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ABSTRACT
Cosmological fluids are commonly assumed to be distributed in a spatially homogeneous way,
while their internal properties are described by a perfect fluid. As such, they influence the
Hubble expansion through their respective densities and equation-of-state parameters. The
subject of this paper is an investigation of the fluid-mechanical properties of a dark energy
fluid, which is characterized by its sound speed and its viscosity apart from its equation of
state. In particular, we compute the predicted spectra for the integrated Sachs–Wolfe effect
for our generalized fluid, and compare them with the corresponding predictions for weak
gravitational lensing and galaxy clustering, which had been computed in previous work. We
perform statistical forecasts and show that the integrated Sachs–Wolfe signal obtained by
cross-correlating Euclid galaxies with Planck temperatures, when joined to galaxy clustering
and weak lensing observations, yields a percent sensitivity on the dark energy sound speed and
viscosity. We prove that the iSW effect provides strong degeneracy breaking for low sound
speeds and large differences between the sound speed and viscosity parameters.

Key words: gravitational lensing: weak – methods: analytical – cosmic background radia-
tion – cosmology: theory – large-scale structure of Universe.

1 IN T RO D U C T I O N

The expansion dynamics of the Universe is usually described by
assuming (i) general relativity as the theory of gravity, (ii) a high
degree of symmetry, namely spatial isotropy and homogeneity at
each instant in time, and (iii) ideal fluids which source the gravita-
tional fields. These three assumptions lead to the Friedmann equa-
tions for the time-evolution of the scalefactor a(t), which reflect the
fact that Einstein’s field equations are of second order, and show
acceleration or deceleration ä as phenomena.

The inclusion of the cosmological constant on grounds of Love-
lock’s theorem, which states that the GR field equations are the most
general ones in four dimensions, that derivatives of the metric need
to be included up to second order, that the energy–moment tensor
is conserved, yields a natural way to explain cosmic acceleration at
late times.

Alternatively, one can introduce dynamical dark energy com-
ponents based on scalar self-interacting fields, and interpret the
energy–momentum tensor with the corresponding conservation law.
This allows the identification of the homogeneous and isotropic field
with a relativistic ideal fluid, whose relation between pressure and
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bjoern.malte.schaefer@uni-heidelberg.de (BMS)

density is parametrized by an equation of state w = p/ρ. At the
same time, this equation of state is the only free function that is al-
lowed by Einstein’s field equations with the symmetry assumptions
of the Robertson–Walker metric.

For these reasons, a central goal of cosmology is to investigate
dark energy and the cosmological constant through their influence
on the dynamics of the scalefactor and on the growth of struc-
tures. The fluid picture is attractive due to its generality. Apart from
actual substances like relativistic components (w = +1/3) and non-
relativistic components (w = 0), it is general enough to describe
spatial curvature (w = −1/3) and the cosmological constant (w =
−1). Moreover, the isotropy and homogeneity of the fluid ensure
the Friedmann symmetries.

Dark energy models based on self-interacting scalar fields show
a natural variation of the dark energy equation-of-state parameter.
This is because their time evolution is governed by the Klein–
Gordon equation, and therefore the kinetic and potential terms in
their energy–momentum tensor evolve, leading to a time evolution
in the equation of state. Therefore, their influence on the expansion
dynamics of the Universe will vary in time. In the slow-roll limit one
recovers values of w close to −1, resulting in accelerated expansion.

Adopting a fluid picture is an important test of whether the
dark energy fluid is ideal or not. If the fluid has inhomogeneities:
(i) pressure fluctuations and density fluctuations are related through
a sound speed c2

s , (which in the most straightforward case describes
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an adiabatic compression of the fluid), (ii) anisotropic stresses might
arise, and finally (iii) velocity perturbations can experience viscous
forces that dissipate kinetic energy. (For literature in this field we
refer to Battye & Moss 2006, 2009; Mota et al. 2007; Calabrese
et al. 2011; Ballesteros et al. 2012; Sapone & Majerotto 2012; Ap-
pleby, Linder & Weller 2013; Sapone et al. 2013; Dossett & Ishak
2013; Basse et al. 2014; Sawicki et al. 2013; Amendola et al. 2014;
Chang & Xu 2014; Chang, Lu & Xu 2014; Cardona, Hollenstein
& Kunz 2014; Pearson 2014; Ballesteros 2015). In addition, there
can be a non-linear relation between pressure and density of a fluid,
one example of which would be Chaplygin cosmologies (Bento,
Bertolami & Sen 2002; Li & Xu 2014). Alternatively, a similar phe-
nomenology could in principle be due to modifications in gravity
rather than due to non-ideal fluids under general relativity (Kunz &
Sapone 2007; Bertschinger & Zukin 2008; Silvestri 2009; Pogosian
et al. 2010; Song et al. 2010; Leon & Saridakis 2011; Saltas & Kunz
2011; Baker, Ferreira & Skordis 2013; Boubekeur et al. 2014).

These modifications break homogeneity on small scales. They re-
quire corresponding fluid equations for their time evolution, as well
couplings to local gravitational fields. The latter enable interaction
between the dark energy fluid, the dark matter and the baryonic
component. Commonly, one observes a difference between the two
metric potentials in the case of non-zero sound speeds and equations
of state unequal to −1. Such difference can be probed by photons,
and is relative to the motion of non-relativistic objects such as
galaxies, which are only sensitive to a single metric potential.

In this paper, we investigate cosmological perturbations with a
non-ideal dark energy fluid and aim to forecast constraints on its
speed of sound cs and its viscosity from Euclid1 (Laureijs 2009;
Laureijs et al. 2011) and Planck (Planck Collaboration XVI 2014b;
Planck Collaboration XIII 2015). Specifically, we consider tomo-
graphic weak gravitational lensing (Ayaita, Schäfer & Weber 2012),
galaxy clustering (DeDeo, Caldwell & Steinhardt 2003; Takada
2006) and the integrated Sachs–Wolfe effect (Dossett & Ishak 2013;
Soergel et al. 2015) as probes on the influence of non-ideal fluids
on the statistics and the evolution of structures. The background
expansion dynamics instead is given through the individual den-
sity parameters and the equation-of-state parameters, assuming that
there is no energy exchange between the fluids.

