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Abstract. We present our current studies and future plans on microscopic potential based on effective
nucleon-nucleon interaction and many-body theory. This framework treats in an unified way nuclear struc-
ture and reaction. It offers the opportunity to link the underlying effective interaction to nucleon scattering
observables. The more consistently connected to a variety of reaction and structure experimental data the
framework is, the more constrained the effective interaction will be. As a proof of concept, we present some
recent results for both neutron and proton scattered from spherical target nucleus, namely 40Ca, using
the Gogny D1S interaction. Possible fruitful cross-talks between microscopic potential, phenomenological
potential and effective interaction are exposed. We then draw some prospective plans for the forthcoming
years including scattering from spherical nuclei experiencing pairing correlations, scattering from axially
deformed nuclei, and new effective interaction with reaction constraints.

1 Introduction

Producing satisfactory data evaluations based solely on
many-body theories and effective nucleon-nucleon (NN)
interaction is a long-term project. Two keys to success
are: i) robust and well-tested nuclear reaction codes, such
as TALYS [1] or EMPIRE [2], flexible enough to incor-
porate new microscopic models and ii) microscopic inputs
such as optical model potentials, nuclear level densities,
γ-ray strength functions, and fission properties, all based
on effective NN interaction. Advances made along this line
provide more opportunities to connect the effective NN in-
teraction to a broad body of structure and reaction data
and as a matter of fact to improve its parametrization.

1.1 Nuclear energy density functional

Many-body theories based on effective NN interaction
such as Hartree-Fock(-Bogolyubov) (HF(B)) for static
properties and (quasiparticle-)random-phase approxima-
tion ((Q)RPA) [3] or five-dimension collective Hamilto-
nian (5DCH) [4] for dynamical properties have proven
their ability to describe a wide range of nuclear struc-
ture observables, including binding energy, charge radius,
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deformation, excitation spectrum, density and spectro-
scopic factors, this for nuclear masses with A � 5. As
an illustration of the extended reach of the method, we
show in fig. 1, nuclear deformations determined within
axially deformed HFB with Gogny D1S interaction all
over the nuclide chart [5]. Effective theories are usually
based on phenomenological parametrizations of the ef-
fective NN interaction, such as Skyrme [6, 7] or Gogny
forces [8–11]. In the following we mainly focus on Gogny
interaction. The fit of the interaction mostly relies on con-
nection made with structure data through the effective
theory. Those constraints are then completed by physical
filters coming from infinite matter calculations. Up to now,
two strategies have been adopted. The first and original
one uses a restricted HF model where single-particle or-
bitals are approximated by harmonic-oscillator wave func-
tions for simplicity. This makes possible to determine pa-
rameter sets of the interaction from a limited number of
constraints by matrix inversion and from physical filters.
This strategy has been applied with success to the de-
termination of D1 [9], D1S [10] and D1N [11] versions of
Gogny interaction. Recent multiparticle-multihole config-
uration mixing studies [12, 13] have motivated the elab-
oration of a generalized Gogny interaction with finite-
range density, spin-orbit and tensor terms. Along that
line, Gogny D2 interaction with a finite-range density
term has been designed [14]. The second strategy is more
based on brute force using HFB with a self-consistent
account of quadrupole correlations energies within the
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Fig. 1. Chart of the nuclides showing deformations obtained with axially deformed HFB/D1S [5].

5DCH approach. This strategy has been used to develop
the D1M parametrization of Gogny interaction which
reaches an rms deviation with respect to the 2149 mea-
sured masses of only 798 keV [8]. This improvement of
the parametrization has been done conserving as much as
possible the virtues of former Gogny interactions.

As a consequence, the global character of effective the-
ories as well as their accuracy and their relatively low com-
putational cost make them well suited to fulfill the needs
for accurate nuclear data files in a reasonable time scale.

