

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE GEOLOGÍA

ORIGEN DE LA MINERALIZACIÓN Y ALTERACIÓN HIDROTERMAL DEL DEPÓSITO TIPO IOCG DIEGO DE ALMAGRO, III REGIÓN DE ATACAMA, CHILE

MEMORIA PARA OPTAR AL TÍTULO DE GEÓLOGA NICOLE IGNACIA LOYOLA ESPINOZA

PROFESOR GUÍA: FERNANDO BARRA PANTOJA

MIEMBROS DE LA COMISIÓN: MARTIN REICH MORALES DIEGO MORATA CÉSPEDES

Este trabajo ha sido financiado por Proyecto FONDECYT 1140780

SANTIAGO DE CHILE 2016 RESUMEN DE LA MEMORIA PARA OPTAR AL TÍTULO DE: Geóloga POR: Nicole Ignacia Loyola Espinoza FECHA: 05 de enero de 2016 PROFESOR GUÍA: Fernando Barra Pantoja

ORIGEN DE LA MINERALIZACIÓN Y ALTERACIÓN HIDROTERMAL DEL DEPÓSITO TIPO IOCG DIEGO DE ALMAGRO, III REGIÓN DE ATACAMA, CHILE

El yacimiento Diego de Almagro de propiedad de la Compañía Minera Alxar es un depósito tipo IOCG dominado por hematita, con reservas estimadas en más de 70 Mt y leyes de 0.65% CuT y 0.05 gr/ton de Au.

El objetivo de este estudio es lograr una mejor comprensión de los procesos de alteración y mineralización que dieron paso a la formación de este yacimiento, y así aportar nuevos antecedentes para establecer un modelo geológico y genético del depósito en el contexto de la Franja Andina de IOCG.

Este yacimiento se localiza en la Cordillera de la Costa de III Región de Atacama, a 70 km al este de Chañaral. La mineralización se encaja en las rocas volcánicas de la Fm. La Negra y el principal control estructural está dado por fallas de tendencias NW-NE y N-S, subsidiarias a la Zona de Falla de Atacama. La mena principal de cobre es calcopirita y se presenta en brechas hidrotermales con matriz de especularita. El desarrollo supérgeno alcanza unos 40 metros de profundidad desde la superficie actual y se caracteriza por minerales como crisocola y atacamita.

Los estudios petrográficos indican que el depósito se formó a partir de cuatro eventos de alteración y mineralización: el primero se asocia a un pulso magmáticohidrotermal que genera cuerpos masivos y vetas de magnetita ± calcopirita y menor pirita en profundidad, acompañados de una fuerte alteración potásica que afecta a las rocas encajantes; el segundo evento está asociado a un pulso magmático-hidrotermal más oxidado, que provocaría la removilización del hierro y calcopirita, y la formación de las brechas de especularita con mineralización de cobre en zonas más someras; el tercer y cuarto evento estarían asociados a fluidos externos, los cuales generaron alteraciones tardías y periféricas de sericita, clorita, calcita y sílice.

Los resultados de geoquímica muestran que los elementos mayores y algunos traza (REE, Co, entre otros) fueron removilizados durante la alteración hidrotermal. Por otra parte, los análisis de isótopos de azufre son consistentes con una fuente magmática del azufre de (δS^{34} = -4.0‰ a -0.8‰).

Los estudios realizados sugieren que existe una posible conexión genética en profundidad con los depósitos IOCG dominados por magnetita, e incluso con los depósitos tipo magnetita-apatito o IOA.

"No te rindas que la vida es eso, continuar el viaje, perseguir tus sueños, destrabar el tiempo, correr los escombros y destapar el cielo"

Mario Benedetti.

AGRADECIMIENTOS

En primer lugar quiero agradecer a todos los profesores que participaron en mi comisión, Dr. Martin Reich, Dr. Diego Morata, y en especial a mi profesor guía, Dr. Fernando Barra, que estuvo dispuesto a ayudarme y escucharme en todo momento en este largo año. A Minera Alxar y los geólogos Magdalena Weldt y Ariel Gatica, por su buena disposición para poder realizar este trabajo. También agradezco al proyecto FONDECYT 1140780 (Metallogenesis of the Mesozoic magmatic arc of northern Chile: Testing the IOCG connection using a multy-proxy geochemical approach) por el apoyo financiero, al Núcleo Milenio NC130065 "Trazadores de Metales en Zonas de Subducción", y al Centro de Excelencia en Geotermia de los Andes (CEGA).

A mis padres, Yasna y Juan Carlos, que son mi ejemplo a seguir, y que con esfuerzo me dieron su apoyo y amor infinito desde que decidí estudiar esta loca carrera. A mi hermano Pipe, Lela, al Tata y toda mi gran familia, que son mi pilar fundamental y la mejor familia que alguien podría soñar.

Gracias al Gonchi, que me ayudó y acompañó en cada paso de esta memoria, que aguantó mis rabietas y compartió mis alegrías. Gracias por amarme y soportarme en mis mejores y peores momentos, y por sobre todo por hacerme muy feliz en todos estos años.

También quiero agradecer a todos mis amigos que han estado en mi vida desde siempre: en especial a la Andrew y al Mandarín, y a los que me acompañaron a lo largo de la carrera: a la Negra, Maca, Andre, Paula y Tania; también a mis compañeros de Geo: Pasta, Tetz y todos los LC y LCH, con quienes pasamos muy buenos momentos de terreno, de estudio y de celebraciones.

A todos mis compañeros de la Sala Milenio, que hicieron que la oficina fuera un espacio alegre y entretenido, y por ayudarme con mis millones de dudas en el desarrollo de este trabajo, los aprendí a conocer de a poco este año y les tengo mucho cariño a todos.

Por último dar las gracias a todas las personas que trabajan en el Departamento de Geología, y que aportan con su granito de arena para hacerlo un lugar mejor, en particular a la Blanquita, que me ayudó enormemente y con la mejor de las voluntades en estos últimos años de la carrera.

TABLA DE CONTENIDO

AG	RADECI	MIENTOS			
TA	BLA DE	CONTENIDO	IV		
ÍN	DICE DE	FIGURAS	V		
ÍN	DICE DE	TABLAS	VII		
INT	RODUC	CCION	1		
	1.1.	PRESENTACIÓN			
	1.2.	OBJETIVOS	2		
	1.2.1	. Obietivo General	2		
	1.2.2	2. Obietivos Específicos	2		
	1.3.	UBICACIÓN Y VÍAS DE ACCESO	3		
	1.4.	HIPÓTESIS DE TRABAJO	4		
	1.5.	MUESTRAS Y MÉTODOS ANALÍTICOS	5		
	1.5.1	. Recopilación e investigación bibliográfica	5		
1.5.2		2. Estudio y selección de secciones y sondajes representativos	5		
	1.5.3	B. Trabajo en terreno	5		
	1.5.4	. Caracterización e interpretación mineral	7		
	1.5.5	5. Estudios geoquímicos	7		
	1.5.6	5. Isótopos de azufre	8		
-					
Ζ.	IVIA		9		
	2.1.	GEOLOGÍA REGIONAL	9		
	2.1.1	. Depósitos IOCG ricos en hematita	13		
	2.1.1	1.1. Mantoverde			
	2.1.1	1.2. Barreal Seco (ex Teresa de Colmo)	14		
	2.2.	GEOLOGÍA DEL DEPÓSITO DIEGO DE ALMAGRO	15		
	2.2.1	. Generalidades	15		
	2.2.2	2. Unidades Litológicas			
	2.2.2	2.1. Rocas Estratificadas			
	2.2.2	2.2. Rocas Intrusivas	19		
	2.2.2	2.3. Estructuras	21		
	2.3.	MINERALIZACIÓN Y ALTERACIÓN HIDROTERMAL	22		
	2.3.1	l. Perfil de alteración y mineralización	23		
	2.3.2	2. Eventos de mineralización y alteración hidrotermal	24		
	Even	to I	24		
	Even	to II	25		
	Even	to III	27		
	Even	to IV	29		
	2.3.3	3. Secuencia Paragenética			
3.	GE	OQUÍMICA			
			24		
	3.1.	ELEMENTOS MAYORES			
	3.2.	ELEMENTOS TRAZA			
4.	ISÓ	TOPOS DE AZUFRE	41		
5.	DIS	CUSIÓN	43		
	F 1		42		
	5.1. MINERALIZACION Y ALTERACION HIDROTERMAL				
	5.2. (E 2				
	ວ.ວ. ເ 4	ΙΟΟΙΟΡΟΣ ΜΕ ΑΖΟΓΚΕ			
Evento I Evento II Evento III					
	LVCII		JZ		

5.5. MODELO GENÉTICO PROPUESTO	52			
6. CONCLUSIONES	56			
BIBLIOGRAFÍA				
ANEXOS	62			
ANEXO A. DESCRIPCIÓN PETROGRÁFICA Y CALCOGRÁFICA.	62			
ANEXO B. GEOQUÍMICA DE ROCA TOTAL	129			

ÍNDICE DE FIGURAS

Figura 1. Ubicación y vías de acceso del depósito IOCG Diego de Almagro. Modificado de Kovacic (2014)
Figura 3. A la izquierda se muestran depósitos de la Franja Andina de IOCG desde el sur de Perú hasta Chile central. A la derecha se muestra la Franja metalogénica de la Cordillera de la Costa entre los 25° y 30°. Se indican algunos depósitos del clan IOCG y su relación espacial con la Zona de Falla de Atacama
Figura 5. Sección geológica representativa del depósito Mantoverde (Extraído de Rieger et al., 2010)
Figura 9. Fotografía de la brecha volcánica
con cristales de clorita, feldespato y magnetita
alteración a feldespato potásico y biotitas parcial a totalmente cloritizadas. Los opacos corresponden a magnetita. Aumento 50x, nicoles paralelos

Figura 18. Fotomicrografías que ilustran que en las fracturas generadas en las calcopiritas, ha precipitado bornita como reemplazo mineral, junto con pirita. A. Muestra DAM-41 (94,3 m). Aumento 50x. B. Muestra DAM-42 (94,8 Figura 19. A. Muestra DAM-07 (44,8 m), se observa roca brechosa con matriz de turmalina (Tur) y clastos andesíticos (And) alterados a feldespato potásico y arcillas. Aumento 100x. B. Muestra DAM-38b (55,8 m). Roca Figura 20. A. Muestra DAM-05 (44,4 m). Se observa andesita con plagioclasas sericitizadas (Pq+Ser) en masa microcristalina. B. Muestra DAM-39 (63,2 m). Se aprecia cúmulo de cuarzo secundario en masa fundamental alterada a feldespato y sericitizada (Feld+Ser)......28 Figura 21. Muestra DA-06 (310 m), corresponde a una brecha de turmalina. A. Se observa vetilla de 1 mm de ancho de calcita (Cal) con calcopirita (Ccp) y bornita (Bn) a nícoles cruzados. B. Misma imagen anterior a luz reflejada. ...28 Figura 22. A. Muestra DAM-28 (212,5 m). Dique alterado donde se observa cristal de plagioclasa reemplazado totalmente por prehnita (Prh). Se observa plagioclasa sericitizada (Pg+Ser), en una masa de microlitos de plagioclasa, B. Muestra DAM-32, (34.7 m). Pórfido diorítico con textura seriada, se observa plagioclasa siendo reemplazada parcialmente por pumpellita (Pmp)-prehnita (Prh), y cristales de clorita (Chl) y pirita cúbica (Py).29 Figura 23. Imágenes de la alteración supérgena. A. Muestra DAM-05, A 44,4 m. Imagen a nicoles paralelos donde se aprecia atacamita (At) con cuarzo (Qz) secundario y limonitas (Lim). B. Muestra DAM-11 A 68,7 m. Fotomicrografía Figura 24. Gráfico CaO vs (Na₂O+ K_2 O). La elipse muestra el campo aproximado de una andesita no alterada. Las Figura 25. Diagrama de clasificación de rocas volcánicas de Pearce (1996). Los triángulos rojos representan las Figura 26. Diagrama de clasificación de rocas máficas de Wood (1980). WPT= toleítas intraplaca. VAB= basaltos de Figura 27. Diagrama de discriminación de Hastie et al. (2007). Los círculos rojos representan las muestras de rocas Figura 28. Diagrama representativo de las concentraciones de elementos de interés en las muestras del depósito. 35 Figura 29. Diagrama de multielementos normalizado al manto. Se muestran rocas volcánicas (andesitas y andesitas Figura 31. Patrones de tierras raras de rocas volcánicas normalizados a condrito según Sun y McDonough (1995)..37 Figura 32. Patrones de tierras raras normalizados a condrito de los digues de Diego de Almagro (Sun y McDonough, Figura 33. Patrones de tierras raras normalizados a condrito de diques y rocas volcánicas del depósito Diego de Figura 34. Patrones de tierras raras de las rocas intrusivas de Diego de Almagro (Sun y Mcdonough, 1995).40 Figura 36. Concentraciones de bario en roca total de Diego de Almagro, Mantoverde y Candelaria (base de datos de Figura 37. Patrones de tierras raras de los yacimientos Mantoverde y Candelaria (Extraídos de Rieger et al., 2010 y Figura 38. Gráfico Nb versus Zr donde se muestran rocas de Diego de Almagro, y rocas de la Fm. La Negra y Fm. Punta del cobre de las localidades de Diego de Almagro, El Salado y el deposito IOA Carmen (base de datos de Figura 39. Comparación de los valores de isótopos de azufre en sulfuros obtenidos para Diego de Almagro con otros depósitos IOCG andinos: Mantoverde (Rieger et al., 2010), Barreal Seco (sólo dato mínimo y máximo, Correa, 2000), Figura 40. Modelo genético tentativo para el depósito Diego de Almagro. El rectángulo negro indica la zona ilustrada en las demás figuras......54 Figura 41. Modelo de IOCG propuesto por Espinoza et al. (1996) y modificado por Sillitoe (2003). Se muestra la zona que representaría Diego de Almagro.55

ÍNDICE DE TABLAS

Tabla 1. Muestras utilizadas para análisis de elementos mayores, traza y tierras raras en roca total	7
Tabla 2. Tabla paragenética del depósito Diego de Almagro	
Tabla 3. Resultados de isótopos de azufre (δS ³⁴) de muestras del depósito Diego de Almagro	41

INTRODUCCIÓN

1.1. PRESENTACIÓN

En la zona norte de Chile existen diversos prospectos y depósitos con características similares y que han sido catalogados como depósitos de óxidos de hierro-cobre-oro o "*iron oxide-copper-gold*" (IOCG). Estos depósitos incluyen dos subtipos: yacimientos de cobre ricos en hematita (ej. Mantoverde, Raúl-Condestable), y depósitos de cobre ricos en magnetita (ej. Candelaria, Casualidad). Según Williams et al. (2005), las características en común de los depósitos IOCG son: 1) poseer mineralización de cobre, con o sin oro; 2) presentar estilos de mineralización hidrotermal, además de un fuerte control estructural y 3) tener abundante magnetita y/o hematita. Dentro de las características relacionadas con la alteración hidrotermal se encuentran una fuerte alteración sódica y potásica con menor desarrollo de una alteración sericítica y silícea (Williams et al., 2005).

Los IOCG andinos pertenecen a la Franja Andina de IOCG, que va desde el sur de Perú hasta Chile central. En particular, los IOCG chilenos pertenecen a la Franja Metalogénica de la Cordillera de la Costa del norte de Chile, de edad Jurásico Superior-Cretácico Inferior. Este metalotecto alberga una serie de yacimientos asociados espacialmente a la Zona de Falla de Atacama (ZFA), donde además de este tipo de yacimientos, se encuentran algunos depósitos tipo magnetita-apatito (IOA) o Kiruna (ej. Los Colorados y Cerro Negro Norte), pórfidos de Cu-Au (ej. Andacollo), estratoligados de Cu-Ag, vetas de Cu-Au y también skarns (Maksaev y Zentilli, 2002).

La génesis de los depósitos IOCG en el mundo aún es controversial. Actualmente existen dos modelos genéticos propuestos; el primero es un modelo de fuentes magmático-hidrotermales, donde los fluidos y la mineralización son de origen magmático, propuesto por Pollard (2000), Sillitoe (2003), y Tornos et al. (2005). El segundo modelo propuesto por Barton y Johnson (2000) sostiene que los fluidos mineralizadores son derivados de cuencas sedimentarias ricas en evaporitas y que los plutones espacialmente asociados actúan solo como una fuentes de calor. A pesar de la importancia de estos depósitos como fuente de cobre en el país, los estudios científicos son escasos y se han centrado fundamentalmente en los únicos dos grandes yacimientos actualmente en explotación, Candelaria (Marschik et al., 2000) y Mantoverde (Rieger et al., 2010).

En este marco se presenta un estudio del depósito tipo IOCG rico en hematita Diego de Almagro, situado en la III Región de Atacama, a 70 km al este de Chañaral. El proyecto minero actualmente pertenece a Compañía Minera Alxar y cubre un área de 3 x 2 km² que comprende dos cuerpos mineralizados principales: Esther al norte, y Carmen-Paulina al sur. La mineralización en estos cuerpos es de cobre y oro y ocurre como brechas hidrotermales y stockwork de especularita con sulfuros y minerales

oxidados de cobre. Las reservas están estimadas en más de 70 Mt, con leyes de cobre de 0.65% y 0.05 g/ton de oro (Herrera et al., 2008)

Este trabajo se enmarca en el proyecto FONDECYT 1140780: *Metallogenesis of the Mesozoic magmatic arc of northern Chile: Testing the IOCG connection using a multyproxy geochemical approach*, dirigido por el Dr. Fernando Barra, y quien se desempeña como profesor guía de esta memoria. El propósito de este trabajo de título es realizar estudios para determinar e identificar las etapas de mineralización y alteración del depósito, para comprender los procesos geológicos que llevaron a la formación de Diego de Almagro y así aportar al conocimiento de los depósitos tipo IOCG en el norte de Chile.

1.2. OBJETIVOS

1.2.1. Objetivo General

El objetivo general de este trabajo es determinar las características de mineralización y alteración del depósito Diego de Almagro y relacionarlas con el origen de los fluidos mineralizadores y las fuentes de los metales, y así constreñir posibles procesos genéticos, con el fin de establecer una conexión con otros depósitos IOCG de la región, y tener un mejor entendimiento de los procesos geológicos que inciden en la formación de estos yacimientos en Chile.

1.2.2. Objetivos Específicos

- Determinar las características de las unidades litológicas del depósito Diego de Almagro, como así también identificar los modos de ocurrencia y distribución de la mineralogía primaria, de alteración y de mena.
- Generar un perfil geológico esquemático del depósito Diego de Almagro
- Identificar y determinar la temporalidad de los eventos de alteración y mineralización, y establecer una secuencia paragenética
- Determinar los procesos que dieron origen al yacimiento y generar un modelo genético esquemático para el prospecto Diego de Almagro.

1.3. UBICACIÓN Y VÍAS DE ACCESO

El yacimiento Diego de Almagro se ubica 10 km al noroeste de la ciudad de Diego de Almagro, o a 100 km al norte en línea recta desde Copiapó, en la Provincia de Chañaral, Región de Atacama. Los límites geográficos de la zona de estudio son 26°23'19" – 26°24'18" S y 70°08'59" - 70°09'23"W.

Desde Copiapó se accede a la zona de estudio por la ruta C-17 en dirección al norte, hasta llegar a la ciudad de Diego de Almagro. Desde aquí hay que ingresar a la carretera C-13 en dirección al oeste, por 10 km, hasta alcanzar el desvío a Portezuelo Blanco en dirección al norte, por la ruta C-161. Se avanza por cerca de 2 km por camino de ripio, hasta llegar al yacimiento (Figura 1).

Figura 1. Ubicación y vías de acceso del depósito IOCG Diego de Almagro. Modificado de Kovacic (2014).

1.4. HIPÓTESIS DE TRABAJO

La franja de depósitos mesozoicos en el norte de Chile, ubicada a lo largo del eje de la Cordillera de la Costa provee una excelente oportunidad para estudiar y determinar el origen de la mineralización de los depósitos tipo IOCG ya que esta provincia metalogénica contiene los depósitos de este tipo más jóvenes a nivel mundial y por ende se encuentran relativamente inalterados en comparación con los depósitos del Precámbrico encontrados en Brasil o Australia (Williams et al., 2005).

Barton y Johnson (2000) proponen que la génesis de los IOCG deriva de la circulación fluidos salinos de cuencas, que lixiviarían los metales de las rocas encajantes. Estos fluidos circularían por convección, gracias al calor originado por plutones en enfriamiento.

Por otro lado, Sillitoe (2003) plantea que los depósitos IOCG andinos tienen una conexión genética con magmas oxidados gabrodioríticos a dioríticos emplazados a gran profundidad y que poseen poca contaminación cortical. El fluido mineralizador pudo haber ascendido desde estos magmas por fallas mayores verticalmente o incluso lateralmente para posteriormente ingresar a rocas volcano-sedimentarias relativamente permeables y generar los cuerpos mineralizados. Este modelo plantea que no se requiere de fluidos externos de cuencas para la formación de depósitos tipo IOCG y que los fluidos son más bien de un origen magmático-hidrotermal.

Se ha propuesto que los depósitos dominados por magnetita tienen una transición vertical hacia niveles más someros a depósitos ricos en hematita especular, estos últimos generalmente caracterizados por brechización tectónica y/o hidrotermal, además de poseer cantidades mayores de Cu-Au y presentar alteraciones sódicas y/o potásicas bien desarrolladas (Espinoza et al., 1996).

En este trabajo se postula que el depósito Diego de Almagro corresponde a yacimiento IOCG rico en hematita y que representa la zona más somera dentro del modelo de IOCG andino de acuerdo a lo propuesto por Espinoza et al. (1996) y adaptado por Sillitoe (2003). El depósito se encuentra fuertemente dominado por hematita especular, que en profundidad grada a mushketovita (variedad de especularita reemplazada por magnetita), y donde la mineralización de cobre (calcopirita) se encuentra en cuerpos de brecha, vetas, stockwork y diseminaciones. Se plantea que la mineralización de cobre sería de un origen magmático-hidrotermal y se formaría en profundidad junto a menor magnetita y sería anterior al evento de brechización hidrotermal de hematita. El evento hidrotermal explosivo removilizaría el hierro para formar hematita especular y brechizaría a la roca encajante y calcopirita depositándolos en un ambiente más somero. La alteración hidrotermal sería similar a la observada en otros sistemas IOCG, vale decir, una alteración sódica de fondo y una fuerte alteración potásica con menor desarrollo de clorita y/o sericita.

El área del proyecto cuenta con trabajos de exploración desarrollados anteriormente por Minera El Bronce, Compañía Minera Cerro Dominador y más recientemente por Compañía Minera Alxar, quienes han realizado algunas campañas de sondaje con el fin de realizar un modelo geológico que permita conocer el potencial económico del yacimiento.

1.5. MUESTRAS Y MÉTODOS ANALÍTICOS

Para la realización del estudio se realizaron las siguientes etapas:

1.5.1. Recopilación e investigación bibliográfica

En la primera etapa se procedió a recopilar la información bibliográfica disponible sobre los depósitos IOCG andinos, además estudiar los informes geológicos internos efectuados para el depósito Diego de Almagro, entre los que se encuentran también los informes petrográficos realizados entre el año 2006 y 2014, que contienen descripciones microscópicas y macroscópicas de algunas muestras del depósito. Esta recopilación bibliográfica servirá de apoyo para realizar las interpretaciones finales en este trabajo.

1.5.2. Estudio y selección de secciones y sondajes representativos

Para la realización del estudio se examinaron las secciones geológicas del yacimiento Diego de Almagro, elaboradas en el año 2014 a partir del mapeo de los sondajes de diamantina. Las secciones tienen una orientación EW, confeccionadas a escala 1:2500, y cada 50 metros, de manera que cruzan tanto el cuerpo Carmen-Paulina como Esther.

Se seleccionó una sección representativa perteneciente al depósito Carmen-Paulina, donde se ilustrará esquemáticamente la información litológica y de alteración estudiada. La sección se ubica en la coordenada 7079250, como muestra la Figura 2.

1.5.3. Trabajo en terreno

El trabajo en terreno se realizó durante mayo del 2015, donde se procedió a visitar la loguera de sondajes del depósito Diego de Almagro. Se muestrearon 13 sondajes, entre ellos, cinco pertenecientes a la sección escogida. En total se recopilaron 80 muestras representativas de la litología, alteración y mineralización.

Figura 2. Imagen satelital del depósito Diego de Almagro. Se muestran los cuerpos Esther y Carmen-Paulina, además la posición de la sección AA' discutida en el texto (Figura 7; Figura 13).

1.5.4. Caracterización e interpretación mineral

La caracterización mineral se realizó mediante estudios petrográficos y calcográficos de unidades litológicas más relevantes, poniendo énfasis en reconocer minerales de alteración y de mena, estableciendo una relación espacial y temporal entre eventos. Se utilizó el microscopio petrográfico Olympus BX51, del Centro de Excelencia en Geotermia Andina (CEGA), localizado en el Departamento de Geología de la Universidad de Chile.

1.5.5. Estudios geoquímicos

Se seleccionaron 21 muestras para análisis químicos de elementos mayores, menores y traza en roca total, entre las que se encuentran 11 de roca caja (andesitas), 5 de diques y 5 de intrusivos (pórfido diorítico) (ver Tabla 1). Dos de las muestras pertenecen al cuerpo mineralizado Esther y 19 a Carmen-Paulina.

