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Abstract A quantitative study of the robustness properties of the �1 and the Huber
M-estimator on finite samples is presented. The focus is on the linear model involv-
ing a fixed design matrix and additive errors restricted to the dependent variables
consisting of noise and sparse outliers. We derive sharp error bounds for the �1 esti-
mator in terms of the leverage constants of a design matrix introduced here. A similar
analysis is performed for Huber’s estimator using an equivalent problem formulation
of independent interest. Our analysis considers outliers of arbitrary magnitude, and
we recover breakdown point results as particular cases when outliers diverge. The
practical implications of the theoretical analysis are discussed on two real datasets.

Keywords �1 norm minimization · Huber M-estimator · Leverage constants ·
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1 Introduction

In classical linear regression, a vector of responses or dependent variables y ∈ R
n is

given along with the same number of explanatory variables or carriers x1, . . . , xn ∈
R

p. We assume that the random variables x1, . . . , xn, and y are related through a
linear model, which implies the existence of a vector f ∈ R

p such that
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(∀i ∈ {1, . . . , n}) yi = x�
i f + δi , (1)

where (δi )1≤i≤n are i.i.d. random variables with zero mean and finite variance. The
objective in linear regression is to estimate f .

Under the usual assumption that the errors δi are Gaussian, the least squares esti-
mator (LSE) is the best linear unbiased estimator of f . However, the LSE is very
sensitive to deviations from normality, even moderate ones. The ability of an estima-
tion method to give reasonable results on contaminated samples is measured by the
regression breakdown point (RBP), defined in the fixed design context as the mini-
mum fraction of the components of δ that must diverge in an arbitrary way to take the
estimator out of any bound (see, e.g. He et al. 1990; Giloni and Padberg 2004). For
example, the LSE has an asymptotic RBP of 0%, since a single divergent observation
can completely mislead the fit, independently of the sample size. M-estimators (Huber
1973; Rousseeuw and Leroy 1987) aim to perform robust and computationally effi-
cient estimation. The quantitative study of the robustness properties of M-estimators
for non-random carriers (also called fixed design) was started by He et al. (1990). In
that work, the authors introduce a finite-sample measure of performance for regres-
sion estimators based on tail behaviour. For the �1-estimator as well as for a class of
M-estimators, their tail performance measure equals the RBP; a simple characteriza-
tion of the RBP in terms of the design configuration is provided. In particular, they
show that the RBP of the �1 estimator can be positive if the matrix X is not subject
to contamination, closing a long-standing discussion about the robustness of the �1
estimator. The same expression for the RBP is obtained by Ellis and Morgenthaler
(1992), where its role as a leverage measure is studied as well. Giloni and Padberg
(2004) obtain an alternative characterization of the RBP usingmixed-integer program-
ming.

In the context of signal processing, the estimation problem is considered by Can-
des and Tao (2005). They assume that the vector δ in (1) is sparse, i.e., only a small
fraction of the observations is contaminated and the rest is completely free of errors.
They provide sufficient conditions for exact recovery of a signal from corrupted mea-
surements. The sufficient condition is known as the restricted isometry property (RIP)
and it is verified with high probability for random normal matrices X when n and p
go to infinity in a proper ratio. Later, in Candes and Randall (2008), a modification
of �1 minimization for linear regression is proposed to deal with outliers and noise.
The sufficient conditions for the noiseless case are adapted to this more realistic con-
text. However, the analysis is restricted to the particular instance when X is normal
random and has orthonormal columns. Leaving aside the drawbacks of the RIP (c.f.
Zhang 2013, Sect. 1.3), any error analysis taking the design matrix X as a degree of
freedom rather than as part of the data of the problem is unsatisfactory, because in
many applications the design is fixed and non-scalable. Likewise, the notion of break-
down point gives information on the behaviour of an estimator when data are replaced
by divergent observations; nonetheless, it is more informative to have a quantitative
measure of the prediction error when some observations are affected by finite errors
of any magnitude that cannot be reasonably considered as noise.

We fill this gap by providing non-asymptotic error bounds in finite samples for two
of the most widespread convex robust estimators.
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1.1 Notation and preliminaries

We shall use the notation N = {1, . . . , n} for the index set of all the observations. For a
set of indexesM , |M |denotes its cardinality. For a vector x ∈ R

n ,wedenote by supp(x)
its support, i.e., the index set of non-zero components, supp(x) = {i ∈ N | xi �= 0}.
The cardinality of the support of a vector, often called the “�0-norm” or “cardinality
norm”, is denoted by ‖x‖0; thus ‖x‖0 = |{i ∈ N | xi �= 0}|. For a subset M ⊆ N and
p ∈ [1,+∞[, we define

‖ · ‖p,M : x 
→
(∑
i∈M

|xi |p
)1/p

and ‖ · ‖∞,M : x 
→ max
i∈M |xi |.

