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Phenotypic plasticity is the ability of a genotype to produce more than one

phenotype in order to match the environment. Recent theory proposes that the

major axis of genetic variation in a phenotypically plastic population can align

with the direction of selection. Therefore, theory predicts that plasticity directly

aids adaptation by increasing genetic variation in the direction favoured by selec-

tion and reflected in plasticity. We evaluated this theory in the freshwater

crustacean Daphnia pulex, facing predation risk from two contrasting size-selective

predators. We estimated plasticity in several life-history traits, the G matrix of

these traits, the selection gradients on reproduction and survival, and the pre-

dicted responses to selection. Using these data, we tested whether the genetic

lines of least resistance and the predicted response to selection aligned with plas-

ticity. We found predator environment-specific G matrices, but shared genetic

architecture across environments resulted in more constraint in the G matrix

than in the plasticity of the traits, sometimes preventing alignment of the two.

However, as the importance of survival selection increased, the difference

between environments in their predicted response to selection increased and

resulted in closer alignment between the plasticity and the predicted selection

response. Therefore, plasticity may indeed aid adaptation to new environments.
1. Introduction
Phenotypic plasticity is the ability of a genotype to produce more than one

phenotype depending upon the environment [1]. The value of adaptive phenoty-

pic plasticity is that it generates environment-specific phenotypes that are similar

to what would be expected by a locally adapted specialist to that environment

[1,2], thus reflecting what would be favoured by selection. Therefore, adaptive

plasticity, it is argued, can influence local adaptation by producing phenotypes

that are pre-adapted to the new environment. The role of plasticity in local adap-

tation has experienced a recent upsurge in interest due to several important

models that predict how plasticity may enable survival in novel and extreme

environments long enough for genetic change to take place through a process

called genetic accommodation [3–6].

Empirical plasticity research, however, remains largely focused on detecting

genetic variation in plasticity of single or pairs of traits varying across environments.

This narrow focus is even true for recent theory where models of adaptation

linked to phenotypic plasticity typically focus on single plastic traits [4,6,7].

However, it has long been recognized that the genetic variance and covariance of

multiple traits can be expressed in an environment-specific manner [8–11], and

that selection acts on the variance and covariance among traits [12–14]. A plastic

response thus often involves a set of traits responding in concert [8,15–17]

and requires a multivariate view of plasticity [16,18,19]. Such a multivariate
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perspective of plasticity can be captured in a G matrix, the matrix

of additive genetic variance and covariance among traits [8]. It is

well known that exposure to extreme environments can release

cryptic genetic variation and affect the genetic architecture of

traits [20,21], but plasticity may also be restricted to phenotypic

changes with no effect on the underlying genetic architecture at

all, in which case plasticity may sometimes buffer against evol-

utionary change [7].

Draghi & Whitlock [22] presented a model that deals

with both the long-standing expectation that plasticity aids

adaptation and the multivariate nature of plasticity. Linking

developmental genetics, plasticity and adaptation, their

theory predicts that plasticity can directly aid adaptation by

increasing genetic variation along the lines of least resistance,

known as gmax (sensu Schluter [23]), the major axis of genetic

variation estimated from the G matrix. Using a simulation

approach based upon a developmental gene network model,

they recovered the well-established understanding that

adaptive phenotypic plasticity evolves in a heterogeneous

environment with reliable cues [2]. Importantly, however,

their model resulted in an increase in genetic variance and

covariance (and also mutational variance) in the direction of

greatest divergence between the environments, which with

stable selection gradients would be the direction most favoured

by selection. Draghi & Whitlock [22] suggest that the plastic

response to multivariate selection predisposes the develop-

mental machinery to, and increases the genetic variance in, the

direction of most divergence between the environments, as

long as plasticity is adaptive and selection is sufficiently strong

along gmax. In this context, it is predicted that plasticity would

align the phenotype to the major axis of genetic variation and,

ultimately, be in line with the direction of selection. However,

the theory has an underlying theoretic assumption of a stable

G matrix, an assumption that can be challenged [24–26].