Muestra	Sondaje	Zona	Prof (m)	Coord N	Coord E	Litología		
DAM-14	DA14-030	Carmen-Paulina	76,7	7079264,618	384375,973	Roca volcánica		
DAM-15	DA14-030	Carmen-Paulina	77,3	7079264,618	384375,973	Roca volcánica		
DAM-16	DA14-030	Carmen-Paulina	87,1	7079264,618	384375,973	Roca volcánica		
DAM-21	DA14-030	Carmen-Paulina	102,3	7079264,618	384375,973	Roca volcánica		
DAM-26	DA14-030	Carmen-Paulina	192,12	7079264,618	384375,973	Roca volcánica		
DAM-27	DA14-030	Carmen-Paulina	207,8	7079264,618	384375,973	Dique		
DAM-31	DA14-120	Carmen-Paulina	16,1	7079233,144	384567,600	Pórfido Diorítico		
DAM-32	DA14-120	Carmen-Paulina	34,7	7079233,144	384567,600	Pórfido Diorítico		
DAM-45	DA14-120	Carmen-Paulina	152,4	7079233,144	384567,600	Roca volcánica		
DAM-49	DA14-120	Carmen-Paulina	181,8	7079233,144	384567,600	Roca volcánica		
DAM-50	DA14-120	Carmen-Paulina	212,9	7079233,144	384567,600	Dique		
DAM-51	DA14-120	Carmen-Paulina	234,2	7079233,144	384567,600	Dique		
DAM-52	DA14-120	Carmen-Paulina	241,4	7079233,144	384567,600	Andesita		
DAM-61B	DA14-158	Esther	69,5	7080823,220	383769,400	Pórfido Diorítico		
DAM-70	DDH-6A	Carmen-Paulina	56,1	7079255,378	384682,037	Roca volcánica		
DAM-82a	08DDH-14	Esther	55,5	7080775,09	383884,600	Pórfido Diorítico		
DAM-95	DA14-045	Carmen-Paulina	120,9	7079780,402	384778,369	Roca volcánica		
DAM-99	DA14-030	Carmen-Paulina	248,8	7079264,618	384375,973	Pórfido Diorítico		
DAM-102	DA14-066	Carmen-Paulina	66,1	7079258,270	384744,335	Dique		
DAM-109	DA14-066	Carmen-Paulina	229,5	7079258,270	384744,335	Dique		
DAM-113	DA14-066	Carmen-Paulina	387,3	7079258,270	384744,335	Roca volcánica		

Tabla 1. Muestras utilizadas para análisis de elementos mayores, traza y tierras raras en roca total.

Las muestras fueron analizadas en el laboratorio comercial Actlabs, Ontario, Canadá. Las muestras de sondajes son molidas hasta obtener un tamaño de clasto menor a malla 10. Del material molido se apartan 250 g, los cuales son pulverizados (proceso denominado RX1) hasta un tamaño menor a 105 micrones. Aproximadamente 5 gramos de muestra pulverizada es utilizada para el análisis químico.

El análisis químico en roca total (codigo 4Lithoresearch) considera una etapa de fusión de la muestra con metaborato de litio y tetraborato, seguido por un proceso de digestión ácida. Esto permite que la muestra completa se disuelva, incluyendo la mayor parte de los óxidos, minerales más refractarios, y tierras raras.

Las muestras disueltas se analizan mediante un ICP óptico para elementos mayores y un espectrómetro de masa con plasma de acoplamiento inductivo (ICPMS), modelo Perkin Elmer Sciex ELAN 6000, 6100 o 9000, para elementos traza.

Tres muestras blancas y cinco de control (tres antes del grupo de muestras, y dos después) son analizadas por grupo de muestas. Los duplicados son analizados cada 15 muestras y el instrumento es recalibrado cada 40 análisis.

1.5.6. Isótopos de azufre

Las razones isotópicas de azufre fueron medidas en 11 muestras de sondaje de diamantina del depósito Diego de Almagro, correspondientes a calcopirita y pirita.

La medición se realizó en el *Environmental Isotope Laboratory* del Departamento de Geociencias de la Universidad de Arizona, Tucson, Arizona, Estados Unidos, donde se mide δ^{34} S en SO_{2(g)} en un espectrómetro de masas con flujo de gas continuo (modelo ThermoQuest Finnigan Delta PlusXL), donde las muestras previamente se combustionan a 1030°C con O₂ y V₂O₅, usando un analizador elemental (Costech) acoplado al espectrómetro.

La estandarización se basa en las pautas internacionales OGS-1 y NBS123, y varios otros sulfuros y sulfatos que han sido comparados entre laboratorios. La calibración es linear entre -10 y +30‰. La precisión se estima en \pm 0.15‰ o superior (1 σ), basado en el análisis reiterado de estándares internos.

Los resultados se reportan en notación delta (δ) como desviaciones per mil (‰) relativas al estándar CDT (*Canyon Diablo Troilite*), según la ecuación (1), donde R es la razón del isótopo pesado con respecto al liviano (³⁴S/³²S).

(1)
$$\delta^{34}S = (\underline{R_{muestra} - R_{estándar}}) \times 1000$$

Restándar

2. MARCO GEOLÓGICO

2.1. GEOLOGÍA REGIONAL

El yacimiento Diego de Almagro se ubica en una zona de gran importancia metalogénica ya que es parte de la Franja de IOCG andina que abarca desde el sur de Perú hasta la IV Región de Chile (Figura 3). Además se localiza en la franja metalogénica del Cretácico Inferior, donde los depósitos se encuentran fuertemente controlados por la Zona de Falla de Atacama (ZFA) (Figura 3). Entre los 26° y 31°S se encuentran varios depósitos tipo magnetita-apatito (Los Colorados y Carmen), IOCG (Candelaria y Mantoverde), y algunos pórfidos cupríferos (Inca de Oro). Están hospedados en rocas volcánicas de formaciones jurásicas y cretácicas, como la Formación La Negra y Formación Punta del Cobre y espacialmente se asocian a batolitos dioríticos a granodioríticos del arco magmático del Cretácico Inferior (Sillitoe, 2003).

Las secuencias estratificadas que afloran en la zona de estudio corresponden a rocas volcánicas con intercalaciones de calizas, de los cuales aún existe controversia respecto si pertenecen a la Formación La Negra (Godoy y Lara, 1998; Daroch, 2011; Informe Interno SRK, 2013) o Punta del Cobre (Herrera et al., 2007). Además, la región se encuentra parcialmente cubierta por la Unidad Gravas de Atacama (Cenozoico) y depósitos cuaternarios de origen coluvial y aluvial (Godoy y Lara, 1998) (Figura 4).

La Formación La Negra (Jurásico Medio-Superior; Godoy y Lara, 1998) aflora en la Cordillera de la Costa entre Arica y Chañaral, y representa el arco volcánico del Jurásico (Grocott y Taylor, 2002). En la región, alberga a depósitos IOCG como Mantoverde (Rieger et al., 2010). Según Godoy y Lara (1998) esta Formación corresponde a una sucesión de 2400 metros de lavas andesítico-basálticas con intercalaciones marinas carbonatadas, intruída por filones, también de composición andesítico-basáltica. Se divide en dos miembros, el primero corresponde a casi 400 metros de conglomerados con clastos andesítico y rasgos de soldamiento, que se interpretan como conductores de los cuerpos ignimbríticos que aparecen intercalados en el miembro 2. El miembro 2 tiene 2000 metros de potencia, se ubica sobre Miembro 1 y se compone principalmente de lavas andesíticas y andesítico-basálticas, e intrusivos andesíticos y dioríticos.

Figura 3. A la izquierda se muestra la ubicación de algunos depósitos de la Franja Andina de IOCG desde el sur de Perú hasta Chile central. A la derecha se muestra la Franja metalogénica de la Cordillera de la Costa entre los 25° y 30°S. Se indican algunos depósitos del clan IOCG y su relación espacial con la Zona de Falla de Atacama.

Las rocas de la Formación Punta del Cobre (Jurásico Superior-Cretácico Inferior, Godoy y Lara, 1998) sobreyacen concordantemente a La Negra y albergan a depósitos IOCG como Candelaria y Santo Domingo (Godoy y Lara, 1998; Daroch, 2011). Se componen de dos miembros principales; en la base se sitúa el miembro Geraldo-Negro, que corresponde a 300 metros de lavas andesíticas macizas, sobre las cuales localmente se observan 200 m de dacitas. Existen también pequeñas intercalaciones de sedimentos clásticos (Marschik y Fontboté, 2001a). Las andesitas son negras a gris verdosas, con piroxenos alterados a clorita o a un agregado de clorita, calcita y zeolita (Godoy y Lara, 1998). Sobre estas rocas se ubica el Miembro Algarrobo, que se compone de aproximadamente 800 metros de rocas volcanoclásticas, lavas basálticas y andesítico-basálticas, y brechas volcánicas (Godoy y Lara, 1998). Localmente se observan intercalaciones de 10 a 40 metros de rocas de grano más fino como areniscas, calcarenitas y limolitas (Marschik y Fontboté, 2001a). Hacia el techo aparece una serie de domos riolíticos, tanto intrusivos como extrusivos, que se encuentran cloritizados (Godoy y Lara, 1998).

Gradualmente y sobreyaciendo a la Fm. Punta del Cobre se encuentra el Grupo Chañarcillo (Cretácico Inferior, Godoy y Lara, 1998), que aflora en el área de Sierra Santo Domingo, al sureste del área de Diego de Almagro, donde se reportó un ammonite del Valanginiano (Naranjo, 1978). Se compone de alrededor de 200 metros de areniscas y calizas (Godoy y Lara, 1998).

Las rocas intrusivas del área de estudio pertenecen al Plutón Sierra Áspera (Cretácico Inferior, Godoy y Lara, 1998), que se extiende por 20 km en dirección NS y tiene 13 km de ancho. Este intruye a la Formación La Negra, y produce una gran aureola de rocas córneas. Aflora aproximadamente a 5 km al noroeste del área de Diego de Almagro. En el Plutón Sierra Áspera se reconocen distintas composiciones, entre las que predominan dioritas de grano medio a fino, de color gris a verde oscuro. En menor medida se reconocen gabros leucocráticos, monzogranitos, granodioritas de biotita y tonalitas de hornblenda y biotita (Godoy y Lara, 1998). Circones del plutón han sido datados en 127.4 \pm 0.1 Ma, mientras que en el margen del plutón se ha obtenido una edad de 131.3 \pm 0.4 Ma, lo que indica que el plutón fue formado por distintos pulsos magmáticos sucesivos de variada composición, gradando desde granodioritas al centro, a cuarzodioritas al exterior (Gelcich et al., 2005).

El Plutón Sierra Dieciocho (126-120 Ma, Cretácico Inferior, Godoy y Lara, 1998), dispuesto en orientación norte-sur y de forma tabular intruye a la Formación La Negra y está compuesto de dioritas cuarcíferas con piroxenos relictos, hornblenda y biotita (Godoy y Lara, 1998). También se observan granodioritas de biotita (Godoy y Lara, 1998) que afloran aproximadamente 10 km al suroeste del área de estudio. Este complejo intrusivo estaría relacionado con la mineralización del yacimiento Mantoverde (Sillitoe, 2003).

El Complejo Plutónico Remolino-Sierra Merceditas (Cretácico Medio, Godoy y Lara, 1998) aflora al sur del área de estudio. Es un stock con elongación norte-sur, que intruye a la Formación La Negra y al Plutón Sierra Dieciocho, así como a la Formación Punta del Cobre al este (Godoy y Lara, 1998). Está constituido por tonalitas de hornblenda (Benavides et al., 2008) y biotita cloritizada (Godoy y Lara, 1998). No se han realizado dataciones radiométricas de este complejo intrusivo, sin embargo, su edad se ha constreñido entre los 110 a 90 Ma mediante relaciones de contacto (Godoy y Lara, 1998).

Figura 4. Mapa geológico regional de la zona de estudio. El rectángulo rojo muestra el área de estudio de este trabajo (Figura 6). Modificado de Godoy y Lara (1998) y Daroch (2011).

El principal control estructural en la región está dado por la Zona de Falla de Atacama (ZFA), cuya traza se localiza a 15 km al oeste de Diego de Almagro (Figura 4). Es una falla transcurrente sinestral de orientación NS que está ubicada en línea con la Cordillera de la Costa, que corresponde al arco magmático del Jurásico. Se extiende por más de 1000 km, entre las latitudes 20°S y 30°S (Grocott y Taylor, 2002). Su actividad se inició hace 132 Ma durante un periodo de subducción en un régimen de extensión continental (Grocott y Taylor, 2002). Entre los 132 y 106 Ma (Cretácico Inferior) fue afectada por una serie de fallas de transferencia noroeste y algunas noreste, que acomodaron los complejos plutónicos de esta época (Grocott y Taylor, 2002). El fallamiento probablemente cesó alrededor de los 90 Ma, por la migración de la actividad volcánica hacia el este (Grocott y Taylor, 2002).

La ZFA está dividida en tres segmentos que tienen forma arqueada y concavidad hacia el oeste. De norte a sur estos segmentos son: Salar del Carmen, Paposo y El Salado. El yacimiento Diego de Almagro se localiza en el segmento El Salado (Maksaev y Zentilli, 2002).

2.1.1. Depósitos IOCG ricos en hematita

Dentro de la franja de IOCG andina existen otros depósitos que también están dominados por hematita especular y presentan mineralogías de alteración y de mena similares a las observadas en Diego de Almagro.

2.1.1.1. Mantoverde

Mantoverde se localiza a 53 km al SE de Chañaral y 100 km al N de Copiapó (Figura 4). El yacimiento está hospedado en rocas volcánicas andesíticas de la Formación La Negra (Jurásico Medio – Superior), que son intruídas por rocas granodioríticas y dioríticas del Cretácico Inferior (Rieger et al., 2010).

El control estructural está dado por la falla Mantoverde, de rumbo NW y manteo al E. Los cuerpos mineralizados están inclinados hacia el norte, y corresponden brechas hidrotermales con matriz de especularita (denominada Manto Atacama) con mineralización de óxidos de cobre y una brecha tectónica en rocas andesíticas, denominada Mantoverde, que corresponde a una cataclasita con óxidos de cobre en cavidades y fracturas y con escasa especularita (Figura 5). Además, se observa una Zona de Transición, que es una zona de stockwork de especularita y óxidos de cobre en rocas andesíticas ubicada en el margen oriental del Manto Atacama. También existen otros cuerpos mineralizados secundarios, los cuales presentan mineralización de cobre asociada a magnetita (Rieger et al., 2010).

Según Rieger et al. (2010), los eventos que dieron origen a la mineralización y alteración de Mantoverde son tres: una etapa temprana de óxidos de hierro (hematita especular y posterior magnetita) acompañada de alteración potásica pervasiva, sílice, micas blancas y menor pirita. El segundo evento es el responsable de la mineralización de sulfuros (pirita, calcopirita, bornita y oro), acompañado de vetillas con cuarzo \pm feldespato potásico. El tercer y último evento se caracteriza por minerales carbonatados y escasa hematita.

Estudios isotópicos de azufre en calcopirita y pirita de Mantoverde muestran que la fuente del azufre es principalmente (gnea (Rieger et al., 2010).

Figura 5. Sección geológica representativa del depósito Mantoverde (Extraído de Rieger et al., 2010).

2.1.1.2. Barreal Seco (ex Teresa de Colmo)

El depósito IOCG Barreal Seco se ubica a 75 km al SE de Taltal. Está alojado en rocas volcánicas y sedimentarias de la Formación Aeropuerto (Cretácico Inferior), que corresponden a andesitas, brechas volcánicas, areniscas y conglomerados. Además, en este yacimiento fue detectada una secuencia evaporítica a más de 200 metros de profundidad. La mineralización principal consiste en calcopirita y minerales oxidados de cobre (Correa, 2000).

El estudio realizado por Correa (2000) reporta que el cuerpo mineralizado corresponde a una brecha hidrotermal con matriz de especularita, cuya disposición está fuertemente controlada por fallas de orientación WNW y NWN. La mineralización en las brechas consiste principalmente en calcopirita y se generó en dos etapas: en la primera se evidencian cristales de pirita reemplazados por calcopirita (relación 1:5), acompañados de una alteración con asociación albita-clorita, además de cuarzo y calcita. La segunda etapa es de menor temperatura que la anterior y se asocia deformación frágil junto con la formación de brechas hidrotermales, donde precipitan minerales como especularita, calcita, yeso y escasa calcopirita.

Los estudios isotópicos de azufre revelaron fuentes magmáticas-hidrotermales para los fluidos mineralizadores, estableciendo así que la secuencia evaporítica no tuvo un rol en el origen de la mena en el depósito Barreal Seco (Correa, 2000).

2.2. GEOLOGÍA DEL DEPÓSITO DIEGO DE ALMAGRO

2.2.1. Generalidades

Diego de Almagro es un yacimiento IOCG del tipo rico en hematita, que abarca un área de 3 x 2 km² aproximadamente. Cerca del 60% de los afloramientos corresponden a rocas volcánicas, con predominio de andesitas porfíricas. También aparecen intercalaciones de brechas volcanoclásticas y brechas hidrotermales. Todas estas unidades se encuentran cortadas por una serie de diques que se observan en toda el área del depósito.

Las unidades litológicas y estructurales presentes en el área del depósito fueron definidas en primera instancia por el equipo de geólogos de Minera Cerro Dominador (Herrera et al., 2007), quienes realizaron un mapeo escala 1:5000 en base a trabajo de campo, logueos de sondajes diamantinos, imágenes satelitales, y apoyados por estudios petrográficos y mineralógicos. Posteriormente, la empresa SRK (Informe Interno SRK, 2013) realiza un re-mapeo de los sondajes de diamantina para la Compañía Minera Sierra Norte, redefiniendo el modelo geológico del depósito (Figura 6).

En el área de Diego de Almagro se han identificado dos cuerpos mineralizados: Esther y Carmen-Paulina. Esther es un cuerpo elongado en una dirección NNW y Carmen-Paulina presenta una orientación NNE.

La geología estructural local es de gran importancia, ya que tiene una estrecha relación con la disposición de los cuerpos mineralizados. La estructura más importante del área de estudio es la Falla Esther de orientación NNW-NW con manteo de 45°E (Informe Interno SRK, 2013) (Figura 6). Esta falla es parte del sistema de la ZFA y separa rocas volcánicas y volcanoclásticas al este de intrusivos al oeste. También existen otros sistemas de fallas menores como la falla Carmen, que se muestra en el perfil de la Figura 7.

Figura 6. Geología local del depósito Diego de Almagro. Se muestra ubicación del perfil AA' (Figura 7).

Figura 7. Perfil litológico A-A'. Se ilustra la distribución espacial de las brechas de especularita (en amarillo) en Diego de Almagro y su relación con la falla Carmen.

2.2.2. Unidades Litológicas

2.2.2.1. Rocas Estratificadas

Rocas andesíticas

Conforman el 70% de los afloramientos en la zona de estudio, siendo la unidad estratificada principal. Las capas son de rumbo NS a NNW y manteos entre 45 y 60° NE. Son de color gris oscuro y presentan texturas afaníticas o porfíricas (Figura 8), con fenocristales de plagioclasa principalmente. La masa fundamental se compone de plagioclasas, feldespato potásico y minerales ferromagnesianos. Al noreste de Carmen-Paulina, estas rocas presentan magnetismo y aparecen escasos piroxenos como fenocristales. Pueden tener mineralización diseminada de calcopirita, pirita y rara arsenopirita, y se encuentran cortadas por vetillas de sulfuros de cobre o pirita y presentan una alteración supérgena sobreimpuesta a una asociación de feldespato y clorita-sericita con intensidad moderada.

Figura 8. A. Fotografía de muestra de roca andesítica, con mineralización de calcopirita y limonitas en vetas, y alteración a feldespato y arcillas. B. Fotomicrografía representativa de una andesita porfírica alterada a sericita y clorita.

Brecha Volcánica y Volcanoclástica

Esta unidad corresponde a rocas con textura brechosa (Figura 9) y matriz de grano fino, compuesta por fragmentos y cristales de plagioclasas, clastos de andesita entre un 5% a un 25% y en menor medida clastos de pórfido diorítico y cristales de especularita. Los clastos son subangulosos a subredondeados. Puede presentar vesículas y/o amígdalas de minerales carbonatados y cuarzo. La matriz también es andesítica y se presenta comúnmente con una fuerte alteración a clorita y arcillas, y en ocasiones limonitas, producto de la oxidación de minerales ferromagnesianos.

Figura 9. Fotografía de la brecha volcánica.

Brecha Hidrotermal de Especularita

Aflora tanto en Esther como en Carmen-Paulina y es la unidad que presenta la mayor ley de cobre del área. Son cuerpos tabulares irregulares y discontinuos que se extienden por decenas de metros a través de las fallas alimentadoras (Figura 7). Presentan textura brechosa, que se encuentran intercaladas entre las capas de andesita. La matriz es de origen hidrotermal y se compone de especularita principalmente, con fragmentos de sulfuros de cobre y pirita de hasta 4 centímetros inmersos en ella. La roca presenta fragmentos angulosos de andesita alterados a feldespato potásico. Los fragmentos son de diverso tamaño pero no superan los 10 cm de largo en su eje mayor (Figura 10).

En ocasiones, la matriz de especularita se ve reemplazada por mushketovita (pseudomorfo de hematita reemplazado por magnetita), pero solo a profundidades mayores a 60 metros.

Figura 10. A. Fotografía de la brecha hidrotermal con matriz de especularita y clastos andesíticos alterados a feldespato potásico. Se observan cristales angulosos de calcopirita inmersos en la matriz. B. Fotomicrografía a luz reflejada de la brecha de especularita, además se observa mineralización de pirita, calcopirita y bornita.

2.2.2.2. Rocas Intrusivas

Dioritas-Pórfidos Dioríticos

Corresponde rocas con textura porfírica (Figura 11) o fanerítica de color gris verdoso, con cristales subhedrales, entre los que se reconocen plagioclasas, minerales ferromagnesianos cloritizados. La masa fundamental de los pórfidos dioríticos es microlítica equigranular con plagioclasas. Se reconoce circón y titanita como minerales accesorios. Afloran solo en el sector Esther.

Figura 11. A. Diorita cloritizada con textura porfídica. B. Fotomicrografía a luz transmitida de la diorita fanerítica, con cristales de clorita, feldespato y magnetita.

Monzonita

Esta unidad se ha reconocido solo en sondajes a una profundidad superior a los 250 metros tanto en Carmen-Paulina como en Esther. Se le reconoce una textura fanerítica inequigranular de color rosado con cristales de feldespato potásico, cuarzo y plagioclasa. Se observa la presencia de relictos de biotita alterados a clorita y titanita.

La roca se encuentra alterada débilmente a feldespato potásico. También se observan vetillas de cuarzo-clorita y cuarzo. Una última etapa de alteración hidrotermal se evidencia por la presencia de calcita.

Diques

Se reconocen en toda el área de estudio. Presentan un rumbo entre los N30-45°W y NS, y mantean al este. Los espesores son menores a 2 metros. Son de textura afanítica o porfírica, de color verde oscuro y están compuestos por plagioclasa, cuarzo, clorita (Figura 12). Presentan fuerte magnetismo lo que indica la presencia de microcristales de magnetita. Son clasificados como diques hipabisales de composición andesítica principalmente, y en menor medida diorítica.

Figura 12. A. Fotografía de dique andesítico cloritizado. B. Fotomicrografía de dique porfírico con fenocristales de plagioclasa y masa fundamental alterada a clorita.

2.2.2.3. Estructuras

Zona de Falla Carmen (ZFC)

Es una falla normal con rumbo y manteo N5°E/65-50°SE. Se muestra como un set de fallas y vetas de espesores entre 3 y 10 m. Los rellenos son especularita, limonita y óxidos de cobre. Las vetas generalmente muestran indicadores cinemáticos, como estrías y fibras de crecimiento paralelas al cizalle.

Zona de Falla Esther

Corresponde a una falla normal que se dispone NNW-NW y mantea con 45°E (Informe Interno SRK, 2013). Pone en contacto lavas, brechas hidrotermales y stockwork de especularita con intrusivos dioríticos en el lado occidental. La zona de daño presenta brechas de falla polimícticas y clasto soportadas.

2.3. MINERALIZACIÓN Y ALTERACIÓN HIDROTERMAL

Mediante el estudio y descripción de 38 láminas transparentes y pulidas (ANEXO A. Descripción petrográfica) se determinó que todas las muestras del yacimiento están fuertemente alteradas pudiéndose establecer que el depósito Diego de Almagro es producto de al menos 4 eventos de alteración y mineralización sobreimpuestos.

La mineralización principal de sulfuros de cobre es representada fundamentalmente por la presencia de calcopirita con menor bornita, que se asocia a la formación de brechas hidrotermales con matriz de hematita especular. Las brechas presentan una distribución disgregada tanto en Carmen-Paulina como en Esther, atípica de las brechas hidrotermales, que generalmente se presentan en formas sub-verticales en estos depósitos. Las brechas son monomícticas, matriz soportadas, con alrededor de 50% de matriz. Presentan clastos de color rosa y anaranjados de hasta 10 cm, subangulosos de composición andesítica, alterados a feldespato potásico y que provienen de la roca caja. Además de clastos de andesita se observan sulfuros de cobre y pirita inmersos en la matriz.

Los eventos de alteración hidrotermal están representados por abundante feldespato potásico y sericitización en la secuencia volcánica. Además de esto, se observa turmalina en las rocas de caja y también cementando brechas hidrotermales. Eventos tardíos de menor temperatura y estériles generan abundante cloritización, acompañada de sericita, carbonatos y sílice. Se observa un último evento correspondiente a alteración supérgena que genera escasos minerales oxidados de cobre, como crisocola y atacamita.

2.3.1. Perfil de alteración y mineralización.

A continuación (Figura 13) se presenta la sección AA', de orientación W-E que muestra la distribución esquemática de la mineralización y la alteración hidrotermal en el depósito Diego de Almagro. El perfil corresponde al cuerpo Carmen-Paulina, donde la mineralización se encuentra solo en las brechas de especularita. Además, la secuencia volcánica se encuentra alterada a feldespato potásico. El desplazamiento normal de la falla Carmen eleva las rocas intrusivas dioríticas y permite la circulación de los fluidos profundos que generan las brechas hidrotermales de especularita. Las alteraciones tardías (III evento) se sobreimponen al feldespato potásico y se genera clorita en las zonas más profundas y asociada a las rocas intrusivas y diques. Los carbonatos, y sílice llegan hasta niveles más someros, y se observan también en las periferias del cuerpo mineralizado. La alteración supérgena no supera los 40 metros de profundidad desde la superficie actual.