Moreover, for every x ∈ R
n and p ∈ [1,+∞[, we denote ‖x‖p = ‖x‖p,N and

‖x‖∞ = ‖x‖∞,N .
For the sake of readability, we postpone some lemmas and proofs to Appendix A.

2 Range conditions on the design matrix

We carry out a non-asymptotic analysis of two estimation techniques which are valid
for any sample size, ergo for an arbitrary designmatrix X . To this end we introduce the
leverage constants of a matrix, measuring the relative weight of the most influential
observations on the fit.

For a n × p matrix X , define for every k ∈ {1, . . . , n} the leverage constants ck of
X as

ck(X) = min
M⊂N|M|=k

min
g∈Rp

g �=0

∑
i∈N\M

|x�
i g|

∑
i∈N

|x�
i g| = min

M⊂N|M|=k

min
g∈Rp

‖g‖2=1

∑
i∈N\M

|x�
i g|

∑
i∈N

|x�
i g| (2)

and

m(X) = max
{
k ∈ N

∣∣ ck(X) >
1

2

}
. (3)

Note that the two minima in (2) are achieved since the feasible set in both cases is
compact and the objective function is continuous. However, the minimum may not be
unique as there could be two or more groups of points with equal leverage.

Proposition 1 We have c0 = 1, cn = 0 and, for every k ∈ {1, . . . , n}, ck ≤ ck−1.

The quantity m(X) defined above is already known to characterize, up to a con-
stant, the RBP of the �1 and Huber’s estimators. The leverage constants of a matrix
provide the essential information for describing the response of a class of estimates to
groups of influential observations (see also Ellis and Morgenthaler 1992, for a related
discussion).

The main results in this article rely on the following fundamental �1 error estimate,
which is inspired on (He et al. 1990, Lemma 5.2).When there is no place for confusion,
we shall omit the dependency of the constants ck on X .
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Lemma 1 (�1 error estimate) Let X be a n × p real matrix, and (ck)1≤k≤n and m(X)

be defined as in (2) and (3), respectively. In addition, let M ⊂ N, and y, b∗ ∈ R
n as

well as g∗, g ∈ R
p be arbitrary. The following holds.

(i) Suppose that |M | = k < m(X). Then

‖y − Xg − b∗‖1 − ‖y − Xg∗ − b∗‖1
≥ (2ck − 1)‖X (g − g∗)‖1 − 2

∑
i∈N\M

|yi − x�
i g∗ − b∗

i |.

(ii) Suppose that |M | = 0. Then, for every b ∈ R
n,

‖y − Xg − b‖1 − ‖y − Xg∗ − b∗‖1
≥ ‖X (g − g∗) + b − b∗‖1 − 2

∑
i∈N

|yi − b∗
i − x�

i g∗|.

The inequalities (i) and (ii) are sharp for there exist values of y, b∗, g∗ and g for
which equality holds.

Proof (i): Let y, b∗ ∈ R
n and g∗, g ∈ R

p. We have

‖y − Xg − b∗‖1 =
∑
i∈N

|yi − x�
i g − b∗

i |

=
∑
i∈N

|(yi − x�
i g∗ − b∗

i ) − (x�
i g − x�

i g∗)|

=
∑

i∈N\M
|(x�

i g − x�
i g∗) − (yi − x�

i g∗ − b∗
i )|

+
∑
i∈M

|(yi − x�
i g∗ − b∗

i ) − (x�
i g − x�

i g∗)|

and using the reverse triangle inequality |u − v| ≥ ||u| − |v|| ≥ |u| − |v| we obtain

‖y − Xg − b∗‖1 ≥ 2
∑

i∈N\M
|x�

i g − x�
i g∗| −

∑
i∈N

|x�
i g − x�

i g∗|

+
∑
i∈N

|yi − x�
i g∗ − b∗

i | − 2
∑

i∈N\M
|yi − x�

i g∗ − b∗
i |. (4)

It follows from (3) and (2) that ck > 1/2 and there exists gk �= g∗ such that

(∀g, g∗ ∈ R
p) s.t. g �= g∗

∑
i∈N\M

|x�
i (g − g∗)|

∑
i∈N

|x�
i (g − g∗)| ≥

∑
i∈N\M

|x�
i (gk − g∗)|

∑
i∈N

|x�
i (gk − g∗)| = ck,
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Thus,

∑
i∈N\M

|x�
i (g − g∗)| ≥ ck

∑
i∈N

|x�
i (g − g∗)|.

