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Abstract Recurrence properties of systems and associated sets of integers that suffice
for recurrence are classical objects in topological dynamics. We describe relations
between recurrence in different sorts of systems, studyways to formulate finite versions
of recurrence, and describe connections to combinatorial problems. In particular, we
show that sets of Bohr recurrence (meaning sets of recurrence for rotations) suffice
for recurrence in nilsystems. Additionally, we prove an extension of this property for
multiple recurrence in affine systems.
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1 Topological recurrence

Van der Waerden’s classic theorem [38] states that any finite coloring of the inte-
gers contains arbitrarily long monochromatic progressions. This has led to numerous
refinements and strengthenings, with some of these obtained via the deep connections
to topological dynamics introduced with the proof of Furstenberg and Weiss [20]. A
direction that has been studied extensively is what restrictions can be placed on the step
in the arithmetic progression, and in dynamics this corresponds to what sets arise as
sets of recurrence. Recurrence properties of systems and the associated sets of recur-
rence are classical notions both in topological dynamics and in additive combinatorics,
and have numerous classically equivalent characterizations.

Part of this article is a review of these connections, many of which are scattered
throughout the literature, andwe point out numerous open questions. Part of this article
is new, particularly connections to objects that have recently shown to play a role in
topological dynamics, such as nilsystems. For both single and multiple recurrence, the
class of nilsystems (see Sect. 4 for definitions) plays a natural role. This is reflected
in work in the ergodic context on multiple convergence along arithmetic progres-
sions [22]. In the topological context, a higher order regionally proximal relation was
introduced in [24], where the connection to nilsystems was made. Further deep con-
nections between these notions and that of topological recurrence were made in [26].
Nilsystems have also been used to construct explicit examples of sets of multiple
recurrence, for example in the work of [14,26]. Thus the relation between recurrence
and its connections with nilsystems have become a natural direction for further study.

Our main focus is how to formulate finite versions of recurrence related to van
der Waerden’s Theorem. One way is to fix a length for the progressions and then
characterize the sets of recurrence for this fixed length. We then study classifying
dynamical systems by their recurrence properties along arithmetic progressions of
this length, seeking necessary or sufficient conditions for such recurrence. In various
guises, this problem has been studied by dynamicists and we consider this point of
view in Sect. 2.

In particular,we study a question askedbyKatznelson [27]: if R is a set of recurrence
for all rotations, is it a set of recurrence for all minimal topological dynamical systems?
(See Sect. 3 for the definitions.) We give a partial answer to this question, showing
that it holds when one restricts to the class of nilsystems (Theorem 4.1) and its almost
proximal extensions. We then turn to the similar questions for multiple recurrence.
In this setting, we show (Theorem 5.13) that if R is a set of s-recurrence for s-step
affine nilsystems, then it is also a set of t-recurrence for all t ≥ s for the same class
of systems. A summary of these implications is given in Fig. 1.

A second way to finitize van der Waerden’s Theorem is by fixing the number of
colors and studying the associated sets of recurrence. This point of view has largely
been ignored by dynamicists and we take this approach in Sect. 7, where we mainly
pose further directions for study.
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Variations on topological recurrence 59

Fig. 1 The horizontal axis represents the step of the nilsystem and the vertical axis represents the level of
recurrence. The vertical implications are proven in Corollary 5.3 and counterexamples for vertical impli-
cations (with step greater than recurrence) are given by Example 5.11. Horizontal squiggly implications
are proven only for affine nilsystems in Theorem 5.13, while the full horizontal implications are proven in
Theorem 4.1. Counterexamples for the horizontal implications (with recurrence greater than step) follow
from Corollary 5.3 and Corollary 5.10

Throughout this article, we assume that (X, T ) denotes a (topological dynamical)
system, meaning that X is a compact metric space and T : X → X is a homeomor-
phism. While our primary focus is on topological recurrence, there are also measure
theoretic analogs, where the underlying space is a probability measure preserving
system (X,B, μ) endowed with a measurable, measure preserving transformation
T : X → X . Combinatorially, this corresponds to Szemerédi’s Theorem and the con-
nection to ergodic theory has been well studied. While the measure theoretic and
topological settings give rise to similar results, there are some differences and we point
out some of the known measure theoretic analogs and pose some related questions.

2 Variations on recurrence

2.1 Single recurrence

Throughout, we focus on minimal systems (X, T ), meaning that no proper closed
subset of X is T -invariant.

Definition 2.1 We say that R ⊂ N is a set of (topological) recurrence if for every
minimal system (X, T ) and every nonempty open setU ⊂ X , there exists n ∈ R such
that U ∩ T−nU �= ∅.
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60 B. Host et al.

Notation If x ∈ X and U ⊂ X is an open set, we write

N (x,U ) = {n ∈ N : T nx ∈ U }

for the return times of the point x to the neighborhood U and

N (U ) = {n ∈ N : U ∩ T−nU �= ∅}

for the return times of the set U to itself. In case of ambiguity, we include the trans-
formation in our notation and write NT (x,U ) or NT (U ).

Thus R ⊂ N is a set of recurrence if for every minimal system (X, T ) and every
nonempty open set U ⊂ X , there exists n ∈ R such that n ∈ N (U ).

We recall a standard definition:

Definition 2.2 A subset of the natural numbers is syndetic if the difference between
two consecutive elements is bounded.

We have the following classical equivalences (see, for example [3,4,18–20,31]).
We omit the proofs, as simple recurrence is a special case of the more general result
for multiple recurrence (Theorem 2.5):

Theorem 2.3 For a set R ⊂ N, the following are equivalent:

(i) R is a set of recurrence.
(ii) For every system (X, T ) and every open cover U = (U1, . . . ,Ur ) of X, there

exists j ∈ {1, · · · , r} and n ∈ R such that n ∈ N (Uj ).
(iii) For every finite partitionN = C1∪· · ·∪Cr ofN, there is some cell C j containing

two integers whose difference belongs to R.
(iv) Every syndetic subset E of N contains two elements whose difference belongs to

R.
(v) For every system (X, T ) and every ε > 0, there exist x ∈ X and n ∈ R such that

d(T nx, x) < ε.
(vi) For every system (X, T ), there exists x ∈ X such that

inf
n∈R

d(T nx, x) = 0.

(vii) For every minimal system (X, T ) there exists a dense Gδ set X0 ⊂ X such that
for every x ∈ X0,

inf
n∈R

d(T nx, x) = 0.

A set R satisfying characterization (iv) is referred to as (chromatically) intersective
in the combinatorics literature.

It is easy to check that the existence of some n ∈ R satisfying any of properties (i),
(ii) or (v) implies that there exist infinitely many n ∈ R with the same property.
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Variations on topological recurrence 61

Example 2.4 For S ⊂ N, write S − S = {s′ − s : s, s′ ∈ S, s′ > s}. Furstenberg [19]
showed that if S is infinite, then S−S is a set of recurrence and this follows immediately
from characterization (iii) in Theorem 2.3. More generally, it is easy to check that if
for every n ∈ N there exists Sn ⊂ N such that |Sn| = n and Sn − Sn ⊂ R, then R is a
set of recurrence.

We defer further examples of sets of recurrence until we have defined the more general
notion of multiple recurrence.

There is another equivalent formulation of recurrence due to Katznelson [27]. For
a set R ⊂ N, the Cayley graph GR is defined to be the graph whose vertices are the
natural numbers N and whose edges are the pairs {(m,m + n) : m ∈ N, n ∈ R}. The
chromatic number χ(R) is defined to be the smallest number of colors needed to color
GR such that any two vertices connected by an edge have distinct colors. Katznelson
showed that characterization (iii) of Theorem 2.3 for a set of recurrence R is equivalent
to the associated Cayley graph GR having infinite chromatic number.

For the analogous notion of a set of measure theoretic recurrence, where the under-
lying space is a probability measure space and the transformation is a measurable,
measure preserving transformation, we have a similar list of equivalent characteriza-
tions, where the role of a finite partition ofN is played by a set of positive upper density.
As every minimal system (X, T ) admits a T -invariant measure with full support, a set
of measurable recurrence is also a set of topological recurrence. However, an intricate
example of Kriz [28] shows that the converse does not hold.

2.2 Multiple recurrence

Most of the formulations of single recurrence generalize to multiple recurrence:

Notation For � ≥ 1, we write

N �(U ) = {n ∈ N : U ∩ T−nU ∩ T−2nU ∩ · · · ∩ T−�nU �= ∅}

for the return times of the set U to itself along a progression of length � + 1. In case
of ambiguity, we include the transformation in our notation and write N �

T (U ).

Theorem 2.5 Let � ≥ 1 be an integer. For a set R ⊂ N, the following properties are
equivalent:

(i) For every minimal system (X, T ) and every nonempty open set U ⊂ X, there
exists n ∈ R such that n ∈ N �(U ).

(ii) For every system (X, T ) and every open cover U = (U1, . . . ,Ur ) of X, there
exists j ∈ {1, . . . , r} and n ∈ R such that n ∈ N �(Uj ).

(iii) For every finite partition N = C1 ∪ · · · ∪ Cr of N, there is some cell C j that
contains an arithmetic progression of length � + 1 whose common difference
belongs to R.

(iv) Every syndetic set E ⊂ N contains an arithmetic progression of length � + 1
whose common difference belongs to R.
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(v) For every system (X, T ) and every ε > 0, there exist x ∈ X and n ∈ R such
that

sup
1≤ j≤�

d(T jnx, x) < ε.

(vi) For every system (X, T ), there exists x ∈ X such that

inf
n∈R

sup
1≤ j≤�

d(T jnx, x) = 0.

(vii) For every minimal system (X, T ), there exists a dense Gδ-set X0 ⊂ X such that
for every x ∈ X0,

inf
n∈R

sup
1≤ j≤�

d(T jnx, x) = 0.

Definition 2.6 A set satisfying any of the equivalent properties in Theorem 2.5 is
called a set of �-recurrence; in particular, a set of 1-recurrence is a set of recurrence.
A set of �-recurrence for all � ≥ 1 is a called a set of multiple recurrence.

When we want to emphasize that we are discussing single recurrence, instead of just
writing a set of recurrence, we say a set of single or simple recurrence.

The proofs of these equivalences are well known and appear scattered in the lit-
erature (see, for example [3,4,7,9,12,15,18–20,30,31]) and so we only include brief
sketches of the proofs.