Figura 13. Perfil AA', representando la distribución de la alteración y mineralización en el cuerpo Carmen-Paulina.

2.3.2. Eventos de mineralización y alteración hidrotermal

Evento I

El primer evento de mineralización corresponde a la etapa de sulfuros con magnetita. Se observa un desarrollo de cristales de pirita de forma euhedral a anhedral, con hábitos cúbicos y de piritoedros, generalmente de 2 a 3 mm de largo en su eje mayor pero que logran alcanzar hasta 1 cm de largo. A profundidades mayores a 50 m, se observan localmente magnetitas subhedrales a anhedrales de menos de 1 mm (Figura 14). Estos minerales se dan como diseminaciones y vetillas de hasta 2 mm de ancho en las andesitas, y en menor medida en los diques y dioritas. Se le observa en contacto simple con pirita o rodeando completamente a estos sulfuros.

Figura 14. Fotomicrografías de andesitas porfíricas a luz reflejada donde se muestra la asociación de pirita (Py) y magnetita (Mt) del primer evento. A. Muestra DAM-16 (87 m) Pirita anhedral libre y en contacto simple con magnetita. Aumento 200x, nicoles paralelos. B. Muestra DAM-38b (56 m). Se aprecia piritoédro con magnetita anhedral finamente diseminada en la masa fundamental. Aumento 100x, nicoles paralelos.

Este evento también es el responsable de la mineralización principal de sulfuros de cobre (Figura 15), principalmente calcopirita, que se observa en tamaños de hasta 1,5 cm de forma anhedral, y en ocasiones rodeando a los cristales de pirita. Generalmente se observan siendo sustituidas por bornita hacia sus bordes, parcial o totalmente. Además de esto, se observaron cantidades menores de covelina, digenita y calcosina. Esta mineralización se produce en diseminaciones y vetillas de hasta 1 cm de ancho en las rocas de caja, sin embargo, está ausente tanto en los diques como en los intrusivos estudiados. La precipitación de partículas de oro también estaría asociada a este evento de sulfuros, ya que fueron observadas como inclusiones en pirita y calcopirita (Herrera et al., 2007)

Figura 15. Fotomicrografías a luz reflejada de andesitas porfíricas con mineralización diseminada de cobre. A. Muestra DAM-13, (75,2 m) Se muestra un reemplazo total de calcopirita (Ccp) por bornita (Bn), que a su vez se sustituye por incipiente calcosina (Cct). Aumento 200x, nicoles paralelos. B. Muestra DAM-49 (181,8 m). Se observa cristal anhedral de calcopirita siendo reemplazado por bornita. Aumento 200x, nicoles paralelos.

En la mayoría de las muestras de sondaje estudiadas se reconoce un fuerte metasomatismo de potasio (Figura 16) en el cual los diques, pórfidos dioríticos y la masa fundamental de las rocas caja se ven alterados a feldespato potásico. Además en los diques y en las rocas dioríticas, localmente y a profundidades mayores a 150 metros se observó escasa biotita secundaria.

Figura 16. Muestra DAM-27(207 m). Corresponde a un dique con alteración a feldespato potásico y clorita, además de magnetita diseminada. Aumento 200x, nicoles paralelos. B. Muestra DAM-31(207 m). Pórfido diorítico con alteración a feldespato potásico y biotitas parcial a totalmente cloritizadas. Los opacos corresponden a magnetita. Aumento 50x, nicoles paralelos.

Evento II

El segundo evento de mineralización-alteración se caracteriza por un evento de deformación frágil que provoca la brechización y fractura de las rocas de caja, lo que

genera las brechas y stockwork hidrotermales de especularita con los sulfuros de cobre y pirita como clastos de la brecha o como relleno de fracturas (Figura 17).

Figura 17. Fotomicrografías de la brecha de especularita (Spk), en ambas figuras se observa que láminas de especularita se encuentran rodeando y rellenando fracturas en la pirita (Py) y calcopirita (Ccp), indicando que es posterior a la etapa de sulfuros. Además se aprecia que la calcopirita se sustituye por bornita (Bn) hacia los bordes. A. DAM-46 (158,4 m), aumento 50x, nicoles paralelos. B. DAM-47 (161,1 m). Se aprecia reemplazo incipiente de bornita por covelina (Cv) hacia sus bordes. Aumento 200x, nicoles paralelos.

En algunas muestras de la brecha de especularita, en el sector de Carmen-Paulina y a más de 90 metros de profundidad, se identificó que en las fracturas de calcopirita rellenas por las láminas de especularita, se generó una reacción de re-equilibrio del fluido, produciendo bornita y pequeños cristales de pirita anhedrales en los bordes (Figura 18). A estos minerales se les ha denominado bornita II y pirita II.

Figura 18. Fotomicrografías que ilustran que en las fracturas generadas en las calcopiritas, ha precipitado bornita como reemplazo mineral, junto con pirita. A. Muestra DAM-41 (94,3 m). Aumento 50x. B. Muestra DAM-42 (94,8 m), Aumento 50x.

Al sur de Carmen-Paulina localmente las brechas hidrotermales presentan una matriz de turmalina (Figura 19) con clastos andesíticos, indicando que la turmalina y la especularita estarían asociadas en este evento. Además de formar matriz de brecha, la turmalina se encuentra con hábito radial en cúmulos y pátinas en las rocas cajas que no están brechizadas, y también como halo de algunas vetillas de especularita.

Figura 19. A. Muestra DAM-07 (44,8 m), se observa roca brechosa con matriz de turmalina (Tur) y clastos andesíticos (And) alterados a feldespato potásico y arcillas. Aumento 100x. B. Muestra DAM-38b (55,8 m). Roca andesítica con pirita (Py) en masa fundamental con abundante turmalina. Nicoles paralelos, aumento 50x.

A profundidades mayores a 60 m y en forma local se reconoce una sustitución de hematita por magnetita (formación de mushketovita) en la matriz de las brechas hidrotermales, reflejando un proceso de reducción de la hematita especular.

Evento III

El tercer y último evento de carácter hidrotermal es estéril y se representa por una alteración cuarzo-sericítica (Figura 20), caracterizada por la precipitación de sericita como reemplazo mineral de plagioclasas y en la masa fundamental de las andesitas, y cuarzo secundario principalmente en cúmulos y en vetillas de hasta 2 mm en todas las litologías del depósito. Además se observa una cloritización de minerales máficos en diques, dioritas, y en menor medida en las rocas de caja a una mayor profundidad (Figura 16).

También se reconoció tanto en Carmen-Paulina como Esther una fuerte alteración carbonatada, en la cual aparece principalmente calcita en la mayoría de las muestras, tanto en cúmulos como vetillas de 2 a 3 mm de diámetro. La calcita se observa asociada a sílice, y a sulfuros de cobre, ya que a más de 300 metros de profundidad se encontraron vetillas de calcita asociada a calcopirita y bornita, que se han denominado calcopirita II y bornita III (Figura 21). Además, y asociado al metasomatismo cálcico, ocurre la precipitación de escasos cristales de prehnita y pumpellyta en los diques

alterados, intrusivos y andesitas (Figura 22), que se generan como reemplazo mineral de plagioclasas.

Figura 20. A. Muestra DAM-05 (44,4 m). Se observa andesita con plagioclasas sericitizadas (Pg+Ser) en masa microcristalina. B. Muestra DAM-39 (63,2 m). Se aprecia cúmulo de cuarzo secundario en masa fundamental alterada a feldespato y sericitizada (Feld+Ser).

Asimismo se advirtió a más de 400 metros de profundidad, en el sondaje DA14-044 del cuerpo Carmen-Paulina, la presencia de brechas hidrotermales con matriz de yeso y calcita intercaladas entre las andesitas, con escasa mineralización de calcopirita.

Figura 21. Muestra DA-06 (310 m), corresponde a una brecha de turmalina. A. Se observa vetilla de 1 mm de ancho de calcita (Cal) con calcopirita (Ccp) y bornita (Bn) a nícoles cruzados. B. Misma imagen anterior a luz reflejada.

Figura 22. A. Muestra DAM-28 (212,5 m). Dique alterado donde se observa cristal de plagioclasa reemplazado totalmente por prehnita (Prh). Se observa plagioclasa sericitizada (Pg+Ser), en una masa de microlitos de plagioclasa. B. Muestra DAM-32, (34,7 m). Pórfido diorítico con textura seriada, se observa plagioclasa siendo reemplazada parcialmente por pumpellita (Pmp)-prehnita (Prh), y cristales de clorita (Chl) y pirita cúbica (Py).

Evento IV

Finalmente se reconoce un evento de carácter supérgeno y de extensión reducida, alcanzando entre unos 50 y 60 metros de espesor. Es caracterizado por una profunda oxidación del sistema, que se representa por la formación de minerales oxidados de cobre, como crisocola y atacamita (Figura 23), observados solo en las andesitas y en cantidades muy bajas. En asociación con estos minerales, se encuentran abundante sílice, y hematita, con estilos de mineralización en pátinas, vetillas y/o masivas. Además existen cantidades menores de limonitas, arcillas, jarosita, y goethita. Como parte de este evento y en menor medida se advirtió la presencia de sulfatos, principalmente anhidrita.

Figura 23. Imágenes de la alteración supérgena. A. Muestra DAM-05, A 44,4 m. Imagen a nicoles paralelos donde se aprecia atacamita (At) con cuarzo (Qz) secundario y limonitas (Lim). B. Muestra DAM-11 A 68,7 m. Fotomicrografía a nicoles cruzados donde se observa anhidrita (Anh) asociada a hematita (Hmt) y cuarzo (Qz).

2.3.3. Secuencia Paragenética

La secuencia paragenética que resume los eventos que generaron el depósito IOCG Diego de Almagro se muestra en la Tabla 2.

	Tabla	a z. Tabla parageriel		piego de Almagro.	·
		I EVENTO MINERALIZADOR	II EVENTO	III EVENTO	IV EVENTO SUPÉRGENO
	Pirita	<u> </u>	<u> </u>		
	Calcopirita	<u> </u>	•	<u>II</u>	
Minerales	Bornita	<u> </u>	<u> </u>		
de mena	Calcosina		•		
	Digenita		•		
	Covelina				
	Oro	?			
	Atacamita				
	Crisocola				
	Magnetita		<u> </u>		
	Hematita		1		<u> </u>
	Feld K				
	Biotita				
Minerales de	Turmalina				
alteración	Sericita				
	Cuarzo				
	Calcita				
	Clorita				
	Pumpellyta?				
	Prehnita				
	Yeso				
	Arcillas				
	Limonitas				
	Jarosita				
	Goethita				
	Anhidrita				

Table 2. Table paragonótico del denésito Diago de Almagra

TIEMPO

Nota: Hematita I representa la generación de brechas hidrotermales de especularita. Magnetita II representa el evento de mushketovitización de la hematita especular. El grosor de la línea es una medida relativa de la intensidad de la mineralización.

3. GEOQUÍMICA

Los resultados obtenidos para los análisis de geoquímica de roca total de las 21 muestras se presentan en el

ANEXO B. Geoquímica de roca total

3.1. ELEMENTOS MAYORES

Los elementos mayores, en conjunto con los valores de LOI (*loss on ignition*) presentan un alto grado de dispersión de datos. El valor mínimo de LOI reportado es el arrojado por la muestra DAM-82a, de 2,39%, mientras que el valor mayor es de 8,8%, de la muestra DAM-14. El promedio de todas las muestras es un LOI de 5,42%. El sílice muestra valores desde 35% a 64% en peso; el hierro, por su lado, va desde valores tan bajos como 5%, hasta 50% en peso. También cabe destacar que los contenidos de P_2O_5 son bajos en todas las muestras, en un rango de 0,07% a 0,23% en peso.

La Figura 24 muestra un gráfico de calcio versus álcalis, donde también se muestra el campo donde caerían las rocas volcánicas calcoalcalinas no alteradas. Es posible apreciar que ninguna de las muestras de Diego de Almagro cae en este campo, ya que la mayoría presenta una pérdida de calcio, asociada a un alza en el contenido de álcalis (principalmente potasio), que llega hasta casi un 12% en peso. Solo 4 muestras tienen valores normales de calcio, sin embargo, se encuentran enriquecidas levemente en álcalis (DAM-27, DAM-31, DAM-99, DAM-113)

Figura 24. Gráfico CaO vs (Na₂O+ K_2 O). La elipse muestra el campo aproximado de una andesita no alterada. Las muestras numeradas presentan valores normales de CaO, y contenidos altos en álcalis.

Lo anterior se podría traducir en un alto grado de alteración hidrotermal que afecta tanto a las rocas encajantes (andesitas), los diques como a los intrusivos que existen en el depósito, lo que indica que es altamente probable que los elementos mayores hayan sido movilizados en esta etapa por efectos metasomáticos, por lo que no reflejarían la geoquímica de la roca original.

3.2. ELEMENTOS TRAZA

La clasificación de las rocas volcánicas del área de estudio utilizando elementos traza como niobio (Nb), itrio (Y), circonio (Zr) y titanio (Ti), según el diagrama modificado de Pearce (1996) indica que los valores promedio de Nb/Y varían entre 0.08 y 0.15 y de Zr/Ti entre 0.01 y 0.03. Según esto, las rocas se relacionan con rangos composicionales intermedios a básicos, y se clasifican como rocas subalcalinas. Petrológicamente corresponden a andesitas/andesitas basálticas y basaltos. (Figura 25).

Figura 25. Diagrama de clasificación de rocas volcánicas de Pearce (1996). Los triángulos rojos representan las muestras de rocas volcánicas de Diego de Almagro.

La Figura 26 muestra el diagrama de clasificación tectónica de Wood (1980), que utiliza elementos inmóviles como el Zr, torio (Th) y Nb para discriminar el ambiente tectónico de formación de rocas ígneas. Se observa que la mayoría de las muestras

caen en el campo de CAB-VAB, es decir, corresponden a rocas basálticas de arco volcánico y calcoalcalinas. Sin embargo, hay dos muestras que plotean ligeramente fuera de este campo.

Figura 26. Diagrama de clasificación de rocas máficas de Wood (1980). WPT= toleítas intraplaca. VAB= basaltos de arco volcánico. IAT= toleítas de arco de isla. CAB= basaltos calcoalcalinos. WPB= basaltos intraplaca.

Por otro lado, el diagrama de discriminación de rocas volcánicas de Th versus cobalto (Co) de Hastie et al. (2007) (Figura 27) también indica que las muestras son mayoritariamente calcoalcalinas, indicando una leve variación de los contenidos de Th en las rocas volcánicas. Sin embargo, los contenidos de Co son mucho más dispersos (de 6 a 73 ppm), por lo que la clasificación petrográfica se hace más incierta. Lo anterior podría reflejar que el Co no se comporta como un elemento inmóvil en este sistema, y es posible que haya sufrido procesos de removilización por alteración hidrotermal. Es posible observar que la muestra DAM-113 (con contenidos normales de CaO, Figura 24) presenta contenidos normales esperados para este tipo de rocas tanto de Th como Co (andesita basáltica calcoalcalina).

Figura 27. Diagrama de discriminación de Hastie et al. (2007). Los círculos rojos representan las muestras de rocas volcánicas de Diego de Almagro.

En la Figura 28 se muestran las concentraciones de algunos elementos de interés obtenidas en los análisis de roca total. La muestra con mayor contenido de cobre (Cu) es la DAM-109 (dique), con 1160 ppm. Las rocas volcánicas tienen una media de 270 ppm, mientras que los diques y dioritas tienen un promedio de 300 y 60 ppm, respectivamente. El promedio de todas las muestras es cerca de 250 ppm de Cu. Existe un enriquecimiento en zinc (Zn), que llega a un máximo de 1240 ppm, mucho mayor al promedio de la corteza superior de 67 ppm (Rudnick y Gao, 2003). El Co tiene un valor mínimo de 6 ppm y un máximo de 181 ppm, con un promedio de 45 ppm, ligeramente superior al valor cortical (27 ppm; Rudnick y Gao, 2003), además una muestra de roca intrusiva (DAM-61b) reportó contenidos anómalos de >1000 ppm de Co; en el gráfico de la Figura 28 es posible apreciar que el Co es el elemento que muestra la mayor dispersión de datos. Los contenidos de vanadio (V) son en promedio 283 ppm, casi el doble del que se encuentra en corteza superior (Rudnick y Gao, 2003). El arsénico (As) se encuentra entre 7 y 48 ppm, con un promedio de 23 ppm, que es mayor al promedio de 4 ppm de la corteza (Rudnick y Gao, 2003). El bario (Ba) promedia 1780 ppm y alcanza valores muy altos, incluso más de 4000 ppm.

Figura 28. Diagrama representativo de las concentraciones de elementos de interés en las muestras del depósito.

El diagrama de multielementos (Figura 29) muestra claramente que las muestras de Diego de Almagro presentan elementos enriquecidos con respecto al manto. Además, elementos como el Ba y el potasio (K) muestran anomalías positivas. El plomo (Pb) se encuentra bajo los límites de detección en la mayoría de las muestras, sin embargo, las muestras que lo detectan muestran un peak en este elemento (52 ppm). Además, el estroncio (Sr) muestra una leve anomalía positiva. Por su parte, el Th, tantalio (Ta), Ti, neodimio (Nd), Nb y escandio (Sc) muestran anomalías negativas. Tierras raras livianas (LREE), como el lantano (La), cerio (Ce) y praseodimio (Pr) presentan una dispersión de datos muy alta, con muestras muy enriquecidas, y otras más deprimidas con respecto a las demás. Las tierras raras pesadas (HREE) también se comportan de manera similar, pero en un rango más acotado de valores.

El gráfico de Ba vs K₂O (Figura 30) muestra una clara correlación positiva entre ambos elementos; en todas las muestras, a medida que aumentan los contenidos de Ba, se observa un incremento también en K₂O. Se puede advertir una muestra de diorita que presenta casi un 11% en peso de K₂O y también más de 4000 ppm de Ba. También se indican las muestras DAM-27, DAM-31, DAM-99 y DAM-113, que son las muestras con contenidos normales de calcio; estas muestras son las que también presentan algunos de los contenidos más bajos de Ba y K₂O.

Figura 29. Diagrama de multielementos normalizado al manto. Se muestran rocas volcánicas (andesitas y andesitas basálticas), intrusivas (dioritas) y diques andesíticos.

Figura 30. Gráfico Ba vs K₂O, donde se muestran todas las rocas analizadas.

Los patrones de tierras raras normalizados a condrito de rocas volcánicas se muestran en la Figura 31. Es claro apreciar que existen dos patrones distintos: el primero enriquecido en LREE y el segundo empobrecido en estas. El patrón empobrecido en LREE tiene forma curva cóncava ("cuchara") y presenta fuertes depresiones en Ce y Pr. Se refleja sólo en las muestras DAM-14, DAM-26 y DAM-45. Cabe mencionar que estas muestras también presentan porcentajes de CaO menores al 1% en peso, y entre 9% y 10% en peso de álcalis.

El segundo patrón se observa en el resto de las rocas volcánicas analizadas, y es posible subdividirlo en dos grupos: el primero con una alta pendiente, y mayores enriquecimientos en LREE en comparación con las HREE (DAM-15 y DAM-52). Este grupo de muestras no tienen anomalías de europio (Eu) y también presenta contenidos de CaO menores al 1% en peso. El segundo subgrupo es el con pendiente más baja y menores enriquecimientos en LREE (DAM-16, DAM-21, DAM-49, DAM-70, DAM-90 y DAM-113). Aquí, las muestras DAM-70, 95 y 113 presentan anomalías negativas de Eu, mientras que la DAM-49 presenta una anomalía positiva en este elemento. Los contenidos de CaO en este grupo de muestras promedian 2,7% en peso y álcalis en torno a 7,7% en peso.

Figura 31. Patrones de tierras raras de rocas volcánicas normalizados a condrito según Sun y McDonough (1995).

Los patrones de los diques (Figura 32) también muestran las dos familias de patrones que se observan en las lavas: una enriquecida en LREE y la otra empobrecida, con un patrón en forma de "cuchara", que también está ligeramente más enriquecido en HREE que el primer patrón. El patrón deprimido en LREE se observa

en las muestras DAM-102 y DAM-109 (CaO~1% en peso). Las muestras que presentan el patrón enriquecido son DAM-50, 27 y DAM-51, esta última presentando los mayores enriquecimientos en LREE. También cabe destacar que estas muestras tienen promedios de CaO cercanos a 6,4% y 5% en peso de álcalis. Ninguna de las muestras analizadas de diques presenta anomalías de Eu.

La Figura 33 muestra los patrones de REE de diques y rocas volcánicas, donde es posible apreciar los patrones similares en ambas litologías.

Figura 32. Patrones de tierras raras normalizados a condrito de los diques de Diego de Almagro (Sun y McDonough, 1995).

38

Figura 33. Patrones de tierras raras normalizados a condrito de diques y rocas volcánicas del depósito Diego de Almagro (Sun y McDonough, 1995).

Los patrones de tierras raras de las rocas intrusivas son más diversos (Figura 34) pese a ser muestras de la misma litología. Las muestras DAM-31 y DAM-32 son muestras del mismo sondaje separadas por 15 metros, y aun así presentan patrones muy distintos: la primera presenta una pendiente relativamente plana, y la segunda una pendiente más pronunciada con una anomalía positiva de Eu, además la muestra DAM-31 tiene 4,44% en peso de CaO, mientras que la DAM-32 solo 0,85% en peso de CaO. La muestra DAM-99 presenta una anomalía negativa en este elemento, además de un enriquecimiento en Nd y Sm. La muestra DAM-82a es la única que pertenece al cuerpo Esther, y es notable su enriquecimiento en LREE en comparación con las HREE, y su anomalía negativa de Eu, además, esta muestra es la que presenta los mayores contenidos de álcalis (K₂O~11% en peso) y de Ba (Figura 30), en conjunto con 0,89% en peso de CaO.

Figura 34. Patrones de tierras raras de las rocas intrusivas de Diego de Almagro (Sun y Mcdonough, 1995).

4. ISÓTOPOS DE AZUFRE

Los análisis de isótopos de azufre fueron realizados en calcopiritas y piritas de 11 muestras del yacimiento Diego de Almagro, donde 10 pertenecen al cuerpo mineralizado Carmen-Paulina y 1 muestra pertenece a Esther, que corresponde a una brecha hidrotermal de especularita con altos contenidos de pirita. Los resultados obtenidos se resumen en la Tabla 3. Resultados de isótopos de azufre (δS^{34}) de muestras del depósito Diego de Almagro.

Muestra	Sondaje	Prof. (m)	Localidad	Litología	Mineral	δ ³⁴ S(‰)
DAM-37	DA14-120	55,4	Carmen-Paulina	Andesita	Calcopirita	-2,0
DAM-39	DA14-120	63,2	Carmen-Paulina	Andesita	Pirita	-2,2
DAM-40	DA14-120	78,5	Carmen-Paulina	Brecha de spk	Pirita	-2,6
DAM-42	DA14-120	98,3	Carmen-Paulina	Brecha de spk	Calcopirita	-2,8
DAM-44	DA14-120	123	Carmen-Paulina	Andesita	Pirita	-0,8
DAM-46	DA14-120	158,4	Carmen-Paulina	Andesita	Pirita	-1,7
DAM-47	DA14-120	162,2	Carmen-Paulina	Brecha de spk	Calcopirita	-2,4
DAM-90	DA14-044	75,7	Carmen-Paulina	Andesita	Pirita	-2,9
DAM-92	DA14-044	139,9	Carmen-Paulina	Andesita	Calcopirita	-2,8
DAM-97	DA14-154	132,6	Esther	Brecha de spk	Pirita	-2,8
DAM-115	DA14-066	443,3	Carmen-Paulina	Brecha de yeso	Calcopirita	-4,0

Tabla 3. Resultados de isótopos de azufre (8	5S ³⁴) de muestras del depósito Diego de
Almag	ro.

Abreviaciones: Spk=especularita

La mayor parte de los análisis fueron realizados sobre las calcopiritas I y piritas I, correspondientes al primer y principal evento de mineralización hipógena (ver Tabla 2), a excepción de la muestra de calcopirita DAM-115, que pertenece a una brecha de yeso con calcita detectada localmente en Carmen-Paulina, posiblemente atribuible al evento III de alteración-mineralización.

Los valores obtenidos son todos negativos y varían entre -4,0 a -0,8‰. En particular para la calcopirita varía entre -4,0 a -2,0‰ y para la pirita entre -2,9 y -0,8‰ (Figura 35), arrojando una media total de -2,5‰. La muestra de calcopirita DAM-115 (443,3 m) arrojó el valor más negativo (-4,0‰), mientras que la pirita DAM-44 (123 m) el valor menos negativo (-0.8‰).

La mayoría de las muestras (n=7) analizadas fueron tomadas del sondaje DA14-120, en donde se observa una disminución en el valor del delta azufre desde -2.0 a -2.8 en los primeros 100 metros de profundidad, sin embargo bajo este nivel los valores de δS^{34} se hacen menos negativos (Tabla 3. Resultados de isótopos de azufre (δS^{34}) de muestras del depósito Diego de Almagro.). En términos generales no se observa una tendencia clara entre ambas variables, y tampoco existe una diferencia significativa entre los valores de Carmen-Paulina y Esther, ya que el valor arrojado para Esther es de -2,8‰, concordante con la mayoría de los datos de Carmen-Paulina. Por otra parte si se observa una tendencia a que los valores de δS^{34} en calcopirita son levemente menores a los obtenidos para pirita (Figura 35).

Figura 35. Valores de δ^{34} S_{CDT} (‰) obtenidos en calcopiritas y piritas del depósito Diego de Almagro.

5. DISCUSIÓN

5.1. MINERALIZACIÓN Y ALTERACIÓN HIDROTERMAL

En los distintos estudios petrográficos y calcográficos realizados se observó que en el depósito Diego de Almagro ocurrieron varios eventos de alteración y mineralización sobreimpuestos, donde se identificaron al menos 3 eventos de alteración y mineralización hidrotermal y uno de carácter supérgeno. Las principales asociaciones que se observaron corresponden a feldespato-sericita y abundantes carbonatos en las andesitas, además de la presencia de turmalina en las rocas cajas y cuerpos mineralizados. La escasa biotita secundaria presente se debe a que la mayor parte de ésta alterada a clorita.