By replacing in (4) we obtain

‖y−Xg−b∗‖1−‖y−Xg∗−b∗‖1 ≥ (2ck−1)‖X (g−g∗)‖1−2
∑

i∈N\M
|yi−x�

i g∗−b∗
i |

and the result holds.
(ii): The result is a direct consequence of the triangle inequality for the �1 norm.

��

3 Characterization of the behaviour of the �1-estimator

In this section, we study the problem of estimating by �1 minimization the vector f
from observations of the form

y = X f + z + e, (5)

where z is a dense vector of noise and e is an arbitrary sparse vector modelling outliers.
Since the LSE is optimal in the absence of outliers, we measure the reconstruction
error by comparing the �1 estimator f1 with fn , which is the LSE applied to the noisy
part of the data, devoid of outliers.

Theorem 1 Let y = X f + z + e and M = supp(e) satisfying |M | = k ≤ m(X).
Consider the unique decomposition of z as z = Xg + b, where b ∈ Ker X�, and let
fn = f + ḡ. Then, the following holds for the �1 estimator f1.

(i) If ‖b‖∞,N\M = 0, then f1 = fn.
(ii) If ‖b‖∞,N\M > 0, then

‖X ( f1 − fn)‖1 ≤ 1

2ck − 1

(
‖b̄‖1,N\M + ‖b̄‖22,N\M

‖b̄‖∞,N\M

)
. (6)

There exist data for which inequality (6) holds with equality; therefore, the estimate
cannot be further improved.

The estimates of Theorem 1 can be easily extended to the case when the number of
outliers exceedsm(X) by taking M to be the set of indices of the components of ewith
the m largest absolute values. Thus, the �1 estimator mitigates the effect of the largest
outliers. They can also be generalized to weighted �1 regression (Giloni et al. 2006a, b)
by adding weights to the absolute values in the definition of the leverage constants.
The use of the leverage constants to improve the RBP of weighted �1 regression is the
subject of current research.
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Sharp performance bounds for �1 and Huber robust estimators 801

Giloni and Padberg (2002, Prop. 1) proved, without assuming model (5), that
‖y − X f1‖1 ≥ ‖ȳ‖22/‖ȳ‖∞, where ȳ = y − X fLS . The ideas behind that result
are generalized in Lemma 4.

Proof of Theorem 1. Using Lemma 1(i) with b∗ = 0, g = f1, and g∗ = fn we obtain

‖y − X f1‖1 − ‖y − X fn‖1 ≥ (2ck − 1)‖X ( f1 − fn)‖1 − 2
∑

i∈N\M
|yi − x�

i fn|.

Since, by hypothesis, yi = x�
i ( f + ḡ) + b̄i = x�

i fn + b̄i for i ∈ N\M we have

(2ck − 1)‖X ( f1 − fn)‖1 ≤ 2‖b̄‖1,N\M + ‖y − X f1‖1 − ‖y − X fn‖1. (7)

First note that since f1 is a minimizer, ‖y − X f1‖1 − ‖y − X fn‖1 ≤ 0. Thus if
‖b̄‖∞,N\M = 0 it follows from (7), the full rank of X , and ck > 1/2 that f1 = fn .
Now suppose that ‖b̄‖∞,N\M > 0. The �1 minimization problem can be formulated
as a linear program; using linear programming duality, we have (Giloni and Padberg
2004, pp. 1031–1032)

‖y − X f1‖1 = min
g∈Rp

‖y − Xg‖1 = max
d∈P∗ d

�y = max
d∈P∗ d

�(e + b̄),

where P∗ = {
d ∈ ker X� ∣∣ ‖d‖∞ ≤ 1

}
. Thus,

‖y − X f1‖1 − ‖y − X fn‖1 = max
d∈P∗ d

�(e + b̄) − ‖e + b̄‖1.

Hence, using Lemma 4, we obtain

‖y − X f1‖1 − ‖y − X fn‖1 ≤ ‖e + b̄‖1,M + ‖b̄‖22,N\M
‖b̄‖∞,N\M

− ‖e + b̄‖1

= −‖b̄‖1,N\M + ‖b̄‖22,N\M
‖b̄‖∞,N\M

which, altogether with (7), yields (6). ��
In the particular case when only sparse errors are present (z = 0), the following

result is a characterization of the exact recovery property (see also Zhang 2013; Giloni
and Padberg 2002, for related results).