We present a multivariate, experimental evaluation of this

theory, and the assumption of a stable G matrix [22], using a

model system of phenotypic plasticity: predator-induced

defences in the water flea, Daphnia pulex. Specifically, we

evaluate whether phenotypic plasticity can align a phenotype

with the major axis of genetic variation (gmax) and whether,

ultimately, plasticity aligns a phenotype with the predicted

response to selection [22]. We do so with D. pulex, which

responds to predator chemical cues with inducible plastic

and adaptive changes in morphology, life history and behav-

iour [27–30]. We focus on life-history plasticity, a major form

of predator-induced plasticity in daphnids [29–32] and one

benefiting from substantial evolutionary theory linked to

size-selective predation [33].
2. Methodology
(a) Species and study populations
Our work centres on 19 genotypes (clones) of D. pulex
(Cladocera), a microcrustacean with a cosmopolitan distribution,

and a keystone herbivore of algae in ponds and lakes [34]. In the

UK, it is subjected to contrasting and seasonal predation pressure

by young-of-the-year fish in spring, and midge larvae during

summer and autumn [35]. Fish are visual predators and prefer

large Daphnia, which gives a benefit to individuals that mature

early and at a small size [32,36]. By contrast, midge larvae are

gape-limited, and therefore prey upon small juvenile Daphnia,

favouring growth to reach the size refuge and mature at a

larger size [29,32,37].
Daphnia pulex were collected in May and June 2009 in northern

England from the ponds LD3 and LD6 in Cumbria, and Crabtree

in Yorkshire, from which 5, 7 and 7 clones (n ¼ 19), respectively,

were identified using 17 microsatellite markers (ponds, clones

and markers are described in the electronic supplementary

material, table S1). The clones were maintained in the laboratory

in hard artificial pond water (ASTM [38]) under a 16 L : 8 D cycle

and fed the algae Chlorella vulgaris.

(b) Kairomone extraction to generate plasticity
To generate predator-induced responses, we isolated kairomones

from both fish and midge larvae. Water enriched in fish kairo-

mones was generated following Beckerman et al. [32,39] by

housing two similar-sized (4–6 cm) three-spined sticklebacks

Gasterosteus aculeatus (fed commercially available frozen Daphnia)

in 6 l artificial pond water at 12.58C in a controlled temperature

room for at least 24 h, whereafter the water was filtered through

a 47 mm filter (Fisherbrand, Fisher Scientific) and a 0.45 mm

pore-sized filter (Sartorius Stedim Biotech). Midge kairomone

was isolated via filtration and solid-phase extraction from frozen

Chaoborus flavicans (Honka, Germany) following the protocol of

Tollrian [31] (see also [32,35,39]).

(c) Life-table experiment and trait plasticity
We generated plasticity in four life-history traits, estimated from a

standard life-table experiment: age and size at maturity, fecundity

and somatic growth rate of adults. We defined age at maturity as

the age when eggs were first released into the brood pouch, size

at maturity as the linear distance between the top of the head

and the base of the tail at age at maturity, and adult growth rate

as the log-change in body size between the first and third clutch,

divided by the time between these clutches. Fecundity was esti-

mated as the number of eggs produced in the first three clutches

and used to calculate the intrinsic population growth rate (r).

Using data of three clutches is considered appropriate in D. pulex
where Riessen & Sprules ([40], fig. 4) showed that the first three

clutches can explain approximately 94% of total r.

These data were collected from daphnids housed in a temp-

erature-controlled laboratory set to 218C and a 16 L : 8 D cycle. To

avoid maternal and grand-maternal effects, the clones were

grown for three generations under experimental food conditions

prior to the experiment. We initiated the experiment by exposing

third-generation mothers between their second and third brood

to the predation-risk treatment conditions, and the experimental

animals used in the life-table experiments were neonates from

their third brood. Each mother was placed in a 60 ml glass jar

filled with experimental medium containing 49 ml ASTM [38],

food (C. vulgaris, 2 � 105 cells ml21) and marinure (a liquid

seaweed extract for micronutrients, Wilfrid Smith Ltd., Northans,

UK, 0.018 mml21), and were selected for experiment when

holding black-eyed embryos (12 h prior to parturition).

The predator cue treatments were constructed either by adding

0.5 ml ml21 of the concentrated midge kairomone to experimental

vessels or by replacing 20% of the ASTM with ASTM enriched with

fish kairomones. These cue concentrations give strong induction of

morphological and life-history traits and correspond to realistic

predation pressures [17,32,39,41]. The neonates were exposed to

the predator cue treatment during their whole development with

water conditions reset daily by moving the individuals into fresh

treatment medium (ASTM, food, marinure and kairomones).

Life-history traits were estimated under experimental

conditions and individuals were photographed daily to collect

size-specific data on each replicate. The experiment started when

one neonate from each mother was placed in a cylindrical glass

tube (height: 150 mm, diameter: 19 mm) filled with 30 ml treatment

medium. When reaching maturity, the adults were housed in 60 ml

glass jars filled with 50 ml treatment medium. The experiment was

http://rspb.royalsocietypublishing.org/
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terminated when the adults reached their third clutch. Each of the

19 clone � treatment combinations was replicated 2–5 times (mean

3.8), giving a total sample size of 143 individuals (71 in the fish and

72 in the midge cue treatment).