1.2 Nuclear codes ingredients based on effective
interaction

Various phenomenological ingredients of reaction codes
have been replaced by their microscopic counter parts
based on effective interaction. Connecting the dots, it will
be possible to obtain satisfactory evaluations on the ba-
sis of reliable and accurate microscopic inputs only [15].
A good example of this on going work is the use made
of results on 238U isotope described within QRPA with
Gogny force [16, 17]. Those results have made possible a
microscopic description of preequilibrium without ad hoc
“pseudo-state” prescription [18]; see also Dupuis et al. on
this issue. Along the same line, nuclear level densities have
been obtained using a temperature-dependent HFB ap-
proach with Gogny interaction [19]. γ-ray strength func-
tion studies based on QRPA and Gogny interaction have
also been developed [20,21]. Concerning optical potentials,
TALYS uses phenomenological potentials [22, 23] in the
regions where data are available and a modified version of
the semi-microscopic Jeukenne-Lejeune-Mahaux [24] else-
where. Neither of those methods allows a direct connec-
tion with NN interaction. In order to fulfill this lack, we
are interested in developing a microscopic potential based
on the effective NN interaction.

1.3 Microscopic and ab inito potentials

Depending on the projectile energy and the target mass,
various strategies have been adopted in order to deal with

elastic scattering starting from NN interaction. We now
expose the pros and cons of those different methods. In
the following, ab initio (microscopic) refers to methods
based on bare (effective) NN interaction.

Nuclear matter models [25] provide reasonable descrip-
tions of nucleon elastic scattering at incident energies
above about 50MeV [26], even up to ∼ 1GeV [27]. The
method is based on the folding of a matter density and
a g-matrix effective interaction built from bare NN inter-
action. The density is provided by an ad hoc prescrip-
tion such as mean-field or beyond mean-field approaches.
Work toward a consistent treatment of both density and
g-matrix is in progress [28]. Recent ab initio calculations
address the issue of reactions involving light nuclei and
low-energy regime. The resonating group method within
the no-core shell model, has successfully described nu-
cleon scattering from light nuclei [29]. This ab initio model
has recently been extended to include three-nucleon forces
for nucleon scattering from 4He [30, 31]. They deal with
3He, 4He and 10Be targets and incident energies below
15MeV. Another method, the Green’s function Monte
Carlo method has been used to describe nucleon scat-
tering from 4He in particular the phase-shift of the first
partial waves below 5MeV incident energy [32]. Other ab
initio calculations handle magic nuclei. Among them, the
self-consistent Green’s function (SCGF) method has been
applied to optical potential calculations for 40,48,60Ca tar-
gets [33]. This method allowed to treat on the same foot-
ing particle-particle and particle-hole correlations as well
as the interferences between each other [34]. The SCGF
potential is compared with a phenomenological dispersive
potential [35]. This model underestimates nuclear radii
and, as a consequence, is not well suited for scattering
calculations. Further studies including three-body forces
may cure this issue. Moreover work on Gorkov-Green’s
function theory is in progress to extend SCGF to nuclei
around closed-shell nuclei [36, 37]. Finally, the coupled-
cluster theory has been applied to proton elastic scattering
from 40Ca [38]. Cross section at 9.6MeV and 12.44MeV
center-of-mass energy are compared with data. They ob-
serve a lack of absorption.
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discussed in the text.

Although ab initio methods have made progresses in
handling light and magic-nuclei, they are still not suited
neither for heavy targets nor for high incident energy pro-
jectiles. Another option is to build the potential starting
from an effective NN interaction. The price to pay is to
break the explicit link with bare NN interaction. The ad-
vantage is once again the extended reach of effective the-
ories and the wealth of results already available.