Theorem 2 Let f ∈ R
p, e ∈ R

n, and set y = X f + e. Then, f is the unique solution
of the problem

min
g∈Rd

‖y − Xg‖1.

for any ‖e‖0 ≤ k if and only if k ≤ m(X).
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802 S. Flores

Proof First note that, in this case, fn = f . If ‖e‖0 ≤ m(X), using Theorem 1 with
z = 0, we obtain that X ( f1 − fn) = X ( f1 − f ) = 0, and since X has full rank, we
conclude that f1 = f . Now let us show that for k = ‖e‖0 > m(X) we can find an
instance of the problem for which f , whether is not a solution, or it is not the unique
solution. Let f ∈ R

p be arbitrary. From the definition of ck , there exists gk ∈ R
p such

that ‖gk‖2 = 1 and M ⊆ N , |M | = k such that

∑
i∈N\M

|x�
i gk | ≤

∑
i∈M

|x�
i gk |. (8)

Now define, for α > 0,

(∀i ∈ N ) ei =
{

αx�
i gk, if i ∈ M;

0, otherwise
(9)

and y = X f + e. Then,

‖y − X f ‖1 = α
∑
i∈M

|x�
i gk |

‖y − X ( f + αgk)‖1 = α
∑

i∈N\M
|x�

i gk |.

Hence, it follows from (8) that ‖y − X ( f + αgk)‖1 ≤ ‖y − X f ‖1, then f + αgk is a
minimizer. ��

The proof of Theorem 2 shows that if k > m(X), then, for any α > 0, we can
find a vector e such that ‖e‖0 = k and the �1 estimator f1 on the data y = X f + αe
satisfies ‖ f1 − f ‖2 = α. Combined with Theorem 1 this shows that the RBP of the �1
estimator equals m(X) + 1, recovering results of Giloni and Padberg (2004), Mizera
and Müller (1999).

Also, we can see from (9) that the existence of an unexpected sub-population
following a linear model with a different slope is the most troublesome scenario for
�1 estimation.

4 Error bounds for Huber M-estimator face to sparse outliers and noise

In this section, we study the performance of Huber’s M-estimator at model (5). The
derivation of error bounds for Huber’s estimator relies on an alternative formulation
of the minimization problem, the �1 error estimate and duality theory.

Let σ > 0, let y ∈ R
n , and let X be a n × p real matrix with full rank. Consider

the problem
minimize

(g,b,s)∈Rp×R
n×R

n
σ‖s‖1 + 1

2‖b‖22
s.t y = Xg + b + s,

(10)
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Sharp performance bounds for �1 and Huber robust estimators 803

where g, b and s are optimization variables estimating f , the dense error term z and
the sparse errors e, respectively, and σ is an estimate of the magnitude of the noise.
Isolating b from the linear constraint brings up the following equivalent problem:

minimize
(g,b)∈Rp×R

n
ψ(g, b) := σ‖y − Xg − b‖1 + 1

2
‖b‖22. (11)

Theorem 3 Let y = X f +z+e, let M = supp(e), and suppose that |M | = k ≤ m(X).
Then any solution (ĝ, b̂) to (11) satisfies

‖X (ĝ − fn)‖1 ≤ 1

2ck − 1

(
‖b̄ − b̂‖1,N\M + ‖b̄ − b̂‖22,N\M

‖b̄ − b̂‖∞,N\M

)
, (12)

where fn = f + ḡ is the LSE on yn = X f + z.

Theorem 3 provides an error bound for the Huber estimator gH since in any solution
pair (ĝ, b̂) to (11) the first component ĝ coincides with gH . To see this notice that
the minimization in (11) can be written as ming∈Rpρ(y − Xg) for ρ : r 
→ ρ(r) =
infb∈Rn σ‖r − b‖1 + 1

2‖b‖22; the function ρ above equals Huber’s criterion

ρH (r) =
{

1
2r

2 if |r | ≤ σ

σ |r | − 1
2σ

2 if |r | > σ
(13)

for any r ∈ R
n (Michelot and Bougeard 1994).

The alternative formulation (10) of Huber’s estimation problem based on the error
model (5) provides an interpretation of the estimator on finite samples. The additional
term b in (11), which makes the difference with respect to the �1 estimator, improves
its response to noisy observations.