Reproductive fitness was calculated as the intrinsic population

growth rate (r) in the absence of predation mortality (e.g. risk

cues only). We calculated r for each replicate by solving the

Euler–Lotka equation on life-table data spanning first instar to

third clutch [42].

(d) Phenotypic plasticity, selection gradients and the
response to selection

Here we present how we (i) quantify plasticity and define ‘vectors

of plasticity’ associated with predation risk, (ii) quantify the gen-

etic covariance matrix and it’s major axis of variation, and then

(iii) construct a composite selection gradient of survival and

reproduction. We then detail how we (iv) generate predicted,

predator-specific multivariate responses to selection from (ii)

and (iii). This represents the raw material with which to evaluate

Draghi & Whitlock’s [22] hypotheses and is summarized in

electronic supplementary material, figure S1.

(i) Phenotypic plasticity and the multivariate vector of plasticity
We evaluated plasticity, genetic variation in plasticity and estimated

the vector of plasticity using a Bayesian MCMC mixed model. We

fitted a model with predator treatment as fixed effect and a

random-regression specification for the random effect where each

clone possessed its own intercept and slope. We estimated trait plas-

ticity via the fixed effect. Genetic variation in plasticity is estimated

by evaluating whether the slopes terms in the random effects speci-

fication is significant. All tests were evaluated via 95% credible

intervals from the joint posterior distribution of fixed and random

effects. We also compared, using DIC (the Bayesian equivalent to

AIC), a model with and without the random slopes term, as an

additional test of genetic variation in plasticity.

We then defined the vector of trait plasticity to midge and to

fish predation risk for each of size at maturity, age at maturity

and adult growth rate. The vector of plasticity is the ‘distance

moved by each trait’ and was estimated from the treatment-specific

mode of the trait values. Specifically, from the joint posterior distri-

bution of trait values in each treatment, we constructed the joint

posterior distribution of the mode of each vector.

We also here estimated the angle separating the vector of

plasticity to each predator, uplast, defined by the cosine formula

for a dot product [43]:

cosuplast ¼
P
ðplasticitymidge � plasticityfishÞ

k plasticitymidge k � k plasticityfish k
: ð2:1Þ

Fecundity (r) was not included in the estimation of plasticity

and was reserved for the analysis of selection gradients (below).

The models for each trait were fitted in R [44] using MCMCglmm
[45] with source pond (n ¼ 3) as a fixed effect and clone (n ¼ 19) as a

nested random effect, allowing for different intercepts and slopes.

We used parameter-expanded priors, and models were fitted with

a burn-in of 50 000 and sampling that produced 1000 estimates of

the joint posterior distribution from more than 500 000 iterations

of the chains. All models were checked for autocorrelation in

the chains.

(ii) Estimating G matrices and gmax
We next estimated the predator treatment-specific variance–

covariance matrices (G) for the three traits. We used a Bayesian

MCMC multivariate mixed model (MCMCglmm [45]) to estimate

G following [19],

yi ¼ mþ Xb þ Za þ 1, ð2:2Þ
where yi is a vector of trait values in treatment i and Za is a design

matrix relating individuals to total clonal genetic effects a, which

estimates an unstructured G matrix of the genetic effects. All

trait data from the life-table experiment was first centred and

scaled to s.d. ¼ 1.

As above, source pond (n ¼ 3) was a fixed effect and clone

the random effect. The clone random effect was specified as an

unconstrained variance–covariance matrix of the total genetic

(clonal) variance and covariance among the three traits.

gmax is the first principal component of G and the major axis of

genetic variation. Using the tools presented in [19] for estimating

gmax and angles separating gmax from Bayesian MCMC mixed

models, we derived a joint posterior distribution of gmax, and the

angle separating gmax between the two predation treatments via [43],

cos(uÞ ¼
P
ðgmaxðmidgeÞ � gmaxðfishÞÞ

k gmaxðmidgeÞ k � k gmaxðfishÞ k
: ð2:3Þ

(iii) Estimating the selection gradient b
Selection under predation risk in nature depends both upon

reproduction and survival. Their relative importance depends

upon the predation regime in ponds, which fluctuates over the

season [35]. Therefore, we specified the following five selection

gradients, each representing a different weighting of reproduc-

tion (bR) and survival (bS): bR, bR þ 0.5bS, bR þ bS, 0.5bR þ bS

and bS.