Proof (i) �⇒ (vii) For ε > 0, define �ε to be

{x ∈ X : there exists n ∈ R such that d(T nx, x) < ε, . . . , d(T �nx, x) < ε}.

Then �ε is an open subset of X . Let U ⊂ X be an open ball of radius δ < ε/2.
By hypothesis, there exists n ∈ R such that U ∩ T−nU ∩ · · · ∩ T−�nU �= ∅. This
intersection is included in �ε and so �ε is dense in X . Then X0 = ⋂

m∈N �1/m is a
Gδ set that satisfies the statement.

(vii) �⇒ (vi) This is immediate by applying (vii) to a minimal closed invariant
subset of X .

(vi) �⇒ (v) Obvious.
(v) �⇒ (ii) Let ε be the Lebesgue number of the cover U , meaning that any open

ball of radius ε is contained in some element of this cover. Let x ∈ X and n ∈ R be
associated to ε as in (v). Let j ∈ {1, . . . , r} be such that the ball of radius ε around
x is included in Uj . Then all of the points x, T nx, . . . , T �nx belong to this ball and
thus to Uj .

(ii) �⇒ (iii). This is a standard application of the topological version of Fursten-
berg’s Correspondence Principle. Given the partition N = C1 ∪ · · · ∪Cr , there exist a
system (X, T ), a partition X = U1 ∪ · · ·∪Ur of X into clopen sets, and a point x ∈ X
such that for every n ∈ N, we have T nx ∈ Uj if and only if n ∈ C j .
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(iii) �⇒ (iv) Choose r ∈ N such that (E − 1) ∪ (E − 2) ∪ · · · ∪ (E − r) ⊃ N and
then chose a partition N = C1 ∪ · · · ∪ Cr such that C j ⊂ E − j for j ∈ {1, . . . , r}.

(iv) �⇒ (i) Choose x ∈ X and set E = {n : T nx ∈ U }. ��
As for single recurrence, the existence of somen ∈ R satisfying anyof properties (i),

(ii), or (v) immediately implies the existence of infinitely many n ∈ R with the same
property.

It is easy to verify that a set of (single or multiple) recurrence must satisfy several
necessary conditions: itmust contain infinitelymanymultiples of every positive integer
(consider the powers of the transformation) and it can not be lacunary (by constructing
an irrational rotation that fails to recur). Furthermore, the family of sets of recurrence
has the Ramsey property (see Sect. 6).

The classic theorem of van derWaerden shows thatN is a set of multiple recurrence.
Furstenberg [19, Theorem 2.16] shows that N (x,U ) is a set of multiple recurrence
for any open set U and point x ∈ U . This is also a particular case of a more general
theorem of Huang et al. [26], reviewed in Theorem 5.8.

There are many other known examples of sets of multiple recurrence: any IP-set (a
set which contains all the finite sums of an infinite set of integers, see Definition 3.9),
the set {p(n) : n ∈ N}, where p(n) is any non-constant polynomial with p(0) = 0, the
shifted primes {p−1 : p is prime} and {p+1 : p is prime}, as well as other examples
in the literature (see for example [4–6,13,20,37]).

There are also examples in the literature that show that sets ofmultiple recurrence are
different than sets of single recurrence. For example, Furstenberg [19] gives an example
of a set of single recurrence that is not a set of double recurrence and Frantzikinakis
et al. [14] give examples of sets of �-recurrence that are not sets of (�+1)-recurrence.
We give a more general characterization of such sets in Sect. 5.2. We note that all of
the examples constructed in this way are large, in the sense that they have positive
density.

However, there are characterizations of single recurrence for which we do not have
a multiple analog:

Question 2.7 Is there an equivalent characterization of multiple recurrence anal-
ogous to Katznelson’s characterization in terms of the chromatic number of an
associated graph? For example, is being a set of multiple recurrence equivalent to
infinite chromatic number for some associated hypergraph?

Along similar lines, we do not know of a simple construction, like that of the
difference set, that suffices to produce multiple recurrence:

Question 2.8 Is there a sufficient condition, analogous to that given in Example 2.4,
that suffices for being a set of multiple recurrence?

2.3 Simultaneous recurrence

More generally, we can study recurrence for commuting transformations and not just
powers of a single transformation:
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Definition 2.9 The set R ⊂ N is a set of �-simultaneous recurrence if for any compact
metric space X endowed with � commuting homeomorphisms T1, . . . , T� : X → X
such that the system (X, T1, . . . , T�) is minimal and any nonempty open set U ⊂ X ,
there exists n ∈ R such that

U ∩ T−n
1 U ∩ · · · ∩ T−n

� U �= ∅.

A set of �-simultaneous recurrence for all � ≥ 1 is a called a set of simultaneous
recurrence.

Taking T1 = T, T2 = T 2, . . . , T� = T �, it is obvious that any set of simultaneous
recurrence is also a set of multiple recurrence. We do not know if the converse holds:

Question 2.10 Does there exist a set of multiple recurrence that is not a set of simul-
taneous recurrence?

All of the examples of sets of multiple recurrence given in Sect. 2.2 are also known
to be sets of simultaneous recurrence.

All parts of Theorem 2.5 have natural analogs for simultaneous recurrence. To
ease the notations, we restrict ourselves to � = 2. It is easy to check that the analog
of condition (iii) holds: namely, R is a set of recurrence if for every partition N =
C1 ∪ · · · ∪Cr , there exists x, y ∈ N and n ∈ R such that (x, y), (x + n, y), (x, y + n)

all lie in the same cell C j for some j ∈ {1, . . . , r}. One can give similar formulations
for the other equivalences in Theorem 2.5 for simultaneous recurrence.

Unsurprisingly, we do not know how to address the analogs of Questions 2.7 and 2.8
for simultaneous recurrence.

2.4 Pointwise recurrence

Definition 2.11 A set R ⊂ N is a set of pointwise recurrence if for every minimal
system and every x ∈ X ,

inf
n∈R

d(T nx, x) = 0.

The analog for multiple pointwise recurrence is not defined, as one can construct an
example (such as using symbolic dynamics) of a minimal system (X, T ), as open set
U ⊂ X , and x ∈ U such that N 2(x,U ) = ∅. In particular, N is not a set of pointwise
multiple recurrence. However, in a minimal system, there is always a dense set of
points that are multiply recurrent.

Recall that by characterization (vii) of Theorem 2.3, if R is a set of recurrence
then this property holds for x in a dense Gδ of X . Comparing the definition of point-
wise recurrence with characterization (vi) of recurrence in Theorem 2.3 makes this
property seem natural. However, being a set of pointwise recurrence turns out to be a
significantly stronger assumption. Sárkőzy [34] (using number theoretic methods) and
Furstenberg [19] (using dynamics) showed that the set of squares is a set of recurrence,
but Pavlov [33] showed that it is not a set of pointwise recurrence. Similarly, it follows
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Variations on topological recurrence 65

from results in Pavlov that if one takes S to be a sufficiently fast growing sequence,
then S − S is not a set of pointwise recurrence (but as noted in Example 2.4, it is a set
of recurrence).

Notation For t ∈ R, we use ‖t‖ to denote the distance of t to the nearest integer. For
t ∈ T = R/Z, ‖t‖ denotes the distance to 0.

Example 2.12 One can check directly that for every α ∈ T, the set R = {n ∈
N : ‖n2α‖ ≥ 1/4} is not a set of pointwise recurrence by using an affine nilsys-
tem (see Example 5.11). In [14], the authors show, in particular, that R is a set of
measurable recurrence, and thus also of recurrence. We briefly outline their method.
If α is irrational, by Weyl equidistribution, for every non-zero t ∈ [0, 1), the averages

1

N

N∑

n=1

e2π ikn
2αe2π int

converge to 0 as N → ∞ for every non-zero integer k. It follows that the averages

1

N

N∑

n=1

1I (n2α)e2π int ,

where I = [1/4, 3/4], converge to 0 for t �= 0 when N → ∞ and that the limit is
1/2 when t = 0. By the spectral theorem, it follows that for any ergodic measure
preserving system (X,B, μ, T ) and A ∈ B with μ(A) > 0,

1

N

N∑

n=1

1I (n2α)μ(A ∩ T n A) → 1

2
μ(A)2,

and the positivity of the limit implies the recurrence.
A generalization of this example is given in Corollary 5.10.

We ask if there exist equivalent characterizations of pointwise recurrence:

Question 2.13 Is there a combinatorial analog of pointwise recurrence? Are there
sufficient conditions for being a set of pointwise recurrence?

While simple recurrence does not imply multiple recurrence (see further discussion
in Sect. 5.2), this may hold under the stronger notion of pointwise recurrence:

Question 2.14 Does pointwise recurrence imply multiple recurrence?

We give a partial answer to this question in Sect. 3.4.

3 Recurrence for families of systems

3.1 Questions for families of systems

We define the notion of a set of �-recurrence for a given system in the obvious way:
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Definition 3.1 If F is a family of systems, a set R ⊂ N is a set of recurrence for the
family F if for any minimal system (X, T ) in the family F and any nonempty open
set U ⊂ X , there exists n ∈ R such that U ∩ T−nU �= ∅. The notions of a set of
�-recurrence and a set of multiple recurrence for the family F are defined in the same
way.

We can take the family F to be rotations, nilsystems, distal systems, or any other
class of systems. While it is obvious that a set of recurrence in some class is a set of
recurrence for a sub-class, we are interested in the converse. Broadly stated, we ask:
for which classes of systems does recurrence or multiple recurrence imply the same
property in some larger class?

Furthermore, we are interested in relations between the various notions of recur-
rence.We have different types of recurrence, including single, multiple, and pointwise
recurrence, all of which are distinct notions. For which classes of systems do these
properties coincide?

We study these questions for distal systems in Sect. 3.4 and for nilsystems in Sects. 4
and 5.

While the equivalent formulations of multiple recurrence that are dynamical in
nature carry over for the restriction to particular families of systems, we do not have
combinatorial equivalences for classes of systems, and it is natural to ask if there are
combinatorial versions of recurrence for particular classes of systems.

3.2 Bohr recurrence

We start with the simplest types of systems:

Definition 3.2 A set of recurrence for minimal translations on a compact abelian
group is called a set of Bohr recurrence.