0 10 20 30 40
0

1

2

3

percentage of contamination
0 10 20 30

0

5

10

15

percentage of contamination

Huber; �1; �2

Fig. 1 Relative error ‖ f̂ − fn‖/‖ fn‖ with gaussian noise and different percentage of outliers. On the left,
the contamination is drawn from a Laplace (0, 5) distribution and on the right contamination consists of
large grouped outliers
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804 S. Flores

In Fig. 1 two bias curves illustrate Theorems 1 and 3 in different situations. At
the left outliers are drawn from a heavy-tail distribution, the denoising effect of b̂ is
clearly perceived. At the right outliers are very large and predominate, there is not
significative difference between Huber’s and �1 estimators as both breakdown at the
same point as expected. The methodology used in the simulation is standard and can
be found in Appendix B.

5 Leverage in real datasets

The importance of quantifying the concept of leverage becomes apparent by analyzing
some examples. For our analysis, the quantities

γ i = max
g∈Rp

‖g‖2=1

|x�
i g|∑

i∈N
|x�

i g| , i = 1, . . . , n; (14)

measuring the leverage of a particular observation will be particularly useful. They
correspond to taking k = |M | = 1 in the notation of Theorems 1 and 3, in particular
c1 = 1 − max1≤i≤n γ i .

The aircraft model (Rousseeuw and Leroy 1987, pp. 154) intends to explain the
cost of 23 single-engine aircrafts in terms of their aspect ratio, lift-to-drag ratio, weight
and thrust. The �1 estimator has a breakdown point of 2/23 = 8.69% on these data,
which amounts to have m(X) = 1. The data contain one outlier in the y-direction
(observation 22) and a good leverage point at observation 14.

Recall that a high leverage point is not always influential. It has the potential to
influence the fit, but it does not necessarily do so. Indeed, the leverage depends only
on the xi , while the fit depends on the pairs (xi , yi ). For this reason, it is convenient
to visualize the leverage constants γ i jointly with the responses yi . After all, whether
a leverage point will exert its influence depends on its associated response. In Fig. 2,
at the left, we show a scatterplot of the pairs (γ i , yi ) for the aircraft dataset. There are

14

22

0.2 0.4
0

50

100

Leverage

y

14

22

2 4 6 8 10
0

50

100

Lift-to-Drag Ratio

C
os
t

Fig. 2 Aircraft dataset. At the left, a scatterplot of the pairs (leverage, response). At the right, the response
is plotted against the lift-to-drag ratio
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Fig. 3 Plot of stackloss versus each of the explanatory variables

two points (14 and 22) that escape from the main cloud. However, they seem to be
of different nature; point 14 has the greatest leverage, but its response is definitively
normal. On the other hand, point 14 has a leverage barely above that of the main group,
but a clearly outlying response, thus a high influence. This is a benign combination of
leverage points and outliers. In fact the structure of the data can be explained by one
of the explanatory variables, the lift-to-drag ratio, as shown at the right in Fig. 2.

Another interesting fact in these data is that observation 14 has a lever-
age of 0.4539, which is quite close to the critical value of 0.5 above which
the BDP falls down to 0%. If we perturb row 14 of X by adding the vector
(0.6876,−0.1692, 0.5337, 0, 0), which changes its norm by 0.0000012%, the lever-
age of observation 14 increases to 0.4982. The estimator obtained from the perturbed
data is (−0.9656,−2.6731, 1.4467, 0.0023,−0.0010), which is quite apart from the
vector (1.9511,−3.0466, 1.4736, 0.0022,−0.0010) obtained from the original data.
The same would happen, to a minor extent, even if observation 22 was not contam-
inated. This phenomenon, called instability by Ellis (1998), is just another aspect of
leverage, such as breakdown, although much less obvious.

A look at the leverage is therefore a must when analyzing data using �1 regression.
Another advantage of the leverage constants is that they synthesize multi-dimensional
data in such a way that it can be plotted, as in Fig. 2. The leverage plot can also spot
non-trivial aspects of the data, as the following example shows.

The stackloss dataset (Rousseeuw and Leroy 1987, pp. 76) is well known in the
robustness literature. It describes an oxidation process; the stackloss is to be explained
by the rate of operation, the inlet water temperature and the acid concentration. Obser-
vations 1, 2, 3, 4 and 21 are outliers. However, this is not apparent by looking at the
plots of each explanatory variable, shown in Fig. 3, as it was the case for the aircraft
data.

