

tk :=

(
D1 D2

D3 D4

)
where, D1 = D4 = diag(

√
2

2
Ik, In−k), D2 = diag(−

√
2

2
Ik, 0), D3 = −D2 . Then, tk is

an element of Sp(n,E) and tkL+ = tkV0 = Vk . A computation gives

t−1
k =

(
L1 L2

L3 L4

)
where, L1 = L4 = diag(

√
2

2
Ik, In−k), L2 = diag(

√
2

2
Ik, 0), L3 = −L2 .

Let ESp0(n,F )(Vk) denote the set stabilizer of Vk in Sp0(n, F ). The equality
ESp(n,E)(V0) = KP+ implies

ESp0(n,F )(Vk) = Ad(tk)ESp(n,E)(V0) ∩ Sp0(n, F ) = Ad(tk)(KP+) ∩ Sp0(n, F ).

The stabilizer of V0 in Sp(n, F ) is

KP+ ∩ Sp0(n, F ) = K ∩ Sp0(n, F ) = {diag(T, T̄ ) : T ∈ U(n,E)}

Thus, the stabilizer of V0 in Sp0(n, F ) is isomorphic to U(n,E).

The main result of this section is

Theorem 2. The stabilizer group ESp0(n,F )(Vk) is isomorphic to the semidi-
rect product of the group O(k, F ) × U(n − k,E) times the unipotent subgroup
Ad(tk)(P+) ∩ Sp0(n, F ).

The proof of the result requires some computations, which we carry out.

First, we verify that the subgroup of Sp0(n, F ), diag(S, T, S, T̄ ), S in O(k, F ), T

in U(n−k,E) is contained in ESp0(n,F )(Vk). For this, we write for v ∈ Vk, v =


x
y
x
0


with x ∈ Ek, y ∈ En−k . Hence,

diag(S, T, S, T̄ )v =


Sx
Ty
Sx
0

 ∈ Vk.
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Is clear that the unipotent subgroup is contained in ESp0(n,F )(Vk).

For a matrix T ∈ En×n we write

T =

(
T1 T2

T3 T4

)
, T1 ∈ Ek×k, T2 ∈ Ek×n−k, T3 ∈ En−k×k, T4 ∈ En−k×n−k

And for (A,B, 0, D) ∈ KP+ we have Ad(tk)(A,B, 0, D) =
1
2
(A1 −B1 +D1)

√
2

2
A2

1
2
(A1 +B1 −D1)

√
2

2
(B2 −D2)√

2
2

(A3 −B3) A4

√
2

2
(A3 +B3) B4

1
2
(A1 −B1 −D1)

√
2

2
A2

1
2
(A1 +B1 +D1)

√
2

2
(B2 +D2)

−
√

2
2
D3 0

√
2

2
D3 D4

 .

Next, we show that Ad(tk)K ∩ Sp0(n, F ) is equal to the subgroup
{diag(S, T, S, tT−1) : S ∈ O(k, F ), T ∈ U(n,E)} . In fact, the computation for
Ad(tk)X gives for S ∈ O(k, F ), T ∈ U(n,E) that

Ad(tk)(diag(S, T, S, tT−1)) = diag(S, T, S, tT−1).

Now for diag(A,D) = diag(A, tA−1) ∈ K , such that
Ad(tk)(diag(A,D)) ∈ Sp0(n, F ),

(1.2) and the formula for Ad(tk)X imply the equalities

(A1 +D1) = A1 +D1, Ā2 = D2 Ā3 = D3, Ā4 = D4

and
A1 −D1 = A1 −D1, A2 = −D̄2, A3 = −D̄3

So
D2 = A2 = 0, D3 = A3 = 0, , Ā1 = A1, D̄1 = D1.

Hence, A1 ∈ O(n, F ). Finally, the equality D = tA−1 yields, A1 = D1 , which
shows the claim.

Now Ad(tk)P+ ∩ Sp0(n, F ) = {Ad(tk)(In, B, 0, In) : tB = B and B̄1 = −B1, B3 =
tB2 = 0, B4 = 0} . In fact, the formula for Ad(tk)X leads us to

Ad(tk)(I, B, 0, I) =


1
2
(2I −B1) 0 1

2
B1

√
2

2
B2

−
√

2
2
B3 I

√
2

2
B3 B4

−1
2
B1 0 1

2
(2I +B1)

√
2

2
B2

0 0 0 I

 .

From (1.2) we get B̄1 = −B1, B2 = 0, B4 = 0, and the equality follows.