The so-called nuclear structure method (NSM) for
scattering [39–42] relies on the self-consistent HF and RPA
approximations to the microscopic optical potential [43].
The former is a mean-field potential; the latter is a po-
larization potential built from target nucleus excitations.
This method applies to double-closed shell spherical tar-
get nuclei well described with RPA. A strictly equivalent
method, the continuum particle-vibration coupling using
a Skyrme interaction, has been recently applied to neutron
scattering from 16O [44]. They neglect part of the residual
interaction in the coupling vertices. In addition, they do
not address the issue of the double counting of the uncor-
related second-order diagram. Other approaches aiming
at fitting a Skyrme effective interaction including reac-
tion constraints are in progress, where optical potential is
approximated as the HF term and the imaginary part of
the uncorrelated particle-hole potential neglecting collec-
tivity of target excited states [45,46]. A recent application
of NSM with Gogny interaction is presented in ref. [47].
The same interaction is consistently used to generate the
mean-field, the excited states and the couplings. In this
study, special attention is given to the issue of the double
counting of the uncorrelated second-order diagram. The
subtraction of this second-order term is shown not to lead
to pathological behaviors when positive incident energy
is considered, contrarily to what is expected in ref. [48].
Moreover, the use of the finite-range Gogny interaction
prevents from the necessity of ad hoc momentum cut-off
when second-order effects are considered.

1.4 Project

In the continuity of work presented in ref. [47], we wish to
explore the possible connections provided by a microscopic
optical potential using NSM. The framework is summa-
rized in fig. 2. In the first line of the diagram, effective
interaction is used within structure models to make spec-

troscopic predictions. Feedback from experiment provides
constraints on the interaction whenever a reliable struc-
ture model is used. Effective interaction and structure cal-
culation can then be used to define the microscopic po-
tential through NSM. Once the corresponding scattering
problem is solved, feedbacks are made possible from cross
section data providing reaction constraints to the fit of
the interaction. Microscopic potentials are nonlocal, com-
plex and energy dependent. They can provide prescrip-
tions for future phenomenological potentials, in particular
concerning the shape of the nonlocality and the energy
dependence. One can as well investigate the origin of the
volume and the surface part of the potential in terms of
target excitations. Reciprocally, when data are available,
phenomenological potentials can help identifying contri-
butions missing in microscopic potentials. Moreover when-
ever phenomenological potentials obey dispersion relation,
a connection is also made with spectroscopy. The main
connections we wish to investigate in the following are
highlighted in fig. 2.

The NSM formalism for spherical target nuclei and
the integro-differential Schrödinger equation are briefly
exposed in sect. 2.1 and sect. 2.2, respectively. In sect. 2.3,
we emphasize the importance of the exact treatment of
the intermediate HF propagator and more precisely the
account of single-particle resonances. As a proof of con-
cept in sect. 3, we apply NSM to nucleon elastic scattering
from 40Ca. Some possible cross-talks between phenomeno-
logical potentials and their microscopic counterpart are
discussed in sect. 4. In sect. 5, we show how phenomeno-
logical nonlocal potential can relate to the effective NN
interaction through volume integrals. Finally in sect. 6,
we draw plans for the decade to come. In particular, we
mention the issue of spherical target nuclei experiencing
pairing correlations and the one of deformed target nuclei.

2 Method for spherical target

2.1 NSM potential

The NSM formalism is presented in detail in ref. [43]. We
briefly introduce the key points of the formalism. Equa-
tions are presented omitting spin for simplicity. The NSM
potential, V , consists of two components,

V = V HF + ΔV. (1)

The former is a mean-field potential; the latter is a po-
larization potential built from target nucleus excitations.
The HF potential, V HF , is the major contribution to the
real part of the optical potential. The polarization po-
tential, ΔV , brings only a correction to the real part of
V and entirely generates its imaginary contribution. The
HF potential is obtained in the Green’s function formalism
neglecting two-body correlations [49]. It reads

V HF (r, r′)=
∫

dr1v(r, r1)ρ(r1)δ(r − r′) − v(r, r′)ρ(r, r′),

(2)
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where v is the effective NN interaction and

ρ(r) =
∑

i

|φi(r)|2, (3)

ρ(r, r′) =
∑

i

φ∗
i (r)φi(r′), (4)

are the local and nonlocal densities with i running over
occupied states. V HF is made of a local direct term and
an exchange term which is nonlocal because of the finite
range of Gogny interaction. It is energy independent and
it does not bring any imaginary contribution. Rearrange-
ment contributions stemming from the density-dependent
term of the interaction are also taken into account [50].
Together with Schrödinger equation, eq. (2) defines a self-
consistent scheme as shown in fig. 3.