In the leverage plot of Fig. 4 (left) observations 1, 2, 3 and 4 stand out. Observation
21 blends into the bulk of the data, and observation 17 seems to be a ‘good’ leverage
point. For this datum m(X) = 3, thus the BDP of �1 regression is 4/21 = 19.04%.
Computing the leverage constant c4 = 0.4144 gives theminimaM = {1, 2, 3, 21} and
g4 = (0.9953,−0.0855, 0.0165, 0.0412). At the right in Fig. 4 we show a scatterplot
of the projections of the data onto the “outlying direction” g4, along with yi . The
structure of the data is clearly depicted. Note in particular that the roles of observations
17 and 21 are clarified. Point 17 is absolved, since it forms undeniably part of the main
group of points, and point 21 is exposed. Over the x-axis we plot again the projections
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Fig. 4 Scatterplots of the pairs (leverage, response) for each point of the stackloss dataset at the left,
and of the pairs (x�

i g4,yi ) at the right

x�
i g4 to notice the separation of the points in M from the rest. This plot also confirms
that point 4 is a vertical outlier.
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Appendix A: Proofs and Lemmas

Let φ : R
n → ] − ∞,+∞]

be a lower semicontinuous convex function which is
proper in the sense that domφ = {

x ∈ R
n

∣∣ φ(x) < +∞} �= ∅. The subdifferential
operator of φ is

∂φ : R
n → 2R

n : x 
→ {
u ∈ R

n
∣∣ (∀y ∈ R

n) u�(y − x) + φ(x) ≤ φ(y)
}

and we have (Hiriart-Urruty and Lemaréchal 1993, Theorem 2.2.1)

x ∈ Argmin
y∈Rn

φ(x) ⇔ 0 ∈ ∂φ(x). (15)

The proximal mapping associated with φ is defined by

proxφ : R
n → R

n : x 
→ argminu∈Rn

(
φ(u) + 1

2
‖u − x‖22

)
. (16)

From (15) we obtain, for every x ∈ R
n and p ∈ R

n ,

p = proxφ x ⇔ x − p ∈ ∂φ(p),
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and since φ + ‖ · −x‖2/2 is strongly convex, proxφ(x) exists and is unique for all
x ∈ R

n .

Lemma 2 Let γ ∈ ]
0,+∞[

and φ : R
n → R : x 
→ γ ‖x‖1 = γ · ∑n

i=1 |xi |. Then
the following holds.

(i) For every x ∈ R
n, ∂φ(x) = ×n

i=1∂γ | · |(xi ), where

(∀ξ ∈ R) ∂γ | · |(ξ) =

⎧⎪⎨
⎪⎩

γ, if ξ > 0;
[−γ, γ ], if ξ = 0;
−γ, if ξ < 0.

(ii) For every x ∈ R
n, proxγφ x = (proxγ |·|(xi ))1≤i≤n, where

(∀ξ ∈ R) proxγ |·|(ξ) =

⎧⎪⎨
⎪⎩

ξ − γ if ξ > γ ;
0, if ξ ∈ [−γ, γ ];
ξ + γ, if ξ < −γ.

Proof The results follow from Combettes and Wajs (2005, Lemma 2.1, Lemma 2.9,
and Example 2.16). ��
Proof of Proposition 1

Proof It is clear that c0 = 1 and that cn = 0. Let k ∈ {1, . . . , n}, let g ∈ R
p\{0}, and

let M with |M | = k − 1 such that

ck−1 =

∑
i∈N\M

|x�
i g|

∑
i∈N

|x�
i g| .

Now let i0 ∈ N\M and M̃ = M ∪ {i0}. We have |M̃| = k and from (2), we obtain

ck−1 =

∑
i∈N\M

|x�
i g|

∑
i∈N

|x�
i g| =

∑
i∈N\M̃

|x�
i g| + |xi0g|

∑
i∈N

|x�
i g| ≥

∑
i∈N\M̃

|x�
i g|

∑
i∈N

|x�
i g| ≥ ck,

which yields the result. ��
Lemma 3 The following holds.

(i) (ĝ, b̂) is a solution to (11) if and only if X�b̂ = 0 and

(∀i ∈ {1, . . . , n}) b̂i =

⎧⎪⎨
⎪⎩

σ, if yi − x�
i ĝ > σ ;

yi − x�
i ĝ, if yi − x�

i ĝ ∈ [−σ, σ ] ;
−σ, if yi − x�

i ĝ < −σ.