(E) We will show at this point the equality

ESp0(n,F )(Vk) = (Ad(tk)K ∩ Sp0(n, F ))(Ad(tk)P+ ∩ Sp0(n, F ))

Let X ∈ KP+ so that Ad(tk)X ∈ Sp0(n, F ). Condition (1.2) gives us the following
equalities,

Ā1 − B̄1 + D̄1 = A1 +B1 +D1, B2 +D2 = Ā2, Ā3 − B̄3 = D3, Ā4 = D4

Ā1 + B̄1 − D̄1 = A1 −B1 −D1, B̄2 − D̄2 = A2, Ā3 + B̄3 = −D3, B4 = 0.
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From the second equality on each line, we deduce D2 = 0. Thus, B2 = Ā2 .
From the third equality in both lines we obtain Ā3 = 0. Hence A3 = 0 and
B3 = −D̄3 . Next tAD − tB0 = I give us D = tA−1 . Explicitly D =
( tA−1

1 , 0,− t(A−1
1 A2A

−1
4 ), tA−1

4 ). Since (A,B, 0, D) ∈ Sp(n,E) and so tBD = tDB .
The computation of the last equality lead us to(

A−1
1 B1 − tY Ȳ A−1

1 Ā2

A−1
4 Ȳ 0

)
=

(
tB1

tA−1
1 − tȲ Y tȲ tA−1

4

− tĀ−1
2

tA−1
1 0

)
where Y := t(A−1

1 A2A
−1
4 )

Now, the equality of the (2,1)-coefficients gives

A−1
4

tĀ−1
4

tĀ2Ā
−1
1 = − tĀ2

tA−1
1

which, after we transpose both members of the last equality, we obtain

Ā−1
1 Ā2Ā

−1
4

tA−1
4 = −A−1

1 Ā2.

From, equality of the (1,2)-coefficients implies

Ā−1
1 Ā2Ā

−1
4

tA−1
4 = A−1

1 Ā2.

Thus, A2 = 0 and we have that

(A,B, 0, D) = (diag(A1, A4), diag(B1, 0), 0, diag( tA−1
1 , tA−1

4 )).

The hypothesis Ad(tk)(A,B, 0, D) ∈ Sp0(n, F ) let us conclude that
A1 ∈ O(k, F ), A4 ∈ U(n−k,E). Therefore, (E) is shown, and the theorem follows.

5. Anti-involutions in Sp(n, F )

In this section we analyze the structure on the set of anti-involutions in the group
Sp(n, F ). We will show that this set is a homogeneous space for Sp(n, F ).
The denote by C(n, F ) the set of anti-involutions ,i.e.,

C(n, F ) = {T ∈ Sp(n, F ) : T 2 = −1}.

Proposition 7. C(n, F ) is equivariant isomorphic to Hn when −1 is not a
square in F , whereas is isomorphic to
Sp(n, F )/(Sp(n, F ) ∩K) when −1 is a square in F .

It is clear that C(n, F ) is invariant under conjugation.

Since J = (0, In,−In, 0) is an element of Sp(n, F ) we have that JT is an element
of Sp(n, F ). The poof of the proposition will follow from the next three lemmas

Lemma 10. i) Let T be an involution, then JT is a symmetric matrix. That
is, t(JT ) = JT

ii) For T ∈ Sp(n, F ), such that JT is symmetric, we have that T is an
involution.
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Proof. Recall tJ = −J, tTJT = J, T 2 = −1 Hence, t(JT ) = − tTJ = −JT−1 =
JT . For the second statement, we have t(JT ) = JT hence J = − tT−1JT = tTJT,
thus T 2 = −I .

According to lemma 6, to each involution T in Sp(n, F ) we naturally
associate a symmetric non-degenerate bilinear form bT on F 2n . The matrix of
the form bT in the canonical basis is JT .

Now, from the classification of symmetric non-degenerate bilinear forms on F 2n

we have that bT is either equivalent to the Euclidean form x2
1 + · · ·+x2

2n or to the
non-Euclidean form x2

1 + · · ·+ x2
2n−1 + cx2

2n where c ∈ F is not a square.

Since det(JT ) = 1, we obtain

Remark 5. The form bT is always equivalent to the Euclidean form. The group
Sp(n, F ) acts on Sp(n, F ) ∩ Sym(F 2n) by the formula

(g, S)→ t(g−1)Sg−1.

It readily follows that the map C(n, F ) 3 T → JT ∈ Sp(n, F ) ∩ Sym(F 2n)
intertwines the respective actions of Sp(n, F ). Hence, for g ∈ Sp(n, F ) the forms
bT and bgTg−1 are equivalent.