Thus R is a set of Bohr recurrence if for all k ∈ N, all α1, . . . , αk ∈ T, and all ε > 0,
there exists n ∈ R such that ‖α1n‖ < ε, . . . , ‖αkn‖ < ε. It follows immediately that
there are infinitely many n ∈ R satisfying this condition.

We can also define a set of Bohr recurrence in terms of Bohr0 sets:

Definition 3.3 A set E ⊂ N is a Bohr0 set if it contains a set of integers of the form

{n ∈ N : ‖α1n‖ < ε, . . . , ‖αkn‖ < ε},

where k ∈ N, α1, . . . , αk ∈ T and ε > 0. The minimum value of k such that this
occurs is called the dimension of the Bohr0 set.

It follows immediately from the definitions that a set is a set of Bohr recurrence if
and only if it is a Bohr∗0 set, meaning it has nonempty intersection with any Bohr0 set.
Thus a set of Bohr recurrence is a set of multiple pointwise recurrence for translations
on a compact abelian group, with no assumption of minimality required.

A well known question, asked in particular by Katznelson (see also the discussion
in [36]) is:
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Question 3.4 (Katznelson [27]) Is a set of Bohr recurrence a set of recurrence?

This question leads us to multiple sub-questions about what types of extensions
preserve sets of recurrence and of multiple recurrence.

3.3 Recurrence and proximal extensions

We start with the classic notion of a proximal extension (see, for example, [1]):

Definition 3.5 Let (X, T ) be a system. The points x1, x2 ∈ X are proximal if

inf
n∈N

d(T nx1, T
nx2) = 0.

A set F ⊂ X is proximal if every pair of points in F is proximal.
We say that the factor map π : (X, T ) → (Y, S) is a proximal extension if the fiber

π−1({y0}) of every y0 ∈ Y is proximal.

In fact, this property holds under weaker assumptions:

Claim 3.6 Let π : (X, T ) → (Y, S) be a factor map and assume that (Y, S) is minimal
and that some y0 ∈ Y has a proximal fiber. Then π is a proximal extension.

Proof Assume that the fiber of y0 ∈ Y is proximal. For x, x ′ ∈ X , let δ(x, x ′) =
infn∈N d(T nx, T nx ′) and for y ∈ Y , let

φ(y) = sup
x,x ′∈π−1({y})

δ(x, x ′).

Then δ is an upper semicontinuous function on X × X and satisfies
δ(T x, T x ′) ≥ δ(x, x ′) for all x, x ′ ∈ X . Thus the function φ on Y is upper semi-
continuous and satisfies φ(Sy) ≥ φ(y). Since φ(y0) = 0, we have that φ(S−n y0) = 0
for every n ∈ N. By minimality of (Y, S), we have that φ(y) = 0 for every y ∈ Y .

��
Properties similar to the following lemma appear in different places in the literature.

We provide a proof for completeness.

Lemma 3.7 Let π : (X, T ) → (Y, S) be a proximal extension between minimal sys-
tems. Then for every � ≥ 1 and all x0, . . . , x� lying in the same fiber, there exists a
sequence of integers (ni ) such that each of the sequences (T ni x0),…, (T ni x�) converge
to x0.

Proof We proceed by induction on �. Assume that � = 1, and let y0 ∈ Y , x0, x1 ∈
π−1({y0}), and ε > 0. By proximality, there exists a sequence of integers (ni ) such that
the sequences (T ni x0) and (T ni x1) converge to the same point a ∈ X . By minimality
of (X, T ), there existsm ∈ Nwith d(Tma, x0) < ε/2. By continuity of Tm , for every
sufficiently large i and k = 0, 1, we have d(T ni+mxk, x0) < ε. The result follows for
� = 1.

Assume that � > 1 and that the result holds with � − 1 substituted for �. Let
y0 ∈ Y , x0, . . . , x� ∈ π−1({y0}), and ε > 0. By the induction hypothesis, there exists
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68 B. Host et al.

a sequence of integers (ni ) such that the sequences (T ni xk), 0 ≤ k ≤ � − 1, converge
to x0. Passing to a subsequence, we can assume that the sequence (T ni x�) converge
to a point a ∈ X . For every i , we have π(T ni x�) = π(T ni x0) and, passing to the
limit, π(a) = π(x0) = y0. By applying the result for � = 1 to the points x0 and a, we
obtain the existence of m ∈ N with d(Tmx0, x0) < ε/2 and d(Tma, x0) < ε/2. By
continuity of Tm , for every sufficiently large i and every k with 0 ≤ k ≤ �, we have
d(T ni+mxk, x0) < ε, completing the proof. ��
Proposition 3.8 Let π : (X, T ) → (Y, S) be a proximal extension between minimal
systems, � ≥ 1, and R be a set of �-recurrence for (Y, S). Then R is a set of �-recurrence
for (X, T ).

In particular, this proposition applies to almost 1-1 extensions and asymptotic exten-
sions between minimal systems. For example, a set of Bohr recurrence is a set of
multiple recurrence for Sturmian systems, as Sturmian systems are almost 1-1 exten-
sions of rotations.

Proof Let ε > 0. By characterization (vi) in Theorem 2.5 of sets of �-recurrence,
there exists y0 ∈ Y such that

inf
n∈R

sup
1≤k≤�

d(Skn y0, y0) = 0

and thus there exists a sequence (ni ) in R such that Skni y0 → y0 for 1 ≤ k ≤ �.
Let x0 ∈ X with π(x0) = y0. Passing to a subsequence, we can assume that

for1 ≤ k ≤ �, the sequence (T kni x0) converges in X.

Letting xk denote the limit of this sequence, we have that π(xk) = y0
The points x0, x1, . . . , x� belong to the fiber π−1({y0}) and this fiber is proximal

by hypothesis. By Lemma 3.7, there exists a sequence of integers (m j ) such that the
sequences (Tm j xk), 0 ≤ k ≤ �, converge to x0.

Choose j such that

d(Tm j xk, x0) < ε for 0 ≤ k ≤ �.

Let δ > 0 be such that for x, x ′ ∈ X , d(x, x ′) < δ implies d(Tm j x, Tm j x ′) < ε and let
i be such that d(T kni x0, xk) < δ for 1 ≤ k ≤ �. We have that d(Tm j+kni x0, Tm j xk) <

ε and d(Tm j+kni x0, x0) < 2ε.
Letting z = Tm j x0, we have that d(x0, z) < ε and d(T kni z, x0) < 2ε for 1 ≤

k ≤ �. By characterization (v) in Theorem 2.5 restricted to such systems, R is a set of
�-recurrence for X . ��

Recall that π : (X, T ) → (Y, S) is a distal extension if all x0 �= x1 ∈ X in the
same fiber satisfy infn d(T nx0, T nx1) > 0. Proposition 3.8 does not generalize to
distal extensions (see the remarks after Corollary 5.10), even for simple recurrence,
as can be seen by taking an extension of the trivial system. However, for the class of
nilsystems, this is possible (Theorem 4.1).
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3.4 Pointwise recurrence in a distal system

Recurrence forces structure in return times and this is captured in the notion of IP-sets
(see [4,19] for background):

Definition 3.9 An IP-set is a set of integers that contains an infinite sequence of
integers (pi )i∈N, thegenerators, and all thefinite sums

∑k
j=1 pi j ,where the summands

are distinct generators and k = 1, 2, . . .. An IP∗-set is a set of integers that has
nontrivial intersection with every IP-set. A point x ∈ X is said to be IP∗-recurrent if
for every open neighborhood U of x , {n ∈ N : T nx ∈ U } is an IP∗-set.

It is easy to check that the return times of any recurrent point contains an IP-
set and conversely that for any IP-set, there is a dynamical system and a recurrent
point whose return times contain this IP-set. Furthermore, Furstenberg [19] shows
that pointwise recurrence and IP-sets are closely related: for a distal system, every
point is IP∗-recurrent. Thus:

Proposition 3.10 Every IP-set is a set of pointwise recurrence for distal systems.

Question 3.11 Is it true that every set of pointwise recurrence for distal systems is an
IP-set?

We believe that there should be a counterexample.
In a distal system, pointwise recurrence implies the multiple version:

Proposition 3.12 A set of pointwise recurrence for distal systems is a set of pointwise
multiple recurrence for distal systems.

Proof Let � ≥ 1, T̃ denote the transformation T × T 2 × · · · × T � of X�, and X̃ the
closed orbit of the point x̃ = (x, x, . . . , x) ∈ X� under T̃ . Then (X̃ , T̃ ) is transitive
and distal, and so it is minimal.

Since R is a set of pointwise recurrence, for every ε > 0 there exists n ∈ R with
d̃(T̃ n x̃, x̃) < ε, that is, d(T nx, x) < ε, …, d(T �nx, x) < ε. ��

More generally, the same result holds for an almost distal system, meaning a system
inwhich every pair of points is either asymptotic (in this context, one sided asymptotic)
or distal (see [8, Theorem 3.10] for more on almost distal systems).

It is easy to check that if R is a set of pointwise recurrence for a distal minimal
system, then we have a seemingly stronger property. Let (X1, T1), . . . , (Xk, Tk) be
distal systems and for 1 ≤ j ≤ k, letUj be a nonempty, open subset of X j . Then there
exist n ∈ R such that T−n

j U j ∩Uj �= ∅ for j = 1, . . . , k. To see this, choose x j ∈ Uj

for each j and define x = (x1, . . . , xk) ∈ X1 × · · · × Xk and let T = T1 × · · · × Tk .
Proceeding as in the proof of Proposition 3.12, we have the statement.

4 Recurrence in nilsystems

4.1 Nilsystems

Let G be a nilpotent Lie group. The commutator of a, b ∈ G is defined to be [a, b] =
aba−1b−1 and for A, B ⊂ G, we let [A, B] denote the group spanned by {[a, b] : a ∈
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A, b ∈ B}. The commutator subgroups G j ofG are defined inductively, withG1 = G
and for integers j ≥ 1,we haveG j+1 = [G,G j ]. For an integer s ≥ 1, ifGs+1 = {1G}
then G is said to be s-step nilpotent.

Let s ≥ 1 be an integer, G be an s-step nilpotent Lie group, and 
 be a discrete
cocompact subgroup of G. Then the compact nilmanifold X = G/
 is an s-step
nilmanifold. Viewing elements of X as points rather than congruence classes, we
write eX for the image of the identity 1G in X and write (g, x) �→ g · x for the natural
action of G on X . Let T : X → X be the transformation x �→ τ · x for some fixed
element τ ∈ G. Then (X, T ) is an s-step nilsystem. Thus a 1-step nilsystem is exactly
a translation on a compact abelian group.