The polarization potential, ΔV in eq. (1), is built cou-
pling the elastic channel to the intermediate excited states
of the target nucleus. Those excited states are described
within the RPA formalism. Both excited states and cou-
plings are generated using Gogny interaction. The result-
ing potential is nonlocal, energy dependent and complex.
In NSM, the whole absorption originates from the po-
larization potential. Together with Schrödinger equation,
eq. (1) now defines a new self-consistent scheme, illus-
trated in fig. 4 when considering both full-line and dashed-
line arrows. In practice, as described in fig. 4, we first
converge the HF scheme, as shown in fig. 3, then we dress
only once the HF propagator by coupling to the excita-
tions of the target. This makes the scheme only consistent
at that stage. Going into more details, the polarization
contribution to the potential reads

ΔV = V PP + V RPA − 2V (2), (5)

where V PP and V RPA are contributions from particle-
particle and particle-hole correlations, respectively. The

λ

p h
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λ p h

(b)

λ p h

(b )

Fig. 5. Diagrammatic contributions of V RPA (a) and V (2) (b).
Indices p, h and λ refer to particle, hole and the intermediate
state in the HF field, respectively. Wavy lines stand for the
effective NN interaction.

uncorrelated particle-hole contribution, V (2), is accounted
for once in V PP and twice in V RPA. When two-body cor-
relations are neglected in eq. (5), one expects ΔV to re-
duce to V (2). As a matter of fact V (2) shall be subtracted
twice [43]. This formalism takes into account all the cor-
relations explicitly. Although it is well suited for ab initio
developments, we wish to make the connection with effec-
tive NN interactions. In practice, if one uses an effective
interaction with a density-dependent term, such as Gogny
or Skyrme forces, attention must be paid to correlations
already accounted for in the interaction [41]. Indeed, in
such a case, part of particle-particle correlations is already
contained at the HF level. We thus use the same prescrip-
tion as in ref. [40], omitting the real part of V PP while
approximating the imaginary part of V PP by Im[V (2)].
Then eq. (5) reduces to

ΔV = Im[V (2)] + V RPA − 2V (2). (6)

Both ingredients of eq. (6), V RPA and V (2), can be ex-
pressed in terms of diagrams. In fig. 5, wavy lines stand
for the effective NN interaction and up (down) arrows
stand for HF particle (hole) propagators. Subscript p (h)
refers to the quantum numbers of the single-particle (hole)
HF states used to build target excitations. The subscript
λ refers to the quantum numbers of the intermediate
single-particle state of the scattered nucleon. Both dis-
crete and continuum spectra of the intermediate single-
particle state are accounted for. Label (a) refers to V RPA

built with an unoccupied intermediate state. Label (a′)
refers to V RPA built with an occupied intermediate state.
Labels (b) and (b′) refer to the corresponding uncorre-
lated particle-hole contributions. Exchange diagrams are
not depicted in fig. 5 but are taken into account in the
results presented in the following.
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For nucleons with incident energy E, the RPA poten-
tial, corresponding to figs. 5(a) and (a′), reads

V RPA(r, r′, E) =
∑
N �=0

∫∑
λ

[
nλ

E − ελ + EN − iΓ (EN )

+
1 − nλ

E − ελ − EN + iΓ (EN )

]