Our work is complementary to that of Mota et al. (2007), Cal-
abrese et al. (2011), Chang & Xu (2014), who used the same model
to describe the evolution of anisotropic stress. Mota et al. (2007)
and Chang & Xu (2014) computed constraints on it from the cos-
mic microwave background (CMB), the large-scale structure and
Supernovae Type Ia, while Calabrese et al. (2011) forecasted errors
from the CMB on the parameters of an early dark energy possess-
ing anisotropic stress. It is also complementary to that of Amendola
et al. (2014), Cardona et al. (2014) and Sawicki et al. (2013), who
also put constraints on anisotropic dark energy, but used different
models for its evolution.

Currently, there are no significant deviations from dark energy be-
ing a perfect fluid. See for instance the result by Bean & Doré (2004)
who find c2

s < 0.04 at low significance from CMB data. Hence, tests
whether dark energy is an ideal fluid will be the domain of future
experiments. Quite generally, the sensitivity to non-ideal cosmic
fluids requires their respective density to be large enough and their
equation of state not to be too close to −1 for dark energy pertur-
bations to be sufficiently strong (Erickson et al. 2002; Koivisto &
Mota 2006; Ballesteros & Lesgourgues 2010; de Putter, Huterer &

1 http://www.euclid-ec.org/

Linder 2010; Archidiacono, Lopez-Honorez & Mena 2014). At a
first sight, it would appear that choosing a dark energy equation of
state too far from the cosmological constant value is incompatible
with present constraints (Planck Collaboration XIII 2015). How-
ever, when including extra parameters such as the speed of sound
and viscosities in the fluid, constraints become much more loose
(See e.g. Mota et al. 2007; Archidiacono et al. 2014).

This article is structured as follows. We develop the necessary
perturbation equations for non-ideal dark energy fluids and a suit-
able parametrization in Section 2 and discuss cosmological probes
in Section 3, before computing forecasts on non-ideal dark energy
properties in Section 4. We summarize our results in Section 5. As
regards the forecasts, let us remark that some of the authors are
currently involved in a code comparison effort taking place within
the Euclid Collaboration Forecast project. We want to stress then
that some of the numbers in this paper might or might not change
once agreement between different codes will be reached. The ref-
erence cosmological model is a spatially flat, dark-energy domi-
nated model with the parameter choices {�mh2, �bh2, ns, �m, w}=
{0.142, 0.022, 0.96, 0.32, −0.8}. The first four correspond to the
constraints from Planck (Planck Collaboration XVI 2014b) and
WMAP polarization low-multipole likelihood (Bennett et al. 2013;
Planck Collaboration XV 2014a), and they represent the present
official baseline for Euclid forecasts. The dark energy equation-of-
state parameter was instead set to a fiducial value of w = −0.8, in
order for it to be sufficiently far from −1 (see discussion above).
The amplitude of the primordial power spectrum was fixed to As =
2.1 × 10−9.

2 C O S M O L O G Y W I T H N O N - I D E A L FL U I D S

2.1 Expansion dynamics

Since we focus on late cosmological times, where dark matter and
dark energy are dominating the energy density of the Universe, we
can approximate the Hubble function H (a) = ȧ/a with

H 2 = H 2
0

[
�m,0a

−3 + (1 − �m,0)a−3(1+w)
]
. (1)

Here, a is the scalefactor, �m,0 is the dark matter density parameter
today, w is the equation of state of dark energy, which we assume to
be constant, and H0 is the Hubble parameter today. In addition, we
do not consider global curvature. The comoving distance is defined
as

χ = c

∫ 1

a

da

a2H (a)
≡ χH

∫ 1

a

da

a2H (a)/H0
, (2)

with the Hubble distance χH = c/H0 � 2996.9 Mpc/h. At the same
time, this defines conformal time τ through χ = cτ . In the following,
we will set c = 1.

2.2 Perturbations and their analytical solutions

If we consider a non-ideal fluid dark energy, characterized by a
constant equation of state w, a speed of sound cs, and an anisotropic
stress component σ , we can write the evolution of σ as in Hu
(1998):

σ ′ + 3

a
σ = 8

3

c2
v

(1 + w)2

V

a2H
. (3)

Here, the prime indicates derivative with respect to a and c2
v is called

viscosity parameter, as it gives a measure of the fluid’s viscosity.
Indeed, equation (3) implies that when c2

v = 0, then the anisotropic
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Viscous dark energy 111

stress component σ is also vanishing, while when e.g. c2
v = 1/3 the

evolution of anisotropic stress for radiation up to the quadrupole is
recovered.

To this equation, we add the first order perturbation equations for
the density contrast δ and the velocity perturbation V

δ′ = 3(1 + w)φ′ − V

Ha2
− 3

1

a

(
δp

ρ
− wδ

)
, (4)

V ′ = −(1 − 3w)
V

a
+ k2

Ha2

δp

ρ
+ (1 + w)

k2

Ha2
ψ +

− (1 + w)
k2

Ha2
σ, (5)

where δp is the pressure perturbation, ρ is the dark energy density, ψ
and φ are the metric perturbations in the Newtonian gauge, defined
by the line element

ds2 = a2
[−(1 + 2ψ)dτ 2 + (1 − 2φ)dxidxi

]
. (6)

Pressure perturbations are parametrized as

δp = c2
s ρδ + 3aH (c2

s − c2
a )

k2
ρV , (7)

where c2
a ≡ ṗ/ρ̇ = w is the adiabatic speed of sound for a fluid

with constant equation of state. c2
s reduces to c2

a in the case of a
perfect fluid, when no dissipative effects are present, which would
otherwise lead to entropic perturbations (Bean & Doré 2004).