We note that we do not assume thatG is connected, as this excludes some interesting
examples, such as the affine nilsystems defined in Sect. 5.3.

In the next theorem, which is themain result of this section, we answer Question 3.4
for the class of nilsystems:

Theorem 4.1 Let R ⊂ N be a set of Bohr recurrence. Then for every integer s ≥ 1,
R is a set of recurrence for minimal s-step nilsystems.

It immediately follows that the result also holds for inverse limits of nilsystems, and
it follows for proximal extensions of these systems by Proposition 3.8. Particular
examples are Sturmian or Toeplitz systems, but also more complicated constructions
such as almost one to one extensions of infinite-step nilsystems (see [11]).

The rest of this section is devoted to two proofs of Theorem 4.1. The first one
uses measure theoretic arguments; it is shorter than the second one but unfortunately
requires an additional hypothesis. The secondproof ismore technical and is completely
topological, and has the possible advantage that it may be generalized. However, to
avoid significant technical complications, we do not cover the case s = 2 with the Lie
group G not connected (this case is covered by the measure theoretic proof).

We start by recalling some properties of nilsystems, referring to [2,29,32] for
background and further details. Let (X = G/
, T ) be an s-step nilsystem. Henceforth
we assume that (X, T ) is minimal.

Let dG denote a right invariant distance on the group G that defines its topology,
and assume that X is endowed with the quotient distance, which we denote as dX .

For j = 1, . . . , s, we have that G j and G j
 are closed subgroups of G. Let G0
denote the connected component of 1G in G. Then G0 is an open, normal subgroup of
G. By the assumption of minimality, we can assume that G = 〈G0, τ 〉 and we make
this assumption in the sequel. This in turn implies that the commutator group G2 is
connected and included in G0.

Set Z = G/G2
. Then Z is a compact abelian group. The natural projection
X → Z is a factor map of (X, T ) to Z , endowed with the translation by the image α

of τ in Z , and the system Z endowed with this translation is minimal.

4.2 Measure theoretic proof of Theorem 4.1 under an additional assumption

Maintaining the same notation, we continue to assume that the s-step nilsystem (X, T )

is minimal. Thus it is uniquely ergodic and its invariant measure is the Haar measure
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μ of X . Let mZ denote the Haar measure of Z = G/G2
. Recall that α is the image
of τ in Z and let S be the translation by α on Z . Then π : (X, μ, T ) → (Z ,mZ , S)

is a measure theoretic factor map, and more precisely (Z ,mZ , S) is the Kronecker
factor of (X, μ, T ). We use additive notation in Z , and assume that this abelian group
is endowed with a translation invariant distance dZ defining its topology.

The following result is proven for connected G in [2], using the theory of represen-
tations of nilpotent Lie groups. An elementary proof for the case of 2-step nilsystems
is given in [25].

Theorem ([2,25]) If G is connected or if s = 2, then the spectral measure of any
function f ∈ L2(μ) with E( f | Z) = 0 is absolutely continuous.

This means that if E( f | Z) = 0, then the finite measure σ f on T defined by

σ̂ f (n) =
∫

T n f · f dμ for n ∈ Z

is absolutely continuous with respect to Lebesgue measure on T. This implies in
particular that σ̂ f (n) → 0 when n → +∞.

Proposition 4.2 Let (X = G/
, T ) be a minimal s-step nilsystem. The statement
of Theorem 4.1 holds if G is connected, as well as for s = 2 without any further
assumptions.

Proof Let R ⊂ N be a set of Bohr recurrence and let U be a nonempty, open subset
of X . We want to show that there exists n ∈ R with U ∩ T−nU �= ∅. It suffices to
show that this set has positive measure.

By minimality of (X, T ), the Haar measure μ has full topological support and thus
μ(U ) > 0. Set ε = μ(U )2/4. Define

g = E(1U |Z) and f = 1U − g

and note that 1 ≥ ‖g‖L2(mZ ) ≥ ‖g‖L1(mZ ) = μ(U ). We have E( f | Z) = 0 and thus
there exists n0 ∈ N such that

∣
∣
∣
∣

∫

T n f · f dμ

∣
∣
∣
∣ < ε for every n ≥ n0.

On the other hand, writing gt (z) = g(z + t) for t ∈ Z , there exists δ > 0 such that
‖gt − g‖L2(mZ ) < ε for every t ∈ Z with dZ (t, 0) < δ. In particular,

‖Sng − g‖L2(mZ ) < ε for every n such that dZ (nα, 0) < δ.

Since R is a set of Bohr recurrence, there exists n ∈ R with n ≥ n0 and dZ (nα, 0) < δ.
For this value of n, since E(T n1U |Z) = Sng, we have
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μ(U ∩ T−nU ) =
∫

f · T n f dμ +
∫

g · Sng dmZ

≥ − ε + ‖g‖2L2(mZ )
− ‖g‖L2(mZ )‖Sng − g‖L2(mZ )

≥ μ(U )2 − 2ε ≥ μ(U )2/2 > 0.

��
4.3 Topological proof of Theorem 4.1 (for s ≥ 3)

We start by recalling some further facts about nilsystems (again, [2,29,32] are sources
for background). Throughout this section, we assume that either s ≥ 3 or G is con-
nected. Though it is possible to extend the topological proof to cover this case as well,
it adds significant complications that we prefer to avoid, particularly since the measure
theoretic proof gives a simple proof for this case.

Let (X, T ) be a minimal s-step nilsystem, where T is the translation by τ ∈ G.
Recall that we assume that G = 〈G0, τ 〉. If needed, we can represent this system as
a quotient G/
 where G0 is simply connected and thus we can assume this property
without loss of generality. Set 
0 = 
 ∩ G0. In this case, G0 can be endowed with
a Mal’cev basis. Using this basis, we can identify G0/G2 with R

p for some integer
p ∈ N, such that the subgroup 
0/(
0 ∩ G2) corresponds to Z

p, and thus G0/G2
0
is identified with T

p. Furthermore, the abelian group Gs can be identified with R
r

for some r ∈ N, such that 
 ∩ Gs corresponds to Z
r , inducing the identification of

Gs/(
 ∩ Gs) and T
r . Finally, Gs−1/Gs is an abelian group, and is nontrivial if X is

not an (s − 2)-step nilsystem. In this case, this group can be identified with R
q for

some q ∈ N, and such that the subgroup (
 ∩ Gs−1)/(
 ∩ Gs) corresponds to Zq .
Moreover, the distance dG on G can be chosen such that these identifications are

isometries when the quotient groups are endowed with the quotient distances and Rp,
T
p,Rr ,Tr andRq are endowedwith theEuclideandistances.Wecaution the reader that

under this identification, groups such as Tp and Rr are written with additive notation,
while groups such as G0/G j
 and Gs are written with multiplicative notation.

Assume now that s ≥ 2. Define

G̃ := G/Gs, 
̃ := 
/(
 ∩ Gs), and X̃ := G̃/
̃. (1)

Then G̃ is an (s − 1)-step nilpotent group, 
̃ is a discrete cocompact subgroup, X̃
is an (s − 1)-step nilmanifold, and the quotient map G → G̃ induces a projection
π : X → X̃ . Thus we can view X̃ as the quotient of X under the action of Gs . Let τ̃ be
the image of τ in G̃ and T̃ be the translation by τ̃ on X̃ . Then (X̃ , τ̃ ) is an (s − 1)-step
nilsystem and π : X → X̃ is a factor map.

Maintaining this notation:

Lemma 4.3 Let (X, T ) be a minimal s-step nilsystem and assume that X is connected
and that G0 is simply connected. Assume furthermore that either s ≥ 3 or that G is
connected. Then for every ε > 0, there exists C := C(ε) such that for every w ∈ Gs,
there exist h ∈ Gs−1 and γ ∈ 
 ∩ Gs with

dG(h, 1G) < C; dG([h, τ ], wγ ) < ε.
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Proof Since X is connected, it follows that G = 〈G0, 
〉 and there exists τ0 ∈ G0
and γ0 ∈ 
 such that τ = τ0γ0. (If G is connected, we have τ0 = τ and γ0 = 1G .)
From the assumption that s ≥ 3 or G is connected, we have that Gs−1 is connected.

Recall that 
0 = 
 ∩G0. Since G = 〈G0, τ 〉, we have that G = 〈G0, γ0〉 and thus

 = 〈
0, γ0〉.

Recall also that Z := G/(G2
) = G0/(G2
0) = T
p, and that the image α of τ

in G/(G2
) is an ergodic element. Let β be the projection of τ0 to G0/G2 = R
p.

Then the projection of β in G0/(G2
0) is equal to the projection α of τ in G/(G2
).
It follows that the coordinates (β1, . . . , βp) of β are rationally independent.

Let πs : Gs → Gs/(
 ∩ Gs) be the quotient map. We claim:
Claim The map f : h �→ πs([h, τ ]) takes Gs−1 to a dense subset of Gs/(
 ∩ Gs).

Assuming the claim, there exists C > 0 such that the image under f of the ball
BG(1G ,C)∩Gs−1 is ε-dense in Gs/(
 ∩Gs), and this is the statement of the lemma.

To prove the claim, note that the map g �→ [g, γ0] induces a group homomorphism
F : Gs−1/Gs → Gs . Using additive notation and writing in coordinates,

for 1 ≤ i ≤ r,
(
F(x)

)
i =

q∑

j=1

Fi, j x j

and, since [Gs−1 ∩ 
, γ0] ⊂ Gs ∩ 
, F maps (Gs−1 ∩ 
)/(Gs ∩ 
) to Gs ∩ 
, we
have that the coefficients Fi, j are integers.

The commutatormapGs−1×G0→Gs induces a bihomomorphism� : Gs−1/Gs×
G0/G2 → Gs . Using additive notation and writing in coordinates,

for 1 ≤ i ≤ r,
(
�(x, y)

)
i =

q∑

j=1

p∑

k=1

�i, j,k x j yk .

Since the commutator map takes (Gs−1 ∩ 
) × 
0 to Gs ∩ 
, it follows that the
coefficients �i, j,k are integers.