La mineralización más intensa de sulfuros de cobre (y probablemente oro) corresponde a clastos de las brechas hidrotermales de especularita. Estas brechas no se presentan conformando una chimenea de brecha vertical, como es lo esperado, sino que se observan como varios cuerpos paralelos de ancho variable y de dirección y manteo al este (Figura 13), de forma disgregada. Es probable que la permeabilidad de las rocas encajantes (y su estratigrafía), en conjunto con las estructuras locales presentes en el área, como falla Esther y falla Carmen (además de otras no reconocidas), hayan jugado un rol en la canalización y ascenso de los volátiles que generaron las brechas de especularita.

Las asociaciones minerales de alteración encontradas son similares a las de otros IOCG andinos dominados por especularita. No obstante, la secuencia paragenética establecida en este trabajo difiere fuertemente de las señaladas para otros depósitos análogos, como Mantoverde (Rieger et al., 2010) y Raúl Condestable (De Haller y Fontboté, 2009), sin embargo es similar a la de Barreal Seco (Correa, 2000), donde se establece que los sulfuros de cobre y la pirita son anteriores a la brechización de hematita especular.

La presencia de mushketovita es una característica común en varios depósitos como Mantoverde, Candelaria y Raúl Condestable (Rieger et al., 2010; Marshick y Fontboté, 2001b; De Haller y Fontboté, 2009) y hay interpretaciones alternativas propuestas para su génesis: una caída en el estado redox o un alza en la temperatura del fluido son las más aceptadas.

Cabe destacar la ausencia a nivel local de alteración sódico-cálcica, generalmente representada por albita, escapolita y epidota en los depósitos IOCG, sin embargo es probable que la alteración potásica pervasiva reconocida en este yacimiento y los eventos de alteración-mineralización sobreimpuestos hayan obliterado cualquier indicio de la alteración sódico-cálcica.

5.2. GEOQUÍMICA

Los resultados de geoquímica de roca total obtenidos son consistentes con un alto grado de alteración hidrotermal que afecta a todas las muestras del depósito. Durante este proceso se removilizó gran parte de los elementos mayores, entre los que se destaca una pérdida de calcio, asociada a un enriquecimiento en álcalis, principalmente potasio, lo que es coherente con la alteración potásica intensa observada en las láminas transparentes. Además de esto, algunos elementos traza también fueron móviles durante la alteración hidrotermal: ejemplo de esto son las tierras raras (livianas principalmente) (Figura 33), que se encuentran muy enriquecidas en algunas muestras, y muy deprimidas en otras. Las muestras que aparecen enriquecidas en LREE podrían reflejar la presencia de minerales como apatito, allanita, o monacita, que suelen incorporar estos elementos en su estructura, como es el caso del depósito IOA Carmen, donde las LREE son incorporadas específicamente en la monacita (Palma et al., 2015). Por otro lado, las muestras deprimidas en LREE podrían entenderse como procesos hidrotermales que transportaron estos elementos hacia zonas laterales o más someras.

Otro elemento traza que presenta una gran dispersión y actúa como móvil en este depósito es el Co. Este elemento suele particionarse en óxidos de Fe-Ti, y es muy incompatible en feldespatos (Hastie et al., 2007), también suele incorporarse en sulfuros como pirita o calcopirita en sistemas IOCG e IOA, por lo que la presencia de Co podría indicar pirita o calcopirita ricas en Co (Lorca, 1990; Rieger et al., 2010)

Por otro lado, existe una relación entre elementos como el Ca y las LREE, ya que las rocas que presentan pérdidas de Ca, también presentan bajas concentraciones de LREE. Sumado a esto, estas rocas también muestran incrementos en los porcentajes de potasio, por lo que se considera que el fluido que generó el primer evento, y la intensa alteración potásica, ingresó al depósito, llevándose en el proceso el Ca y las LREE.

Las concentraciones de los elementos incompatibles que presentan anomalías positivas (Figura 29) se debe a que es común en sistemas de arco que exista una transferencia de elementos desde el slab subductante, hacia la cuña del manto, y luego hacia los magmas de arco, por lo que este proceso puede hacer que algunos elementos incompatibles como los LILE (*large ion litophile elements*) se vean enriquecidos en los magmas de arco (Hastie et al., 2007; Cliff et al., 2009; Spandler y Pirard, 2013), lo que explicaría las anomalías positivas de algunos elementos como el Ba y Sr en el diagrama multielementos (Figura 29). Además, elementos como el Nb, Ta y Ti se quedan retenidas en fases refractarias del slab, como el rutilo (Spandler y Pirard, 2013), por lo que existen anomalías negativas de estos elementos.

Una alternativa para explicar altos contenidos de Ba es que este es un elemento litófilo, altamente incompatible, que comúnmente se aloja en sedimentos oceánicos, por lo sería un indicador de que fluidos externos derivados de agua marina ingresaron al depósito, probablemente a partir del tercer evento hidrotermal identificado. El Ba se alojaría en los feldespatos de las rocas volcánicas, donde puede ser desde un elemento traza hasta un constituyente mayor. La sustitución que ocurriría en los feldespatos sería del tipo BaAI = KSi (Deer et al., 2001). En la región también existen otros depósitos IOCG con altas concentraciones de Ba: ejemplos de esto son Candelaria y Mantoverde, en los cuales se ha reportado el ingreso fluidos tardíos de origen externo (Marschik y Fontboté, 2001; Rieger et al., 2010) (Figura 36).

Por otra parte, la fuerte correlación entre el Ba y el potasio (Figura 30), hace especular que estos elementos pudieron haber estado asociados en el mismo fluido hidrotermal, descartando la hipótesis anterior. Las muestras marcadas en este gráfico (DAM-27, DAM-31, DAM-99 y DAM-113) tienden a ser las menos alteradas en otros diagramas (CaO vs álcalis, tierras raras), por lo que se podría atribuir que los contenidos de Ba y K₂O de estas muestras (<1700 ppm Ba y <4% en peso de K₂O) son cantidades relativamente normales para estas muestras, y todos los contenidos mayores a estos podrían ser atribuibles a productos de la alteración hidrotermal.

Figura 36. Concentraciones de bario en roca total de Diego de Almagro, Mantoverde y Candelaria (base de datos de este trabajo, Rieger et al, 2010, y Marschik y Fontboté, 2001, respectivamente).

En general, los patrones de REE no son similares a los observados en otros IOCG chilenos (Figura 37), ya que es probable que estos elementos también hayan sido movilizados por la alteración hidrotermal caracterizada por una alta razón fluido/roca. Sin embargo, los patrones de tierras raras de Mantoverde y sobretodo de la mina Candelaria también presentan altos enriquecimientos en LREE, en comparación con HREE, lo que también se detectó en Diego de Almagro en menor escala para algunas muestras. En efecto, el enriquecimiento de LREE si ha sido detectado localmente en yacimientos de este tipo (Hitzman et al., 1992; Williams et al., 2005).

Figura 37. Patrones de tierras raras de los yacimientos Mantoverde y Candelaria (Extraídos de Rieger et al., 2010 y Marschik y Fontboté, 2001).

Sin embargo, el set de muestras mencionado anteriormente (DAM-27, DAM-31, DAM-99 y DAM-113) muestra patrones de tierras raras similares entre sí, y similares a los mostrados en la Figura 37. Comparados con los patrones del resto de las muestras de Diego de Almagro, son intermedios, por lo que se interpretan como los patrones menos alterados. Notando esto, se pueden distinguir muestras con ganancia de LREE con respecto a las rocas menos alteradas, y otras muestras que revelan una pérdida de estos elementos.

Los altos grados de alteración hidrotermal que afectan a los intrusivos dioríticos, reflejados también en sus patrones de REE hacen imposible determinar el tipo de fuente de estas rocas.

Con respecto a la controversia acerca de la Formación geológica a la que pertenecen las rocas volcánicas del depósito, los diagramas de clasificación tectónica (Figura 26) establecen concluyentemente que las rocas tienen signaturas de arco calcoalcalino, lo que es consistente con la Formación La Negra, ya que la Formación Punta del Cobre representa la cuenca de tras arco (Marschik y Fontboté, 2001a). Además, en la Figura 38 se hace una comparación de las rocas de Diego de Almagro con rocas volcánicas aledañas a la zona de estudio (El Salado, poblado Diego de Almagro y depósito IOA Carmen) pertenecientes a las formaciones La Negra y Punta del Cobre. Este gráfico de elementos inmóviles muestra que las rocas de Diego de Almagro tienen valores máximos de Nb de 8 ppm y 130 ppm de Zr, correlacionándose de mejor manera a las rocas de la Fm. La Negra, ya que las de Punta del Cobre tienen mayores valores de Nb. Esto, sumado a lo obtenido en el diagrama de clasificación tectónica (Figura 26), permitiría establecer que las rocas volcánicas e intrusivas encontradas en el depósito pertenecerían al arco volcánico del Jurásico, perteneciente a la Fm. La Negra.

Figura 38. Gráfico Nb versus Zr donde se muestran rocas de Diego de Almagro, y rocas de la Fm. La Negra y Fm. Punta del cobre de las localidades de Diego de Almagro, El Salado y el deposito IOA Carmen (base de datos de Benavides, 2006).

5.3. ISÓTOPOS DE AZUFRE

Los valores de calcopirita (-4 a -2.8‰) y pirita (-2.9 a -0.8‰) presentados en este trabajo sugieren que no hay una tendencia clara en la variación de la composición isotópica del azufre en la componente vertical, ni tampoco en la horizontal, por lo que presentaría valores más bien uniformes con la profundidad y a lo largo del depósito.

Los valores son consistentes con una fuente de fluidos profunda y un origen magmático para el azufre (0 ± 5‰ δ^{34} S, Ohmoto y Goldhaber, 1997), y por ende para los sulfuros que albergan la mineralización principal de cobre, sin embargo, es posible que haya ocurrido algún tipo de fraccionamiento debido a reacciones redox, que resultó en los valores ligeramente más negativos reportados. Es probable que la intrusión diorítica o la monzonita reconocida en profundidad sea la fuente de los fluidos mineralizadores que también generaron las otras alteraciones magmáticas-hidrotermales.

Los sulfuros con signaturas negativas tienden a ser representativas de las zonas asociadas a magnetita, más profundas, centrales de los conductos de fluidos en los sistemas de IOCG, mientras que los valores más positivos generalmente ocurren en la zona dominada por hematita, fuera de los conductos de fluidos y a niveles más someros

(Rieger et al., 2010; Kovacic, 2014). Sin embargo, en Diego de Almagro eso no se observa, ya que los valores son todos negativos para la zona dominada por hematita especular.

En la Figura 39 se realiza una comparación con otros datos publicados de δ^{34} S de sulfuros correspondientes a depósitos IOCG andinos cercanos a Diego de Almagro. En el caso de Barreal Seco, solo se graficaron los datos del valor mínimo y máximo obtenido (Correa, 2000). Se observa que Mantoverde, dominado por hematita especular, presenta un amplio rango de valores isotópicos de azufre en pirita y calcopirita. Para este yacimiento se determinó que los valores más negativos corresponden a la zona magnetítica más profunda, mientras que los positivos se correlacionan con las brechas de especularita. No obstante, la fuente de los fluidos mineralizadores se definió de procedencia magmática (Rieger et al., 2010).

Es claro observar que el rango de Diego de Almagro se superpone con el rango obtenido para el yacimiento Barreal Seco, depósito IOCG que se emplaza en rocas volcánicas y donde se ha reconocido la presencia de una secuencia evaporítica a más de 200 metros de profundidad. Pese a esto, se ha determinado que ésta no juega un rol en la mineralización sulfurada y que el origen del azufre es magmático-hidrotermal (Correa, 2000).

Los valores de Casualidad son más negativos que los reportados para Diego de Almagro. Sin embargo, se estableció que la fuente más factible de los fluidos mineralizadores es, de igual manera, de carácter magmático-hidrotermal, probablemente proveniente de un magma en desgasificación.

Los autores aquí citados también realizaron el estudio de δ^{34} S en los sulfatos (yeso, anhidrita) asociados a las etapas tardías de la alteración en Barreal Seco y Casualidad. Los valores registrados son mucho más positivos que para los sulfuros (16,7 a 18,24‰ para Barreal Seco y -4,2 a 8,7‰ para Casualidad), por lo que no se descarta el aporte posterior de fluidos no-magmáticos que hayan causado las alteraciones estériles tardías.

Figura 39. Comparación de los valores de isótopos de azufre en sulfuros obtenidos para Diego de Almagro con otros depósitos IOCG andinos: Mantoverde (Rieger et al., 2010), Barreal Seco (sólo dato mínimo y máximo, Correa, 2000), y Casualidad (Kovacic, 2014).

Los valores obtenidos en este trabajo, en conjunto con los demás casos de estudio, hacen incompatible un modelo con la presencia de azufre de agua marina externa o evaporítica como un requisito para la formación de la mineralización hipógena. Más aún, las signaturas de azufre magmático de estos depósitos son similares a depósitos magmáticos-hidrotermales tipo pórfido asociados a granitoides tipo I en los Andes, por lo que tendrían una fuente común para los metales (Ohmoto y Goldhaber, 1997).

5.4. CARACTERIZACIÓN DE FLUIDOS

Evento I

El rasgo más notable del primer evento es la intensa alteración potásica, marcada por abundante feldespato potásico y menor biotita. Este proceso es consistente con un enfriamiento de fluidos salinos de alta temperatura (400-600°), de origen magmáticohidrotermal, por lo que correspondería a zonas de flujo ascendente (De Haller y Fontboté, 2009). Además la precipitación de magnetita en depósitos como Mantoverde ha sido estimada en cerca de los 435°C (Rieger et al., 2010), por lo que la temperatura del fluido asociado al primer evento podría tener una temperatura cercana a las señaladas.

En términos de pH, el feldespato potásico es ambiente más bien alcalino, necesitando pH mayor a 5,5 para su generación. Por otro lado, la presencia de sulfuros de cobre (calcopirita, bornita), pirita y magnetita sugieren una fugacidad de oxígeno moderada.

Lo anterior indica que el fluido que generó el primer evento es de origen magmáticohidrotermal, exsuelto de un magma en enfriamiento, de un pH neutro-alcalino, mayor a 5,5 y de un estado de oxidación moderado.

Evento II

El segundo evento hidrotermal corresponde a la etapa de brechización asociada a la hematita especular y la turmalina. El fluido que generó este evento es un pulso diferente al anterior, ya que se sobreimpone a la mineralogía del evento I, incluso fracturándolo. La hematita especular indica un alto estado de oxidación de este fluido.

La abundante presencia de turmalina asociada a este evento como cemento de brechas, vetillas y alteración de rocas cajas en este depósito, se repite en otros IOCG de la región (Candelaria, Tropezón, Mantoverde, entre otros; Tornos et al., 2012). La temperatura de precipitación de la turmalina en estos sistemas fluctúa entre los 400 y 600°C (Tornos et al., 2010)

La geoquímica de los isótopos de boro en turmalinas de distintos IOCG fue investigada por Tornos et al. (2012). El boro es un buen trazador de la fuente de los fluidos, ya que es poco probable una mezcla del boro del fluido con el alojado en las rocas cajas, debido a las altas razones fluido/roca esperables durante el crecimiento de la turmalina en sistemas magmáticos-hidrotermales. Los datos isotópicos recopilados van entre -10,4 a +6‰, concluyendo que el origen del boro es común a nivel regional en los IOCG andinos y procedería de una mezcla del basamento cortical subyaciente y los fluidos liberados del slab subductante. En consecuencia, la turmalina en los IOCG andinos sería de un origen netamente magmático-hidrotermal (similares a depósitos tipo pórfido y rocas volcánicas), descartando los modelos que explican el boro vía evaporitas continentales, agua marina o carbonatos marinos.

De acuerdo a De Haller y Fontboté (2009), para la posterior generación de mushketovita, el fluido debe registrar una caída en su estado redox, que estaría controlada por la reacción 1:

(1) $3Fe_2O_3(hm) + H_2(aq) = 2Fe_3O_4(mt) + H_2O$

De lo anterior se desprende que la mushketovita en Diego de Almagro se relaciona directamente con un aumento de la interacción entre el fluido y la roca caja, que genera la disociación de SO₂ disuelto en el fluido en HSO₄⁻ y H₂S, aumentando así el contenido de H₂ del sistema, proceso que sube la temperatura, produciendo la caída del estado redox necesaria para generar mushketovita.

Además, existe evidencia de que el fluido fue liberado hacia la roca caja mediante brechización hidráulica en el límite frágil-dúctil, proceso controlado estructuralmente por las fallas locales (Herrera et al., 2007). Fournier (1999) estimó la temperatura mínima posible para la transición frágil-dúctil en sistemas magmáticos-hidrotermales en cerca de los 400°C, esto indica que es poco factible que hayan ingresado a Diego de Almagro fluidos externos y penetrado en la zona de altas presiones y temperaturas, hasta alcanzar la transición frágil-dúctil.

Los sulfuros asociados al segundo evento son bornita y pirita como reemplazo mineral en los bordes de calcopirita (Figura 18). Esta reacción (2) podría indicar pH muy bajos, además de estados redox altos.

(2) $5CuFeS_{2(cp)} + S_{2} = Cu_{5}FeS_{4(bn)} + 4FeS_{2(py)}$

Evento III

El tercer evento se podría separar en dos procesos relativamente contemporáneas: el primero evidenciado por sericita, sílice y clorita mostraría un enriquecimiento en elementos como hierro, magnesio y potasio. El fluido sería de un carácter ácido, que generaría procesos de hidrólisis en las rocas, evidenciado por la presencia de sericita. La clorita es una clara evidencia de reemplazo de minerales ferromagnesianos primarios, o incluso reemplazo de biotitas secundarias, que afecta a diques e intrusivos en su mayoría. De Haller y Fontboté (2009) establecieron para el depósito Raúl Condestable que la asociación sericita-clorita es consistente con enfriamiento de fluidos salinos de alta temperatura, previamente calentados en equilibrio con rocas magmáticas, o provenientes de un magma.

El segundo proceso se evidencia por el intenso reemplazo por carbonatos y las asociaciones observadas en vetillas de sílice-carbonatos y sulfuros de cobre, que se asocian a un fluido distinto al anterior. Se caracteriza por un pH más neutro y de menor temperatura que los anteriores (probablemente <200°C). La presencia de minerales de baja temperatura como prehnita y pumpellyta también ha sido documentada en otros IOCG (Raúl Condestable, De Haller y Fontboté, 2009). No hay evidencia clara de la procedencia del fluido en este proceso, pero la distribución espacial (zonas periféricas del depósito) y la alta manifestación de calcio indicarían un origen evaporítico o de agua marina. No obstante, este evento no tiene una importancia mayor, siendo posterior a la generación de la mineralización, por ende, podría tener una fuente externa, distinta a los fluidos anteriores, lo cual ha sido documentado en depósitos similares como Raúl-Condestable, Mantoverde y Candelaria (De Haller y Fontboté, 2009; Rieger et al., 2010; Marschik y Fontboté, 2001b).

Evento IV

El cuarto evento representa la alteración supérgena, donde la mineralización se caracteriza solo por minerales oxidados de cobre (crisocola y atacamita), sin desarrollo de sulfuros de cobre como calcosina o covelina supérgena. Se acompaña de asociaciones típicas de esta alteración, como sílice, jarosita, hematita, limonitas y arcillas. Se estima que los fluidos ingresaron sólo unas pocas decenas de metros de profundidad.

5.5. MODELO GENÉTICO PROPUESTO

El proceso de formación de la mineralización hipógena en Diego de Almagro se ilustra esquemáticamente en la Figura 40. Comienza con la reactivación de la subducción en un régimen extensional en el Jurásico Inferior (Amilibia et al., 2008; Mpodozis y Ramos, 2008), lo que genera la reactivación del arco magmático, llevando al depósito de una potente secuencia volcánica compuesta por andesitas y andesitas basálticas (Figura 40A). Estas rocas pertenecen a la Formación La Negra (Godoy y Lara, 1998), donde también, más tarde, y debido a la actividad magmática, se generaron grandes cuerpos intrusivos como el plutón Sierra Áspera.

La intrusión por parte del complejo plutónico Sierra Áspera, compuesto por dioritas y granodioritas (125-130 Ma, Godoy y Lara, 1998) pudo generar además de un metamorfismo de contacto, una zona de alteración sódico-cálcica de mayor extensión (Figura 40B).

Posteriormente, a partir de los cuerpos magmáticos se generaron pulsos menores, que al enfriarse liberaron fluidos salinos ricos en elementos como potasio, azufre, hierro y metales, reflejada por abundante feldespato potásico y biotita, dentro de la secuencia volcánica. Acompañando esta alteración potásica, se generó una probable mineralización masiva de magnetita ± sulfuros y vetas de magnetita con menor pirita, además de vetas ricas en calcopirita, formando una mineralización del tipo IOCG dominada por magnetita en profundidad (Figura 40C).

La continua actividad magmática del Cretácico permite la generación de un segundo pulso magmático que produce la liberación de nuevos fluidos salinos con un alto estado de oxidación. En conjunto con esto, la actividad tectónica que genera la ZFA juega un rol esencial, ya que produce la formación de estructuras subsidiarias de carácter normal. Estas fallas sirven como canales conductores de los fluidos magmáticos hidrotermales cargados de volátiles, que removilizaron parte del hierro, además de los sulfuros de cobre y el oro, hacia niveles más someros, deformando frágilmente las rocas de caja, y depositando la mineralización en forma de brechas hidrotermales de especularita disgregadas con mineralización de Cu-Au en la matriz, y generando abundante turmalina en el bloque colgante de la falla.

Es probable que luego hayan ingresado fluidos tardíos al depósito, de origen magmáticos-hidrotermales asociados a los diques post-mineralización, o bien derivados de agua marina o evaporitas, que generaron las alteraciones más tardías que se observan en Diego de Almagro, caracterizadas por las asociaciones de sericita, clorita, y sílice, por un lado y asociaciones de carbonatos y cuarzo por el otro, con escasos sulfuros de cobre.

El modelo aquí propuesto es compatible con el postulado por Espinoza et al. (1996) (Figura 41), en el cual los depósitos ricos en hematita representarían la parte más somera de los sistemas IOCG, ya que este modelo presentado no descarta que a mayores profundidades (o bien, lateralmente) exista un depósito IOCG dominado por magnetita y calcopirita, o bien, relictos de un depósito de tipo magnetita-apatito, que aún no han sido encontrados. Esto también está en concordancia con lo postulado recientemente por Knipping et al. (2015), en el cual los fluidos que generan los depósitos magmáticos IOA en profundidad, pueden seguir ascendiendo, ricos en hierro y metales, para generar los IOCG en zonas más someras.

Figura 40. Modelo genético tentativo para el depósito Diego de Almagro. El rectángulo negro indica la zona ilustrada en las demás figuras.

Figura 41. Modelo de IOCG propuesto por Espinoza et al. (1996) y modificado por Sillitoe (2003). Se muestra la zona que representaría el yacimiento Diego de Almagro.

6. CONCLUSIONES

Diego de Almagro constituye un depósito IOCG dominado por hematita especular, ubicado en la Franja Andina de IOCG (Mesozoico) que va desde el sur de Perú hasta Chile central. La mineralización principal de cobre se encaja en flujos volcánicos de andesitas y andesitas basálticas con signaturas calcoalcalinas que se han asignado a la Fm. La Negra (Jurásico Inf.), relacionada con el arco volcánico del Jurásico. Estas rocas volcánicas se ven intruídas por plutones dioríticos, monzoníticos, además de una serie de diques andesíticos de edad Cretácica. Todas las rocas del área han sido severamente afectadas por eventos de alteración hidrotermal, representados principalmente por feldespato potásico, hematita, clorita, sericita, carbonatos y sílice, que provocaron la removilización de elementos mayores y algunos elementos traza. No se observa una alteración regional sódico cálcica, característica de este tipo de depósitos, pero es posible que los eventos posteriores se hayan sobreimpuesto a ésta.

La mena principal de cobre en el depósito es calcopirita y se aloja en las brechas hidrotermales y stockwork de hematita especular. La mineralogía de alteración observada en Diego de Almagro es similar a la descrita anteriormente para otros depósitos andinos dominados por hematita especular, como Barreal Seco y Mantoverde en Chile y Raúl-Condestable en Perú.

Asociada a fluidos exsueltos desde un pulso magmático, la evolución del sistema hidrotermal comienza con una etapa de metasomatismo de potasio, acompañado por precipitación de cuerpos de magnetita, calcopirita y menor pirita. Esta mineralización tomó lugar bajo condiciones relativamente oxidantes y alcalinas. Posteriormente, un segundo pulso magmático, liberó nuevos fluidos salinos más oxidados que movilizan parte del hierro y los sulfuros y los transportan hacia zonas más someras, donde producen la brechización de las rocas cajas y forman brechas hidrotermales de especularita con fragmentos removilizados de sulfuros de cobre en la matriz. Los eventos tardíos serían causados por fluidos externos, provenientes de evaporitas o agua marina, y se evidencian por carbonatos, sílice y clorita, observándose hacia la periferia de los cuerpos mineralizados.

Las estructuras presentes en el área, como falla Carmen y falla Esther, se asocian a la actividad de la Zona de Falla de Atacama y jugaron un rol primordial como canalizadoras de los fluidos hidrotermales que generaron el depósito, además, son las responsables por la morfología de éste.

A escala del depósito, los isótopos de azufre sugieren que los sulfuros están dominados por azufre de origen magmático, análogo a lo establecido para otros IOCG de la región, y también para depósitos tipo pórfido, ampliamente reconocidos como depósitos magmáticos-hidrotermales (Sillitoe, 2010). Además, la presencia de turmalina

también indicaría la participación de fluidos magmáticos hidrotermales (Tornos et al., 2012) en la mineralización.