In order to close the differential equation system, one needs to
include the Poisson equation

k2φ = −4πGa2
∑

i

ρi

(
δi + 3aH

k2
Vi

)
= −4πGa2

∑
i

ρi�i,

(8)

(where the sum runs over all clustering fluids, G is the Newton
constant, and in the last equality we have defined the gauge-invariant
density perturbation of the ith fluid, �i ≡ δi + 3aHVi/k2) and the
fourth Einstein equation

k2 (φ − ψ) = 12πGa2 (1 + w)ρ σ (9)

= 9

2
H 2

0 (1 − �m,0)a−(1+3w)(1 + w)σ

≡ B(a) σ. (10)

In Sapone & Majerotto (2012) the following analytical solutions for
δ, V and σ were found for the matter dominated era:

δ = 3(1 + w)2

3c2
s (1 + w) + 8

(
c2

s − w
)
c2

v

φ0

k2
, (11)

V = − 9(1 + w)2
(
c2

s − w
)

3c2
s (1 + w) + 8c2

v(c2
s − w)

H0

√
�m

φ0√
ak2

,

= −3aH
(
c2

s − w
)
δ, (12)

σ = − 8c2
v

(
c2

s − w
)

3c2
s (1 + w) + 8(c2

s − w)c2
v

φ0

k2
, (13)

where k2φ � −φ0. The latter is valid strictly only during matter
domination and while neglecting dark energy perturbations. Never-
theless, the validity of this approximation extends to redshifts very

close to today’s z, as can be seen from fig. 1 of Sapone & Majerotto
(2012).

As found in Sapone & Majerotto (2012), to which we refer for
further detail on the analytic solutions, the relevant quantity is the
effective sound speed

c2
eff = c2

s + 8

3
c2

v

c2
s − w

1 + w
, (14)

as equations (11)–(13) can be rewritten in terms of it. This means
that the sound speed and the viscosity have a similar damping
effect on density and velocity perturbations (as also noticed in Mota
et al. 2007; Calabrese et al. 2011). It is interesting to notice that
the effect of c2

v is enhanced with respect to that of c2
s by a factor

of 8(c2
s − w)/[3(1 + w)], which is ∼10 if w ∼ −0.8 and c2

s is
very small. A relative large w and very small c2

s are precisely the
cases where a viscosity can be observed best, as will be shown in
the following sections. Moreover c2

eff is bounded by the case of a
cosmological constant, as equation (11) diverges for w = −1.

2.3 Observable parameters

To understand how the viscosity affects the physical observables, it
is useful to introduce the clustering parameter Q and the anisotropy
parameter η. These were defined in Amendola, Kunz & Sapone
(2008) and computed in the case of viscous dark energy in Sapone
& Majerotto (2012).

Q parametrizes the deviation from a purely matter-dominated
Newtonian potential and is given by (see Sapone & Majerotto
2012)

Q − 1 ≡ ρ�

ρm�m
= 1 − �m,0

�m,0
(1 + w)

a−3w

1 − 3w + 2k2a

3H 2
0 �m,0

c2
eff

= Q0
a−3w

1 + α a
, (15)

where α = 2k2c2
eff/[(3H 2

0 �m,0)(1 − 3w)] and Q0 = (1 + w)(1 −
�m,0)/[�m,0(1 − 3w)].

The anisotropy parameter is then given by

η ≡ ψ

φ
− 1 = −9

2
H 2

0 (1 − �m,0)(1 + w)
a−1−3w

k2Q

(
1 − c2

s

c2
eff

)
.

(16)

This is non-zero only when anisotropic stress is present and the
metric perturbations φ and ψ are different.

Let us finally define the parameter � (Amendola et al. 2008) as

� =
(

1 + 1

2
η

)
Q. (17)

This is useful because it represents the deviation of the weak lensing
potential �=ψ +φ from its behaviour in the case of no dark energy
perturbations. It is important to remark that for all our forecasts we
used the numerical solutions to equations (3)–(5) and (8)–(9) com-
puted with a modified version of the CAMB code2 (Lewis, Challinor
& Lasenby 2000), and not their analytic approximations, equations
(11)–(13). We did use instead the analytical expression for the Q
and � parameters. These approximate very well their numerical
counterparts up to redshifts very close to 0, as shown in figs 3 and
4 of Sapone & Majerotto (2012)

2 http://camb.info
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3 C O S M O L O G I C A L P RO B E S

In Sapone et al. (2013), we forecasted constraints to the viscosity
parameter and the sound speed from the Euclid galaxy clustering
and weak lensing surveys. Here, we aim to complete the picture by
adding to the latter the constraints from the iSW tomography signal
obtained by cross-correlating galaxies mapped by the Euclid photo-
metric instrument with the Planck temperature map. This provides
a combination of all major probes of cosmic structure formation,
which draw their sensitivity from the growth rate and interactions
between fluids, from the shape of the initial perturbations and from
the expansion history.

The Euclid survey is a mission of the ESA Cosmic Vision pro-
gramme that will be launched in 2020, and will perform both a
photometric and a spectroscopic survey, the first aiming mainly at
measuring weak lensing while the second at measuring the galaxy
power spectrum. The Planck satellite is also a mission of ESA Cos-
mic Vision programme, which mapped the CMB fluctuations with
unprecedented precision and control of systematic effects.

To perform our forecasts, we use the Fisher matrix (Tegmark et al.
1997), which quantifies the decrease in likelihood if a model param-
eter θα moves away from the fiducial value, and can be computed for
a local Gaussian approximation to the likelihood L ∝ exp(−χ2/2).
In our forecasts we assume the official Euclid specifications, that
can be found in Laureijs et al. (2011). The fiducial cosmological
parameters correspond to the 2013 Planck measurements (Planck
Collaboration XVI 2014b), except for the value of w, for which we
assume w = −0.8, in order for the effects to be more clearly visible
(as done in Sapone & Majerotto 2012; Sapone et al. 2013) and of
course except for the values of c2

s and c2
v.

In the following, we will describe the iSW tomography signal
and give a short summary on the signal coming from weak lensing
and the galaxy power spectrum from spectroscopy.

3.1 iSW signal

When a CMB photon moves into a time-evolving metric such as that
of equation (6) the unbalance between the blueshift experienced at
the entrance and the redshift experienced at the exit of its varying
potential well originates a perturbation ζ in the CMB temperature
TCMB given by (Sachs & Wolfe 1967),

ζ = �T

TCMB
≡

∫
dτ

(
∂φ

∂τ
+ ∂ψ

∂τ

)
=

∫ χH

0
dχ a2H

∂�

∂a
, (18)

where χ is the comoving distance (see equation 2) and � is the
weak lensing potential.

In the case of pure matter domination, � = const, hence the
iSW effect vanishes, while in presence of any fluid with w 	= 0 the
temperature fluctuation ζ will be non-zero. This is why the late iSW
is particularly interesting to us, as it is originated by the appearing
of dark energy and it is an independent proof of its existence (first
detected by Boughn & Crittenden 2004; Giannantonio et al. 2012,
for an updated measurement).