We remark that for g ∈ Gs−1,wehave that [g, τ ] = [g, τ0].[g, γ0]. The commutator
map g �→ [g, τ ] : Gs−1 → Gs induces a homomorphism � : Gs−1/Gs → Gs , with
(using multiplicative notation) �(x) = �(x, τ )F(x). In coordinates (using additive
notation),

for 1 ≤ i ≤ r,
(
�(x)

)
i =

q∑

j=1

(
Fi, j +

p∑

k=1

�i, j,kβk
)
x j .

Let π : Gs �→ Gs/(
 ∩ Gs) = T
r . We have that f (Gs−1) is the range of π ◦ �. If

this range is not dense in T
r , then it is included in a proper subtorus, and there exist

integers λ1, . . . , λr , not all equal to 0, such that the range of� is included in the group
H defined by

z ∈ H if and only if
r∑

i=1

λi zi ∈ Z.
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In coordinates,

for every x ∈ R
q ,

r∑

i=1

λi

q∑

j=1

(

Fi, j +
p∑

k=1

�i, j,kβk

)

x j ∈ Z

and thus

for 1 ≤ j ≤ q,

r∑

i=1

λi

(

Fi, j +
p∑

k=1

�i, j,kβk

)

= 0. (2)

Since the coefficients Fi, j are integers,

for 1 ≤ j ≤ q,

p∑

k=1

(
r∑

i=1

λi�i, j,k

)

βk ∈ Z.

Since the coordinates βk of β are rationally independent, it follows that

for 1 ≤ j ≤ q and 1 ≤ k ≤ p,
r∑

i=1

λi�i, j,k = 0. (3)

Thismeans that the rangeof� is included in the proper closed subgroup H ofGs = R
r ,

and thus [G0,Gs−1] ⊂ H .
Furthermore, plugging (3) into (2), we have that

for 1 ≤ j ≤ q,

r∑

i=1

λi Fi, j = 0.

This means that the range of F is included in H , that is, [γ0,Gs−1] ⊂ H .
AsG = 〈
0,G0〉 and for every x ∈ Gs−1 themap g �→ [g, x] is a group homomor-

phism, then [G,Gs−1] = [G0,Gs−1].[γ0,Gs−1] and [G,Gs−1] ⊂ H , a contradiction.
��

We use this lemma to complete the topological proof:

Proof of Theorem 4.1 We proceed by induction on s. If s = 1, there is nothing to
prove and for s = 2 this follows from Proposition 4.2. Henceforth we assume that
s ≥ 3 and that the statement holds for (s − 1)-step nilsystems. Let R be a set of
Bohr recurrence and let (X = G/
, T ) be a minimal s-step nilsystem that is not an
(s − 1)-step nilsystem; we maintain the notation used in Lemma 4.3.

Let X0 denote the connected component of eX in X . Then there exists k ∈ N such
that T k X0 = X0, and the system (X0, T k) is a minimal s-step nilsystem. On the other
hand, the set R0 = {n ∈ N : kn ∈ R} is a set of Bohr recurrence. Substituting X0 for
X and R0 for R, we reduce to the case that X is connected. We can assume without
loss that G0 is simply connected.
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LetU be a nonempty open subset of X ; wewant to show that there exists n ∈ R such
that U ∩ T−nU �= ∅. Without loss, we can assume that U is the open ball B(eX , 3ε)
centered at eX and of radius 3ε for some ε > 0.

Let π : X → X̃ be the factor map defined just after (1). Since (X̃ , T̃ ) is an (s − 1)-
step nilsystem, it follows from the induction hypothesis that there exist arbitrarily large
n ∈ R with π−1

(
B(eX , ε)

)∩ T̃−nπ−1
(
B(eX , ε)

) �= ∅. It follows that for these values
of n, there exist x ∈ X and v ∈ Gs with dX (x, eX ) < ε and dX (T nx, v · eX ) < ε.
Lifting x to G, we obtain g ∈ G and γ ∈ 
 with

dG(g, 1G) < ε and dG(τ ng, vγ ) < ε.

We claim that it suffices to show that if n is sufficiently large, there exists h ∈ Gs−1
and θ ∈ Gs ∩ 
 such that

dG(h, 1G) < ε and dG([h−1, τ n], v−1θ) < ε. (4)

To see this, writing y = h · x , we have that y is the projection of hg in X and that

dX (y, eX ) ≤ dG(hg, 1G) ≤ dG(h, 1G) + dG(g, 1G) < 2ε.

Furthermore,

dX (T n y, eX ) ≤ dG(τ nhg, θγ ) = dG(h[h−1, τ n]τ ng, θγ )

≤ ε + dG([h−1, τ n]τ ng, θγ ) = ε + dG(τ ng[h−1, τ n], θγ )

≤ 2ε + dG(vγ [h−1, τ n], θγ ) = 2ε + dG([h−1, τ n]vγ, θγ )

= 2ε + dG([h−1, τ n], v−1θ) < 3ε,

where we used the right invariance of the distance dG , the fact that [h−1, τ n] ∈ Gs ,
and that Gs is included in the center of G. This proves the claim.

We are left with finding h ∈ Gs−1 and θ ∈ Gs satisfying (4). Let C be as in
Lemma 4.3 (note that s ≥ 3) applied with ε and v−1. Let K be the closed ball
{h ∈ G : dG(h, 1G) ≤ C} in G and let the Lie algebra g of G be endowed with a
norm ‖ · ‖. Let L be a closed ball in g centered at 0 such that {exp(ξ) : ξ ∈ L} ⊃ K .
Recalling that the exponential map exp is a diffeomorphism from g onto G0, we have
that the restriction of the exponential map to L is Lipschitz, as is the reciprocal map.
Thus there exists a constant C ′ > 0 such that for every ξ ∈ L ,

C ′−1‖ξ‖ ≤ dG(exp(ξ), 1G) ≤ C ′‖ξ‖.

Thus Lemma 4.3 provides h′ ∈ Gs−1 and θ ∈ Gs ∩ 
 such that dG(h′, 1G) < C
and dg([h′, τ ], v−1θ) < ε. Writing h′ = exp(ξ) for some ξ ∈ L and setting h =
exp(−ξ/n), it follows that h−n = exp(ξ) = h′ and

dG(h, 1G) ≤ C ′‖ξ/n‖ = C ′‖ξ‖/n ≤ C ′2dG(h′, 1G)/n ≤ C ′2C/n.
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Thus if n ∈ R is larger than CC ′2/ε, we have that dG(h, 1G) < ε. Since h ∈ Gs−1,
we have [h−1, τ n] = [h−1, τ ]n = [h−n, τ ] = [h′, τ ] and h satisfies the announced
properties. ��

In this proof, we actually showed that for every small open subset U ⊂ X and all
sufficiently large n, T−nU almost contains a fiber of the projection π : X → X̃ . This
leads to a natural question: is there a way to formulate such a dilation property that
can be used to prove the analog of Theorem 4.1 for more general systems?

5 Multiple recurrence in nilsystems

5.1 Nils-Bohr0 sets

For multiple recurrence in nilsystems, Nils–Bohr0 sets, introduced in [23], play the
role played by Bohr0 sets for recurrence in compact abelian groups; the complex expo-
nentials are replaced by nilsequences or by generalized polynomials. In this section
we adapt results of Huang et al. [26] for our purposes.

Definition 5.1 (See [23]) Let s ≥ 1 be an integer. The set E ⊂ N is a Nils–Bohr0 set
if there exist an s-step nilsystem (X, T ), x0 ∈ X , and an open neighborhood U ⊂ X
of x0 such that

{n ∈ N : T nx0 ∈ U } ⊂ E .

Note that in this definition we can restrict without loss to the case that (X, T ) is
minimal.

A set R ⊂ N is a Nils–Bohr∗0 set if it has nonempty intersection with all Nils-Bohr0
sets.

Theorem 5.2 (Huang et al. [26, Theorem A]) Let s ∈ N. If E ⊂ N is a Nils–Bohr0
set, then there exist a minimal s-step nilsystem (X, T ) and a nonempty open setU ⊂ X
such that E ⊃ Ns(U ).

We use this to show:

Corollary 5.3 Let s ∈ N. For R ⊂ N, the following are equivalent:

(i) R is a set of s-recurrence for minimal s-step nilsystems;
(ii) R is a set of pointwise recurrence for minimal s-step nilsystems;
(iii) R is a Nils–Bohr∗0 set.

If R satisfies any of these three equivalent conditions, then R is actually a set of
multiple pointwise recurrence for minimal s-step nilsystems. Moreover, in this case,
properties (i) and (ii) remain valid for non-minimal s-step nilsystems, as the closed
orbit of any point is a minimal s-step nilsystem.

Proof By Theorem 5.2, every set of s-recurrence for minimal s-step nilsystems is a
Nils–Bohr∗0 set.
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By definition, Nils–Bohr∗0 sets are exactly sets of pointwise recurrence for minimal
s-step nilsystems.

Since every minimal s-step nilsystem is distal, it follows from the proof of Propo-
sition 3.12 that a set of pointwise recurrence for this class of systems is also a set of
multiple pointwise recurrence for these systems and this implies (i). ��

We summarize what this means. Let s, � ≥ 1 be integers and let R ⊂ N. If s ≤ �,
the set R is a set of �-recurrence for (minimal) s-step nilsystems if and only if it is a
set of s-recurrence for (minimal) s-step nilsystems if and only if it is a Nils–Bohr∗0 set.

However, we do not know what happens for s > �, other than for � = 1: if R
is a set of Bohr recurrence then it is a set of recurrence for all minimal nilsystems
(Theorem 4.1). As Bohr recurrence is equivalent to multiple Bohr recurrence, the
multiple analog of Katznelson’s question (Question 3.4) is easily seen to be false.
However, we conjecture:

Conjecture 5.4 Let s ≥ 1 and let R be a set of s-recurrence for s-step nilsystems.
Then R is a set of s-recurrence for all t-step nilsystems for any t ≥ s.

For s = 1, this is the content of Theorem 4.1. For s > 1, the conjecture is supported
by explicit computations in the affine case: a set of s-recurrence for affine s-step
systems is also a set of s-recurrence for any t-step affine system with t ≥ s, and
this is carried out in Sect. 5.3. However, we do not know how to carry out these
computations for a general nilsystem, but believe that some analog of the topological
proof of Theorem 4.1 should be possible.