La paragénesis, eventos de alteración y mineralización, isótopos de azufre y las variables geoquímicas propuestas, sugieren que Diego de Almagro fue formado a partir del enfriamiento de fluidos salinos a hipersalinos de origen magmático-hidrotermal portadores de metales como Cu y Au, que ascendieron hasta niveles corticales someros. Esto, representaría la parte más superficial de un sistema de depósitos IOCG, donde aquellos ricos en hematita especular representarían la parte más somera, y los dominados por magnetita se encontrarían en zonas profundas, de acuerdo al modelo de Espinoza et al. (1996) y Sillitoe (2003). De hecho, es posible que estos sistemas magmáticos hidrotermales estén ligados genéticamente a los depósitos *iron oxideapatite* (IOA), ya que los fluidos generados a partir de los depósitos de magnetita masiva en profundidad, podrían ascender para generar los IOCG en niveles superiores, en concordancia a los propuesto por Knipping et al. (2015).

BIBLIOGRAFÍA

Amilibia, A., Sabat, F., McClay K., Muñoz, J., Roca, E., Chong, C. 2008. The role of inherited tectono-sedimentary architecture in the development of the central Andean mountain belt: Insights from the Cordillera de Domeyko. Journal of Structural Geology 30: 1520-1539.

Barton, M.D. y Johnson, D.A. 2000. Alternative brine sources for Fe oxide (CuAu) systems: implications for hydrothermal alteration and metals. <u>En:</u> Porter T.M. (ed) Hydrothermal Iron Oxide CopperGold & related deposits: A Global Perspective, Australian Mineral Foundation, Adelaide: 43-60.

Benavides, J. 2006. Iron oxide-copper-gold deposits in the Mantoverde area, northern Chile: Ore genesis and exploration guidelines. Tesis de doctorado en geología, Departamento de Ciencias Geológicas e Ingeniería Geológica, Universidad de Queensland: 1-360.

Benavides, J., Kyser, K., Clark, A., Stanley, C., Oates, C. 2008. Exploration guidelines for copper-rich iron oxide–copper–gold deposits in the Mantoverde area, northern Chile: the integration of host-rock molar element ratios and oxygen isotope compositions. Geochemistry: Exploration, Environment, Analysis 8: 1-25.

Clift, P., Vannucchi, P., Morgan. 2009. Crustal redistribution, crust-mantle recycling and Phanerozoic evolution of the continental crust. Earth-Science Reviews 97: 80-104.

Correa, A. 2000. Geología del yacimiento de Fe-Cu Teresa de Colmo, Región de Antofagasta, Chile. <u>En:</u> Actas IX Congreso Geológico Chileno: 31 julio – 4 agosto de 2000, Puerto Varas, Chile. Simposio Nacional 1: 102-106.

Daroch, G. 2011. Hydrothermal alteration and mineralization of the iron oxide-(Cu-Au) Santo Domingo Sur deposit, Atacama region, northern Chile. Memoria de Magíster en geología, Departamento de Geociencias, Universidad de Arizona: 1-90.

De Haller, A. y L, Fontboté. 2009. The Raúl-Condestable iron oxide copper-gold deposit, Central Coast of Peru: ore and related hydrothermal alteration, sulfur isotopes, and thermodynamic constraints. Economic Geology 104: 365-384.

Deer, W., Howie, R., Zussman, J. 2001. Rock forming minerals: Feldspars, vol 4. 2^{da} Edición, Geological Society of London: 1-972.

Einaudi, M., Hedenquist, J., Inan, E. 2003. Sulfidation state of fluids in active and extinct hydrothermal systems: transitions from porphyry to epithermal environments. Society of Economic Geologist, Special Publication 10: 285-313.

Espinoza, S., Véliz, H., Esquivel, J., Arias, J., Moraga, A. 1996. The cupriferous province of the Coastal Range, northern Chile. <u>En</u>: Camus F., Sillitoe R.H., Petersen R. (eds) Andean copper deposits: New discoveries, mineralization styles and metallogeny. Society of Economic Geologist, Special Publication 5: 19–32.

Farrar E., Clark A.H., Haynes S.J., Quirt G.S., Conn H., Zentilli, M. 1970. K-Ar evidence for the post-palaeozoic migration of granitic intrusion foci in the Andes of northern Chile. Earth and Planetary Science Letters 9: 17–28.

Fournier, R. 1999. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Economic Geology and the Bulletin of the Society of Economic Geologists 94: 1193-1211.

Godoy, E. y Lara, L. 1998. Hojas Chañaral y Diego de Almagro, Región de Atacama. Servicio Nacional de Geología y Minería, Mapas Geológicos N° 56. 1 mapa escala 1:100.000, Santiago, Chile.

Gelcich, S., Davis, W., Spooner, C. 2005. Testing the apatite-magnetite geochronometer: U-Pb and ⁴⁰Ar/³⁰Ar geochronology of plutonic rocks, massive magnetite-apatite tabular bodies, and IOCG mineralization in Northern Chile. Geochimica et Cosmochimica Acta 69: 3367–3384.

Grocott, J., Taylor, G. 2002. Magmatic arc fault systems, deformation partitioning and emplacement of granitic complexes in the Coastal Cordillera, north Chilean Andes (25°30'S to 27°00'S). Journal of the Geological Society, London 159: 425-442.

Hastie, A., Kerr, A., Pearce, A., Mitchell, F. 2007. Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th-Co discrimination diagram. Journal of Petrology 48: 2341-2357.

Herrera, V., Garmendia, P., Pizarro, R. 2007. Geología y recursos minerales del Proyecto Diego de Almagro, Región de Atacama. Informe Interno para Minera Cerro Dominador.

Herrera, V., Garmendia, P., Pizarro, R. 2008. Proyecto Diego de Almagro: Geología y mineralización tipo IOCG, Región de Atacama, Norte de Chile. <u>En:</u> XIII Congreso Latinoamericano de Geología, Lima, Perú. Sesion 03.

Hitzman, W., Oreskes, N., Einaudi, M. 1992. Geological characteristics and tectonig setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits: Precambrian Research 58: 241-287.

Knipping, J., Bilenker, L, Simon, A., Reich, M., Barra F., Deditius, A., Lundstrom, C., Bindeman, I., Munizaga, R. 2015. Giant Kiruna-type deposits form by efficient flotation of magnetite suspensions. Geology 43 (7): 591-594.

Kovacic, P. 2014 Geología y Metalogénesis del Yacimiento tipo IOCG Casualidad, Distrito Sierra Overa, Segunda Región de Antofagasta, Chile. Memoria de Magíster en Geología Económica. Departamento de Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile: 118 pp. Lorca, G. 1990. Caracterización geoquímica y cristalográfica de las piritas de los yacimientos de hierro El Algarrobo y El Romeral. Memoria de Título, Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Departamento de Geología, Chile.

Maanijou, M., Rasa, I., Lentz, D. 2012. Petrology, geochemistry, and stable isotope studies of the Chehelkureh Cu-Zn-Pb deposit, Zahedan, Iran. Economic Geology 107: 683-712.

Maksaev, V. y Zentilli, M. 2002. Chilean strata-bound Cu-(Ag) deposits: An Overview. <u>En:</u> Porter T.M. (ed) Hydrothermal Iron Oxide CopperGold & related deposits: A Global Perspective, Australian Mineral Foundation, Adelaide: 43-60.

Marschik, R., Leveille, R., Martin, W. 2000. La Candelaria and the Punta del Cobre District, Chile: Early Cretaceous iron-oxide Cu-Au (-Zn-Ag) mineralisation. <u>En</u>: Porter, T.M (Ed), Hidrothermal Iron Oxide Copper-Gold & Related Deposits: A Global Perspective 1. PGC Publishing, Adelaide: 163-175.

Marschik, R. y Fontboté, L. 2001a. The Punta del Cobre Formation, Punta del Cobre-Candelaria área, northern Chile. Journal of South American Earth Sciences 14: 401-433.

Marschik, R. y Fontboté, L. 2001b. The Candelaria-Punta del Cobre iron oxide Cu-Au(-Zn-Ag) deposits, Chile. Economic Geology 96: 1799-1826.

McDonough, F., Sun, S., Ringwood, E., Jagoutz, E., Hoffman, W. 1992. Potassium, rubidium and cesium in the Earth and Moon and the evolution of the mantle of the Earth. Geochimica et Cosmochimica Acta 56: 1001-1012.

Mpodozis, C., Ramos, V. 2008. Tectónica Jurásica en Argentina y Chile: extensión, subducción oblicua, rifting, deriva y colisiones? Revista de la Asociacion Geológica Argentina 63 (4): 481-497.

Naranjo, A. 1978. Zona interior de la Cordillera de la Costa entre los 26°00' y 26°20'S, Región de Atacama: Instituto de Investigaciones Geológicas, Carta Geológica de Chile 34: 48 pp..

Ohmoto, H. y Goldhaber, B. 1997, Sulfur and carbon isotopes, <u>En:</u> Barnes, L., ed., Geochemistry of hydrothermal ore, 3ra edición: New York, J. Wiley and Sons: 517–611.

Palma, G., Barra, F., Valencia, V., Reich, M. Química mineral de apatitos en depósitos tipo Kiruna del norte de Chile. En: Actas XIV Congreso Geológico Chileno: 4-8 octubre 2015, La Serena, Chile.

Pearce, J. 1996. A users guide to basalt discrimination diagrams.Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration. Geological Association of Canada, Short Course Notes 12: 79-113. Pollard, J. 2000. Evidence for magmatic fluid and metal source for Feoxide CuAu mineralization. <u>En</u>: Porter, T.M. (ed.), Hydrothermal Iron Oxide CopperGold & related deposits: A Global Perspective, Australian Mineral Foundation, Adelaide: 27-41

Rieger, A., Marschik, R., Diaz, M., Hölzl, S., Chiaradia, M., Akker, B., Spangenberg, J. 2010. The hypogene iron oxide copper-gold mineralization in the Mantoverde District, northern Chile. Economic Geology 105: 1271-1299.

Sillitoe, R. 2003. Iron oxide-copper gold deposits: An Andean view. Mineralium Deposita 30: 787–812.

Sillitoe, R. 2010. Porphyry copper systems. Mineralium Deposita 45: 313-321.

Spandler, C., Pirard, C. 2013. Element recycling from subducting slabs to arc crust: A review. Lithos 170-171: 208-223.

McDonough, W. y Sun, S. 1995. The Composition of the Earth. Chemical Geology 120: 223-253.

Taylor, S., McLennan, S. 1985. The continental crust: its composition and evolution; an examination of the geochemical record preserved in sedimentary rocks. Oxford, Blackwell: 1-312.

Tornos, F., Casquet, C., Relvas, J. 2005. Transpressional tectonics, lower crust decoupling and intrusion of deep mafic sills: A model for the unusual metallogenesis of SW Iberia. Ore Geology Reviews 27: 133-163.

Tornos, F., Velasco, F., Barra, F., Morata, D. 2010. The Tropezón Cu–Mo–(Au) deposit, Northern Chile: the missing link between IOCG and porphyry copper systems? Mineralium Deposita 45: 313-321.

Tornos, F., Wiedenbeck, M., Velasco, F. 2012. The boron isotope geoquemistry of tourmaline-rich alteration in the IOCG systems of northern Chile: implications for a magmatic-hydrothermal origin. Mineralium Deposita 47: 483-499.

Williams, P., Barton, M., Johnson, D., Fonboté, L., De Haller, A., Mark, G., Oliver, N.H.S., Marschik, R. 2005. Iron oxide copper-gold deposits: Geology, space-time distribution and possibles modes of origin. Economic Geology 100: 371-405.

Wood, D. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas on the British Tertiary Volcanic Province. Earth and Planetary Science Letters 50: 11-30.

ANEXOS

ANEXO A. Descripción petrográfica y calcográfica.

Muestra	Sondaje	Zona	Prof (m)	Coord N	Coord E	Litología	Т	Ρ	T-P
DAM-05	DA14-030	C-P	44,4	7079264,618	384375,973	Roca volcánica alterada	Х		
DAM-06	DA14-030	C-P	44,5	7079264,618	384375,973	Brecha turmalina, alt. supérgena	Х		
DAM-07	DA14-030	C-P	44,8	7079264,618	384375,973	Brecha turmalina, alt. supérgena	Х		
DAM-11	DA14-030	C-P	66,7	7079264,618	384375,973	Roca volcánica alterada			Х
DAM-13	DA14-030	C-P	75,2	7079264,618	384375,973	Roca volcánica alterada			Х
DAM-14	DA14-030	C-P	76,7	7079264,618	384375,973	Roca volcánica alterada	Х		
DAM-15	DA14-030	C-P	77,4	7079264,618	384375,973	Roca volcánica alterada	Х		
DAM-16	DA14-030	C-P	87	7079264,618	384375,973	Roca volcánica alterada	Х		
DAM-17	DA14-030	C-P	89,2	7079264,618	384375,973	Brecha de turmalina	Х		
DAM-25	DA14-030	C-P	143	7079264,618	384375,973	Dique andesítico			Х
DAM-27	DA14-030	C-P	207,9	7079264,618	384375,973	Dique andesítico			Х
DAM-28	DA14-030	C-P	212,5	7079264,618	384375,973	Roca volcánica alterada			Х
DAM-31	DA14-120	C-P	16,2	7079233,144	384567,6	Porfido dioritico			Х
DAM-32	DA14-120	C-P	34,7	7079233,144	384567,6	Porfido dioritico	Х		
DAM-38	DA14-120	C-P	55,9	7079233,144	384567,6	Brecha de especularita			Х
DAM-39	DA14-120	C-P	63,2	7079233,144	384567,6	Roca volcánica alterada			Х
DAM-41	DA14-120	C-P	94,4	7079233,144	384567,6	Brecha de especularita		Х	
DAM-42	DA14-120	C-P	94,9	7079233,144	384567,6	Brecha de especularita		Х	
DAM-45	DA14-120	C-P	152,4	7079233,144	384567,6	Roca volcánica alterada			Х
DAM-46	DA14-120	C-P	158,4	7079233,144	384567,6	Roca volcánica alterada			Х
DAM-47	DA14-120	C-P	161,1	7079233,144	384567,6	Brecha de especularita		Х	
DAM-49	DA14-120	C-P	181,8	7079233,144	384567,600	Roca volcánica alterada	Х		
DAM-52	DA14-120	C-P	241,4	7079233,144	384567,600	Roca volcánica alterada	Х		
DAM-54	DA14-120	C-P	310,8	7079233,144	384567,600	Brecha de especularita		Х	
DAM-57	DA14-120	C-P	343,5	7079233,144	384567,600	Brecha de especularita			Х
DAM-61B	DA14-158	Esther	69,5	7080823,220	383769,400	Porfico diorítico			Х
DAM-67	DA14-087	Esther	112,8	7080815,811	383998,388	Brecha de especularita		Х	
DAM-70	DDH-6A	C-P	56,1	7079255,378	384682,037	Roca volcánica alterada	Х		
DAM-73	DDH-6A	C-P	119	7079255,378	384682,037	Brecha de especularita		Х	
DAM-78	DDH-6A	C-P	464,25	7079255,378	384682,037	Roca volcánica alterada			Х
DAM-90	DA14-044	C-P	75,7	7079258,859	384474,076	Roca volcánica alterada		Х	Х
DAM-92	DA14-044	C-P	139,5	7079258,859	384474,076	Roca volcánica alterada			Х
DAM-93	DA14-044	C-P	170,1	7079258,859	384474,076	Roca volcánica alterada			Х
DAM-94	DA14-045	C-P	35,2	7079780,402	384778,369	Roca volcánica alterada			Х
DAM-96	DA14-027	C-P	23,2	7079781,948	384644,034	Roca volcánica alterada	Х		
DAM-102	DA14-066	C-P	66,1	7079258,270	384744,335	Dique andesítico			Х
DAM-109	DA14-066	C-P	229,5	7079258,270	384744,335	Porfido dioritico			Х
DAM-116	DA14-066	C-P	469,5	7079258,270	384744,335	Brecha yeso con sulfuros			Х

Nota: C-P= Carmen-Paulina, T= lámina transparente, P= lámina pulida, T-P= lámina transparente pulida.

	MUESTRA N°	DAM-05	
Clasificación Petrográfica	Profundidad		
Andesita lixiviada con alteración supérgena	44,4 m		
PROCEDENCIA	COORDENADAS		
Diego de Almagro	E 384375.973 N	7079264.618	

OBSERVACIONES MACROSCOPICAS

Roca andesítica de color gris oscuro. La muestra presenta una alteración supérgena que consiste en hematita, goethita y jarosita. También es posible distinguir mineralización diseminada de atacamita.

Fotografía 1. Aspecto general de la muestra.

OBSERVACIONES MICROSCOPICAS

La roca corresponde a una roca volcánica muy alterada. Es posible distinguir un primer evento de alteración potásica, en el cual feldespato potásico reemplazó la masa fundamental de la andesita, y cristales de sericita y cuarzo secundario alteraron las plagioclasas primarias. Luego un evento de oxidación produjo la precipitación de hematita especular (1) y turmalina.

La alteración final es supérgena y comprende mineralización de goethita, hematita roja (2), jarosita y arcillas, además de sílice. Esto también produjo la mineralización de atacamita en vetillas de menos de 0,5 mm de diámetro y en forma diseminada.

No hay corte pulido asociado.

MINERALES PRIMARIOS Y DE ALTERACIÓN					
MINERAL	% VOLUMEN	OCURRENCIA			
Feldespato	25	Como alteración de la masa fundamental de la roca caja			
Turmalina	15	Cúmulos, asociado a hematita especular.			
		Se observa en forma de hematita especular asociada a			
Hematoita	15	turmalina y en forma de hematita roja, como alteración			
		supérgena.			
Cuarzo	10	Secundario, asociado a feldespato potásico. También en			
	10	supérgena. Secundario, asociado a feldespato potásico. También er vetillas. Y en forma de sílice en alteración supérgena. Alteración supérgena, se ve asociada a atacamita.			
Jarosita	10	Alteración supérgena, se ve asociada a atacamita.			
Sericita	5	Alterando tanto a plagioclasas primarias			
Goethita	5	Alteración supérgena, se observa sobretoda la			
	5	mineralización			

Atacamita	5	En vetillas y diseminado.
Arcillas	10	Finamente diseminadas en toda la muestra

- a) Fenocristales de plagioclasa sericitizados en masa alterada a arcillas y feldespato potásico
- b) Atacamita rodeada por jarosita.
- c) Vetilla de cuarzo secundario en masa de turmalina y feldespato.
- d) Turmalina cortada por cristales de hematita y jarosita. También se observa feldespato y cuarzo secundario.
| | MUESTRA N° | DAM-06 |
|----------------------------|-------------------|---------------|
| Clasificación Petrográfica | Profundidad | |
| Brecha de turmalina | 44,5 m | |
| PROCEDENCIA | COORDENADAS | |
| Diego de Almagro | E 384375.973 | N 7079264.618 |

Roca de textura brechosa con matriz (45%) de turmalina y en ocasiones hematita, con clastos de roca volcánica muy alterada. En los clastos es posible distinguir plagioclasas relictas anhedales muy mal preservadas y una masa fundamental feldespatizada. También se observa una alteración argílica posterior que consiste en sílice, arcillas y hematita.

MINERALES PRIMARIOS Y DE ALTERACIÓN			
MINERAL	% VOLUMEN	OCURRENCIA	
Feldespato	20	Alteración de masa fundamental en clastos.	
Turmalina	30	Formando clastos.	
Hematita	20	Vetillas < 1 cm y como matriz de la brecha.	
		Secundario, sobre toda la mineralización.	
Cuarzo	10	También en vetillas de hasta 5 mm.	
Arcillas	5	Finamente diseminadas en toda la muestra	

a) Clasto andesítico donde se observa cristal de plagioclasa maclado relicto.

- b) Turmalina y cuarzo secundario, con feldespato y cristales opacos diseminados.
- c) Misma imagen anterior a nicoles paralelos.
- d) Vetilla de cuarzo secundario y turmalina.

	MUESTRA N°	DAM-07
Clasificación Petrográfica	Profundidad	
Brecha de hematita y turmalina	44,8 m	
PROCEDENCIA	COORDENADAS	
Diego de Almagro	E 384375.973	N 7079264.618

Roca brechosa de color azulado oscuro. No se puede distinguir con claridad la mineralogía pero se infiere turmalina y hematita. Efervece levemente con HCl.

Fotografía 1. Aspecto general de la muestra.

OBSERVACIONES MICROSCOPICAS

La roca corresponde a una brecha hidrotermal con matriz de hematita roja. Los clastos están alterados a feldespato potásico y turmalina con aspecto moteado y en ocasiones con hábito radial. También se observa cuarzo secundario, y sobre toda la mineralización calcita y arcillas. Se observan vetillas de cuarzo que son cortadas por vetillas de hematita.

MINERALES PRIMARIOS Y DE ALTERACIÓN				
MINERAL	% VOLUMEN	OCURRENCIA		
Feldespato	15	Como alteración de clastos		
Turmalina	25	Mineral que se observa en forma de		
i urnaina		clastos.		
Hematita	30	En vetillas de hasta 1 cm de		
		diámetro y como matriz de la brecha.		
cuarzo	10	Secundario, sobre toda la		
600120	10	mineralización. También en vetillas		
Calcita	5	Mineral posterior, alterando tanto a la		
Calcita	5	matriz como clastos		
Arcillac	5	Finamente diseminadas en toda la		
Aicillas	5	muestra		

- a) Clastos de turmalina y feldespato potásico en masa de opaco (hematita).
- b) Turmalina radial sobre cuarzo secundario.
- c) Clasto de feldespato entre turmalina.
- d) Turmalina cortada por hematita roja.

	MUESTRA N°	DAM-11
Clasificación Petrográfica	Metros	
Andesita alterada con mineralización en vetas	68,7 m	
PROCEDENCIA	COORDENADAS	
Diego de Almagro	N 7079233.144	E 384567.6

Roca con textura porfídica donde se observan fenocrisales de color blanco en una masa grisácea. La muestra presenta alteración de un color amarillento. Se observan vetillas de hematita especular con cristales de pirita y halo de hematita roja de 0,8 cm de diámetro y otras vetillas menores de especularita. La roca efervece levemente.

Fotografía 1. Aspecto general de la muestra.

OBSERVACIONES MICROSCOPICAS

Roca andesítica que sufrió un evento de alteración potásica en el cual feldespato potásico altero la masa fundamental. Las plagioclasas primarias se encuentran sericitizadas. Posterior a esto, un evento de hematita especular-turmalina se sobreimpuso, generando cristales de turmalina aciculares y en cúmulos, con

pleocroísmo azul y verde. La especularita se observa diseminada y en vetillas. Además se observa goethita. Otros minerales de alteración importante es la calcita, sílice y anhidrita de hábito hojoso. Entre los opacos se observa pirita diseminada y en vetillas junto a hematita. También se observó un cristal de pirita con inclusiones de digenita, alterado a hematita.

MINERALES OPACOS (21% DEL TOTAL)			
MINERAL	% VOLUMEN	OCURRENCIA	
Pirita	7	Subhedral y menos de 5 mm.	
Hematita	15	De hábito especular, se ve en vetillas	
	15	y diseminada en la roja caja	
Digenita	Traza	Como inclusión dentro de pirita.	

MINERALES PRIMARIOS Y DE ALTERACIÓN				
MINERAL	% VOLUMEN	OCURRENCIA		
Feldespato	20	Alterando masa fundamental		
Calcita	10	Mineral secundario que forma cúmulos		

Turmalina	25	Abundante, cúmulos y en ocasiones radial.
Sericita	10	Reemplazando plagioclasas primarias
Cuarzo	8	Secundario, forma vetillas de 0,3 mm.
Anhidrita	3	Mineral de alteración hojoso que se
		asocia a hematita.
Goethita		De color anaranjado, refleja evento de
Coetinita		oxidación

- a) Cristal euhedral de pirita con digenita y alterado a hematita. Se aprecia mal preservaado y fracturado.
- b) Anhidrita hojosa junto a hematita.
- c) Veta de hematita con cristales de pirita bien preservador.
- d) Cuarzo y turmalina radial en masa de feldespato con turmalina y calcita.

	MUESTRA N°	DAM-13
Clasificación Petrográfica	Profundidad	
Andesita con sulfuros de cobre	75,2 m	
PROCEDENCIA	COORDENADAS	
Diego de Almagro	E 384375.973	N 7079264.618

Roca porfírica de composición andesítica que presenta alteración cuarzo-sericítica y un evento posterior de alteración de calcio con calcita en vetas y diseminada. Entre los minerales opacos se encuentra bornita como reemplazo de calcopirita, que a su vez se ve reemplazada por calcosina hacia los bordes. También se aprecia pirita anhedral de hasta 1 mm de diámetro, mal preservada y especularita en cúmulos y diseminada en la masa fundamental.

MINERALES OPACOS (10% del total)			
MINERAL	% VOLUMEN	OCURRENCIA	
Bornita	5	Anhedral de hasta 8 mm.	
Pirita	3	Anhedral a subhedral de hasta 1 mm.	
Calcosina	2	Reemplazando en bordes a bornita.	
Especularita	5	En la masa fundamental, diseminada y cúmulos.	
Calcopirita	traza	Reemplazada por bornita.	

MINERALES PRIMARIOS Y DE ALTERACIÓN			
MINERAL	% VOLUMEN	OCURRENCIA	
Feldespato	20	Como alteración de la masa fundamental en clastos.	
Soricita 30		Mineral que se observa alterando a plagioclasas y	
Sencia 50	componente de la masa fundamental.		
Cuarzo 20		En vetillas de hasta 1 cm de diámetro y como matriz	
Cuarzo	20	de la brecha.	
Calcita	15	Vetillas de hasta 3 mm y cúmulos	

- a) Imagen que muestra láminas de especularita en cúmulos, con calcita y cuarzo.
- b) Misma fotomicrografía anterior pero a luz reflejada.
- c) Vetilla de calcita.
- d) Cristal de bornita como reemplazo total de calcopirita, reemplazándose por calcosina.