The linear selection gradient bR was estimated as the

regression coefficients from multiple linear regression of traits

against intrinsic population growth rate (r) (see life-table exper-

iment above). As we were interested in comparing the alignment

between the response to selection and the plasticity, fitness was

centred and scaled to unit variance, to give comparable strength

of selection between the predation treatments, only allowing the

direction of selection to vary. These analyses were implemented

using parametric methods from the rsm package [46] in R [44].

As all traits were measured on the same individuals, we used ran-

domization to test the significance of all parameters of bR, taking

the potential non-independence of residuals into account [47].

The selection gradients on survival, bS were defined from the

empirical and theoretical literature of size-selective predation on

Daphnia. This literature (see [33] for theory) is strongly focused

around assumptions that gape-limited predators, such as Chaobor-
ous larvae, target small prey [37,48,49], while visually hunting

predators such as fish instead target large prey [36,50]. To reflect

this, we defined the bS coefficient for size at maturity to 21 in the

fish treatment (highest fitness for small Daphnia) and to þ1 in the

midge treatment (highest fitness for large Daphnia). All other

coefficients were set to zero in this instance.

Finally, to create the composite selection gradients, bR and bS

were standardized to a total length (strength of selection) of

1. We then created the composite selection gradients, representing

a several combinations of reproduction (bR) and survival (bS): bR,

bR þ 0.5bS, bR þ bS, 0.5bR þ bS and bS. The resulting composite

selection gradients were also standardized to a length of 1, to

enable meaningful comparisons of the response to selection in

the following step.

(iv) Predicting the multivariate response to selection
We next estimated the vector of multivariate response to selection

of size at maturity, age at maturity and adult somatic growth rate

using the multivariate breeders equation, Dz ¼Gb [51].

Using the G-matrices estimated for each treatment and the

five composite selection gradients, we estimated Dz (2G � 5b ¼

10 Dz). Because G is a joint posterior distribution of 1000

estimates (see above), multiplying G by b generates a joint pos-

terior distribution of Dz for each composite selection gradient

and treatment. We thus propagated the variability in our

http://rspb.royalsocietypublishing.org/


5.5

6.5

7.5

8.5

fish midge

ag
e 

at
 m

at
ur

ity
 (

da
ys

)

(a)

1.4

1.5

1.6

1.7

1.8

1.9

2.0

fish midge

(b)

si
ze

 a
t m

at
ur

ity
 (

m
m

)

(c)

0.01

0.03

0.05

0.07

fish midge

ad
ul

t g
ro

w
th

 r
at

e 
(d

ay
–1

)

(d)

0.68

0.75
plasticityfish

plasticitymidge

137.2°

Figure 1. Reaction norms, based upon clone means, for predator cue-specific expression of (a) age at maturity, (b) size at maturity and (c) adult growth rate.
(d ) The angle between the vectors of multi-trait plasticity. Bold lines represent the mean clone response; for posterior modes see results section.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20151651

4

 on November 25, 2015http://rspb.royalsocietypublishing.org/Downloaded from 
estimates of G (captured in the posterior distribution of G) to Dz
[19,52]. We then estimated the angles between the treatment-

specific responses to selection for each b, as defined in equation

(2.3) above.

(e) Alignment between plasticity, gmax and response
to selection

The above methods provide the raw material (see the electronic

supplementary material, figure S1) to test the hypothesis that

plasticity aids adaptation. From above, we have posterior distri-

butions describing (i) the vectors of plasticity (how far a trait

moves) and the angle between the plastic response, (ii) the vec-

tors of gmax (major axis of genetic variation) and the angle

between these major axes, and (iii) the predicted response to

the five combinations of survival and reproductive selection,

Dz, in each treatment and the angle between these responses.

Our analyses rely on testing whether the angle between vec-

tors (e.g. between a vector of plasticity and Dz) are significantly

different. Ovaskainen et al. [52] and Robinson & Beckerman

[19] make clear that while calculating the angle is straightfor-

ward, a test of whether it is significant requires a special test

statistic. Following Robinson & Beckerman [19] and Ovaskainen

et al. [52], multiple samples of the posterior provide a way to gen-

erate multiple estimates of u, which can be used to compare the

difference in angle within each group to differences in angle

between each group [19,52]:

cuðGi, GjÞ ¼ ½uðGA
i , GB

i Þþ uðGA
j , GB

j Þ�� ½uðG
A
i , GA

j Þþ uðGB
i , GB

j Þ�:

Each and every one of our angle comparisons can be calcu-

lated by applying this formula to the posterior distributions of

each metric, resulting in a statistical test of whether angles
deviate or align. We formally define alignment as a non-signifi-

cant angle difference within treatments. This definition is

characterized as a ‘match’ between types of responses.