5.2 Multiple recurrence and regionally proximal relations

Let s ≥ 1 be an integer. The regionally proximal relation RP[s](X, T ) introduced
in [24] for minimal systems (X, T ) generalizes the regionally proximal relation of
Auslander [1]. In [24] we showed that the relation RP[s](X, T ) is the identity if and
only if the system is a system of order s, meaning it is an inverse limit of s-step
nilsystems; assuming in addition that the system is distal, this relation is an equivalence
relation and the quotient is the maximal factor of order s of X . The assumption of
distality was removed in [35].

Many results of this section are implicit or explicit in the work of Huang et al. [26].
We extract, rephrase, and adapt them here for completeness and our purposes, so as
to give a framework for constructing explicit examples of sets of recurrence.

Notation We write E(X, T ) for the Ellis semigroup of the system (X, T ).

The next lemma appears in various places in the literature (see, for example, [17,
Proposition II.10]):

Lemma 5.5 Let (X, T ) be a minimal system and (Z , S) be a distal system. Then each
closed (T × S)-orbit in X × Z is minimal.
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Proof LetW denote the closed orbit of (x0, z0) in X × Z under T × S. The projection
of W on Z is transitive and thus is minimal by distality. Therefore, without loss we
can assume that (Z , S) is minimal.

Let σ denote the transformation p �→ S ◦ p of E(Z , S). Then (E(Z , S), σ ) is
minimal. Let K be a minimal (T ×σ)-invariant subset of X×E(Z , S). The projection
K → X is onto and there exists p0 ∈ E(Z , S) such that (x0, p0) ∈ K . Then p0 is a
bijection of Z and there exists z1 ∈ Z such that p0(z1) = z0. The image of K under
the map (x, p) �→ (x, p(z1)) is a closed minimal (T × S)-invariant subset of X × Z
and contains (x0, z0), and thus is equal to W . ��
Lemma 5.6 Let (X, T ) be a minimal system and (x0, x1) ∈ RP[s](X, T ). Let (Z , S)

be a minimal system of order s and W be a closed (T × S)-invariant subset of X × Z.
Then for z ∈ Z, we have (x0, z) ∈ W if and only of (x1, z) ∈ W.

Proof By Lemma 5.5, without loss we can assume that W is minimal.
Let z0 ∈ Z be such that (x0, z0) ∈ W . We claim that (x1, z0) ∈ W .
As in Lemma 5.5, σ : E(Z , S) → E(Z , S) denotes the map p �→ S ◦ p and

(E(Z , S), σ ) is minimal. Let K be a closed and minimal (T × σ)-invariant subset of
X × E(Z , S). The first projection π1 : K → X is a factor map and thus by [35], the
map π1 × π1 maps RP[s](K ) onto RP[s](X) and there exists p0, p1 ∈ E(Z , S) such
that

(x0, p0) ∈ K , (x1, p1) ∈ K , and ((x0, p0), (x1, p1)) ∈ RP[s](K ).

Let z2 ∈ Z be such that p0(z2) = z0. The map π : (x, p) �→ (x, p(z2)) from K to
X × Z satisfies π ◦ (T × σ) = (T × S) ◦ π and thus its range is a minimal (T × S)

invariant subset of X × Z . This set contains (x0, z0) and thus is equal to W .
Let z1 = p1(z2). We have (x1, z1) = π(x1, p1) ∈ W .
On the other hand, π × π maps RP[s](K ) to RP[s](W ) and thus

(
(x0, z0), (x1, z1)

) ∈ RP[s](W ).

Since the second projection (x, z) �→ Z is a factor map from W to Z , (z0, z1) ∈
RP[s](Z). Since Z is a system of order s, z0 = z1 and (x1, z0) ∈ W and the claim is
proven.

Exchanging the roles of x0 and x1, we have the equivalence. ��
Lemma 5.7 Let (X, T ) be a minimal system, (x0, x1) ∈ RP[s](X, T ), and U be an
open neighborhood of x1 ∈ X. Then for every Nils–Bohr0 set E, N (x0,U ) ∩ E is
syndetic.

Proof Let (Z , S) be a minimal system of order s, z0 ∈ Z , and V be an open neigh-
borhood of z0 ∈ Z . We have to show that N (x0,U ) ∩ N (z0, V ) is syndetic.

LetW be the closed (T × S)-orbit of (x0, z0) in X × Z . By Lemma 5.5, (W, T × S)

is minimal and, by Lemma 5.6, (x1, z0) ∈ W . We have that (U × V ) ∩ W is an
open neighborhood of (x1, z0) inW and thus NT×S

(
(x0, z0),U ×V

) = NT (x0,U )∩
NS(z0, V ) is syndetic. ��
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Theorem 5.8 (Huang et al. [26, Theorem E]) Let (X, T ) be a minimal system,
(x0, x1) ∈ RP[s](X, T ), and U be an open neighborhood of x1 ∈ X. Then N (x0,U )

is a set of s-recurrence.

Proof Let (X, T ) be a minimal system, V be a nonempty open subset of X , and let
μ be an invariant ergodic measure on X . By [26, Theorem A(2)], there exist a Nils–
Bohr0 set E and a set of uniform upper density zero F such that Ns(V ) ⊃ E\F . By
Lemma 5.7, E ∩ N (x0,U ) is syndetic and thus is not included in F ; it follows that
Ns(V ) ∩ N (x0,U ) �= ∅. ��

We use this to construct explicit examples of various sets of recurrence:

Example 5.9 If (X, T ) is a minimal system and x0, x1 ∈ X are proximal, then
(x0, x1) ∈ RP[s](X, T ) for every s ∈ N (see [24]). Thus if U is an open neigh-
borhood of x1, then N (x0,U ) is a set of multiple recurrence. If x0 /∈ U , then this set
is not a set of pointwise recurrence.

In Frantzikinakis et al. [14], the authors build examples of sets of s-recurrence that
are not sets of (s+1)-recurrence; the framework is measurable dynamics but the same
constructions also work in the topological setting. We give a more general framework
that gives further insight into the behavior of these examples using Theorem 5.8.

Corollary 5.10 Let (X, T ) be a minimal s-step nilsystem and let (x0, x1) ∈
RP[s−1](X, T ). LetU be an open neighborhood of x1 in X with x0 /∈ U.Then N (x0,U )

is a set of (s − 1)-recurrence, is not a set of s-recurrence (even for s-step nilsystems),
and is not a set of pointwise recurrence.

Proof Since (x0, x1) ∈ RP[s−1](X, T ), by Theorem 5.8, N (x0,U ) is a set of (s − 1)-
recurrence. On the other hand, N (x0, X\U ) is a Nils-Bohr0 set that does not intersect
N (x0,U ), and thus this last set is not a Nils-Bohr∗0 set. By Corollary 5.3, it is not a
set of s-recurrence and is not a set of pointwise recurrence. ��

This leads to various examples of sets of recurrence and non-recurrence. We begin
with a simple observation. If (X, T ) is a minimal 2-step nilsystem and Y is its maximal
equicontinuous factor, then X is an isometric extension of Y . If x0, x1 ∈ X are distinct
points with the same projection in Y , then (x0, x1) ∈ RP[1](X, T ). Thus if U is an
open neighborhood of x1 and x0 /∈ U , then N (x0,U ) is a set of Bohr recurrence and
thus of Bohr multiple recurrence. However, it is not a set of double recurrence for
(X, T ).

More generally, we have the examples from [14]:

Example 5.11 The set S = {n ∈ N : ‖nβ‖ > ε} is not a set of recurrence for any
β ∈ T and 0 < ε < 1/2. More generally, it was shown in [14] that for any s ≥ 1,
ε > 0, and any β ∈ T, the set S = {n ∈ N : ‖nsβ‖ > ε} is a set of (s − 1)-recurrence
and is not a set of s-recurrence.

We explain how to prove this result using the current machinery. For rational β the
result is obvious and so we assume that β is irrational. Let (Ts, T ) be the s-step affine
nilsystem defined in Sect. 5.3, where T x = Mx + α and α is to yet be determined.
Set a = (0, 0, . . . , 0) ∈ T

s and b = (1/2, 0, . . . , 0) ∈ T
s . Then for every n ∈ N,
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we have that T na = (Id + M + · · · + Mn−1)α. By formula (5) giving the entries of
Mn , we can choose α with αs irrational such that (T na)1 = nsβ. As in the proof of
Theorem 5.13, the maximal (s − 1)-step factor of (Ts, T ) is (X̃ , T̃ ), where X̃ is the
quotient of Ts under the subgroup {(t, 0, . . . , 0) : t ∈ T}. Thus a and b have the same
projection on X̃ and so (a, b) ∈ RP[s−1](Ts, T ). Setting U = {x ∈ T

s : ‖x1‖ < ε},
we have that U is an open set containing a and b /∈ U . The statement now follows
from Corollary 5.10.

On the other hand, the set {n ∈ N : ‖nsβ‖ < ε} is exactly N (a,U ), and so as
already remarked, it is a set of multiple recurrence.

We remark that all of these examples are large sets, in the sense that they have
positive density. However, there are many examples of sets of multiple recurrence of
density zero, such as any IP-set [19] the set of values of a polynomial [6], the set of
shifted primes [13], or a set containing arbitrarily long arithmetic progressions and
such that any integer occurs as a common difference [16]. Adapting ideas of [16], one
can construct zero density sets of (s − 1)-recurrence that are not sets of s-recurrence.

5.3 Lifting multiple recurrence in affine systems

Definition 5.12 For s > 1, let M be an s × s matrix with integer entries. Assume that
M is unipotent, meaning that (M − Id)s = 0, and let α ∈ T

s . Define T : Ts → T
s

by T (x) = Mx + α (operations are always mod 1). The system (Ts, T ) is called an
affine system on T

s .

The system (Ts, T ) is minimal if the projection of α on Ts/ ker(M − Id) generates
a minimal rotation on this torus [32].

The system (Ts, T ) can be represented as a nilsystem. Namely, let G denote the
group of transformations of Ts spanned by M and the translations Sβ : x �→ x + β

for β ∈ T
s and let Ts be identified with the subgroup {Sβ : β ∈ T

s} of G. For j ≥ 2,
G j ⊂ T

s and more precisely

G j = Range(M − Id) j−1.

Therefore, G is an s-step nilpotent Lie group, and the stabilizer of 0 is 
 = {Mn : n ∈
Z}. Then T

s is identified in the natural way with G/
.
We prove Conjecture 5.4 for affine systems1:

Theorem 5.13 Let 1 ≤ r ≤ s − 1 be an integer. If R ⊂ N is a set of r-recurrence
for all (s − 1)-step minimal affine systems, then it is a set of r-recurrence for s-step
minimal affine systems.