Let us now compute the term inside the integral, passing to
Fourier space, and in the case of viscous dark energy (see also
Schaefer 2009; Sapone & Majerotto 2012):

∂�

∂a
= −3

2

H 2
0 �m,0

ak2

{
� (a, k) �′

m (a, k)

+ �′ (a, k) �m (a, k) − 1

a
� (a, k) �m (a, k)

}
. (19)

It is possible to see from this expression that anisotropic pertur-
bations enter the iSW effect in two ways: by modifying �m and
through the additional presence of � and �′. At linear order, it is
possible to isolate today’s �m from its time evolution:

�m (a, k) = aG (a, k) �m,0 (k) , (20)

where �m,0(k) ≡ �m(a = 1, k). We write hence equation (19) as:

∂�

∂a
= −3

2

H 2
0 �m,0

k2

∂

∂a
{G (a, k) � (a, k)}�m,0 (k) , (21)

and equation (18) reads now

ζ =
∫ χ

H

0
dχ Wζ (χ ) �m,0(k) (22)

where the weighting function Wζ (χ ) is

Wζ (χ ) = 3

2

H 2
0 �m,0

k2
a2H

∂

∂a
{G (a, k) � (a, k)}. (23)

Since the iSW is a secondary effect of the CMB (Rees & Sciama
1968), it can be extracted through cross-correlation of the CMB
temperature fluctuations to the galaxy density (Crittenden & Turok
1996). Let us hence write the galaxy density obtained through imag-
ing surveys, in order to compute its cross-correlation with the iSW.
The line-of-sight projected galaxy density γ is given by (Smail et al.
1995)

γ =
∫ χH

0
dχ D(z)

dz

dχ
b(χ )G(χ )δ(z) (24)

being D(z) the galaxy distribution defined as

D(z) =
(

z

z0

)2

exp

[
−

(
z

z0

)βD
]

, (25)

where the fiducial parameters βD and z0 depend on the imaging
survey considered. In the case of Euclid, they are βD = 3/2, z0 =
zmean/

√
2, and zmean = 0.9 (Laureijs et al. 2011).

Even though the signal from the iSW increases noticeably when
cross-correlating it with the galaxy density field, both the cross-
correlation spectrum and the galaxy spectrum are line-of-sight in-
tegrated quantities, hence much information may be lost. For this
reason, we decide to use iSW tomography (Douspis et al. 2008;
Ho et al. 2008; Juergens & Schaefer 2012). In particular we divide
the whole galaxy sample into 5 bins with equal number of galaxies
(in order to match with the binning used by official Euclid docu-
ments for weak lensing tomography). To do this, we replace the
galaxy distribution function D(z), equation (25) in γ , equation (24),
with the radial distribution function of galaxies in the ith bin Di(z).
The latter is obtained by binning the overall distribution D(z) and
convolving it with the photometric redshift distribution function
(Amendola et al. 2008).

We are finally able to write our observable, i.e. the iSW-galaxy
cross-correlation spectrum in the i-th redshift bin, along with the
iSW-auto correlation spectrum Cζ ζ (�) and the galaxy–galaxy auto
correlation spectrum Cγ γ ,ij(�) of the ij-bins, by applying a Limber
projection (Limber 1954) in the flat-sky approximation:

Cζγ,i(�) =
∫ χH

0

dχ

χ2
Wζ (χ )Wγ,i(χ ) P��(k = �/χ ), (26)

Cζζ (�) =
∫ χ

H

0

dχ

χ2
W 2

ζ (χ ) P�� (k = �/χ ) (27)

Cγγ,ij (�) =
∫ χH

0

dχ

χ2
Wγ,i(χ )Wγ,j (χ ) P��(k = �/χ ) (28)
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Figure 1. Tomographic iSW-spectra Cζγ ,i(�) for two dark energy models:
c2

s = 1 and c2
v = 0 as well as c2

s = 10−5, c2
v = 10−6. Blue to light green lines

(top to bottom) correspond to redshifts z in the intervals [0.01 − 0.5595]
(blue), [0.5595 − 0.7871], [0.7871 − 1.0165], [1.0165 − 1.3184] and finally
[1.3184 − 2.5] (green).

Here P̄�� (k) is the linear matter power spectrum today, and the
galaxy weighting function of the ith bin Wγ ,i(χ ) is

Wγ,i(χ ) = Di(z)
dz

dχ
b(χ )G(χ ). (29)

Cζ ζ (�) and Cγ γ ,ij(�) have been computed because they are needed
in order to estimate statistical errors of Cζγ ,i(�). The tomographic
iSW spectra Cζγ ,i(�) are shown in Fig. 1 for two fiducial models: a
standard dark energy model with c2

s = 1 and c2
v = 0 (solid lines) and

a model with viscosity: c2
s = 10−5 and c2

v = 10−6 (dashed lines).
The colour shading indicates the redshift bin for which Cζγ ,i(�)
was evaluated. The iSW effect is a large-scale effect originating
from low redshift, as the influence of dark energy on the growth of
gravitational potentials in the large-scale structure is strongest. The
effect of dark energy viscosity and small sound speed is strongest on
large scales as well (see also Sapone & Majerotto 2012), and affects
a wide range of multipoles. Keeping all cosmological parameters
fixed, dark energy viscosity would increase the amplitude of the
iSW effect by up to 25 per cent on large angular scales and at low
redshift. This sensitivity of the spectra at low multipoles is fortunate
because these scales can be well probed with the iSW effect.

3.2 Weak lensing

To the iSW tomography signal we add the weak lensing tomographic
signal (Hu 1999, 2002; Heavens 2003; Jain & Taylor 2003), coming
from the same photometric survey as γ and using the same redshift
bins. Here, we only give the main equation expressing the weak
lensing power spectrum, which is used for our forecasts, and refer
to Sapone et al. (2013) for further details.