However, this definition of alignment is sensitive to low

power, as alignment is acceptance of the null hypothesis. There-

fore, we also evaluated alignment via mismatch [53] where we

predict that vectors that are aligned within treatments are signifi-

cantly mis-aligned between treatments. We calculated the

mismatch between the predator-specific gmax/Dz and the plastic

trait expression induced by the wrong predator (e.g. the angle

between gmax(fish) and plasticitymidge). A non-significant angle of

alignment combined with a significantly different angle of mis-

match is the strongest inference about alignment, as it tests our

power to reject the null hypothesis.
3. Results
(a) Plasticity
Daphnia pulex showed plastic changes between predator treat-

ments (figure 1; electronic supplementary material, table S2).

Exposure to midge kairomones resulted in larger size at matu-

ration (midge: 1.87 mm; fish: 1.68 mm; pMCMC , 0.001) and a

lower adult growth rate (midge: 0.034 day21; fish: 0.040 day21;

pMCMC ¼ 0.008) than did exposure to fish kairomones. Mean

age at maturation did not differ between the treatments

(midge: 7.12 days; fish: 7.07 days; pMCMC ¼ 0.751). We did

not include a control treatment, but both fish and midge cues

are known to result in plastic trait induction relative to a control

[32]. The vector of multi-trait plasticity was constructed using

the full posterior distribution of the scaled and centred trait

http://rspb.royalsocietypublishing.org/


–1.5 –1.0 –0.5 0 0.5 1.0 1.5
Dz

age at maturityDzb(R)

Dzb (S)

Dzb(R) + b (S)

Dzb(R) + 0.5 b (S)

Dz0.5b(R) + b (S)

Dzb(S)

Dzb(R) + b(S)

Dzb(R) + 0.5 b(S)

Dz0.5b(R) + b(S)

Dzb(S)

Dzb(R) + b(S)

Dzb(R) + 0.5b(S)

Dz0.5b(R) + b(S)

adult growth rateDzb(R)

size at maturityDzb(R)

fish

midge

Figure 2. The predicted response to selection (Dz) using composite selection on reproduction (Dzb(R)), survival (Dzb(S)) or reproduction and survival combined to
selection in the fish (black circles, solid lines) and midge (white circles, dashed lines) cue treatment. The horizontal lines correspond to the 95% HPD interval.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20151651

5

 on November 25, 2015http://rspb.royalsocietypublishing.org/Downloaded from 
inductions, and the posterior modes for the traits in the midge

treatment vector were 0.048 (age), 0.649 (size) and 20.159

(adult growth), while the corresponding trait modes for the

fish treatment vector were 20.062 (age), 20.623 (size) and

0.167 (adult growth). These plasticity vectors differed between

the treatments by an angle of 137.28 (95% CI: 100.48–172.58,
p , 0.001). Surprisingly, among these genotypes, we found

no significant genetic variation in plasticity in size at matu-

ration (20.026, 95% CI: 20.17–0.08) and adult growth rate

(20.11, 95% CI: 20.37–0.08), the two plastic traits, confirmed

by very similar DIC values between models with and without

the random slope term (size at maturation: DICintercept ¼ 279,

DICinterceptþslope ¼ 280; adult growth rate: DICintercept ¼ 296,

DICinterceptþslope ¼ 296). By contrast, we found significant gen-

etic variation for plasticity in age at maturation, the not

significantly plastic trait (20.49, 95% CI: 21.04 to 20.07,

DICintercept ¼ 389, DICinterceptþslope ¼ 365). In summary, in

classical G � E terms, we have E effects on two traits but no

G � E (parallel reaction norms with non-zero slopes),

and G � E in one trait, but no E (crossing reaction norms, but

zero slope on average).
(b) The G matrix and gmax
We found significant broad sense heritability for all traits

(age at maturity, size at maturity, adult growth rate) in

both predator cue treatments (electronic supplementary

material, table S3). Moreover, we found a significant and

strong negative genetic covariance between size at maturity

and adult growth rate in the fish treatment. The genetic cor-

relation between size at maturity and adult growth rate was

negative in both treatments, but stronger in the fish cue treat-

ment, where we also found a positive genetic correlation

between age and size at maturity.

gmax explained the same amount of genetic variation in

each treatment (fish: 60.08%; midge: 56.04%; electronic sup-

plementary material, table S4). The angle between gmax of the

two treatments was 66.68 (95% CI: 42.38–86.28), indicating a

substantial plastic rotation of the G matrix between the two

predator treatments (electronic supplementary material,

figure S2). This rotation was true in 94% of the posterior distri-

bution samples used to test the angle differences, suggesting
p ¼ 0.06 [52]. We found no difference in the total amount of

clonal genetic variation (fish: 1.16, CI: 0.89–1.80; midge: 1.10,

CI: 0.72–1.61) between the treatments.