Before proving the theorem, we start with some preliminary simplifications. There
is a change of basis such that M = PM ′P−1, where P has integer entries and non-
zero determinant, and such that M ′ is in Jordan canonical form. Let α′ be such that
Pα′ = α and define T ′ : Ts → T

s to be T ′x = M ′x + α′. Then the system (Ts, T ′)

1 After this paper was submitted, Wenbo Sun adapted the methods we use to generalize this theorem,
showing that a set of s-recurrence for s-step nilsystems is also a set of t-recurrence for all t ≥ s.
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is a minimal affine nilsystem, and the map P : Ts → T
s is a finite to one factor map

from this system to the system (Ts, T ). Thus it suffices to prove the theorem for a
system whose matrix M is in Jordan canonical form.

Furthermore, for notational convenience, we restrict ourselves to the case that there
is a single block in the Jordan form, and we note at the end of the proof how to
generalize this for multiple blocks. Thus, henceforth we assume that M is an integer
matrix with

Mi, j =
{
1 if j = i or j = i + 1

0 otherwise.

For 2 ≤ j ≤ s, we have

G j = Range(M − Id) j−1 = {
x = (x1, . . . , xs) ∈ T

s : xi = 0 for i ≥ s − j + 2
}
.

Minimality of the system (Ts, T ) is equivalent to the last coordinate αs of α being
irrational.

The matrix M is exactly s-unipotent, meaning that

(M − Id)s = 0 and (M − Id)s−1 �= 0,

and the system (Ts, T ) is exactly an s-step minimal nilsystem, meaning that it is not
an (s − 1)-step nilsystem.

From the form of the matrix M , we deduce that for any n ∈ N, the entries of Mn

satisfy Mn
i,i = 1 for 1 ≤ i ≤ s and

for 1 ≤ i < j ≤ s, Mn
i, j = p j−i (n), (5)

where p1(n) = n and, for 1 ≤ k < s, pk is a polynomial with integer coefficients
whose degree is exactly k such that pk(0) = 0.

Notation Throughout this proof,C denotes some constant, possibly taking on different
values, where the only dependence is on s, M and α, but not on n. For other objects,
the dependence on n is often left implicit.

Lemma 5.14 Let n ∈ N. For every y ∈ R
s with ys = 0, there exists a unique x ∈ R

s

such that x1 = 0 and (Mn − Id)x = y and we write x = Ay. Furthermore, if for
some k ∈ {3, . . . , s} we have yi = 0 for i ≥ s − k + 2, then x j = 0 for j ≥ s − k + 3.

Finally, there exists a constant C > 0 such that if for some constant κ > 0 we have
|yi | ≤ κ/ni−1 for 1 ≤ i ≤ s − 1, then |x j | ≤ Cκ/n j−1 for 2 ≤ j ≤ s.

It is immediate that the map A is linear, given by a matrix with integer entries, and
we can view it also as a homomorphism from G2 to T

s = G, mapping Gk to Gk−1
for 3 ≤ k ≤ s.

Proof A real vector x = (0, x2, . . . , xs) satisfies (Mn − Id)x = y if and only if
x2, . . . , xs satisfy the linear system:
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y1 = p1(n)x2 + · · · + pd−1(n)xs;
... = ...

yi = p1(n)xi+1 + · · · + pd−i (n)xs;
... = ...

ys−2 = p1(n)xs−1 + p2(n)xs;
ys−1 = p1(n)xs .

This triangular system has a unique solution since the coefficients p1(n) are non-zero
and the first statement follows. The second statement is obvious.

Since for 1 ≤ k ≤ s the polynomial pk is exactly of degree k and satisfies pk(0) = 0,
there exist constants C1,C2 > 0 such that

C1

nk
≤ pk(n) ≤ C2

nk
for all n ∈ N

and the last statement follows. ��
We use this to complete the proof of Theorem 5.13:

Proof We proceed by induction on s. Assume that r < s and that R is a set of r -
recurrence for all affine (s−1)-step nilsystems.We show that R is a set of r -recurrence
for any affine s-step nilsystem.

Let (X̃ , T̃ ) be defined as in (1). Recall that X̃ is the quotient of X under the action
of Gs , and so can be identified with G/Gs = T

s−1. Then (X̃ , T̃ ) is an (s − 1)-step
affine nilsystem, given by the matrix M̃ induced by M , and the translation by α̃, the
image of α in Ts−1.

Since 1 ≤ r ≤ s−1, by the induction hypothesis, there exist arbitrarily large n ∈ R
and x̃ ∈ T

s−1 with ‖x̃‖ ≤ ε and ‖T̃ kn x̃‖ ≤ ε for 1 ≤ k ≤ r . Lifting to X , there exist
x ∈ T

s and w1, . . . , wr ∈ Gs with wk = (wk,1, . . . , wk,s) for j = 1, . . . r such that

‖x‖ ≤ ε and ‖T knx − wk‖ ≤ ε for 1 ≤ k ≤ r.

We need to show that if n is sufficiently large, there exists y ∈ Gs−r such that

‖y‖ ≤ Cε and ‖T kn(x + y)‖ ≤ Cε for 1 ≤ k ≤ r.

For any k ∈ N, we have that T kn(x + y) = T knx + Mkn y and so the system of
approximate equations to be solved is

y ∈ Gs−r , ‖y‖ ≤ Cε;
‖Mkn y + wk‖ ≤ Cε for 1 ≤ k ≤ r.

Set vk = −∑k
j=1

(k
j

)
(−1)k− jw j ∈ Gs for k = 1, . . . , r . Then the system we need to

solve becomes
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y ∈ Gs−r ; (6)

‖y‖ ≤ Cε; (7)

‖(Mn − Id)k y − vk‖ ≤ Cε for 1 ≤ k ≤ r. (8)

By Lemma 5.14 and by induction on �, for 1 ≤ k ≤ r and 1 ≤ � ≤ s−1, the elements
A�vk satisfy

(Mk − Id)�A�vk = vk;
A�vk ∈ Gs−�;
(A�vk)1 = 0 and |(A�vk)i | ≤ C/ni−1 for 2 ≤ i ≤ s. (9)

Define yk ∈ G by

yk = Akvk for 1 ≤ k ≤ r and y = y1 + ... + yr .

Then we claim that for n sufficiently large, y satisfies conditions (6), (7) and (8).
To see this, by construction, for 1 ≤ k ≤ r , yk ∈ Gs−k ⊂ Gs−r and (6) is satisfied.
By (9), all coordinates of yk are bounded in absolute value by C/n, and thus

‖yk‖ ≤ C/n. It follows that ‖y‖ ≤ C/n and that (7) is satisfied when n is sufficiently
large.

Furthermore, for 1 ≤ k ≤ r ,

(Mn − Id)k y

=
k−1∑

�=1

(Mn − Id)k y� +(Mn − Id)k yk +
r∑

�=k+1

(Mn − Id)k y�.

= S1 +S2 +S3.

We analyze these three terms. For 1 ≤ � < k, since y� ∈ Gs−�, we have that
(Mn − Id)k y� = 0 and thus S1 = 0. By construction, S2 = (Mn − Id)k Akvk = vk .

For k < � ≤ r , (Mn − Id)k y� = (Mn − Id)k A�v� = A�−kv� and by (9) all
coordinates of this element are bounded by C/n and thus ‖(Mn − Id)k y�‖ ≤ C/n. It
follows that ‖S3‖ ≤ C/n, and (8) holds when n is sufficiently large.

For generalizing to the case where there may be more blocks in the Jordan matrix
M , we note that the proof applies for all sufficiently large n ∈ R. Thus taking n to be
the maximum of these iterates, we deduce the general case. ��

6 The Ramsey property

Definition 6.1 A property is Ramsey if for any set R ⊂ N having this property and
any partition R = A ∪ B, at least one of A or B has this property.

The Ramsey property is also sometimes referred to as divisible; an equivalent charac-
terization is that its dual is a filter (see [9,19,21]).
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The following proposition appears in several places in the literature (see for exam-
ple [26, Proposition 7.2.4]), but for completeness we give a proof:

Proposition 6.2 The family of sets of �-recurrence has the Ramsey property.

Proof We proceed by contradiction. Assume that R is a set of �-recurrence and that
R = A∪ B is a partition such that neither A nor B is a set of �-recurrence. Thus there
exist two minimal systems (X, T ) and (Y, S) and open sets U ⊂ X and V ⊂ Y such
that N �

T (U ) ∩ A = ∅ and N �
S(V ) ∩ B = ∅. Let Z be a minimal subset of the product

X × Y . By minimality of the Z2-action of {T n × Sm : n,m ∈ Z} on X × Y , we can
choose n,m ∈ Z such that

Z ′ = (T n × Sm)Z ∩ (U × V ) �= ∅.

Then Z ′ is a nonempty open set and so by assumption, N �
T×S(Z

′) ∩ R �= ∅. But
N �
T×S(Z

′) ⊂ N �
S(V ) ∩ N �

T (U ), a contradiction that R = A ∪ B. ��
Corollary 6.3 Let R be a set of �-recurrence, (X, T ) a minimal system, and U be a
nonempty open subset of X. Then R ∩ N �(U ) is a set of �-recurrence.

Proof By definition N\N �(U ) is not a set of �-recurrence. Thus R\N �(U ) is not a set
of �-recurrence. The result follows from Proposition 6.2. ��

In particular, it follows from this corollary and Theorem 5.2 that if R is a set of
�-recurrence and E is a Nils–Bohr0 set, then E ∩ R is a set of �-recurrence.

Similarly, one can easily check that by passing to the product, a set of pointwise
recurrence for minimal, distal systems is Ramsey:

Proposition 6.4 The family of sets of pointwise recurrence for minimal distal systems
has the Ramsey property: if A and B are subsets of N such that A ∪ B is a set of
pointwise recurrence for minimal distal systems, then at least one of the sets A or B
is a set pointwise recurrence for minimal distal systems

Proof We assume by contradiction that there exist two distal minimal systems (X, T )

and (Y, S), x ∈ X , y ∈ Y and ε > 0 such that

for every n ∈ A, dX (T nx, x) ≥ ε; for every n ∈ B, dY (T n y, y) ≥ ε.