To continue, we split up the analysis of C(n, F ) into the two possible cases,
namely, −1 is either a square in F or −1 is not a square in F . To begin with,
we assume −1 is not an square in F . Let us fix a square root i ∈ E of −1.

For an anti involution T ∈ Sp(n, F ) we have that T is a semisimple linear map
with possible eigenvalues i,−i because the minimal polynomial of T divides x2+1.

Let Vi(T ) (resp V−i(T )) the corresponding possible eigenspace in E2n . Hence,
E2n = Vi(T )⊕ V−i(T ), and we have

Proposition 8. i) Both subspaces Vi(T ), V−i(T ) are nonzero.

ii) Vi(T ) = V−i(T ).

iii) F 2n ∩ Vi(T ) = F 2n ∩ V−i(T ) = {0}.

iv) The map F 2n 3 v → v − iTv ∈ Vi(T ) is linear bijection over F .

v) Vi(T ) (resp V−i(T )) is a lagrangian subspace.

vi) hE(v − iTv, w − iTw) = 2ω(v, w) + 2ibT (v, w), for v, w ∈ F 2n.

vii) The decomposition E2n = Vi(T )⊕ V−i(T ) is orthogonal with respect to hE .

viii) hE restricted to Vi(T ) is non degenerate.

Proof. The result follows from the hypothesis T ∈ U(hE, E
2n) ∩ Sp(n,E) and

i /∈ F . In particular, viii) follows from vii) and that hE is non degenerate. For
x, y ∈ Vi(T ), ω(x, y) = ω(Tx, Ty) = iiω(x, y) = −ω(x, y).
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Let vj − iTvj, j = 1, . . . , n denote an orthonormal basis of Vi(T ) for the
restriction of 1

2i
hE . Then, v1, . . . , vn span a lagrangian subspace of F 2n and

v1, . . . , vn, T v1, . . . , T vn is a basis for F 2n .
In fact, from vi) we obtain w(vk, vs) = 0, bT (vk, vs) = δk,s . The last statement
follows from T 2 = −1 applied to

∑
1≤j≤n cjvj + djTvj = 0 for cj, dj ∈ F and a

short computation.

Lemma 11. Assume −1 is not a square in F . Then, the action of Sp(n, F )
in C(n, F ) is transitive.

Proof. Proposition 6 gives rise to a map from C(n, F ) to LE,2n by the rule

C(n, F ) 3 T −→ Vi(T )

From viii) we have the image of the map is contained in Hn . For g ∈ Sp(n, F ) we
have the equality gVi(T ) = Vi(gTg

−1), which shows that the map is equivariant.
The maps is obviously injective. Since Hn is an orbit of Sp(n, F ) (Theorem 1) we
have that the map is a bijection and hence the result

Next, we assume −1 = i2 with i ∈ F . Then, due to the semisimplicity of
T we have the decomposition F 2n = (F 2n ∩ Vi(T ))⊕ (F 2n ∩ V−i(T )).

From the equalities ω(x, y) = −ω(x, y) forx, y ∈ Vi(T ), we have that the subspaces
F 2n∩Vi(T ), F 2n∩V−i(T ) are isotropic, Corollary 3 pag 81 in [1] gives us that both
subspaces are lagrangian. Therefore, the anti hermitian form hE restricted to
F 2n ∩ Vi(T ) is the null form, which forces to Vi(T ) to be an element of H0 .

Lemma 12. Assume −1 is a square in F . Then, C(n, F ) is a homogeneous
space equivalent to Sp(n, F )/(Sp(n, F ) ∩K).

Remark 6. The map C(n, F ) 3 T −→ Vi(T ) ∈ H0 is equivariant for Sp(n, F )
and in this case is no longer injective (c.f. example 3-a) , due to theorem 1, H0

is a homogeneous space for Sp(n, F ), hence, the map is surjective.

Proof. We now show lemma 11. We set

H :=

(
iIn 0
0 −iIn

)
.

Then, H ∈ C(n, F ). Let T be an anti involution in Sp(n, F ) we will show that T
is conjugated in Sp(n, F ) to the matrix H . For this, we define D := J−1TJ , which
is another anti involution in Sp(n, F ). The minimal polynomial of J−1TJ divides
the polynomial x2 + 1 = (x − i)(x + i) . Hence, D := J−1TJ is diagonalizable
over F .