(17)

In particular, ‖b̂‖∞ ≤ σ .
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(ii) A dual of (11) is

γ := max
u∈σ P∗ u

�y − 1

2
‖u‖22, (18)

where P∗ = {
u ∈ ker X� ∣∣ ‖u‖∞ ≤ 1

}
and

min
(g,b)∈Rp×Rn

ψ(g, b) = γ.

Proof Note that ψ(g, b) can be equivalently written as

ψ(g, b) = σ‖y − [
X In

] (
g
b

)
‖1 + 1

2
‖ [

0p In
] (

g
b

)
‖22 (19)

where In denotes the identity matrix of size n×n and 0p the zero matrix of size p× p.
(i): Since the function ψ(g, b) is convex, a necessary and sufficient condition for a

solution (ĝ, b̂) to Problem (11) is

0 ∈ ∂ψ(ĝ, b̂). (20)

Hence, using (Hiriart-Urruty and Lemaréchal 1993, Theorem 4.2.1) in (19), (20) is
equivalent to (

0
0

)
∈ −

[
XT

In

]
∂σ‖ · ‖1(y − Xĝ − b̂) +

(
0
b̂

)
.

Therefore, there exists u ∈ ∂σ‖ · ‖1(y − Xĝ − b̂) such that X�u = 0 and b = u, or
equivalently, {

b̂ ∈ ∂σ‖ · ‖1(y − Xĝ − b̂),

X�b̂ = 0.

Hence y − Xĝ − b̂ = proxσ‖·‖1(y − Xĝ), and the result follows from Lemma 2(ii).
(ii): Problem (11) is equivalent to (10), and applying Lagrangian duality, the dual

is

max
u∈Rp

min
(g,b,s)∈Rd×Rn×Rn

σ‖s‖1 + 1

2
‖b‖22 + u�(y − Xg − b − s),

or equivalently,

max
u∈Rp

(
u�y +

(
min
b∈Rn

1

2
‖b‖22 − u�b

)
+

(
min
s∈Rn

σ‖s‖1 − u�s
)

− max
g∈Rp

g�(X�u)

)
.

(21)
The optimality conditions associated to the convex optimization problem

min
b∈Rn

1

2
‖b‖22 − u�b
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yield b = u, hence minb∈Rn
1
2‖b‖22 − u�b = − 1

2‖u‖22. The second minimization
problem can be written as

min
s∈Rn

σ‖s‖1 − u�s =
n∑

i=1

min
si∈R

σ |si | − ui si =
{

−∞, if ‖u‖∞ > σ ;
0, if ‖u‖∞ ≤ σ.

Finally, we have

max
g∈Rp

g�(X�u) =
{

+∞, if u /∈ ker X�;
0, if u ∈ ker X�.

Altogether, it follows from (21) that the dual to (11) is given by (18) and the absence
of duality gap follows from the Slater qualification condition and the existence of
multipliers (Hiriart-Urruty and Lemaréchal 1993, Sect. 4). ��
Proof of Theorem 3

Proof From Lemma 1(i) and (11) we deduce

ψ(ĝ, b̂) − ψ( fn, b̂) ≥ σ(2ck − 1)‖X (ĝ − fn)‖1 − 2σ‖y − X fn − b̂‖1,N\M .

Hence, it follows from fn = f + ḡ that, for every i ∈ {1, . . . , n}, yi − x�
i fn = ei + b̄i

and thus, ψ( fn, b̂) = σ‖e + b̄ − b̂‖1 + ‖b̂‖22/2. Therefore, since ei = 0 for any
i ∈ N\M ,

σ(2ck−1)‖X (ĝ− fn)‖1 ≤ 2σ‖b̄−b̂‖1,N\M−σ‖e+b̄−b̂‖1+ψ(ĝ, b̂)− 1

2
‖b̂‖22. (22)

From Lemma 3(ii), the dual problem to (11) is

max
u∈σ P∗ u

�(e + b̄) − 1

2
‖u‖22

and ψ(ĝ, b̂) = max
u∈σ P∗ u

�(e + b̄) − 1
2‖u‖22. Therefore,

ψ(ĝ, b̂) − 1

2
‖b̂‖22 = max

u∈σ P∗ u
�(e + b̄) − 1

2
‖u‖22 − 1

2
‖b̂‖22

= max
u∈σ P∗ u

�(e + b̄ − b̂) − 1

2
‖u − b̂‖22

≤ max
u∈σ P∗ u

�(e + b̄ − b̂).