	MUESTRA N°	DAM-14
Clasificación Petrográfica	Profund	lidad
Roca volcánica alterada	76,7 m	
PROCEDENCIA	COORDENADAS	
Diego de Almagro	N 7079264.618	E 384375.973

Roca porfírica de composición andesítica que presenta alteración de turmalina en vesículas y en la masa fundamental y cuarzo-sericítica y un evento posterior de alteración de carbonatos, representado por calcita en vetas y diseminada. Entre los minerales opacos se observan piritas anhedrales asociadas a magnetita.

MINERALES OPACOS (15% del total)		
MINERAL	% VOLUMEN	OCURRENCIA
Bornita	5	Anhedral de hasta 8 mm.
Pirita	3	Anhedral a subhedral de hasta 1 mm.
Calcosina	2	Reemplazando en bordes a bornita.
Especularita	5	Masa fundamental, diseminada y cúmulos.
Calcopirita	traza	Reemplazada por bornita.

MINERALES PRIMARIOS Y DE ALTERACIÓN		
MINERAL	% VOLUMEN	OCURRENCIA
Feldespato	20	Alteración de la masa fundamental en clastos.
Sericita	30	Alteración de plagioclasas y diseminado.
Cuarzo	20	Vetas <1 cm de y como matriz de la brecha.
Calcita	15	Vetillas de hasta 3 mm y cúmulos

- a) Imagen que muestra sericitización de un cristal de plagioclasa.
- b) Minerales opacos sobre masa de feldespato potásico.
- c) Misma imagen anterior a luz reflejada. Se observan cristales de pirita y magnetita.
- d) Vesícula de turmalina en masa fundamental alterada a feldespato potásico.

	MUESTRA N°	DAM-15
Clasificación Petrográfica	Profundidad	
Roca volcánica alterada	77,4 m	
PROCEDENCIA	COORDENADAS	
Diego de Almagro	N 7079264.618	E 384375.973

Roca porfírica de composición andesítica que presenta una masa microcristalina alterada a feldespato potásico, y una alteración posterior cuarzo-sericítica. Un evento tardío de metasomatismo de calcio generó calcita en vetas y diseminada. Entre los minerales opacos se encuentra pirita anhedral de hasta 0,5 mm de diámetro, mal preservada, también se aprecia magnetita y trazas de calcopirita.

MINERALES OPACOS (9% del total)			
MINERAL % VOLUMEN OCURRENCIA		OCURRENCIA	
Pirita	3	Anhedral a subhedral de hasta 1 mm.	
Magnetita	6	Diseminada en cristales anhedrales.	
Calcopirita	traza	Diseminada.	

MINERALES PRIMARIOS Y DE ALTERACIÓN			
MINERAL	% VOLUMEN	OCURRENCIA	
Foldospato	20	Como alteración de la masa fundamental en	
reidespato	30	clastos.	
Plagioclasas	15	Relictas, euhedrales y tabulares.	
Sericita	10	Mineral que se observa alterando a plagioclasas	
		y componente de la masa fundamental.	
Cuarzo	8	En vetillas de hasta 1 cm de diámetro y como	
		matriz de la brecha.	
Calcita	20	Vetillas de hasta 3 mm y cúmulos	

- a) Imagen que muestra cristal relicto de plagioclasa alterado.
- b) Vetilla de calcita que corta la roca.
- c) Cristales diseminados de pirita y calcopirita.
- d) Calcopirita y magnetita diseminada.

	MUESTRA N°	DAM-16
Clasificación Petrográfica	Profundidad	
Lava alterada	87 m	
PROCEDENCIA	COORDENADAS	
Diego de Almagro	E 384375.973	N 7079264.618

Roca de textura porfírica que presenta una masa fundamental microcristalina de feldespato y sericita, con fenocristales de plagioclasas de hasta 5 mm subhedrales, sericitizados. Se observa cuarzo secundario en vetillas y en cúmulos en toda la muestra.

Entre los opacos se distingue magnetita diseminada anhedral y escasa pirita asociada.

MINERALES OPACOS (6% DEL TOTAL)			
MINERAL % VOLUMEN OCURRENCIA		OCURRENCIA	
Magnetita	5	Cristales anhedrales de <1mm diseminados.	
Pirita	1	Cristales subhedrales aislados.	

MINERALES PRIMARIOS Y DE ALTERACIÓN		
MINERAL	% VOLUMEN	OCURRENCIA
Feldespato	50	Componente de la masa fundamental
Plagioclasa	25	Fenocristales primarios de 5 mm
		alterados.
Sericita	10	En masa fundamental y en
		plagioclasas.
Cuarzo	9	Secundario, como cúmulos y vetillas.

- a) Cristal de plagioclasa maclado alterado a sericita y fracturado en masa de sericita y feldespato.
- b) Pirita y magnetita en la masa fundamental.
- c) Textura porfírica general de la roca.
- d) Se observa que la masa fundamental es de textura "sucia", típica de feldespatos y plagioclasa.

	MUESTRA N°	DAM-17
Clasificación Petrográfica	PROFUNDIDAD	
Brecha hidrotermal de turmalina	89,1 m	
PROCEDENCIA	COORDEN	ADAS
Diego de Almagro	N 7079264.618	E 384375.973

Roca brechosa con clastos alterados pervasivamente a feldespato potásico, subangulosos y de color amarillento. La matriz es de origen hidrotermal y corresponde a turmalina. La roca efervece con HCI.

Fotografía 1. Aspecto general de la muestra.

OBSERVACIONES MICROSCOPICAS

La roca presenta textura brechosa. Los clastos corresponden a andesitas alteradas pervasivamente a feldespato potásico, además de cuarzo, carbonatos en forma moteada y anhidrita.Se observan arcillas alterando a posibles biotitas. El cemento de brecha corresponde a turmalina con aspecto café manchado, con pleocroísmo leve y colores de interferencia enmascarado. La turmalina se presenta de forma entrecrecida con calcita. También se observan vetillas de clorita y opacos de 0,5 mm de diámetro aproximadamente.

El corte presenta cerca de 8% de opacos en cúmulos, vetillas y diseminados. Por los hábitos se infiere pirita y hematita.

Se infiere que los eventos comenzaron con la alteración de cuarzo y feldespato, seguidos de turmalina para finalizar con calcita y arcillas.

MINERALES PRIMARIOS Y DE ALTERACIÓN (92%)			
MINERAL	% VOLUMEN	OCURRENCIA	
Feldespato	35	Alterando a clastos andesíticos	
Turmalina	15	Mineral que cementa la brecha	
Calcita	22	Representa evento de alteración	
Calcita		posterior	
Cuarzo	10	En formas de mosaico, secundario.	
Anhidrita	5	Cristales aciculares radiales de color	
	5	verde.	
Arcillas	5	De grano fino,	

- b) Vetilla de clorita con minerales opacos en clasto alterado a feldespato.
- c) Turmalina a nícoles paralelos. Se aprecias opacos sobre la matriz
- d) Mosaico de cuarzo secundario.

	MUESTRA N°	DAM-25
Clasificación Petrográfica	PROFUNDIDAD	
Dique andesítico 143 m		m
PROCEDENCIA	COORDENADAS	
Diego de Almagro	N 7079264.618	E 384375.973

Roca gris verdosa de textura porfídica. Se aprecian fenocristales de minerales blancos y oscuros de hasta 0,5 cm en una masa grisácea. Se observan vetillas de 5 mm de hematita especular, y que cortan a otras de calcita y cuarzo.

No presenta magnetismo y efervesce levemente.

Fotografía 1. Aspecto general de la muestra.

OBSERVACIONES MICROSCOPICAS

Roca con textura porfídica que corresponde a un dique andesítico, los fenocristales primarios reconocibles son de plagioclasa alterados a sericita y masa fundamental alterada a feldespato potásico. (alt potásica y fílica posterior)

Como minerales de alteración se observan también cuarzo secundario en vetillas de hasta 0,5 mm y en mosaicos, calcita en vetillas y diseminada en toda la muestra, turmalina con hábito acicular radial de color verde, y arcillas.

Entre los opacos se ven cristales de pirita diseminados y formando vetillas junto a hematita de 0,5 mm de ancho Además vetillas de hematita de 2 mm, rectas. Estos minerales también se encuentran diseminados en toda la muestra.

Se infiere que los eventos de alteración comenzaron con feldespato, y mineralización de pirita con magnetita, seguidos de cuarzo y sericita, luego turmalina y hematita y finalmente calcita.

MINERALES OPACOS (10% DEL TOTAL)		
MINERAL	% VOLUMEN	OCURRENCIA
Hematita	5	Formando vetillas junto a pirita y vetillas de solo hematita (especular). También se observa diseminada
Pirita	5	En vetillas y diseminada, en forma subhedral.

MINERALES PRIMARIOS Y DE ALTERACIÓN			
MINERAL	% VOLUMEN OCURRENCIA		
Calcita	20	Vetillas y diseminado en la muestra	
Feldespato	25	Alterando la masa fundamental	
Sericita	15	Alterando plagioclasas	
Cuarzo	15	Vetillas y en cúmulos de mosaicos	
Turmalina	15	Cristales aciculares radiales de color verde.	
i unitalita	10		

- a) Hematita y pirita siendo alteradas por calcita
- b) Cuarzo secundario y masa de feldespato y sericita, con opacos y calcita.
- c) Vetilla de calcita posterior, con turmalina y calcita
- d) Cristales aciculares radiales de turmalina, con opaco rodeado por calcita y masa de feldespato.

	MUESTRA N°	DAM-27
Clasificación Petrográfica	Clasificación Petrográfica Profundidad	
Dique máfico.	207,8 m.	
PROCEDENCIA	COORDE	NADAS
Diego de Almagro	E 384375.973	N 7079264.618

Roca con textura seriada, que presenta una masa de microlitos de plagioclasa con fenocristales primarios de olivino, clinopiroxeno, clorita y plagioclasas. La alteración está representada por sericita, seguido de un fuerte metasomatismo de calcio, que generó reemplazo de pumpellyta y prehnita en las plagioclasas, además de calcita en cúmulos. Entre los minerales opacos se encuentra magnetita anhedral y trazas de calcopirita y bornita.

MINERALES OPACOS (5% del total)			
MINERAL % VOLUMEN OCURRENCIA			
Magnetita	3	Anhedral y diseminada.	
Calcopirita	traza	Anhedral y de tamaños pequeños.	
Bornita	traza	Reemplazando calcopirita.	

MINERALES PRIMARIOS Y DE ALTERACIÓN		
MINERAL	% VOLUMEN	OCURRENCIA
Plagioclasas	40	Formando microlitos y como
Flagiociasas	40	fenocristales.
Clorita	15	De alteración, presenta hábito radial y se
Ciolita	15	asocia a sulfuros de cobre.
		Muy fracturados, de hasta 3 mm.
Olivino	3	Presentan colores de interferencia de
		segundo orden.
	7	Mal preservados, fracturados y de hasta
Clinopiroxeno		0,5 mm. Presentan color amarillo de
		primer orden.
		Mineral que se observa alterando a
Sericita	10	plagioclasas y componente de la masa
		fundamental.
Calcita	14	Vetillas de hasta 3 mm y cúmulos
Drobaita	5	Principalmente como alteración de
Fleinita	5	plagioclasas.
Pumpolluta	3	Principalmente como alteración de
Fumpenyta	5	plagioclasas.

- a) Cristal de olivino (izquierda) y clinopiroxeno (derecha) con clorita y magnetita (opacos).
- b) Mircrolitos de plagioclasa con pumpellyta.
- c) Calcita y pumpellyta con microlitos de plagioclasa sericitizados.
- d) Diseminación de calcopirita, bornita y magnetita.

	MUESTRA N°	DAM-28
Clasificación Petrográfica	Profund	didad
Dique cloritizado	212,5 m.	
PROCEDENCIA	PROCEDENCIA COORDENADAS	
Diego de Almagro	E 384375.973	N 7079264.618

Roca con textura seriada, que presenta una masa de microlitos de plagioclasa con fenocristales primarios de plagioclasas de hasta 2 mm. La alteración está representada por biotita secundaria y clorita, cuarzo y sericita, seguido de un fuerte metasomatismo de calcio, que generó reemplazo de prehnita en las plagioclasas, además de calcita en cúmulos. Entre los minerales opacos se encuentra magnetita anhedral y trazas de calcopirita y bornita.

MINERALES OPACOS (5% del total)				
MINERAL	MINERAL % VOLUMEN OCURRENCIA			
Magnetita	5	Anhedral y diseminada.		
Calcopirita	traza	Anhedral y de tamaños pequeños.		
Bornita traza Reemplazando calcopirita.				

MINERALES PRIMARIOS Y DE ALTERACIÓN				
MINERAL	% VOLUMEN	OCURRENCIA		
Plagioclasas	27	Formando microlitos y como		
1 lagioclasas	51	fenocristales.		
Clorita	15	De alteración, presenta hábito radial		
Ciona	15	y se asocia a sulfuros de cobre.		
Biotita secundaria	Mineral que alteró a fenocris			
Diolita seculuaria	o	máficos.		
		Mineral que se observa alterando a		
Sericita	10	plagioclasas y componente de la		
		masa fundamental.		
Cuarzo	10	Secundario, asociado a sericita y		
Guarzo	10	formando cúmulos.		
Calcita	15	Vetillas de hasta 3 mm y cúmulos		
Prehnita	F	Principalmente como alteración de		
	5	plagioclasas.		

- a) Cristal de biotita siendo cloritizado. Los opacos corresponden a magnetita.
- b) Plagioclasa siendo alterada totalmente por prehnita.
- c) Cúmulo de calcita
- d) Biotita con plagioclasas.

	MUESTRA N°	DAM-31
Clasificación Petrográfica	n Petrográfica Profundidad	
Diorita	16,1 m	
PROCEDENCIA	COORDENADAS	
Diego de Almagro	E 384567.6	N 7079233.144

Roca con textura fanerítica de color gris verdoso. Se ven pequeños cúmulos de color negro y cristales de plagioclasa, además de vetillas de color gris y blanco. Magnetismo y efervescencia moderados.

Fotografía 1. Aspecto general de la muestra.

OBSERVACIONES MICROSCOPICAS

Roca fanerítica que presenta cristales primarios de plagioclasas subhedrales. Como minerales de alteración aparecen feldespatos, y menor clorita y biotita. Además se observan cúmulos de carbonatos. La roca presenta indicios de alteración supérgena, ya que se observaron cristales hojosos de anhidrita. Entre los opacos se solo se distinguen magnetitas diseminadas en toda la muestra.

Se detectó un mineral no identificado de hábito hexagonal, euhedral e incoloro. Se atribuye a probable apatito.

MINERALES OPACOS (10% DEL TOTAL)					
MINERAL	% VOLUMEN	00	CURRENCIA		
Magnetita	5	Diseminada, preservada	subhedral	у	mal

MINERALES PRIMARIOS Y DE ALTERACIÓN			
MINERAL % VOLUMEN OCURRENCIA			
Feldespato	35	Mineral de alteración	
Clorita	20	Se observa reemplazando clorita	
Arcillas	10	Mineral de alteración	
Biotita	10	Mineral primario alterado a clorita	

Calcita	10	Mineral de alteración, que se observa formando cúmulos.		
Plagioclasa	5	Mineral primario, alterado a feldespato y arcillas		
Anhidrita	5	Mineral de alteración supérgena.		
Apatito	traza	Cristal euhedral dentro de clorita		

- a) Cristales de anhidrita en masa de feldespato potásico y plagioclasas alteradas.
- b) Magnetita cúbica subhedral
- c) Biotita reemplazada por clorita, con inclusión de apatito hexagonal en masa de feldespato
- d) Calcita, anhidrita y clorita con feldespato

	MUESTRA N°	DAM-32
Clasificación Petrográfica	Profundidad	
Pórfido diorítico	34,7 m	
PROCEDENCIA	COORDENADAS	
Diego de Almagro	N 7079233.144	E 384567.6

Roca con textura fanerítica de color gris verdoso. Se ven pequeños cúmulos de color negro y cristales de plagioclasa, además de vetillas de color gris y blanco. Magnetismo y efervescencia moderados.

OBSERVACIONES MICROSCOPICAS

Pórfido de composición diorítica con alteración intensa a feldespato potásico. También se pueden observar eventos posteriores de carbonatos y sílice, acompañados de prehnita-pumpellyta.

Entre los opacos se encuentran cristales de pirita y magnetita subhedrales a euhedrales de hasta 3 mm.

MINERALES OPACOS (6% DEL TOTAL)			
MINERAL	% VOLUMEN	OCURRENCIA	
Magnetita	5	Diseminada, subhedral y mal preservada	
Pirita	1	Euhedral y asociada a magnetita.	

MINERALES PRIMARIOS Y DE ALTERACIÓN				
MINERAL	% VOLUMEN	OCURRENCIA		
Feldespato	35	Mineral de alteración		
Clorita	20	Se observa reemplazando clorita		
Arcillas	10	Mineral de alteración		
Biotita	10	Mineral primario alterado a clorita		
Calcita	10	Mineral de alteración		
Plagioclasa	5	Mineral primario, alterado a feldespato		
Flagiociasa	5	y arcillas		
Anhidrita	5	Mineral de alteración		
Apatito	traza	Cristal euhedral dentro de clorita		

- b) Mosaico de calcita
- c) Cristal opaco en contacto con plagioclasa, en masa microcristalina
- d) Misma imagen anterior a luz reflejada. Se observa que el opaco corresponde a pirita.

	MUESTRA N°	DAM-38a
Clasificación Petrográfica Profundidad		idad
Andesita alterada con mineralización en vetas	is 55,8 m	
PROCEDENCIA	COORDEN	NADAS
Diego de Almagro	N 7079233.144	E 384567.6

Macroscópicamente se observa una roca de color café claro cortada en varios sentidos por numerosas vetillas de hasta 2 cm de pirita, seguida por especularita y hematita. La roca parece una andesita muy alterada.

Fotografía 1. Aspecto general de la muestra. Se observan vetillas de pirita, con hematita y especularita que cortan la roca caja.

OBSERVACIONES MICROSCOPICAS

Muestra con textura original obliterada. No es posible distinguir minerales primarios, pero se infiere una composición andesítica.

La textura es brechosa y como alteración se observa principalmente feldespato potásico, y turmalina, además de menor sericita y cuarzo secundario. Se infiere una alteración potásica con fílica sobreimpuesta, con posterior turmalina y hematita especular.

Los minerales opacos son principalmente pirita y hematita en vetillas y diseminados, con escasa covelina-digenita reemplazando cristales de calcopirita. Es posible apreciar que la hematita roja es el último evento ya que corta a los demás minerales.

MINERALES OPACOS (45% DEL TOTAL)			
MINERAL	% VOLUMEN	OCURRENCIA	
Dirito	40	En vetillas y de hasta 1 cm de diámetro y	
Filla		diseminados en la roca caja.	
Hematita	15	En forma de especularita y hematita roja. Rompe la mineralización de sulfuros. Forma halos en vetillas de pirita. Forma vetillas de hasta 0,5 cm.	
Covelina	Traza	Escasos cristales, en ocasiones se ve reemplazando a calcopirita.	
Bornita	Traza	Reemplazando por los bordes a calcopirita. Anhedral.	
Calcopirita	Traza	Cristal anhedral siendo reemplazado por bornita.	

MINERALES PRIMARIOS Y DE ALTERACIÓN				
MINERAL	% VOLUMEN	OCURRENCIA		
Feldespato	20	Mineral de alteración de la roca caja		
Turmalina	15	Mineral posterior, se observa sobre		
	15	cuarzo secundario formando cúmulos.		
Sericita	10	Alterando plagioclasas primarias.		
		En forma de mosaico y vetillas.		
Cuarzo secundario	10	Asociado a sericita como alteración		
		fílica.		

a) Cúmulos de turmalina entre hematita especular.

b) Es posible observar la roca con textura porfírica con sericita alterando plagioclasas y feldespato en la masa fundamental.

c) Bornita reemplazando a calcopirita rodeadas de hematita especular.

d) Covelina y pirita cortadas por hematita especular.

	MUESTRA N°	DAM-38b
Clasificación Petrográfica	Profundidad	
Brecha de pirita	55,8 m	
PROCEDENCIA	COORDENADAS	
Diego de Almagro	E 384567.6	N 7079233.144

Macroscópicamente se observa una roca de color café claro cortada en varios sentidos por numerosas vetillas de hasta 2 cm de pirita, seguida por especularita y hematita. La roca parece una andesita muy alterada.

Fotografía 1. Aspecto general de la muestra. Se observan vetillas de pirita, con hematita y especularita que cortan la roca caja.

OBSERVACIONES MICROSCOPICAS

Muestra con textura original obliterada. No es posible distinguir minerales primarios, pero se infiere una composición andesítica.

La textura es brechosa y como alteración se observa principalmente feldespato potásico, clorita y turmalina, además de menor sericita y cuarzo secundario.

Los minerales opacos son principalmente pirita y hematita en vetillas y diseminados, con escasa covelina-digenita reemplazando cristales de calcopirita. Es posible apreciar que la hematita roja es el último evento ya que corta a los demás minerales, mientras que la hematita especular es anterior, correspondiente a la eta de turmalina posiblemente.

MINERALES OPACOS (45% DEL TOTAL)			
MINERAL	% VOLUMEN	OCURRENCIA	
Pirita	30	En vetillas y de hasta 1 cm de diámetro y diseminados en la roca caja. Son cristales euhedrales y en ocasiones con textura esqueletal.	
Covelina	traza	Escasos cristales reemplazando a calcopirita. Son cristales anhedrales y de menos de 0,5 mm de diámetro.	
Hematita	15	En forma de especularita y hematita roja. Rompe la mineralización de pirita y covelina. Forma halos en vetillas de pirita. Forma vetillas de hasta 0,5 cm.	

MINERALES PRIMARIOS Y DE ALTERACIÓN			
MINERAL	% VOLUMEN	OCURRENCIA	
Turmalina	30	Mineral posterior de alteración. Ocurre como cristales aciculares de color verde y cúmulos. Se ve asociada a hematita especular.	
Feldespato	15	Alterando a la masa fundamental de la roca caja	
Cuarzo secundario	7	En vetillas y cúmulos.	
Arcillas	5	Mineral posterior de alteración	

- a) Pirita esqueletal euhedral con hematita roja superpuesta.
- b) Covelina como reemplazo de calcopirita. Hematita superpuesta.
- c) Se observa covelina y pirita cortadas por hematita especular
- d) Se observan cristales de turmalina y hematita en masa de feldespato y cuarzo.

	MUESTRA N°	DAM-39
Clasificación Petrográfica	Profundidad	
Diorita Porfídica	63,2 m	
PROCEDENCIA	COORDENADAS	
Diego de Almagro	E 384567.6	N 7079233.144

Roca porfírica con masa microcristalina que contiene feldespato, sericita y magnetita, y fenocristales de plagioclasa reemplazados parcialmente por sericita. También se observa biotita secundaria, turmalina en vetillas y cúmulos, y amígdalas de cuarzo. Diseminados aparecen cristales de arsenopirita y pirita euhedrales de hasta 0,5 mm, y vetillas disgregadas de magnetita.

MINERALES OPACOS (10% DEL TOTAL)			
MINERAL	% VOLUMEN	OCURRENCIA	
Magnetita	5	Diseminadas en la masa fundamental, y formando vetillas.	
Pirita	5	Euhedrales, bien preservadas diseminadas en la masa fundamental.	
Arsenopirita	Traza	Cristal aislado asociado a amígdala de cuarzo.	

MINERALES PRIMARIOS Y DE ALTERACIÓN			
MINERAL	% VOLUMEN	OCURRENCIA	
Feldespato	25	Parte de la masa fundamental microcristalina alterada.	
Biotita	15	Como alteración de minerales máficos.	
Plagioclasas	12	Relictas, como fenocristales alterados de hasta 2mm.	
Cuarzo	12	Secundario, rellenando amígdalas junto a calcita.	
Sericita	10	Alterando en toda la muestra	
Arcillas	10	Etapa posterior de alteración	
Turmalina	8	Cristales aciculares en la masa fundamental.	
Calcita	8	En vetillas y asociado a cuarzo.	

- c) Se observa piritoédro y magnetita anhedral.
- d) Vetilla posterior de calcita.

	MUESTRA N°	DAM-41
Clasificación Petrográfica	Profundidad	
Brecha hidrotermal de especularita.	94.3 m	
PROCEDENCIA	COORDENADAS	
Diego de Almagro	E 384567.6	N 7079233.144

Roca de textura brechosa. La matriz se compone principalmente de láminas de especularita, con cristales de sulfuros inmersos en ella, probablemente anteriores, ya que las láminas de especularita los fracturan. Se observa abundante calcopirita, de <1 cm, que rodea a pirita euhedral y subhedral de menor tamaño. Se aprecia bornita reemplazando en bordes de calcopirita, con menor calcosina y covelina. Los sulfuros se encuentran diseminados y formando vetillas en los clastos angulosos.

MINERALES OPACOS (100% DEL TOTAL)			
MINERAL	% VOLUMEN	OCURRENCIA	
Especularita	60	Como matriz de la brecha hidrotermal.	
Calcopirita	25	Angulosa anhedral de <1 cm.	
Pirita	9	Euhedral, y de menos de 3 mm.	
Bornita	5	En bordes de calcopirita y diseminado en clastos.	
Calcosina	1	Reemplazando a bornita en los bordes.	
Covelina	traza	Reemplazando a bornita en los bordes.	

- a) Piritoédro de pirita rodeado por calcopirita que se está reemplazada por incipiente bornita.
- b) Cristal fracturado de calcopirita con bornita y menor calcosina en los bordes. También se aprecia pirita en el exterior.
- c) Pirita y menor calcopirita en un clasto de la brecha.
- d) Pirita en la matriz de la brecha.