Let W±i the associated eigenspaces. Thus, F 2n = Wi ⊕W−i .
Since for every v, w ∈ F 2n, ω(Dv,Dw) = ω(v, w), we have that W±i are isotropic
subspaces for ω . The hypothesis that ω is non degenerate forces, W±i to be
lagrangian subspaces. Thus, there exists P ∈ Sp(n, F ) so that

Pe1, . . . , P en is a basis for Wi , Pen+1, . . . , P e2n is a basis for W−i
We have
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DPej = iPej = P (iej) = PH(ej), j = 1, . . . , n,

DPej = −iPej = P (−iej) = PH(ej), j = n+ 1, . . . , 2n .

Hence, DP = PH . That is, PH = DP = J−1TJP . Therefore, H =
P−1J−1TJP = (JP )−1T (JP ). The matrices in Gl(2n, F ) which commute with
H are the matrices diag(A,B), A,B,∈ Gln(F ). Thus, the isotropy at H is
Sp(n, F ) ∩K .

Remark 7. A particular element of Sp(n, F ) which conjugates H onto J is
the Cayley transform

C(ej) =
1

−2i
(ej + ien+j), j = 1, . . . , n, C(en+j) = ej − ien+j, j = 1, . . . , n.

Example 2. We assume −1 = i2, i ∈ F . A simple calculation yields C(1, F ) ={(
±i x
0 −± i

)
,

(
±i 0
y −± i

)
, x ∈ F, y ∈ F×

}
union the set {(

a −1+a2

c

c −a

)
, c ∈ F×, a ∈ F\{±i}

}
Hence, the cardinal of the set of involutions is 2(q + q − 1) + (q − 2)(q − 1) =
q(q + 1). The isotropy at diag(i,−i) is the subgroup diag(a,−a), a ∈ F× . Hence
card(Sl(2, Fq))/card(F×) = q(q − 1)(q + 1)/(q − 1) = card(C(1, F )). Also,

Vi(

(
−i 0
x i

)
) = F

(
0
1

)
, Vi(

(
i x
0 −i

)
) = F

(
1
0

)
.

Vi(

(
a −1+a2

c

c −a

)
) = F

(
1+a2

c

a− i

)
,

Vi(

(
−i x
0 i

)
) = F

(
x
2i

)
, Vi(

(
i 0
x −i

)
) = F

(
2i
x

)
.

5.1. The case T 2 = a, a square. Let F be a field of odd characteristic, and
let ω be a non degenerate alternating form in V = F 2n . We fix a ∈ F and define

Sa := {T ∈ Sp(n, F ) : T 2 = aId}

For a = 1 the identity matrix belongs to Sa .

For a = −1 the matrix J belongs to S−1 = C(n, F ).

Proposition 9. For a /∈ {1,−1} and a = b2, b ∈ F the set Sa is empty.

Proof. Let T ∈ Sa , then the eigenvalues of T belong to the set ±b . Let
Wb,W−b be the eigenspaces of V .

The equality 1
2
(bI − T ) + 1

2
(bI + T ) = bI implies that V = Wb ⊕W−b .
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For x, y ∈ Wb , we have ω(x, y) = 0 ( ω(x, y) = ω(Tx, Ty) = b2ω(x, y)). Similarly,
for x, y ∈ W−b we have ω(x, y) = 0. Therefore, both subspaces are isotropic.

We now verify for x,∈ Wb, y ∈ W−b that ω(x, y) = 0. In fact, ω(x, y) =
ω(Tx, Ty) = b(−b)ω(x, y) = −aω(x, y). Since a 6= −1, we get ω(x, y) = 0.

Then, assuming Sa is not empty, unless a ∈ {1,−1} we have ω equal to the null
form, and the result follows.

Another proof follows along the following lines :

For a symplectic matrix, if λ is an eigenvalue, then 1/λ is also an eigenvalue.

So if b,−b are the unique eigenvalues, and b /∈ {±1,±i} we must have −b = 1/b
from which b2 = −1 so a = −1.

5.2. The case a = 1. Let W be any subspace of V such that ω restricted to
W is non degenerate, so V = W ⊕W⊥ .

Define TW to be the linear operator equal to the identity in W and equal to −I
in W⊥ .

It readily follows that TW ∈ Sp(n, F ) and TW is an involution.

Proposition 10. Any involution T in Sp(n, F ) is equal to a TW for a conve-
nient W .

Proof. In fact, the eigenvalues of T belongs to the set ±1 Let W1,W−1 be the
eigenspaces of V the equality 1

2
(I−T )+ 1

2
(I+T ) = I implies that V = W1⊕W−1 .

For x,∈ W1, y ∈ W−1 we have ω(x, y) = 0. In fact, ω(x, y) = ω(Tx, Ty) =
1(−1)ω(x, y) = −ω(x, y).