(c) Selection gradients
In both predator cue treatments, we found that early age at

maturity, large size at maturity and high adult growth rate

all resulted in high reproductive fitness (electronic supplemen-

tary material, tables S5 and S6), resulting in very similar bR

between the treatments, as opposed to the divergent selection

gradients for size-selective survival bS (electronic supplemen-

tary material, figure S3). From bR and bS, we then created

the five composite selection gradients used for predicting the

response to selection (electronic supplementary material,

table S7).

(d) Predicted response to selection
Figure 2 and electronic supplementary material, figure S4, tables

S8 and S9 present the range of predicted responses to selection

across the combinations of bR and bS. The angles between

responses to each predator range from 48.98 to 137.838, increas-

ing as the importance of selection on survival is weighted more

and more heavily. Selection on survival was required to detect a

significant difference in the response to selection by each pred-

ator, but even weighting this by 50% of its strength results in

approximately 308 rotation between responses. Despite the

differences in selection gradients for reproduction and survival

in the fish treatment (positive selection on size for reproduc-

tion, negative for survival, resulting in a difference in angle of

118.88), the predicted response to selection was remarkably

similar for all combinations of bR and bS (figure 2; electronic

supplementary material, table S9).

(e) Alignments
(i) Fish-induced plasticity, gmax and Dz
We found strong alignment between the vector of plasticity

and gmax. There was no significant difference in the angle

between the vector of multi-trait plasticity and gmax (table 1);

plasticity aligned with the predicted response to selection,

Dz, when selection was based entirely on survival. It did not

http://rspb.royalsocietypublishing.org/


Table 1. Tests for alignment between plasticity (the vector of plastic trait inductions), the direction of maximum genetic variation (gmax) and the response to
selection on reproduction (Dzb(R)), survival (Dzb(S)) or reproduction and survival combined. Angle is expressed as the posterior mode with 95% CI. Significant
angle differences are indicated by asterisks. Non-significant angles indicate alignment.

treatment comparison angle p alignment

fish plasticity, gmax 51.398 (19.93 – 143.418) 0.248 yes

plasticity, Dzb(R) 60.438 (27.46 – 98.288) 0.003* —

plasticity, Dzb(R)þ0.5b(S) 55.388 (22.20 – 89.768) 0.004* —

plasticity, Dzb(R)þb(S) 53.778 (19.47 – 86.438) 0.014* —

plasticity, Dz0.5b(R)þb(S) 44.628 (14.15 – 83.008) 0.014* —

plasticity, Dzb(S) 43.808 (10.75 – 78.818) 0.085 yes

midge plasticity, gmax 97.858 (60.71 – 143.828) 0.025* —

plasticity, Dzb(R) 65.738 (21.31 – 103.558) 0.044* —

plasticity, Dzb(R)þ0.5b(S) 52.818 (19.32 – 96.598) 0.073 yes
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align with plasticity in any combination of selection gradients

that involved bR (table 1).
(ii) Midge-induced plasticity, gmax and Dz
Midge-induced plasticity and Dz and plasticity and gmax

were aligned in all instances where the composite selection

gradient involved some degree of survival selection (table 1).
(iii) Validation via testing for misalignment
We validated our power to detect misalignment (a significant

angle difference) by comparing the treatment-specific gmax

and Dz with the wrong plasticity vector. For both predator

cue treatments, we detected a significant misalignment for

all combinations of b, indicating that we have the power to

detect misalignment. However, for gmax, we found alignment

with the wrong plasticity vector (no significant angle difference)

in both comparisons (electronic supplementary material,

table S10).
4. Discussion
The role of phenotypic plasticity in adaptation and diversifica-

tion continues to be a central focus in evolutionary ecology.

Theory on how plasticity evolves, how it might aid in adaptation

to novel, rapidly changing environments and how it might influ-

ence diversification is replete. Data, however, are often lacking to

evaluate the emerging ideas. Draghi & Whitlock [22] proposed a

new addition to this arsenal of theory, suggesting that pheno-

typic plasticity evolves to align phenotypic responses with the

major axis of genetic variation. This idea, captured in an elegant

model of development, provides a theoretical framework for the

simple idea that plasticity can ‘pre-adapt’ populations to selec-

tion regimes, as long as the novel environment is an extension

of the environment inducing the plastic response. Here, we pre-

sent a multivariate, experimental evaluation of this idea using a

classic system to study phenotypic plasticity: predator-induced

defences in the water flea, D. pulex.
(a) Alignment with plasticity of the traits
In a simulation study, Draghi & Whitlock [22] showed that

selection on phenotypic plasticity could result in genetic

correlations among the traits, such that genetic variance is

increased in the direction of the plastic trait expression

which, with stable selection gradients, also is the direction

favoured by selection.