Hence, it follows from Lemma 4 that

ψ(ĝ, b̂) − 1

2
‖b̂‖22 ≤ σ‖e + b̄ − b̂‖1,M + σ

‖b̄ − b̂‖∞,N\M
‖b̄ − b̂‖22,N\M ,
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which, combined with (22), yields

(2ck − 1)‖X (ĝ − fn)‖1 ≤ 2‖b̄ − b̂‖1,N\M − ‖e + b̄ − b̂‖1 + ‖e + b̄ − b̂‖1,M
+ 1

‖b̄ − b̂‖∞,N\M
‖b̄ − b̂‖22,N\M

= ‖b̄ − b̂‖1,N\M + 1

‖b̄ − b̂‖∞,N\M
‖b̄ − b̂‖22,N\M

as claimed. ��
Lemma 4 Let b ∈ R

n, e ∈ R
n and let M = supp(e). Suppose that |M | ≤ m(X) and

maxi∈N\M |bi | > 0. Let us define P∗ = {
d ∈ ker X� ∣∣ ‖d‖∞ ≤ 1

}
. Then, for every

σ > 0,
max
d∈σ P∗ d

�(e + b) ≤ σ‖e + b‖1,M + σ

‖b‖∞,N\M
‖b‖22,N\M .

Proof Let

b̃i =
{
0, if i ∈ M;
bi , otherwise,

and ẽi =
{
bi + ei , if i ∈ M;
0, otherwise.

(23)

Then supp(ẽ) = M , b + e = b̃ + ẽ, ‖b + e‖1 = ‖b̃‖1 + ‖ẽ‖1, and

max
d∈σ P∗ d

�(e + b) = max
d∈σ P∗ d

�(ẽ + b̃) ≤ max
d∈σ P∗ d

�ẽ + max
d∈σ P∗ d

�b̃. (24)

Ononehand, it follows fromLemma1(i)with y = ẽ, g∗ = 0, andb∗ = 0 that, for every
g ∈ R

p, ‖ẽ‖1 ≤ ‖ẽ−Xg‖1, hence 0 ∈ argming∈Rp ‖ẽ−Xg‖1 and from the first-order
optimality condition 0 ∈ X�∂‖ · ‖1(ẽ), or equivalently, (∃u ∈ P∗) u�ẽ = ‖ẽ‖1.
Since, for every u ∈ P∗, u�e ≤ ‖e‖1 we hence deduce that maxu∈P∗ u�ẽ = ‖ẽ‖1.
Therefore, by considering the change of variables u = d/σ , we obtain

max
d∈σ P∗ d

�ẽ = σ · max
u∈P∗ u

�ẽ = σ‖ẽ‖1. (25)

On the other hand,

max
d∈σ P∗ d

�b̃ ≤ max‖d‖∞≤σ
d�b̃ = σ

‖b̃‖∞
b̃�b̃ = σ

‖b̃‖∞
‖b̃‖22. (26)

Therefore, by replacing (25) and (26) in (24), the result follows from (23). ��

Appendix B: Additional information on curves in Sect. 4, Fig. 1

The experimental setup is the following. The matrix X is generated randomly with
independent entries drawn from a standard normal distribution. Its size is n × p =
512 × 128. The vector of data is generated according to
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y = X f + z + e,

with f = 0 and z standard normal, for different types and levels of contamination.
We estimate f by three different methods: LSE, �1, and Huber’s with σ =√
χ2
1 (.95). The size of the support of e ranges from 1 to (n − p − 1)/2, which means

that the maximum fraction of contamination is close to 40%. We consider three types
of sparse contamination. In the first and second types, each non-zero component of
e is drawn i.i.d. from a Normal (light-tailed) and Laplace (heavy-tailed) distribution
with mean 0 and standard deviation 5, respectively. The last type of sparse error is
considered to be very large and adversarial, inspired from the proof of Theorem 2. For
generating the adversarial contamination we first create the vector ẽ = X1p, where
1p is the vector of ones of size p×1. Then, the sparse errors are obtained by selecting
some components of ẽ randomly and by multiplying them by 50.

For each type of contamination, for every k ∈ {1, . . . , (n − p − 1)/2}, we repeat
1000 times the following:

1. Choose randomly a subset M of N of size k.
2. Construct the sparse vector e by filling the entries indexed by M with the corre-

sponding type of large errors.
3. Generate z with independent N (0, 1) entries.
4. Set y = z + e and estimate f = 0 by LSE, �1, and Huber’s methods.

For each percentage of outliers, the bias is quantified by the mean of the quotients
‖ f̂ − fn‖2/‖ fn‖2, where f̂ is the estimation of f obtained by each of the three
methods and fn = (X�X)−1X�z.
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