	MUESTRA N°	DAM-42
Clasificación Petrográfica	Profundidad	
Brecha hidrotermal de especularita.	94.8 m	
PROCEDENCIA	COORDENADAS	
Diego de Almagro	E 384567.6	N 7079233.144

Roca de textura brechosa. La matriz se compone principalmente de especularita, con cristales de sulfuros inmersos en ella. Se observa calcopirita <1 cm, que rodea a pirita euhedral de menor tamaño. Se aprecia bornita reemplazando en bordes de calcopirita y menor calcosina y covelina en bornita. Los sulfuros se encuentran diseminados y formando vetillas en los clastos angulosos.

MINERALES OPACOS (100% DEL TOTAL)			
MINERAL	% VOLUMEN	OCURRENCIA	
Especularita	60	Como matriz de la brecha hidrotermal.	
Calcopirita	25	Angulosa y anhedral. <1 cm .	
Pirita	9	Euhedral, aparece aislado o asociado a calcopirita.	
Bornita	5	En bordes de calcopirita y diseminado en clastos.	
Calcosina	1	Reemplazando a bornita en los bordes.	
Covelina	traza	Reemplazando a bornita en los bordes.	

- a) Calcopirita y bornita inmersas en matriz especular.
- b) Cristal fracturado de calcopirita con bornita. Se aprecia pirita (py2) en el exterior.
- c) Calcopirita y menor pirita (py2) con bornita e incipiente calcosina en los bordes.
- d) Cristal de calcopirita con bornita, calcosina y pirita.

	MUESTRA N°	DAM-45
Clasificación Petrográfica	Profundidad	
Andesita alterada con vetas de sulfuros y hematita. 152,4 m.		m.
PROCEDENCIA COORDENADAS		NADAS
Diego de Almagro	E 384567.6	N 7079233.144

Roca volcánica con textura porfírica que presenta una masa fundamental con plagioclasas, feldespato potásico y magnetita de <0,2 mm. Además presenta fenocristales euhedrales de plagioclasa de hasta 3 mm alterados a sericita y asociados a escasa calcopirita. Como alteración se observa clorita con hábito radial, asociadas a magnetita de hasta 2 mm anhedrales, cuarzo secundario y escasas arcillas posteriores. Se observan cristales de hematita especular siendo reemplazados por incipiente magnetita (mushketovitización) y asociados a turmalina radial. Entre los opacos, además de la magnetita, se encuentran pirita euhedral diseminada y trazas de calcopirita con bornita.

MINERALES OPACOS (5% DEL TOTAL)			
MINERAL	% VOLUMEN	OCURRENCIA	
		En la masa fundamental y como agregados	
Magnetita	2	de hasta 2 mm asociados a clorita.	
		Reemplazo de especularita.	
Especularita	2	Asociada a turmalina y reemplazándose por	
	2	magnetita.	
Pirita	1	Euhedral, asociada a magnetita.	
Calcopirita	Traza	En la masa fundamental, diseminada.	
Bornita	traza	Asociada a calcopirita.	

MINERALES PRIMARIOS Y DE ALTERACIÓN			
MINERAL	% VOLUMEN	OCURRENCIA	
Feldespato	35	En la masa fundamental, como mineral de	
		alteración.	
Plagioclasas	15	Cristales relictos de la roca volcánica de	
	hasta 2 mm, euhedrales.	hasta 2 mm, euhedrales.	
Cuarzo	Secundario, se aprecia formando cúmulo		
	15	vetillas.	
Clorita	o	Mineral de alteración que aparece como	
	0	pátinas en la masa fundamental.	
Sericita	5	Alteración de plagioclasas.	
Turmalina	1	Asociada a hematita especular.	

- a) Vista general de la muestra donde se aprecia masa fundamental de feldespatos y fenocristales de plagioclasas alterados, con clorita y cuarzo secundario.
- b) Misma imagen anterior a nicoles cruzados.
- c) Mushketovita con pirita y calcopirita.
- d) Plagioclasa con inclusión de calcopirita, en la parte superior se aprecia una asociación de pirita y magnetita (opacos).

	MUESTRA N°	DAM-46
Clasificación Petrográfica	Profundidad	
Andesita alterada con vetas de sulfuros y hematita. 158,4 m.		m.
PROCEDENCIA	COORDENADAS	
Diego de Almagro	E 384567.6	7079233.144

Roca volcánica con textura porfírica que se presenta fuertemente alterada a feldespato potásico, biotita secundaria, cuarzo y turmalina. Se presentan cristales relictos de plagioclasa de unos 4 mm alterados fuertemente a sericita.

Presenta una veta de 3 cm de diámetro, recta, compuesta de cristales de especularita, pirita, calcopirita y escasa bornita. La veta presenta un halo de unos 2 mm de turmalina.

Además los sulfuros de cobre, especularita y escasa arsenopirita y pirita aparecen diseminados en la roca caja.

MINERALES OPACOS (32% DEL TOTAL)					
MINERAL	% VOLUMEN	OCURRENCIA			
Especularita	12	Formando parte de la veta y como			
	12	diseminaciones.			
Calcopirita	Q	(32% DEL TOTAL) OCURRENCIA Formando parte de la veta y como diseminaciones. Principalmente en la veta, donde aparece cortada por cristales de especularita. Principalmente en la veta, donde aparece cortada por cristales de especularita, y además aparece en forma cúbica euhedral dentro de calcopirita.			
	0	cortada por cristales de especularita.			
Pirita		Principalmente en la veta, donde aparece			
	7	cortada por cristales de especularita, y			
	1	además aparece en forma cúbica euhedral			
		dentro de calcopirita.			
Bornita	3	Como reemplazo de calcopirita en la veta.			
Arsenopirita	Traza	Diseminada en la masa fundamental.			

MINERALES PRIMARIOS Y DE ALTERACIÓN			
MINERAL	% VOLUMEN	OCURRENCIA	
Feldespato	25	En la masa fundamental	
Plagioclasas	15	Cristales relictos de la roca volcánica	
Cuarzo	5	Secundario, se aprecia formando cúmulos y vetillas.	
Turmalina	8	Como halo de la veta.	
Sericita	5	Alteración de plagioclasas.	
Biotitat?	13	Mineral de alteración que aparece como pátinas en la masa fundamental.	

- a) Vista general de la muestra donde se aprecia masa fundamental de feldespatos y fenocristales de plagioclasas alterados, además se aprecia mineral café no identificado (biotita secundaria)
- b) Se observa veta de especularita masiva con halo de turmalina.
- c) Cristal de plagioclasa alterado en masa fundamental.
- d) Imagen de la veta donde se observan cristales de calcopirita rodeados por pirita y especularita posterior.

	MUESTRA N°	DAM-47
Clasificación Petrográfica	Profundidad	
Brecha hidrotermal de especularita	161,1 m.	
PROCEDENCIA	COORDENADAS	
Diego de Almagro	E 384567.6	N 7079233.144

Brecha de origen hidrotermal que presenta matriz de especularita con cristales de calcopirita y pirita, que se ven fracturados por el flujo de hematita, por lo que se infiere son posteriores. La calcopirita aparece alterada a bornita generalmente y localmente a covelina-digenita. Los cristales de pirita aparecen diseminados en los clastos y dentro de calcopiritas de forma cúbica.

MINERALES OPACOS (100% DEL TOTAL)		
MINERAL	% VOLUMEN	OCURRENCIA
Especularita	60	Cemento de brecha.
Calcopirita	20	Hasta 4 mm, anhedrales, reemplazados por bornita.
Pirita	15	Euhedrales a subhedrales, y muy fracturados.
Bornita	5	Reemplazo de calcopirita en los bordes.
Covelina	traza	Reemplazo de bornita en los bordes

a) Cristal de calcopirita con piritas euhedrales, reemplazándose por bornita, que a su vez se ve reemplazada por covelina en sus bordes.

- b) Cristal de calcopirita fracturado por láminas de especularita.
- c) Pirita y calcopirita con especularita en los intersticios.
- d) Cristales euhedrales y anhedrales de pirita diseminados en un clasto de andesita.

	MUESTRA N°	DAM-49
Clasificación Petrográfica Profundidad		lidad
Roca volcánica alterada.	181,8 m.	
PROCEDENCIA	COORDENADAS	
Diego de Almagro	E 384567.6	N 7079233.144

Roca que presenta textura porfírica donde se aprecian una masa fundamental microcristalina y solo relictos de plagioclasas primarias de hasta 5 mm, con formas tabulares euhedrales a subhedrales. La alteración se compone de sericita alterando a plagioclasas y en cúmulos, la masa se encuentra alterada fuertemente a una alteración inicial potásica con biotita y feldespato, seguida por cloritización y un evento final de metasomatismo cálcico, representado por pumpellyta y prehnita en plagioclasas y abundante calcita en cúmulos y vetillas.

También se observa abundante magnetita diseminada en la masa fundamental, junto con escasa pirita y calcopirita. Se aprecia que las magnetitas se reemplazan por incipiente hematita (martirización).

MINERALES OPACOS (12% DEL TOTAL)		
MINERAL	% VOLUMEN	OCURRENCIA
Magnetita	10	Diseminada en la masa fundamental de pequeño tamaño, o bien, como cristales de hasta 1 mm asociados a clorita y martitizados.
Hematita	1	Como reemplazo de magnetitas
Calcopirita	1	Diseminada, anhedral.
Bornita	traza	En bordes de calcopirita
Pirita	Traza	Diseminada subhedral y de hasta 1 mm.

MINERALES PRIMARIOS Y DE ALTERACIÓN		
MINERAL	% VOLUMEN	OCURRENCIA
Feldespato	25	Alterando a la masa fundamental de la roca porfírica.
Plagioclasa	20	Fenocristales relictos de hasta 2mm alterados
Biotita	15	Secundaria, parte de alteración potásica temprana.
Sericita	10	En plagioclasas y masa fundamental.
Calcita	8	Evento cálcico posterior. En vetillas y cúmulos.
Clorita	5	Alterando a fenocristales máficos y asociada a magnetita 2.
Prehnita	3	Evento cálcico posterior
Pumpellyta	2	Evento cálcico posterior

- e) Vista general de la muestra, donde se observa masa microcristalina y cristales de plagioclasa alterados.
- f) Vetilla de carbonatos cortando los eventos previos de alteración de magnetita, sericita, clorita y feldespato.
- g) Prehnita y pumpellyta en cristal de plagioclasa.
- h) Magnetita 2 siendo sustituida por hematita.

	MUESTRA N°	DAM-52
Clasificación Petrográfica	Profundidad	
Roca volcánica alterada.	181,8 m.	
PROCEDENCIA	COORDENADAS	
Diego de Almagro	E 384567.6	N 7079233.144

Roca que presenta textura porfírica donde se aprecian una masa fundamental microcristalina y solo relictos de plagioclasas primarias de hasta 5 mm, con formas tabulares euhedrales a subhedrales. La alteración se compone de sericita alterando a plagioclasas y en cúmulos, la masa se encuentra alterada fuertemente a una alteración inicial potásica con biotita y feldespato, seguida por cloritización y un evento final de metasomatismo cálcico, representado por pumpellyta y prehnita en plagioclasas y abundante calcita en cúmulos y vetillas.

Se observan vetillas de clorita-magnetita-pirita-hematita cortadas por vetillas de calcopirita-piritacuarzo-calcita.

También se observa abundante magnetita diseminada en la masa fundamental, junto con escasa pirita y calcopirita (sustituida localmente por calcosina). Se aprecia que las magnetitas se reemplazan por incipiente hematita (martirización).

MINERALES OPACOS (12% DEL TOTAL)		
MINERAL	% VOLUMEN	OCURRENCIA
Magnetita	10	Diseminada en la masa fundamental de pequeño tamaño. Cristales de hasta 1 mm asociados a clorita y martitizados.
Hematita	1	Como reemplazo de magnetitas
Calcopirita	1	Diseminada, anhedral.
Pirita	traza	Diseminada subhedral y de hasta 1 mm.
Calcosina	traza	En bordes de calcopirita

MINERALES PRIMARIOS Y DE ALTERACIÓN		
MINERAL	% VOLUMEN	OCURRENCIA
Feldespato	25	Alterando a la masa fundamental de la roca porfírica.
Plagioclasa	20	Fenocristales relictos de hasta 2 mm alterados
Sericita	10	En plagioclasas y masa fundamental.
Calcita	8	Evento cálcico posterior. En vetillas y cúmulos.
Clorita	5	Alterando a fenocristales máficos y asociada a mgt 2.

	MUESTRA N°	DAM-54
Clasificación Petrográfica	Profundidad	
Brecha de especularita	310	.8
PROCEDENCIA	COORDENADAS	
Diego de Almagro	N 7079233,144	E 384567,600

Brecha de origen hidrotermal que presenta matriz de especularita con cristales de calcopirita y pirita, que se ven fracturados por el flujo de hematita, por lo que se infiere son posteriores. La calcopirita aparece alterada a bornita generalmente y localmente a covelina-digenita. Los cristales de pirita aparecen diseminados en los clastos y dentro de calcopiritas de forma cúbica.

MINERALES OPACOS (100% DEL TOTAL)		
MINERAL	% VOLUMEN	OCURRENCIA
Especularita	60	Cemento de brecha.
Calcopirita	15	< 4 mm anhedrales.
Pirita	15	Subhedrales, en calcopirita o aislados, y diseminados
Bornita	8	Reemplazo de calcopirita en los bordes.
Covelina	2	Reemplazo de bornita en los bordes

- a) Cristal de pirita rodeado por calcopirita que a su vez se ve reemplazada por bornita.
- b) Cristales de pirita rodeados por calcopiritas que a su vez se ve reemplazada por incipiente bornita. Láminas de especularita rompen mineralización de sulfuros.
- c) Láminas de especularita ingresando en calcopirita.
- d) Mineralización como clastos inmersos en la matriz de especularita.

	MUESTRA N°	DAM-57
Clasificación Petrográfica	Profundidad	
Brecha de especularita	343.4	
PROCEDENCIA	COORDE	NADAS
Diego de Almagro	N 7079233.144	E 384567.6

Roca que presenta textura brechosa con relleno de matriz compuesto por hematita especular y mineralización de cobre en forma de calcopirita, y menor bornita. También se observan menores cantidades de pirita (cristales euhedrales de <1mm) y covelina (como reemplazo de bornita). Los clastos son subredondeados de hasta 4 mm, y presentan texturas relictas porfíricas, por lo que se infiere corresponden a rocas volcánicas. Están fuertemente alterados a feldespato potásico, turmalina y escasa calcita. Raramente, la muestra presenta diseminaciones en los clastos de calcopirita, bornita y pirita.

MINERALES OPACOS (70% DEL TOTAL)		
MINERAL	% VOLUMEN	OCURRENCIA
Especularita	20	Cemento de brecha. Las láminas cortan la
Especulailla	30	mineralización de sulfuros.
		Cristales de hasta 4 mm anhedrales,
Calcopirita	15	reemplazados por bornita. También en forma
		diseminada en clastos.
Pirita 15	Euhedrales a subhedrales, dentro de calcopirita	
	15	o aislados, y diseminados en los clastos.
Bornita	8	Reemplazo de calcopirita en los bordes.
Covelina	2	Reemplazo de bornita en los bordes

MINERALES PRIMARIOS Y DE ALTERACIÓN			
MINERAL	% VOLUMEN	OCURRENCIA	
Feldespato	10	Alteración de clastos.	
Plagioclasa	5	Relictas, subhedrales y de menos de 1 mm.	
Turmalina	10	Hábito radial, y alterando la masa fundamental de los clastos.	
Calcita	5	En vetillas y cúmulos dentro de los clastos.	

- a) Fotomicrografía que muestra pirotoédro de pirita rodeado por calcopirita, y fracturado por láminas de especularita. También se observa incipiente bornita reemplazando calcopirita.
- b) Mineralizacion diseminada en el clasto: pirita, calcopirita y bornita.
- c) Cristales turmalina radiales en el clasto.
- d) Clasto subredondeado alterado a feldespato y sílice.

	MUESTRA N°	DAM-61b
Clasificación Petrográfica	Profundidad	
Pórfido diorítico alterado	69,5 m.	
PROCEDENCIA	COORDENADAS	
Diego de Almagro	N 7080823,22	E 383769,4

Roca obliterada clasificada anteriormente como pórfido diorítico. Se observa alteración a feldespato potásico, y abundante cuarzo microcristalino. También se aprecian cristales de clorita alterando a los minerales ferromagnesianos primarios. Se observan vetillas de clorita y cuarzo y vetillas de calcita de hasta 2 mm de diámetro cortan toda la mineralización.

Entre los opacos se observa especularita, calcopirita, pirita y bornita. También se detectó un mineral con tintes azules pero que no pudo ser identificado, que aparece reemplazando a calcopirita hacia sus bordes.

MINERALES OPACOS (10% DEL TOTAL)			
MINERAL % VOLUMEN OCURRENCIA		OCURRENCIA	
Especularita	5	Diseminada.	
Calcopirita	1	Diseminada, asociada a calcopirita	
Pirita	3	Diseminada, subhedral y de menos 1 mm.	
Bornita	1	Reemplazando a calcopirita en los bordes.	
Mineral desconocido	Trazas	Reemplazando a calcopirita en los bordes.	

MINERALES PRIMARIOS Y DE ALTERACIÓN			
MINERAL	% VOLUMEN	OCURRENCIA	
Feldespato	35	Mineral de alteración que oblitera la textura original de la roca.	
Cuarzo	25	Como agregados microcristalinos. Asociada a clorita en vetillas.	
Clorita	15	Cristales que reemplazan minerales máficos. Asociado a cuarzo en vetillas.	
Calcita	10	Vetillas posteriores de 2 mm de diámetro.	
Sericita	5	Como alteración de plagioclasas primarias	

- cuarzo microcristalino, junto con clorita.
- b) Especularita rompiendo mineralización de bornita, calcopirita y pirita.
- c) Mineral desconocido reemplazando en bordes de calcopirita
- d) Mineral desconocido reemplazando en bordes de calcopirita

	MUESTRA N°	DAM-67
Clasificación Petrográfica	Profundidad	
Brecha de especularita estéril.	112,8 m.	
PROCEDENCIA	COORDENADAS	
Diego de Almagro	E 383998,388 N	7080815,811

La roca presenta textura brechosa y matriz de hematita especular. La mineralización es escasa y se encuentra como calcopirita en vetillas, que presentan halo de pirita. Además, se encuentra abundante pirita en la matriz, y también en las vetillas, que llegan hasta 0,5 cm.

MINERALES OPACOS (100% DEL TOTAL)			
MINERAL	% VOLUMEN	OCURRENCIA	
Especularita	95	Matriz de la brecha, que se presenta con láminas	
Especulailla	00	de hasta 0,7 mm.	
		Cristales inmersos en la matriz de la brecha, y en	
Pirita 10	10	vetillas. También se observa dentro de cristal de	
		calcopirita, euhedral.	
Calcopirita	5	Sólo en vetillas. Llega hasta 4 mm, subhedral.	

a) Cristal de calcopirita en vetilla, con pirita en su interior.

b) Vetilla de mineral (probablemente silicato) con halo de pirita.

	MUESTRA N°	DAM-70
Clasificación Petrográfica	Profund	dad
Lava somera con alteración supérgena.	56,1 m.	
PROCEDENCIA	COORDENADAS	
Diego de Almagro	N 7079255,389	E 384682,037

Roca porfírica con plagioclasas relictas que se encuentran siendo reemplazadas parcialmente por sericita. También se observa alteración potásica representada por feldespato potásico masivo, y biotita. Se aprecia escasa magnetita, clorita alterando a minerales ferromagnesianos y carbonatos en vetillas de menos de 1 mm de ancho.

Se aprecia una alteración supérgena que se compone de abundantes óxidos de hierro como pátinas y vetas, como jarosita y hematita.

MINERALES OPACOS (10% DEL TOTAL)		
MINERAL	% VOLUMEN	OCURRENCIA
Magnetita	5	Diseminada, anhedral y de menos de 0,5 mm.

MINERALES PRIMARIOS Y DE ALTERACIÓN			
MINERAL	% VOLUMEN	OCURRENCIA	
Feldespato	35	Mineral de alteración que oblitera la textura original de la roca.	
Plagioclasa	15	Minerales relictos euhedrales, parcialmente sericitizados.	
Clorita	15	Cristales que reemplazan minerales máficos. Se asocia a magnetita.	
Calcita	10	Vetillas posteriores de 2 mm de diámetro.	
Sericita	5	Como alteración de plagioclasas primarias	
Biotita	5	Secundaria y parcialmente obliteradas por carbonatos posteriores.	
Óxidos de Fe	10	Pátinas y vetillas de hematita, jarosita, goethita.	

- c) Plagioclasa relicta inmersa en masa fundamental alterada a feldespato potásico, junto con clorita. Se encuentra sericitizada.
- d) Alteración supérgena representada por óxidos de Fe en pátinas.
- e) Cristales de clorita asociados a magnetita y feldespato potásico
- f) Misma imagen anterior pero a luz reflejada.

	MUESTRA N°	DAM-73
Clasificación Petrográfica	Profundidad	
Brecha hidrotermal de especularita	119 m.	
PROCEDENCIA	COORDENADAS	
Diego de Almagro	N 7079255,389	E 384682,037

Roca con textura brechosa que se compone de abundante especularita en la matriz. Además se observan sulfuros de cobre (calcopirita, bornita) y pirita como clastos inmersos en las láminas de especularita. Los clastos son subredondeados y componen cerca del 20% de la muestra.

MINERALES OPACOS (80% DEL TOTAL)			
MINERAL	MINERAL % VOLUMEN OCURRENCIA		
Especularita	50	Cemento de brecha. Posterior a la	
	50	mineralización de cobre y pirita.	
Dirito	15	Cristales muy fracturados aislados e inmersos	
Filita 15		en calcopirita.	
Calcopirita	15	Anhedral y muy fracturada	
Bornita	trazas	Reemplazando en bordes de calcopirita.	

Fotomicrografía representativa de la muestra. Se observan cristales de pirita, rodeados por calcopirita que se encuentran fracturados por las láminas de especularita posteriores.

	MUESTRA N°	DAM-78
Clasificación Petrográfica	Profundidad	
Roca volcánica alterada	464,25	
PROCEDENCIA	COORDENADAS	
Diego de Almagro	E 384682,037	N 7079255,378

La roca corresponde a una roca volcánica muy alterada. Presenta una textura relicta porfírica que se encuentra bastante mal preservada. Se observa abundante clorita alterando a minerales ferromagnesianos, con un color de interferencia entre morado a azul Berlín. También es posible apreciar magnetita. Sulfuros como pirita y calcopiritas se encuentran asociados a la clorita. La masa fundamental se encuentra reemplazada por feldespato potásico. Se observan eventos tardíos que precipitan calcita y sílice en vetillas y mosaicos.

MINERALES OPACOS (10% DEL TOTAL)			
MINERAL	% VOLUMEN	OCURRENCIA	
Magnetita	5	Diseminada en la masa fundamental	
Calcopirita	3	Diseminada, en forma anhedral	
Pirita	2	Diseminada, en forma anhedral	

MINERALES PRIMARIOS Y DE ALTERACIÓN			
MINERAL	% VOLUMEN	OCURRENCIA	
Foldospato	35	Como alteración de la masa	
i eldespalo		fundamental de la roca caja	
Clorita	25	Mineral de alteración de	
		ferromagnesianos. Se observa con	
		hábito radial.	
Cuarzo	30	Alteración tardía. Se observa	
	20	formando cúmulos y mosaicos.	
Calcita	10	En vetillas de hasta 1 mm.	

- a) Cristal radial de clorita en masa de feldespato potásico.
- b) Misma imagen anterior a nícoles cruzados.
- c) Misma imagen anterior a luz reflejada. Se observa que opacos corresponden a magnetita.
- d) Calcopirita y pirita diseminadas, anhedrales y asociadas a clorita.

	MUESTRA N°	DAM-90
Clasificación Petrográfica	Profund	idad
Brecha hidrotermal de especularita	75,7 r	n.
PROCEDENCIA	COORDEN	NADAS
Diego de Almagro	N 7079258,859	E 384474,076

Roca con textura brechosa que se compone de abundante especularita en la matriz. Además se observan sulfuros de cobre (calcopirita) y pirita como clastos inmersos en las láminas de especularita. Los cristales de calcopirita se observan reemplazándose parcialmente por bornita hacia sus bordes ocasionalmente. Además, la bornita se reemplaza por covelina localmente. Los clastos son subredondeados y componen cerca del 20% de la muestra.

MINERALES OPACOS (80% DEL TOTAL)		
MINERAL	% VOLUMEN	OCURRENCIA
Espocularita	Fanagularita E0	Cemento de brecha. Posterior a la mineralización
	50	de cobre y pirita.
Pirita	15	Cristales muy fracturados aislados e inmersos en
		calcopirita.
Calcopirita	15	Anhedral y muy fracturada
Bornita	Traza	Reemplazando en bordes de calcopirita.
Covelina	Traza	Reemplazando en bordes de bornita.

Fotomicrografía representativa de la muestra. Se observan cristales de pirita, rodeados por calcopirita que se encuentran fracturados por las láminas de especularita posteriores. Además se observa la generación de bornita en los bordes de calcopirita.

	MUESTRA N°	DAM-92
Clasificación Petrográfica	Profundidad	
Brecha hidrotermal de especularita	139,5 m.	
PROCEDENCIA	COORDE	NADAS
Diego de Almagro	N 7079258,859	E 384474,076

Roca brechosa que se compone de especularita en la matriz. Se observan sulfuros de cobre (calcopirita) y pirita como clastos inmersos en la matriz. La calcopirita se observan reemplazándose parcialmente por bornita hacia sus bordes ocasionalmente y esta se reemplaza por covelina localmente. Los clastos son subredondeados, presentan texturas relictas porfíricas, componen cerca del 25% de la muestra y están fuertemente alterados a feldespato potásico, sericita y cuarzo.

MINERALES OPACOS (75% DEL TOTAL)			
MINERAL	% VOLUMEN	OCURRENCIA	
Espoqularita	45	Cemento de brecha. Posterior a la mineralización de	
Especulanta	40	cobre y pirita.	
Pirita	15	Cristales muy fracturados aislados e inmersos en	
		calcopirita.	
Calcopirita	15	Anhedral y muy fracturada	
Bornita	Traza	Reemplazando en bordes de calcopirita.	
Covelina	Traza	Reemplazando en bordes de bornita.	