For perfect alignment between plasticity and the response

to selection, the theory assumes a stable G matrix across

environments where gmax and plasticity should be aligned.

This would aid adaptation in the direction of plastic trait

expression. Moreover, for plasticity to align with the response

to selection, the different contributions to the selection

gradient (i.e. reproduction and survival) should be in a simi-

lar direction. Otherwise, alignment depends upon the relative

importance of reproduction and survival selection.

Predator cues in our experiments resulted in major differ-

ences in the G matrix between treatments, suggesting that

genetic variance can be expressed in an environment-specific

fashion [11,16]. However, environmental-specific changes in

the G matrix go outside the assumptions of [22], whose

model assumes G to be stable across environments, which

complicates predictions.

We found a very pronounced difference in plastic trait

expression (137.28) between the fish and the midge cue treat-

ment, while the difference in gmax between the treatments was

substantial but smaller (66.68). This difference in angles separ-

ating plasticity and gmax suggests a higher degree of shared

genetic architecture between environments, possibly constrain-

ing adaptation in the directions of plastic trait induction.

Therefore, we would not predict alignment between gmax and

plasticity in both predator cue treatments, and indeed only

gmax in the fish cue treatment aligned with the plastic trait

induction. Furthermore, as gmax differed much less than plas-

ticity, gmax in the midge cue treatment was actually more

aligned with the plastic trait induction in the fish cue treatment,

rather than in its own treatment. Together this suggests that

shared genetic architecture between environments can limit

alignment between plasticity and gmax.

http://rspb.royalsocietypublishing.org/
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Given the interest in the role of plasticity for adaptation

[3,6], our data show that the G matrix is environment-specific,

potentially aiding adaptation, but that the shared genetic archi-

tecture between environments can result in greater plasticity in

traits than in their underlying genetic variance and covariance.

This potentially constrains adaptation in the direction of a plas-

tic response, as divergence often [24] (but not always [26])

follows gmax, at least in the short term. Nevertheless, the fact

that the G matrix is environmental-specific is beneficial for

adaptation to different environments.

However, adaptation is the response to selection, which

also depends upon the environment-specific selection gradi-

ent. While similar trait values were important for high

reproduction in both environments, survival in the midge

cue treatment selects for large size [37,48,49], while small

size is beneficial in the fish cue treatment [36,50]. Thus,

especially for the fish treatment, the trait combinations

selected for by survival or reproduction differ markedly.

Therefore, we predicted that the degree of alignment

between the plastic trait induction and the predicted response

to selection would depend upon the relative contribution of

survival and reproduction to the composite selection gradi-

ent. Indeed, the degree of alignment was dependent upon

the nature of selection, and increased in both environments

with increased contribution of survival selection. This was

most marked in the fish cue treatment, where these selection

gradients were most dissimilar.

The lack of alignment with predicted selection on repro-

duction (but not survival) could indicate that the induced

life-history plasticity in D. pulex is mainly a survival benefit,

a suggestion that has strong empirical support [28–30]. This

suggests that if predators are the main selective agent affect-

ing D. pulex, then the response to selection will be aligned

with anti-predator plasticity, despite a G-matrix constrained

by shared genetic architecture between the two environ-

ments. Therefore, phenotypic plasticity, as predicted by

Draghi & Whitlock [22], can move populations towards phe-

notypic adaptive peaks that would be generated by selection.
(b) Power to detect alignment
Recalling that alignment is acceptance of the null hypothesis,

we followed the approach of [53] to also test alignment with

the wrong plasticity vector. We found that the angle between

Dz and the predator-induced plasticity was always smaller

than the angle between Dz and the plasticity vector induced

by the wrong predator. Moreover, we were always able to

detect significant misalignment between Dz and the wrong

plasticity vector, suggesting that we have power to detect

misalignment if present. This is important given the low

number of surviving individuals of some clones and the

resulting variance in their genetic estimates.

Nevertheless, we suggest that alignment should be seen

as continuous rather than a categorical observation based

on a single significance value. Except for plasticity and gmax

in the midge cue treatment, all angles are less than 908,
suggesting that they are clearly not in the wrong direction.