In presence of anisotropic stress, the weak lensing convergence
power spectrum is given by (Hu 1999, 2002; Jain & Taylor 2003;
Hu & Jain 2004)

Cκ,ij (�) =
∫ χH

0

dχ

χ2
Wκ,i(χ )Wκ,j (χ ) �2 PNL(k = �/χ, χ ). (30)

Figure 2. Tomographic weak lensing spectra Cκκ ,ii(�) for two dark energy
models, cs = 1 and cv = 1 as well as cs = 10−5, cv = 10−6, both including
the shape noise term. Blue to light green lines (bottom to top) correspond
to the same redshift binning as in Fig. 1: [0.01 − 0.5595] (blue), [0.5595 −
0.7871], [0.7871 − 1.0165], [1.0165 − 1.3184] and finally [1.3184 − 2.5]
(green).

where the subscript ij refers to the redshift bins around zi and zj,
with

Wκ,i(χ ) = 3�m

2χ2
H

Fi(χ )

a
χ (31)

Fi(χ ) =
∫ χH

χ

dχ ′n(χ ′) Di(χ
′)

χ ′ − χ

χ ′ (32)

and where Di is the same tomographic distribution function of
galaxies used for the iSW effect. While tomography in general
greatly reduces statistical errors, the actual shape of the choice of
the binning does not affect results in a serious way, although in
principle there is room for optimization (Schäfer & Heisenberg
2012).

In Fig. 2 we show the tomographic weak lensing spectra Cκ ,ii(�)
for the same models and the same redshifts as in Fig. 1. As for
iSW, the effect of viscosity is detected at large scales and for a large
range of scales (but smaller than for iSW). Instead, contrarily to
iSW, here the sensitivity to viscosity is stronger at higher redshift.
This is because the efficiency of weak lensing is higher for longer
light paths.

In principle it is also possible to define a cross-spectrum of weak
lensing and iSW, Cκζ ,i(�), and of weak lensing and galaxy distribu-
tion, Cκγ ,i(�), but both these spectra are subdominant with respect
to Cζγ (�). This is because the weak lensing convergence signal
comes from the distortion of the light path at redshifts intermediate
between us and the galaxies mapped by the imaging survey, while
the iSW signal originates precisely at the same redshifts where the
galaxies are. We have tested this fact by computing the signal to
noise-ratio for measuring Cζκ ,i(�) and found it much smaller than
that of Cζγ ,i(�).

3.3 Spectroscopic galaxy power spectrum

To the iSW and weak lensing measurements, both measured through
photometric observations, we add data coming from the power spec-
trum of spectroscopically observed galaxies. Here, we only show
the expression of the observed power spectrum, which is needed in
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order to compute our forecasts, and refer again the reader to Sapone
et al. (2013) for further detail.

Following Seo & Eisenstein (2003) we write the observed galaxy
power spectrum as

P spec
γ γ (z, kr , μr )

= D2
Ar (z)H (z)

D2
A(z)Hr (z)

G2(z, k)b(z)2
(
1 + βμ2

)2
P0r (k) + Pshot, (33)

where the subscript r refers to the reference (or fiducial) cosmolog-
ical model.

Here Pshot is a scale-independent offset due to imperfect removal
of shot-noise, μ = k · r̂/k, is the cosine of the angle of the wave
mode with respect to the line of sight pointing into the direction r̂,
P0r is the fiducial matter power spectrum evaluated at redshift zero,
G(z, k) is the linear growth factor of the matter perturbations, b(z)
is the bias factor and DA(z) is the angular diameter distance. The
wavenumber k and μ have also to be written in terms of the fiducial
cosmology (see Seo & Eisenstein 2003; Amendola, Quercellini &
Giallongo 2005; Sapone & Amendola 2007, for more details). The
fiducial bias used can be found in Orsi et al. (2010), who derived
their results by using a semi-analytical model of galaxy formation.
The matter power spectrum has been computed with a modified
version of the CAMB code accounting for anisotropies.

4 STATISTICAL ERRO RS FORECASTS

In this section, we estimate marginalized statistical errors on the
sound speed and viscosity parameters c2

s and c2
v through the Fisher-

matrix formalism (Tegmark et al. 1997), which assumes a Gaussian
likelihood and unbiased measurements.

4.1 iSW Fisher matrix

The sensitivity of line of sight-integrating effects can be boosted by
subdividing the galaxy population into redshift bins. For the iSW
effect, this was first carried out successfully by Ho et al. (2008), and
systematically investigated by Juergens & Schaefer (2012).

The Fisher matrix of the iSW effect follows directly from the
variance of the spectrum estimates,

F iSW
αβ =

∑
�

∂C̄ζγ,i(�)

∂θα

Cov−1
ij (�)

∂C̄ζγ,j (�)

∂θβ

. (34)

Here the sum runs from � = 5 to � = 300,3 θα are the cosmological
parameters, Covij(�) is the covariance of the spectrum C̄ζγ,i(�) and
is given by

Covij (�) = 1

2� + 1

1

fsky

[
C̄ζγ,i C̄ζγ,j (�) + C̄ζζ (�)C̄γ γ,ij (�)

]
, (35)

and where quantities with the bar represent the estimate of the
signal, including intrinsic CMB fluctuations, instrumental noise and
the beam of the CMB experiment as noise sources:

C̄ζγ,i(�) = Cζγ,i(�) (36)

C̄ζζ (�) = Cζζ (�) + CCMB(�) + w−1
T B−2(�) (37)

3 The integration range for the iSW effect as well as the details of instru-
mental noise and angular resolution are not very important, as most of the
signal is at low � below � ∼ 100, due to the large cosmic variance provided
by the primary CMB fluctuations, which is the largest source of noise.

C̄γ γ,ij (�) = Cγγ,ij (�) + δij

ni

(38)

For Planck’s noise levels, w−1
T = (0.012μK)2 has been used (Tauber

et al. 2006) and the beam was assumed to be Gaussian, B−2(�) =
(2 × 10−8)2exp [�θ2�(� + 1)], with FWHM width of �θ = 7.1 ar-
cmin, corresponding to channels of Planck closest to the CMB
maximum at ∼160 GHz. ni is the number of galaxies per steradian
in the tomography bin i. We assume uncorrelated noise terms, and
as a consequence the cross-spectra Cζγ ,i(�) are unbiased estimates
of the actual spectra, see equation (36). The spectrum CCMB(�) of
the CMB primary anisotropies from Planck has been computed with
the CAMB code.