MINERALES PRIMARIOS Y DE ALTERACIÓN			
MINERAL	% VOLUMEN	OCURRENCIA	
Feldespato potásico	10	Alterando masa fundamental de clastos.	
Sericita	5	Reemplazando plagioclasas y diseminada.	
Cuarzo	5	Secundario, en cúmulos en la masa fundamental.	
Plagioclasas	5	Relictos, euhedrales pero reemplazados por sericita.	

Fotomicrografía representativa de un clasto de muestra. Se aprecia textura porfírica con fenocristales de plagioclasa en masa de feldespato. Además se puede observar que sericitas alteran a las plagioclasas.

MUESTRA N°

DAM-93

Clasificación Petrográfica	Profundidad	
Brecha hidrotermal de especularita	170	1 m.
PROCEDENCIA	COORD	ENADAS
Diego de Almagro	N 7079258,859	E 384474,076

Roca con textura brechosa que se compone de abundante especularita en la matriz. Además se observan sulfuros de cobre (calcopirita) y pirita de hasta 0,8 cm, subhedrales, como clastos inmersos en las láminas de especularita. Los cristales de calcopirita se observan reemplazándose parcialmente por bornita hacia sus bordes ocasionalmente. Además, la bornita se reemplaza por covelina localmente. Los clastos son subredondeados, presentan texturas relictas porfíricas, probablemente de andesita, componen cerca del 25% de la muestra y están fuertemente alterados a feldespato potásico, sericita, arcillas y cuarzo.

MINERALES OPACOS (65% DEL TOTAL)			
MINERAL	% VOLUMEN	OCURRENCIA	
Especularita	40	Cemento de brecha.	
Pirita	10	Cristales muy fracturados aislados e inmersos en calcopirita.	
Calcopirita	15	Anhedral y muy fracturada	
Bornita	Traza	Reemplazando en bordes de calcopirita.	
Covelina	Traza	Reemplazando en bordes de bornita.	

MINERALES PRIMARIOS Y DE ALTERACIÓN			
MINERAL	% VOLUMEN	OCURRENCIA	
Feldespato potásico	22	Alterando masa fundamental de clastos.	
Sericita	5	Reemplazando plagioclasas y diseminada.	
Cuarzo	5	Secundario, en cúmulos en la masa fundamental.	
Plagioclasas	5	Relictos, euhedrales pero reemplazados por sericita.	
Arcillas	3	Diseminadas en toda la muestra.	

- a) Fotomicrografía representativa de un clasto de la muestra. Se observa textura porfírica compuesta por fenocristales de plagioclasa en masa de feldespato y arcillas.
- b) Fotomicrografía de la matriz de la brecha. Se observan cristales de pirita de gran tamaño, rodeados por calcopirita que se encuentran rodeados por las láminas de especularita posteriores. Además se observa la generación de bornita en los bordes de calcopirita.

	MUESTRA N°	DAM-99
Clasificación Petrográfica	Profundidad	
Diorita de hornblenda	248	.8
PROCEDENCIA	COORDE	NADAS
Diego de Almagro	N 7079264.618	E 84375.973

Roca con textura fanerítica que presenta abundantes cristales de plagioclasa euhedrales y subhedrales de hasta 3 mm. También se observan cristales de hornblenda. Se presenta magnetita subhedral siendo reemplazada por hematita (proceso de martirización).

Como eventos posteriores se aprecian vetillas con de clorita, y vetillas de sílice. Además se observa sericita diseminada en toda la muestra, principalmente reemplazando plagioclasas.

MINERALES OPACOS (2% DEL TOTAL)		
MINERAL % VOLUMEN OCURRENCIA		OCURRENCIA
Magnetita	1	Como cristales siendo reemplazados por hematita. Anhedral y de menos de 0.3 mm.
Hematita	1	Reemplazo de magnetitas.

MINERALES PRIMARIOS Y DE ALTERACIÓN								
MINERAL	% VOLUMEN	OCURRENCIA						
Plagioclasas	40	Cristales subhedrales y euhedrale						
Hornblenda	30	Relictos, euhedrales pero reemplazados por sericita.						
Arcillas	10	Diseminadas en toda la muestra.						
Sericita	5	Reemplazando plagioclasas y diseminada.						
Clorita	5	Como reemplazo de minerales máficos.						
Cuarzo	8	En cúmulos en la masa fundamental.						

- e) Fotomicrografía representativa de la muestra. Se observa textura fanerítica compuesta por cristales de plagioclasa y hornblenda.
- f) Misma imagen anterior a nícoles cruzados.
- g) Cristales de plagioclasa y hornblenda cortados por vetilla de clorita.
- h) Magnetita siendo reemplazada por hematita.

	MUESTRA N°	DAM-102		
Clasificación Petrográfica	Profunc	didad		
Dique andesítico	66,1 m.			
PROCEDENCIA	COORDENADAS			
Diego de Almagro	N 7079258,27	E 384744,335		

Roca porfírica con abundantes plagioclasas euhedrales de hasta 3 mm inmersas en la masa fundamental.

Como primer evento de alteración, se observa alteración potásica (feldespato potásico) en toda la muestra y clorita como reemplazo de ferromagnesianos primarios. Además se observa sericita diseminada en toda la muestra, principalmente reemplazando plagioclasas.

Eventos tardíos son representados por abundantes arcillas, además de cúmulos y vetillas de cuarzo.

MINERALES OPACOS (2% DEL TOTAL)							
MINERAL	% VOLUMEN	OCURRENCIA					
Calcopirita	1	Cristales inmersos en la matriz como clastos, anhedrales y subangulosos. De hasta 5 mm.					
Pirita	1	Pequeños cristales en los bordes de calcopirita.					

MINERALES PRIMARIOS Y DE ALTERACIÓN								
MINERAL	% VOLUMEN	OCURRENCIA						
Plagioclasas	45	Cristales subhedrales y euhedrales						
Feldespato potásico	25	Alteración pervasiva afectado a la masa fundamental						
Arcillas	10	Diseminadas en toda la muestra.						
Sericita	5	Reemplazando plagioclasas y diseminada.						
Clorita	5	Reemplazando a minerales ferromagnesianos.						
Cuarzo	10	Secundario, en cúmulos y vetillas de 1 mm.						

c) Mineral ferromagnesiano reemplazado por clorita y opacos.

	MUESTRA N°	DAM-109		
Clasificación Petrográfica	Profun	didad		
Dique andesítico	229,5 m.			
PROCEDENCIA	COORDENADAS			
Diego de Almagro	N 7079258,27	E 384744,335		

Roca con textura porfírica que presenta abundantes cristales de plagioclasa euhedrales y subhedrales de hasta 3 mm. Se observa alteración potásica (feldespato potásico) en toda la muestra. Además se observa sericita diseminada en toda la muestra, principalmente reemplazando plagioclasas. También abundantes arcillas y cúmulos y vetillas de cuarzo. Se detectó un mineral desconocido que es muy similar a la albita.

Entre los opacos se encuentran pirita, magnetitas siendo reemplazadas por hematita y escasa calcopirita anhedral.

MINERALES OPACOS(9% DEL TOTAL)							
MINERAL	% VOLUMEN	OCURRENCIA					
Magnetita	5	Diseminada. De hasta 1 mm y anhedral.					
Hematita	4	Como reemplazo de magnetita.					
Calcopirita	1	Anhedral y diseminada.					
Pirita	traza	Diseminada.					

MINERALES PRIMARIOS Y DE ALTERACIÓN								
MINERAL	% VOLUMEN	OCURRENCIA						
Plagioclasas	45	Cristales subhedrales y euhedrales						
Albita(2)	5	Euhedrales, inmersas en la masa fundamental.						
	5	No se observan maclas.						
Foldospato potásico	25	Alteración pervasiva afectado a la masa						
i eldespato potasico	20	fundamental principalmente						
Arcillas	10	Diseminadas en toda la muestra.						
Sericita	5	Reemplazando plagioclasas y diseminada.						

- a) Fotomicrografia representativa de la muestra. Se observa textura porfirica compuesta po cristales de plagioclasa en masa alterada a feldespato potásico. Además cúmulo de opacos
- b) Misma imagen anterior a luz reflejada. Se aprecia que los opacos corresponden a magnetita martirizada y calcopirita.
- c) Fotomicrografía general de la muestra, con fenocristales de probable albita en masa feldespatizada.

	MUESTRA N°	DAM-116		
Clasificación Petrográfica	Profun	didad		
Brecha desconocida (tectónica?)	469,5 m.			
PROCEDENCIA	COORDE	NADAS		
Diego de Almagro	N 7079258,27	E 384744,335		

Roca brechosa con matriz desconocida. El mineral que compone el cemento de brecha es incoloro con leve pleocroísmo marrón y colores de interferencia de primer orden. Los cristales son prismáticos alargados, y en algunas zonas presentan signos de foliación. Es probable que la brecha sea de origen tectónico (salvanda?) y la foliación sea un indicador cinemático. Además se observa mineralización de calcopirita, en cristales de hasta 1 cm, que tienen bordes de pequeños cristales de pirita (2 mm).

MINERALES PRIMARIOS Y DE ALTERACIÓN						
MINERAL	% VOLUMEN	OCURRENCIA				
Salvanda?	97	Cristales alargados y plegados con signos de foliación.				

a) Fotomicrografía representativa de la muestra. Se observan cristales de mineral desconocido con foliación. Además se muestran en contacto con cristal opaco.

- b) Misma imagen anterior a nícoles paralelos, donde se observan las distintas tonalidades que puede adquirir el mineral.
- c) Misma imagen anterior a luz reflejada. Se observa que el mineral opaco corresponde a calcopirita con pequeñas piritas hacia los bordes.

ANEXO B. Geoquímica de roca total

Análisis	L.D.	Método	DAM-14	DAM-15	DAM-16	DAM-21	DAM-26	DAM-27	DAM-31	DAM-32	DAM-45	DAM-49	DAM-50
Litología			Lava	Lava	Lava	Lava	Lava	Dique	Diorita	Diorita	Lava	Lava	Dique
SiO2 (%)	0,01	FUS-ICP	52,03	50,25	53,14	49,87	51,13	47,47	47,08	48,13	47,87	50,29	45,06
AI2O3 (%)	0,01	FUS-ICP	16,33	17,07	17,48	20,28	17,45	16,93	15,29	23,21	17,78	17,83	13,32
Fe2O3(T)(%)	0,01	FUS-ICP	11,36	13,11	10,65	10,16	13,4	9,02	9,48	9,32	15,44	12,38	10,25
MnO(%)	0,001	FUS-ICP	0,054	0,068	0,09	0,092	0,091	1,424	0,476	0,156	0,281	0,317	0,492
MaO(%)	0.01	FUS-ICP	2.54	2.17	3.52	3.16	1.92	5.85	6.95	3.99	3.72	3.68	12.12
	0.01	FUS-ICP	1.09	0.93	1 42	1 16	0.94	49	4 44	0.85	0.71	1.63	6.88
Na2O(%)	0.01	FUS-ICP	0.15	1 19	3.72	4.34	4 77	3.75	2.68	2.98	2 64	3.36	1.34
K20(%)	0.01	FUS-ICP	5.98	7 13	4.6	1,61	5	2 97	4.01	5 33	6.82	4 77	2.1
TiO2(%)	0,01	FUS-ICP	0.838	0.89	0.91/	-,00	0 727	0.831	1 1 1 1	0,601	0,02	0.777	0.987
P2O5(%)	0,001	ELIS ICP	0,000	0,03	0,314	0,0	0,727	0,001	0.10	0,031	0,747	0.12	0,307
F 203(76)	0,01	ELIS ICP	0,23	6.92	4.27	4.54	5.03	6.99	9.5	5.86	0,09	5.4	7.46
	0.01		0,0	0,02	4,27	4,54	100.6	0,00	100.0	100.6	4,10	100.6	1,40
	0,01	FUS-ICP	99,4	99,76	99,93	99,11	100,6	100,2	100,2	100,6	100,3	100,6	100,2
Sc(ppm)	1	FUS-ICP	19	23	26	20	32	31	28	18	22	24	30
Be(ppm)	1	FUS-ICP	< 1	< 1	< 1	< 1	1	< 1	< 1	< 1	< 1	1	< 1
Ge(ppm)	0,5	FUS-MS	1,6	1,5	1,4	1,2	1,4	2,3	1,5	1,5	1,6	1,9	1,7
Rb(ppm)	1	FUS-MS	141	149	99	128	78	80	67	188	112	111	58
Y(ppm)	0,5	FUS-MS	24,2	25,2	23,7	21,7	16,8	15	17,1	10,2	18,7	19,9	15,2
Zr(ppm)	1	FUS-ICP	90	94	94	72	73	56	74	55	63	80	72
Nb(ppm)	0,2	FUS-MS	2,5	2,7	2,6	1,9	1,9	3,1	4,9	1,4	1,8	2,3	7,9
In(ppm)	0,1	FUS-MS	0,2	0,1	< 0.1	0,1	< 0.1	< 0.1	< 0.1	0,2	< 0.1	< 0.1	< 0.1
Sb(ppm)	0,2	FUS-MS	3,4	3,1	2,8	3,1	1,8	2	4	11,9	1,6	2,7	2,2
Cs(ppm)	0,1	FUS-MS	2	1,7	1,4	1,9	0,4	1,7	0,6	2,6	1,1	2,6	4,4
La(ppm)	0,05	FUS-MS	9,79	14,6	6,73	7,79	1,99	8,09	5,79	5,48	2,8	7,57	6,72
Ce(ppm)	0,05	FUS-MS	22	31,2	17	17,8	4,6	17,7	13,8	10,9	5,86	15,3	14,8
Pr(ppm)	0,01	FUS-MS	3,08	4,14	2,46	2,56	0,7	2,42	2,05	1,47	0,89	2,02	2,05
Nd(ppm)	0,05	FUS-MS	13,3	17,7	11,8	11,9	3,91	10,7	9,72	6,42	4,54	8,7	9,38
Sm(ppm)	0,01	FUS-MS	3,19	4,1	3,19	3,17	1,47	2,85	2,86	1,75	1,91	2,7	2,48
Eu(ppm)	0,005	FUS-MS	1,1	1,36	1,15	1,14	0,578	0,983	0,949	0,753	0,743	1,08	0,845
Gd(ppm)	0.01	FUS-MS	3.61	4.2	3.57	3.56	2.27	2.65	3.28	1.76	2.64	3.07	2.77
Tb(ppm)	0.01	FUS-MS	0.67	0.72	0.62	0.63	0.44	0.45	0.56	0.3	0.48	0.55	0.46
Dv(ppm)	0.01	FUS-MS	4.29	4.44	3.9	3.88	2.93	2.75	3.26	1.95	3.18	3.49	2.85
Ho(ppm)	0.01	FUS-MS	0.87	0,91	0.84	0.77	0.61	0.56	0.65	0.42	0.67	0.68	0.57
Er(ppm)	0.01	FUS-MS	2 54	2.68	2.57	2 23	1.88	1 64	1.86	13	1.94	2 05	1.57
Tm(ppm)	0.005	FUS-MS	0.393	0.4	0.384	0.323	0.286	0 247	0.263	0 204	0 297	0.3	0.228
Yh(ppm)	0.01	FUS-MS	2 49	2 74	2.66	2 1 9	1 97	1.58	1.69	1.36	2.02	2.06	1 48
Lu(ppm)	0.002	FUS-MS	0.399	0.432	0.41	0.361	0.315	0.252	0.258	0 233	0.344	0.309	0 244
Hf(ppm)	0.1	FUS-MS	2.3	2.3	2.5	1.8	19	1.6	1 9	1.4	1.8	2	1.8
Ta(ppm)	0.01	FUS-MS	0.18	0.18	0.19	0.17	0.14	0.21	0.29	0.11	0.12	0.16	0.49
W(ppm)	0,01	FUS-MS	0,10	0,10	0,15	1.2	0,14	< 0.5	0,25	0.5	0,12	1 1	0,45
TI(ppm)	0,05	FUS-MS	0.07	0,0	0,0	0.11	< 0.05	0.22	0,7	0,0	0,0	0.11	0,0
Bi(ppm)	0,00		0,0 <i>1</i>	< 0.1	0,03	< 0.1	< 0.00	0,22	< 0.1	< 0.1	0,1	0,11	< 0.1
Th(ppm)	0,1	FUS MS	1.24	1 1 9	1 00	0.79	< 0.1	< 0.1	0.7	0.56	< 0.1	1 29	< 0.1
H(ppm)	0,03	FUS MS	1,24	1,10	1,09	0,78	0,09	0.27	0,77	0,30	0,05	1,20	0,82
U(ppm)	0,01		145	1,02	0,39	0,44	190	0,37	0,24	0,20	0,51	105	0,29
v(ppm)	- 00	FUS-ICF	145	107	176	207	100	220	190	203	109	195	720
Cr(ppm)	20	FUS-MS	30	30	30	30	30	70	260	40	40	40	720
Co(ppm)	1	FUS-MS	36	18	14	19	36	28	42	16	73	40	42
NI(ppm)	20	FUS-MS	< 20	< 20	< 20	< 20	< 20	< 20	50	< 20	< 20	< 20	330
Cu(ppm)	10	FUS-MS	20	220	< 10	10	< 10	90	50	< 10	560	100	120
∠n(ppm)	30	FUS-MS	30	30	50	60	/0	1240	540	120	80	120	430
Ga(ppm)	1	FUS-MS	20	20	19	18	16	20	17	21	26	23	15
As(ppm)	5	FUS-MS	17	14	16	14	24	30	33	23	19	23	27
Sr(ppm)	2	FUS-ICP	124	189	223	196	166	472	298	155	207	282	212
Mo(ppm)	2	FUS-MS	< 2	< 2	< 2	< 2	3	< 2	< 2	< 2	3	< 2	< 2
Ag(ppm)	0,5	FUS-MS	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Sn(ppm)	1	FUS-MS	1	1	2	1	1	< 1	< 1	2	2	2	< 1
Ba(ppm)	3	FUS-ICP	1090	1975	1724	1505	1610	1680	1552	1639	2340	1830	655
Pb(ppm)	5	FUS-MS	< 5	< 5	< 5	< 5	< 5	< 5	8	< 5	< 5	< 5	< 5

Análisis	L.D.	Método	DAM-51	DAM-52	DAM-61b	DAM-70	DAM-82a	DAM-99	DAM-95	DAM-102	DAM-109	DAM-113
Litología			Dique	Lava	Diorita	Lava	Diorita	Diorita	Lava	Dique	Dique	Lava
SiO2 (%)	0,01	FUS-ICP	46,76	48,24	34,15	48,59	64,4	55,14	49,03	50,21	43,82	55,04
Al2O3 (%)	0,01	FUS-ICP	14,78	19,2	5,15	17,16	13,63	16,01	17,03	17,43	16,66	17,82
Fe2O3(T)(%)	0,01	FUS-ICP	9,59	12,16	50,48	10,38	5,33	5,75	14,9	10,99	23,02	8,38
MnO(%)	0,001	FUS-ICP	0,62	0,335	0,255	0,226	< 0.001	0,131	0,271	0,24	0,41	0,307
MgO(%)	0,01	FUS-ICP	8,62	3,74	0,54	2,95	1,26	4,34	3,46	5,4	2,11	3,1
CaO(%)	0,01	FUS-ICP	7,2	1,83	1,01	3,06	0,89	6,52	3,04	0,86	1,07	5,72
Na2O(%)	0,01	FUS-ICP	2,32	3,62	0,17	3,71	0,52	4,57	4,12	2,94	3,45	3,42
K2O(%)	0,01	FUS-ICP	2,68	4,83	2,98	4,3	10,78	2,01	3,46	6,06	4,42	2,8
TiO2(%)	0,001	FUS-ICP	1,179	0,669	0,26	0,781	0,336	0,664	0,703	0,765	0,674	0,771
P2O5(%)	0.01	FUS-ICP	0.16	0.09	0.07	0.14	0.1	0.18	0.1	0.1	0.13	0.12
LOI(%)	- , -	FUS-ICP	6.31	5.8	5.58	7.12	2.39	4.59	3.51	4.42	3.56	2.86
Total(%)	0.01	FUS-ICP	100.2	100.5	100.7	98.42	99.64	99.91	99.63	99.43	99.32	100.3
Sc(ppm)	1	FUS-ICP	34	20	13	23	7	22	25	21	23	25
Be(ppm)	1	FUS-ICP	< 1	< 1	< 1	1	< 1	1	1	< 1	1	< 1
Ge(ppm)	0.5	FUS-MS	1.8	17	11	3.4	1.3	1.8	1.4	1.8	1.5	1.5
Rb(ppm)	1	FUS-MS	59	140	30	87	111	49	109	106	161	79
Y(ppm)	0.5	FUS-MS	19.6	15.4	4.6	20.4	11	26.1	18.7	18.3	17.8	21.2
Zr(ppm)	1	FUS-ICP	82	60	75	72	105	137	69	71	78	101
Nb(ppm)	0.2	FUS-MS	8.1	1.6	73	23	3.6	3.4	1.0	1.9	21	2.0
In(ppm)	0,2	FUS-MS	0,1	< 0.1	7,5	2,5	- 0.1	- 0.1	- 0.1	- 0.1	2,1	2,5
Sh(ppm)	0,1		2.2	26	0.0	2.9	0.0	1.4	17	27	1.0	2.0
Cc(ppm)	0,2		3,5	2,0	0,9	2,0	0,9	1,4	1,7	2,7	1,9	2,9
La(ppm)	0,1		12.0	10.2	17.2	5.47	0,5	5 1 9	7.0	2.02	2,1	7.17
Ca(ppm)	0,05	FUS-INS	21.4	19,2	17,2	3,47	9,00	5,10	7,9	2,92	1,09	1,17
Ce(ppm)	0,05		31,4	37,5	20,1	13,1	23,0	15,4	14,9	5,72	3,23	15,6
Pr(ppm)	0,01	FUS-INS	3,99	4,83	3,07	1,9	2,07	2,57	1,69	0,82	0,47	2,15
	0,05	FUS-INS	10,5	19,4	13,1	9,48	11,4	13	8,51	4,3	2,64	10,1
Sm(ppm)	0,01	FUS-MS	3,79	3,87	2,02	2,68	2,13	3,91	2,25	1,76	1,29	2,82
Eu(ppm)	0,005	FUS-MS	1,14	1,31	0,361	0,918	0,366	0,989	0,767	0,697	0,552	0,902
Gd(ppm)	0,01	FUS-MS	3,75	3,67	1,18	3,28	1,88	4,12	2,95	2,45	2,2	3,23
Tb(ppm)	0,01	FUS-MS	0,59	0,51	0,16	0,56	0,31	0,71	0,53	0,49	0,44	0,57
Dy(ppm)	0,01	FUS-MS	3,55	2,74	0,8	3,54	1,91	4,54	3,16	3,21	3,05	3,61
Ho(ppm)	0,01	FUS-MS	0,69	0,54	0,16	0,75	0,39	0,92	0,66	0,69	0,63	0,76
Er(ppm)	0,01	FUS-MS	1,89	1,59	0,47	2,27	1,17	2,7	1,9	2	1,94	2,21
Tm(ppm)	0,005	FUS-MS	0,277	0,23	0,084	0,354	0,192	0,408	0,288	0,3	0,279	0,334
Yb(ppm)	0,01	FUS-MS	1,76	1,58	0,68	2,33	1,45	2,75	1,99	2,1	1,91	2,32
Lu(ppm)	0,002	FUS-MS	0,278	0,261	0,121	0,355	0,262	0,437	0,337	0,345	0,316	0,368
Hf(ppm)	0,1	FUS-MS	2	1,5	1,7	1,9	2,6	3,2	1,7	1,8	1,9	2,5
Ta(ppm)	0,01	FUS-MS	0,47	0,1	0,28	0,19	0,34	0,26	0,13	0,13	0,14	0,21
W(ppm)	0,5	FUS-MS	< 0.5	< 0.5	17,7	1,1	0,6	< 0.5	< 0.5	< 0.5	0,5	< 0.5
TI(ppm)	0,05	FUS-MS	0,06	0,14	< 0.05	0,16	0,11	< 0.05	0,08	0,06	0,12	< 0.05
Bi(ppm)	0,1	FUS-MS	< 0.1	< 0.1	0,7	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Th(ppm)	0,05	FUS-MS	6,65	0,93	2,75	0,92	2,03	1,32	1,09	0,65	0,73	1,97
U(ppm)	0,01	FUS-MS	0,43	0,57	1,12	0,36	0,68	0,41	0,72	0,38	0,47	0,68
V(ppm)	5	FUS-ICP	203	185	169	151	57	140	219	197	172	184
Cr(ppm)	20	FUS-MS	420	30	< 20	40	20	80	40	40	20	30
Co(ppm)	1	FUS-MS	35	69	> 1000	6	66	14	107	31	181	25
Ni(ppm)	20	FUS-MS	160	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Cu(ppm)	10	FUS-MS	120	140	70	40	< 10	< 10	370	10	1160	970
Zn(ppm)	30	FUS-MS	890	160	30	100	30	80	140	130	150	700
Ga(ppm)	1	FUS-MS	19	22	11	20	13	18	26	19	24	20
As(ppm)	5	FUS-MS	30	30	32	20	7	10	21	16	29	48
Sr(ppm)	2	FUS-ICP	279	352	70	205	197	327	426	237	274	402
Mo(ppm)	2	FUS-MS	< 2	12	20	2	7	< 2	11	< 2	15	< 2
Ag(ppm)	0,5	FUS-MS	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Sn(ppm)	1	FUS-MS	1	3	5	1	< 1	1	1	1	< 1	2
Ba(ppm)	3	FUS-ICP	2030	2013	1113	1581	4100	884	926	2233	1541	1263
Pb(ppm)	5	FUS-MS	8	< 5	9	< 5	< 5	< 5	< 5	< 5	< 5	52