It follows: ω restricted to any of the subspaces in non degenerate. Hence,
T = TW1 .

Corollary 4. The orbits of Sp(n, F ) in S1 are parameterized by the set

{0, 1, . . . , 2n}.

Indeed, for each k the set of involutions T such that its 1−eigenspace is of
dimension k, is an orbit for Sp(n;F ).

6. Ideals

We fix A = Mn(E). To begin with for t(x, y) ∈ A × A we analyze the left
ideal Ax + Ay . We recall that any left ideal J in Mn(E) is principal and
generated by an idempotent matrix e of certain rank rJ . The number rJ is an
invariant that determine the ideal J owing to that whenever e, d are idempotents
so that Mn(E)e = Mn(E)d , then there exists an invertible matrix p so that
e = p−1dp . The last statement holds because the equality of ideals and the
inequality rank (AB) ≤ min{rank A, rank B} forces rank e = rank d , hence, the
existence of the matrix p . Therefore, for two left ideals I, J in Mn(E) there exists
an invertible matrix p so that I = Jp if and only if rI = rJ . Next, we observe
that the rank if the ideal Ax + Ay is equal to the rank of the 2n × n matrix
t(x, y). Indeed, if r denotes the rank of the matrix t(x, y), then there exists
invertible matrices p, q so that t(x, y) = qdiag(Ir×r, 0)p . Hence diag(Ir×r, 0)p
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belongs to the ideal Ax+Ay , which yields that Ax+Ay contains an idempotent
of rank r . Thus r ≤ rAx+Ay . The reverse inequality follows from the inequality
rank(AB) ≤ min{rankA, rankB} and that diag(Ir×r, 0)p actually spans the ideal
Ax + Ay . On the set of left ideals in A we define the equivalence relation I is
equivalent to J if and only if there exists p ∈ A× so that I = Jp . Let C(J) denote
the equivalence class for an ideal J . The preceding statements let as conclude: For
a fixed left ideal J , the set of pairs t(x, y) so that C(Ax+Ay) = C(J) is equal to
the set of pairs t(x, y) so that the rank of the matrix t(x, y) is rJ . Let P̃A denote
the set of pairs t(a, b) so that tab = tba . That is, P̃A is the set of pairs so that
the subspace L(a,b) of E2n is isotropic for ω . Obviously, PA ⊂ P̃A . The group

SL∗(2, A) = Sp(n,E) acts on the left on P̃A . Moreover, Gln(E) = A× acts on the
right. Because of a theorem of Witt and the previous observations, we have that
the orbits of Sp(n,E) in P1

×(P̃A) are exactly the n+1 subsets, Tr , r = 0, 1, . . . , n ,
which has as a representative a vector line L t(x,y) so that rAx+Ay is equal to r .
Thus, Tn = P1

×(PMn(E)). The preceding statements let as conclude: The set of

orbits of SL∗(2,Mn(E)) in P1
×(P̃A) is in a bijective correspondence with the set

of equivalence classes for the equivalence relation in the set of left ideals in A .
We would like to generalize the last statement to other involutive rings. We also
point out, that theorem 1 gives that the set of orbits of SL∗(2, H0) = Sp(n, F ) in
P1
×(PMn(E)) is parameterized by the set of left ideals in A0 = Mn(F ) module the

analogous equivalence relation.
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[2] Dieudonné, J., �Le Géométrie des groupes classiques� , Ergebnisse der
Mathematik und ihrer Grenzgebiete, Springer Verlag , 1955.

[3] Helminck, A. G., On the orbits of symmetric spaces under the action of
parabolic subgroups, in: Invariant theory (Denton, TX, 1986), 435–447, Con-
temp. Math.88, Amer. Math. Soc., Providence, RI, 1989.

[4] Hilgert, J., and K.-H. Neeb, Compression semigroups of open orbits in com-
plex manifolds, Ark. Mat. 33 (1995), 293–322.

[5] Kaneyuki, S., Pseudo-hermitian symmetric spaces and Siegel domains over
nondegenerate cones, Hokkaido Math. J. 20 (1991), 213–239.

[6] Pantoja, J., and J. Soto-Andrade, Représentations de SL∗(2, A) et SL(n, q),
C.R. Acad. Sci. Paris, Série I, 323 (1996), 1109–1112.



Pantoja, Soto Andrade, and Vargas 1071

[7] —, A Bruhat decomposition of the group SL∗(2, A), J. Algebra 262 (2003),
401–412.

[8] —, Bruhat presentations for ∗−classical groups, Comm. in Alg. 37 (2009),
149–167.
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