4.2 Weak lensing Fisher matrix

The Fisher matrix for weak lensing is given by

F WL
αβ = fsky

∑
�

(2� + 1)

2

∂Cκκ,ij (�)

∂θα

C̄−1
jk (�)

∂Cκκ,km(�)

∂θβ

C̄−1
mi (�)

(39)

where the sum runs from � = 5 to 5000, (as from the official Euclid
prescriptions, see Laureijs et al. 2011), and where the sum over
repeated indices is implied. We added a Poissonian shape noise
term to the weak lensing spectra,

C̄κκ,ij (�) = Cκκ,ij (�) + δij

〈γ 1/2
int 〉
ni

, (40)

γ int is the rms intrinsic shear (here, we assume 〈γ 1/2
int 〉=0.22) and ni

is the number of galaxies per steradians belonging to the ith bin. We
assume a Gaussian shape of the covariance while noting that non-
Gaussian contribution can have a strong influence on the derived
forecasts (Takada & Jain 2009).

4.3 Spectroscopic galaxy distribution Fisher matrix

The galaxy power spectrum Fisher matrix is given by (Seo & Eisen-
stein 2003)

F GC
αβ =

∫ kmax

kmin

k2dk

4π2

∂ ln P spec
γ γ (z; k, μ)

∂θα

∂ ln P spec
γ γ (z; k, μ)

∂θβ

× Veff,

(41)

where GC stays for galaxy clustering, the observed galaxy power
spectrum P spec

γ γ is given by equation (33), the derivatives are eval-
uated at the parameter values of the fiducial model. kmin = 0.001
and kmax is such that the rms amplitude of the fluctuations at the
corresponding scale Rmax = 2π/kmax is σ 2(Rmax) = 0.25, with an
additional cut at kmax = 0.2 h/Mpc, in order to remain in the linear
regime. Veff is the effective volume of the survey, given by

Veff �
(

n̄ P spec
γ γ (k, μ)

n̄ P
spec
γ γ (k, μ) + 1

)2

Vsurvey. (42)

The latter equation holds for an average comoving number density
n̄. The number densities and further fiducial Euclid specifications
can be found in Laureijs et al. (2011) and Majerotto et al. (2012).

4.4 Forecasts

We computed forecasts on the measurement of c2
s and c2

v for a wide
range of fiducial values, in order to capture the parameter determin-
ing capability of both experiments for a previously unknown set of
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Figure 3. Forecasted 1σ constraints on c2
s and c2

v for individual probes and
all possible combinations, for the fiducial choice c2

s = 1 and c2
v = 0.

Figure 4. Forecasted 1σ constraints on c2
s and c2

v for individual probes and
all possible combinations, for the fiducial choice c2

s = 10−3 and c2
v = 10−4.

parameters. The probes are assumed to be uncorrelated as discussed
above, hence their Fisher matrices add,

Fαβ = F GC
αβ + F WL

αβ + F iSW
αβ , (43)

and we derive confidence contours on c2
s and c2

v and individual
errors from this combined Fisher matrix, marginalizing over all
other five parameters considered in this analysis. F GC

αβ has been
further marginalized over Pshot, while the galaxy bias has been kept
fixed to the fiducial values of Orsi et al. (2010) (see Section 3.3).

Our forecasts on the following fiducial models: {c2
s , c

2
v} = {1, 0},

{10−3, 10−4}, {10−5, 10−6} and {10−6, 10−6} are shown in Figs 3,
4, 5 and 6, respectively. The first model corresponds to the case of
simple scalar field dark energy, while the following two pairs of
fiducial models were chosen such that c2

s = 10 c2
v. This is because,

as mentioned previously in Section 2.2, the relevant quantity is the
effective sound speed, and the effect of c2

v in it is ∼10 times stronger
than that of c2

s when w = −0.8 because of the factor multiplying c2
v

in equation (14). The last model, also having small c2
s and c2

v, does
not verify the latter relation, and has been chosen in order to be

Figure 5. Forecasted 1σ -constraints on c2
s and c2

v for individual probes and
all possible combinations, for the fiducial choice c2

s = 10−5 and c2
v = 10−6.

Figure 6. Forecasted 1σ constraints on c2
s and c2

v for individual probes and
all possible combinations, for the fiducial choice c2

s = 10−6 and c2
v = 10−6.

compared to previous work (Sapone et al. 2013) and to the similar
case {c2

s , c
2
v} = {10−5, 10−6}.

In all plots, iSW constraints are shown in blue, weak lensing
ones in dark blue, GC ones in green, combined iSW-GC ones in
yellow, combined iSW-weak lensing ones in orange, and combined
iSW-GC-weak lensing ones in red.

From Figs 3–6 it is clear that the results depend very much on
the chosen fiducial model. A common feature is that iSW on its
own does not provide very strong constraints. In particular (see also
Table 1), c2

v is quite badly constrained, with relative errors ranging
between 6.1 × 104 and 1.1 × 105, while relative errors on c2

s are
much smaller: between 1.1 × 10−1 and 1.4 × 10. This was to be
expected since the iSW effect alone has a rather small signal strength
of about 5σ for cross-correlating the CMB with the Euclid galaxy
sample (Douspis et al. 2008).
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Table 1. 1σ errors on the parameters c2
s and c2

v from iSW, weak lensing
and GC alone, from the combination of iSW and WL, iSW and GC, GC and
WL, and from all three data sets. For the case c2

v = 0 the absolute error σc2
v

is given.