Let X × Y be endowed with the sum distance dX×Y ((x, y), (x ′, y′)) = dX (x, x ′) +
dY (y, y′). Since X and Y are distal, the closed (T × S)-orbit W of (x, y) in X × Y
is minimal. Since A ∪ B is a set of pointwise recurrence for minimal distal systems,
there exists n ∈ A ∪ B such that

ε > dX×Y ((T × S)n(x, y), (x, y)) = dX (T nx, x) + dY (Sn y, y),

a contradiction. ��
Question 6.5 Does the family of sets of pointwise (or multiple or simultaneous) topo-
logical recurrence have the Ramsey property?
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7 Large sets and syndetic large sets

7.1 Fixing the number of colors

In the definition of a set of recurrence, we consider an arbitary, finite partition of the
integers and arithmetic progressions of arbitary length. Restricting the length of the
progression leads to the definition of �-recurrence. Instead, we can restrict the number
of cells in the partition and this is the point of view taken in Brown, Graham, and
Landman [10], where this is studied from a purely combinatorial point of view. They
define:

Definition 7.1 If r ≥ 2 is an integer, a set R ⊂ N is r -large if every coloring of the
integers with r colors contains arbitrarily long monochromatic progressions with step
in R. The set R ⊂ N is large if it is r -large for every r ≥ 2.

Analogous to Theorem 2.3, this property can be described dynamically:

Proposition 7.2 Let r ≥ 2. The set R ⊂ N is r-large if and only if for every system
(X, T ), every open cover U = (U1, . . . ,Ur ) of X by r open sets, and every � ≥ 2,
there exist j ∈ {1, . . . , r} and n ∈ R such that n ∈ N �(Uj ).

In particular, a set of integers is a set of multiple recurrence if and only if it is r -large
for every r , meaning it is large.

Thus, a question asked in [10] becomes:

Question 7.3 (Brown et al. [10]) Are all 2-large sets sets of multiple recurrence?

We rephrase some of the other results from [10], with some minor modifications,
putting them into dynamical language. Their Example 5.11 becomes:

Lemma 7.4 Let α ∈ T and ε > 0. The set S = {n ∈ N : ‖nα‖ > ε} is not 2-large.
Proof Let α ∈ T, J1 = [0, 1/2) and J2 = [1/2, 1). We define a 2-coloring of N by
C j = {n ∈ N : nα ∈ J j } for j = 1, 2. Let � = 1 + �1/2ε�. We show that there is no
monochromatic progression of length � and with common difference n ∈ R. Assume,
by contradiction, that such a progression P = {a + in : 0 ≤ i ≤ � − 1} exists.

Choose β ∈ (−1/2, 1/2] such that β = nα mod 1. Without loss of generality, we
can assume that 0 ≤ β ≤ 1/2 and that P ⊂ C1. For 0 ≤ k < �, let ak = aα + kβ
mod 1. Then the set X = {ak : 0 ≤ k < �} is contained in J1. For 0 ≤ k < � − 1, we
have that ak+1 = ak + β mod 1. On the other hand, 0 ≤ ak < 1/2 and 0 ≤ β ≤ 1/2
and thus 0 ≤ ak + β < 1. We deduce that

ak+1 = ak + β for 0 ≤ k < � − 1.

Therefore a�−1 = a0+(�−1)β, and thus β = (a�−1−a0)/(�−1) ≤ 1/2(�−1) < ε,
a contradiction. ��

In analogy with Proposition 6.2, the characterization in Proposition 7.2 of large sets
leads to a dynamical proof for the following:
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Proposition 7.5 (Brown et al. [10]) If r1, r2 ≥ 2 and S1 ∪ S2 is r1r2-large, then some
Si is ri -large for i = 1, 2.

Proof Assume not. Instead, assume that for i = 1, 2, the set Si is not ri -large and
Ci = {Ci,1, . . . ,Ci,ri } is an ri -coloring of N such that there is no progression of
length �i , with step in Si contained in atoms of Ci . Let C1 ∨ C2 be the partition
{C1, j ∩ C2,k : 1 ≤ j ≤ r1, 1 ≤ k ≤ r2} and set � = max(�1, �2). Then there exists
a progression of length �, with step d ∈ S1 ∪ S2, that is monochromatic under the
partition C1 ∨ C2.

But if d ∈ Si , we have a contradiction of the fact that the progression is monochro-
matic for Ci . ��

However, we are unable to answer the following:

Question 7.6 (Brown et al. [10]) Does the family of 2-large sets have the Ramsey
property?

Proposition 7.7 Let S ⊂ N and r ≥ 2. If d ≥ 1, E is a Bohr0 set of dimension d and
S is 2dr-large for some r ∈ N, then S ∩ E is r-large.

Proof We proceed by induction on the dimension d of the Bohr0 set E . Assume that
E is a Bohr0 -set of dimension 1. Then E ⊃ E ′ := {n : ‖nα‖ < ε} for some α ∈ T

and some ε > 0. Let S be 2r -large for some r ∈ N. Write S = (S ∩ E) ∪ (S\E). By
Lemma 7.4, the second of these sets is not 2-large, and by Proposition 7.5, S ∩ E is
r -large.

Assume that d ≥ 1, that the result holds for Bohr0 -sets of dimension d, and let E
be a Bohr0 -set of dimension d + 1 and S be a 2d+1r -large set. Then E ⊃ F ∩ E ′,
where F is a Bohr0 set of dimension d and E ′ = {n : ‖nα‖ < ε} for some α ∈ T and
some ε > 0. As above, we write S = (S ∩ E ′) ∪ (S\E ′). Again, by Lemma 7.4 the
second of these sets is not 2-large and by Proposition 7.5, S ∩ E ′ is 2dr -large. By the
induction hypothesis, S ∩ E ⊃ (S ∩ E ′) ∩ F is r -large. ��

7.2 r-Large sets and nilsystems

We are interested if the results of Sect. 5.2 have counterparts for r -large sets. For
example, consider the analog of Corollary 5.10:

Question 7.8 Let (X, T ) be aminimal d-step nilsystem, x0, x1 ∈ X, andU be an open
neighborhood of x1 with x0 /∈ U. Then N (x0,U ) is not a set of multiple recurrence.
Does there exist some r ≥ 2 such that N (x0,U ) is not r-large?

This can be answered in the particular case of affine nilsystems, as the affine nil-
systems give rise to polynomials (see Sect. 5.3):

Proposition 7.9 Let � ≥ 1, 0 < δ ≤ 1/2, α ∈ T,

R = {n ∈ N : ‖n�α‖ > δ} (10)

and m = �2�−1δ−1�. Then R is not m-large.
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Proof We proceed by contradiction and assume that R is m-large.
To avoid ambiguity, we stress that we consider here α as an element of T = R/Z.

We write α for the real in (−1/2, 1/2] such that α = α mod 1, β = α/�! ∈ R and
β = β mod 1 ∈ T.

Let T = I1 ∪ · · ·∪ Im be a partition of T in (half open) intervals of length 1/m. For
1 ≤ j ≤ m, let C j = {p ∈ N : p�β ∈ I j }. By hypothesis, there exists an arithmetic
progression P = {a + pn : 0 ≤ p ≤ �} of length � + 1, with step n ∈ R, and it is
monochromatic under this coloring, meaning that there exists j , 1 ≤ j ≤ m, such that
(a + pn)�β ∈ I j for 0 ≤ p ≤ �.

If (u(p)) is a sequence of reals, write (�u)(p) = u(p + 1) − u(p). Iterating this
definition, we have that

(��u)(p) =
�∑

k=0

(
�

k

)

(−1)ku p+k .

Using this with u p = (a + pn)�β,

n�α = �!n�β = (��u)(0) =
�∑

k=0

(
�

k

)

(−1)kuk .

For every real number x , we write {x} for the difference between x and the nearest
integer. For 0 ≤ p ≤ �, the points u p mod 1 belong to the same half open interval
I j of length 1/m, and thus for 0 ≤ p ≤ � − 1 we have {(�u)(p)} = {u p+1 −
u p} ∈ (−1/m, 1/m). By the same argument and using induction, {(��u)(0)} ∈
(−2�−1/m, 2�−1/m), meaning that {n�α} ∈ (−2�−1/m, 2�−1/m). Thus ‖n�α‖ <

2�−1/m < δ, a contradiction. ��

7.3 Syndetic large sets

Definition 7.10 Recall that a set E ⊂ N is syndetic if there exists r ≥ 1 such that
every interval of length r contains at least one element of E . The smallest integer r
with this property is called the syndeticity constant of E .

Definition 7.11 Let r ≥ 2. A set S of integers is r -syndetic large if every syndetic set
with syndeticity constant less than or equal to r contains arbitrarily long arithmetic
progressions with step in S.

The following proposition is a finite version of the equivalence between character-
izations (iii) and (iv) of multiple recurrence in Theorem 2.5:

Proposition 7.12 (i) Every r-large set is r-syndetic large.
(ii) Every (2r − 1)-syndetic large set is r-large.

Proof By using a cover ofN obtained by translates of a syndetic set S with syndeticity
constant less than or equal to r and the associated partition of N, the first statement
follows.

123



88 B. Host et al.

For the second statement, assume that S is (2r − 1)-syndetic large set. Let � ≥ 2
be an integer and let N = C1 ∪ · · · ∪ Cr be a r -coloring of N. We want to build a
monochromatic progression of length � and step in S.

Define E ⊂ N such that for n > 0 and 1 ≤ i ≤ r, rn + i ∈ E if and only if
n ∈ Ci . Then each subinterval of N of the form (nr, (n + 1)r ] contains a unique point
of E , and the congruence class modulo r of this integer is given by the color of n. In
particular, the difference between two consecutive points of E is ≤ 2r − 1, and E is
syndetic with syndeticity constant ≤ 2r − 1.

Since S is (2r − 1)-syndetic large, E contains an arithmetic progression {a, a +
n, . . . , a + (�r − 1)n} of length �r and step n ∈ S. Thus E also contains the sub-
progression {a, a + rn, . . . , a + (� − 1)rn} of length � and step rn ∈ r A. Write
a = rb + i where b ≥ 0 and 1 ≤ i ≤ r and rewrite this sub-progression as

{
(b + jn)r + i : 0 ≤ j < �

}
.

By definition of E , all the integers b + jn, 0 ≤ j < �, belong to Ci . They form a
monochromatic progression of length � for the initial coloring with step in S. ��
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