It may be more important to consider the degree of (mis-)

alignment, and the Bayesian MCMC approach to estimating

angle changes provides a robust route to this end [19,52].

Additionally, our assessment of (mis-)alignment is also

contingent on how survival and reproduction selection gradi-

ents combine. Appropriate, empirically derived weighting of
these two portions of selection is necessary for more precise

system-specific conclusions about how (mis-)alignment

might shape the response to selection.
(c) Environmental-specific changes in the G matrix
Novel or stressful environments can release cryptic genetic

variation or change the genetic architecture of traits [20,21].

However, the suggestion that environmental cues may

induce plastic change in the genetic variance and covariance

of traits [54] has only lately attracted attention from experimen-

tal biologists [19]. Our data reveal one of very few empirical

examples of such induced G matrix plasticity (see also [9–11]).

We show predator chemical cues can induce changes in the

G matrix of life-history traits. This is a necessary response to

invoke adaptive arguments associated with plasticity, but has

rarely been shown. Environmental-specific change in the G

matrix was, however, not modelled by [22], which makes any

direct test of their model predictions complicated in the current

study. The G matrix is, however, known to evolve over evol-

utionary time [24,25], for example following divergence

[12–14,26], which together with several findings of environ-

ment-specific changes in G [9–11] suggests that it is sensitive

to environmental input. We suggest that this sensitivity is not

random but can follow the plasticity of the traits.
(d) Predicted response to selection
To predict the response to selection, we used five combi-

nations of the two fundamental selection gradients, one

based upon reproduction in the presence of predator kairo-

mones and one based upon the extensive literature on size-

selective survival/mortality in the face of size-selective pre-

dation [36,37,50].

These composite gradients and several features of our

data influenced our calculation of response to selection to

each predator. The selection gradients for reproductive fitness

were identical, which was in stark contrast to the different G

matrices in the two predator cue treatments, where the

covariance differences drive the response to selection. The

selection gradient analysis revealed that in both treatments,

highest reproductive fitness would be obtained by maturing

early and at a large size, and to continue to grow after matur-

ity. As there is a strong correlation between size and number

of eggs that fit in the brood pouch [28], it is hardly surprising

that these trait combinations result in high reproductive

fitness. Therefore, it may be surprising that the predicted

response to selection differed between the treatments despite

identical selection gradients on reproduction. However,

differences in indirect selection caused by plastic changes in

genetic covariance structure are responsible for the divergent

responses, as there was strong opposing indirect selection in

the fish treatment for small size at maturation, and indirect

selection in the midge treatment for low adult growth rate.

This should be contrasted to the strikingly different selec-

tion gradients on survival in the face of real predators. In

midge predation, large size is beneficial because Chaoborus
midge larvae are gape-limited predators [37]. By contrast,

when visually hunting fish are present, highest survival is

obtained by having a small size [36,50]. Thus, for the fish

treatment, the selection gradients for survival and reproduc-

tion were markedly different, because large size at

maturation, which is adaptive in terms of reproduction, is
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maladaptive in terms of survival in the presence of large size-

selective, visually hunting fish.

Despite these differences, the predicted response to selec-

tion was qualitatively similar for all composite selection

gradients within each treatment, but strikingly different for

each predator cue treatment, with increased differences with

increased contribution of survival selection to the overall selec-

tion gradient. The predicted response to selection in the fish

treatment was to mature early, at a smaller size, and to have

high adult growth rate, while the predicted response in the

midge treatment was to mature at a larger size. The conclusion

here is that the indirect selection, linked to predator-specific

covariance among traits, matters.

5. Conclusion
Draghi & Whitlock [22] suggest that phenotypic plasticity

may evolve to align phenotypic responses with the major

axis of genetic variation, which could result ultimately in

alignment of plasticity and the response to selection. We

tested this elegant idea in a multivariate, experimental evalu-

ation of using a classic system to study phenotypic plasticity:

predator-induced defences in the water flea, D. pulex. Our

results suggest that a multivariate picture of plasticity, articu-

lating variance and covariance changes among environments,

and the response to selection to multiple pressures, are vital

to understanding the generality of this long-standing idea.
Our focus on Daphnia, which can be locally adapted to the

types of predators present in a lake, either by selection by

the predators themselves [27,30,55,56] or indirectly through

seasonal predation and temperature changes [57], indicates

that plastic changes in the genetic variance and covariance

of traits may play an unexplored role in diversification of

populations, especially if selection is mainly driven by survi-

val, but that the response could be somewhat constrained by

shared genetic architecture. Plastic changes in genetic archi-

tecture goes outside the predictions of the model [22], but

could aid adaptation in the direction of the plastic response.
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