c2
s c2

v σc2
s

σc2
v

iSW 1 0 1.4 × 10 8.6
10−3 10−4 1.4 × 10−2 6.1
10−5 10−6 1.4 × 10−6 1.1 × 10−1

10−6 10−6 4.0 × 10−4 4.4 × 10−5

WL 1 0 3.2 × 10−1 4.5
10−3 10−4 1.6 × 10−1 1.4 × 10−2

10−5 10−6 3.7 × 10−4 3.5 × 10−5

10−6 10−6 7.1 × 10−6 8.9 × 10−7

GC 1 0 1.1 × 102 9.1
10−3 10−4 7.5 × 10−5 7.2 × 10−6

10−5 10−6 2.2 × 10−5 1.9 × 10−6

10−6 10−6 4.7 × 10−6 1.2 × 10−6

iSW+WL 1 0 2.9 × 10−1 2.7
10−3 10−4 2.5 × 10−4 5.6 × 10−4

10−5 10−6 2.6 × 10−7 7.5 × 10−7

10−6 10−6 7.0 × 10−6 7.6 × 10−7

iSW+GC 1 0 7.2 × 10−2 3.0
10−3 10−4 5.3 × 10−5 5.5 × 10−6

10−5 10−6 1.6 × 10−7 1.2 × 10−6

10−6 10−6 3.9 × 10−6 4.2 × 10−7

GC+WL 1 0 6.7 × 10−2 3.7
10−3 10−4 7.4 × 10−5 7.1 × 10−6

10−5 10−6 1.9 × 10−5 1.7 × 10−6

10−6 10−6 3.5 × 10−6 4.8 × 10−7

All 1 0 6.7 × 10−2 2.4
10−3 10−4 4.5 × 10−5 4.5 × 10−6

10−5 10−6 1.2 × 10−7 6.1 × 10−7

10−6 10−6 3.3 × 10−6 3.4 × 10−7

Weak lensing constraints4 are much stronger than iSW ones in the
case of a fiducial scalar field dark energy, but become progressively
comparable to them when the fiducial c2

s and c2
v become smaller,

with the exception of the case c2
s = c2

v = 10−6.
Even though both iSW and weak lensing do not give very strong

constraints on sound speed and viscosity (see also Table 1), it is very
interesting to notice that the two data sets complement each other
very well. This is especially true for the case c2

s = 10−5 and c2
v =

10−6, represented in Fig. 5, where the blue ellipses, which indicate
errors from iSW, have a very different degeneration direction with
respect to the dark blue contours, corresponding to errors from weak
lensing, but are comparable to them in size. Therefore the resulting
combined errors are much smaller than those from a single data set.
In particular, the iSW effect gives better constraints on the sound
speed and weak lensing on the viscosity parameter. Also in the cases
of Figs 3, 4 and 6 there is a visible but small improvement when
adding iSW to the other data sets. The reason for this is that iSW’s
sensitivity to c2

s and c2
v is comparable to that of GC and WL, but

its sensitivity to all other parameters is much less than that of the
other observables. This can be seen by comparing the Fisher matrix
elements, and it is demonstrated in the example of Fig. 7. Here
we show how the error on c2

s from GC, for the fiducial model with

4 With respect to Sapone et al. (2013) we have improved the estimation of
PNL by using the full CAMB output instead of an analytical approximation to
it.

Figure 7. Errors on c2
s , for the fiducial model with c2

s = 10−6 and c2
v =

10−6, from the GC Fisher matrix joined with progressively larger iSW sub-
matrices. The first bar on the left corresponds to σc2

s
from GC only, while the

last one on the right corresponds to σc2
s

from joint GC-iSW data. The second

bar from the left corresponds to adding to GC only the c2
s − c2

s element of
the iSW Fisher, the third to adding the c2

s − �bh
2 iSW sub-matrix, and so

forth.

c2
s = 10−6 and c2

v = 10−6, is modified when adding to the GC Fisher
matrix progressively larger iSW sub-matrices. The first bar on the
left corresponds to σc2

s
from GC only, while the last one on the right

corresponds to σc2
s

from joint GC-iSW data. The second bar from
the left corresponds to adding to GC only the c2

s − c2
s element of

the iSW Fisher, the third to adding the c2
s − �bh

2 iSW sub-matrix,
and so forth (see legend). As can be seen, if iSW were depending
only on c2

s and were independent of all other parameters, combining
iSW with GC would improve the error on c2

s by a factor of about
3 (see second bar from the left). Since iSW also depends on other
parameters, which are correlated to c2

s , the improvement becomes
weaker and weaker the more parameters are added. Hence, when
joining the data sets there is a definite improvement in measurements
of these two parameters, due to the improved sensitivity to c2

s and
c2

v and to the better sensitivity to all other parameters due to GC
and WL. Instead, the errors on c2

s and c2
v from iSW alone become

quite large after marginalizing over all other parameters, which are
correlated to the sound speed and the viscosity parameter.

Also errors on c2
s and c2

v from GC are orthogonal to those from
the iSW, but only in the case where c2

s = 10−5 and c2
v = 10−6 (see

Fig. 5) this helps reducing the errors, because the former data set
performs better in constraining c2

v and the second c2
s . In the case of

fiducial c2
s = 10−3 and c2

v = 10−4 it is GC which gives best errors
on both parameters, while for the c2

s = 1 and c2
v = 0 fiducial model,

it is weak lensing.
Another interesting question is whether iSW adds important in-

formation to that provided by the other two data sets, which had
already been analysed in Sapone et al. (2013). Table 1 answers this
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Table 2. Here, we indicate at how many σ s it is possible to detect a nonzero
sound speed or viscosity parameter.

Fiducial Detection of Detection of
{c2

s , c2
v} c2

s 	= 0 [# of σ ] c2
v 	= 0 [# of σ ]

iSW {10−3, 10−4} 7.0 × 10−2 1.6 × 10−5

{10−5, 10−6} 7.3 8.9 × 10−6

{10−6, 10−6} 2.5 × 10−3 2.3 × 10−2

WL {10−3, 10−4} 6.4 × 10−3 6.9 × 10−3

{10−5, 10−6} 2.7 × 10−2 2.8 × 10−2

{10−6, 10−6} 1.4 × 10−1 1.1

GC {10−3, 10−4} 1.3 × 10 1.4 × 10
{10−5, 10−6} 4.6 × 10−1 5.2 × 10−1

{10−6, 10−6} 2.1 × 10−1 8.1 × 10−1

iSW+WL {10−3, 10−4} 4.0 1.8 × 10−1

{10−5, 10−6} 3.8 × 10 1.3
{10−6, 10−6} 1.4 × 10−1 1.3

iSW+GC {10−3, 10−4} 1.9 × 10 1.8 × 10
{10−5, 10−6} 6.1 × 10 8.0 × 10−1.
{10−6, 10−6} 2.6 × 10−1 2.4

GC+WL {10−3, 10−4} 1.3 × 10 1.4 × 10
{10−5, 10−6} 5.4 × 10−1 6.0 × 10−1

{10−6, 10−6} 2.9 × 10−1 2.1

All {10−3, 10−4} 2.2 × 10 2.2 × 10
{10−5, 10−6} 8.5 × 10 1.7
{10−6, 10−6} 3.0 × 10−1 2.9

question. It turns out that the information from iSW helps signif-
icantly in constraining c2

s and c2
v if the true model has c2

s = 10−5

and c2
v = 10−6, see Fig. 5. In this case, the iSW alone gives a strong

constraint, which has moreover a different degeneration direction
with respect to the error from galaxy clustering and weak lensing.
For the other three fiducial models the gain when adding iSW is not
very strong, as in both cases the combination of weak lensing and
galaxy clustering gives a much tighter constraint in both the sound
speed and the viscosity than the iSW alone.

It is also interesting to see at how many σ s one can detect a
deviation from c2

s = 0 or from c2
v = 0. This is shown in Table 2. In

particular, already with iSW alone one can have a 7.3σ detection of
c2

s 	= 0 for the fiducial {c2
s , c2

v} = {10−5, 10−6}. To have a detection
of more than 3σ of c2

v 	= 0 one has to combine iSW with WL or GC,
where the latter observable gives a stronger detection. When com-
bining all observables, one obtains the best detection for the fiducial
{c2

s , c2
v} = {10−3, 10−4}; for the case {c2

s , c2
v} = {10−5, 10−6}, one

has a strong detection of c2
s 	= 0 but only a 1.7σ detection of c2

v 	= 0.
In the fiducial {c2

s , c2
v} = {10−6, 10−6} instead one detects better (at

2.9σ ) c2
v 	= 0 while c2

s 	= 0 keeps being undetected.
It is interesting to notice (see Fig. 6) that when both the sound

speed and the viscosity are small, but the relation between c2
s and c2

v
differs from c2

s ∼ 10c2
v, the iSW effect error ellipse becomes much

larger and as a result the sound speed parameter is less strongly
constrained. Thus, we conclude that (i) very interesting results can
be obtained through a combination from different cosmological
probes and that (ii) the iSW effect is able to tighten constraints
significantly for cases where there is a large difference between c2

s
and c2

v.

5 SU M M A RY

In this paper, we have investigated how well the viscosity and
sound speed of dark energy can be measured with the iSW cross-

correlation spectrum, when using Planck and Euclid observations,
and how joining iSW measurements to galaxy clustering and weak
lensing ones improves constraints.

We found that the speed of sound is quite well constrained, with
relative errors as small as 0.14 for small fiducial c2

s and c2
v, while rela-

tive errors on the viscosity parameter are very large. The anisotropic
stress is not well constrained by the iSW, due to the marginaliza-
tion over the other parameters, which degrades the sensitivity to
the sound speed and viscosity. In practice, iSW is only sensitive to
c2

s and c2
v and not to the other parameters as it is for GC and WL.

However, the error ellipses are interestingly orthogonal to those
from weak lensing and the latter has much better sensitivity to all
the other parameters. Hence, the combination of these two data sets
constrains tightly the parameter space, giving relative errors on c2

s

and c2
v as small as 2.6 × 10−2 and 7.5 × 10−2, respectively. This is

an improvement of a factor ∼1500 in the measurement of the sound
speed and ∼50 in the measurement of the viscosity parameter, with
respect to the weak lensing only constraint. The improvement ob-
tained when combining iSW with galaxy clustering is smaller: a
factor of ∼1.5 in c2

v and ∼150 in c2
s . Finally, the addition of iSW

to weak lensing and galaxy clustering constraints is most important
if the fiducial sound speed and viscosity parameter are very small,
while it is not very relevant for higher fiducial values of c2

s .
It is also important to remind that in order to make the effect

of dark energy perturbations stronger we have always used a value
of the equation of state parameter w = −0.8. For values close to
w = −1 the effects on the observables due to the dark energy
perturbations are reduced, as all the phenomenological functions
used (such as Q(k, a)) have a term ∝ (1 +w). If we use a value of w =
−0.9 we expect our final errors on the parameters to increase. But
by how much? All the observables used in this paper depend most
strongly on Q2 (see equation 15) which is intrinsically included into
the matter power spectrum; for a sound speed equal to zero Q − 1 =
(1 + w)/(1 − 3w)a−3w so the relative increase of the errors on the
sound speed will be given by 1/[(Q(w = −0.9) − 1)/(Q(w = −0.8)
− 1)]2 which is of about a factor 4 larger, in agreement also with
the results found in Sapone, Kunz & Amendola (2010).

A detection of sound speed and viscosity different from the values
associated with a classical scalar field, i.e. c2

s = 1 and c2
v = 0, will

point to a new understanding of the accelerated phase of the Uni-
verse. This is because the non-ideal fluid considered in this paper
can be thought of as en effective dark energy fluid parametrizing a
modified gravity model, see Kunz & Sapone (2007). In practice, the
detection of a zero sound speed does not automatically mean that
we are dealing with an actual dark energy fluid, even though one
would nevertheless experience effects which could be attributed to
fluctuations of a fluid.

In this paper, we found that joining data from Euclid and Planck
we are able to constrain simultaneously the sound speed and the
viscosity parameters, provided that the two are sufficiently small.
This is mostly due to the different sensitivity of the three observ-
ables, i.e. GC, WL and iSW to the two parameters. In most cases,
the iSW has a different degeneracy with respect to WL and GC, and
this helps reducing the errors on c2

s and c2
v by a factor of ∼100 (as

pointed out before). Our results are in agreement with what found
by Mota et al. (2007), Calabrese et al. (2011), Chang & Xu (2014),
who show that for values of c2

s approaching c2
s = 1 the detection of

a positive viscosity is very difficult, even when, as in the case of
Calabrese et al. (2011), an early dark energy helps its detection by
increasing its effect on smaller scales.

To conclude, are Euclid and Planck able to measure the sound
speed and the viscosity parameters of a dark energy component?
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If the values of c2
s and c2

v are small enough, the answer is yes;
consequently, we will be able to constrain well the effective dark
energy model. On the contrary, if sound speed and viscosity will
escape detection, at least one of the two parameters will likely
have large values. We would assume that other cosmological probes
would not directly provide constraints on dark energy properties, but
would nevertheless be able to provide constraining power by fixing
other parts of the cosmological model, such as the dark matter
density or the dark energy equation of state, which was not subject
to variation in our investigation.
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