×ΩN
λ (r)ΩN

λ (r′), (7)

where ni and εi are occupation number and energy of the
single-particle state φi in the HF field, respectively. EN

and Γ (EN ) represent the energy and the width of the
N th excited state of the target, respectively. Additionally,

ΩN
λ (r) =

∑
(p,h)

[
XN,(p,h)Fphλ(r) + Y N,(p,h)Fhpλ(r)

]
,

(8)
where X and Y denote the usual RPA amplitudes and

Fijλ(r) =
∫

d3r1φ
∗
i (r1)v(r, r1)

[
1 − P̂

]
φλ(r)φj(r1), (9)

where P̂ is a particle-exchange operator and v is the
same effective NN interaction as in eq. (2). The un-
correlated particle-hole contribution, corresponding to
figs. 5(b) and (b′), reads

V (2)(r, r′, E) =
1
2

∑
ij

∫∑
λ

[
ni(1 − nj)nλ

E − ελ + Eij − iΓ (Eij)

+
nj(1 − ni)(1 − nλ)

E − ελ − Eij + iΓ (Eij)

]

×Fijλ(r)F ∗
ijλ(r′), (10)

with Eij = εi − εj , the uncorrelated particle-hole energy.
In practice, V HF is determined in coordinate space to

ensure the correct asymptotic behavior of single-particle
states. This nonlocal potential is then used to build the
single-particle intermediate state used to determine the
polarization potential, ΔV . It is worth mentioning that
the HF potential in coordinate space reproduces bound
state energies obtained with the HF/D1S code on oscilla-
tor basis which makes our result reliable.

The description of target excitations is obtained solv-
ing RPA equations in a harmonic oscillator basis, includ-
ing fifteen major shells [51] and using the Gogny D1S in-
teraction [10]. We account for RPA excited states with
spin up to J = 8, including both parities, in order to
achieve the convergence of cross section calculations. The
first Jπ = 1− excited state obtained with RPA, contain-
ing the spurious translational mode, is removed from the
calculation. Moreover, in order to avoid spurious modes
in the uncorrelated particle-hole term, we approximate
the Jπ = 1− contribution in V (2) by half that of the
Jπ = 1− contribution in V RPA. Indeed if one approxi-
mates V (2) ≈ V RPA/2, then eq. (5) reduces to

ΔV ≈ Im
[
V RPA/2

]
. (11)

This approximation has the drawback of neglecting the
real part of ΔV as well as part of the collectivity of the
excited states but still yields a nice agreement with ex-
perimental cross sections. This makes this approximation
well suited to bypass the issue of spurious translational
modes in the V (2) term. An explicit removal of this spuri-
ous contribution in V (2) should be considered in the future
following work by Mizuyama et al. [52].

Even though RPA/D1S method provides a good over-
all description of the spectroscopic properties of double-
closed shell nuclei, still some contributions are left out.
First, the projection on an oscillator basis discretizes the
RPA continuum. As a consequence, the escape width, re-
lated to the correct treatment of the continuum, is miss-
ing from the structure calculation. Second, couplings to
two or more particle-hole states are excluded from the
model space even though they may play a significant role.
The impact of these couplings is a strength redistribution
through a damping width as well as a shift in energy of
excited states. Third, the optical potential is, by defini-
tion, built to provide the energy-averaged S-matrix [53].
Hence, the rapid fluctuations, the potential exhibits at
low energy due to compound-elastic contributions, shall
be averaged before identifying the result of eq. (1) with
an optical potential [54].

In the present work, we simulate those three different
widths assigning a single phenomenological width, Γ (EN ),
to each RPA state. Γ (EN ) takes the value of 2, 5, 15
and 50MeV, for excitation energies of 20, 50, 100 and
200MeV, respectively. Those values have not been fit-
ted in order to better reproduce cross section data. In
sect. 3, we study how cross sections are sensitive to the
choice of width. Longer-term solutions are planned in or-
der to provide more microscopic prescriptions for those
widths. The escape width can be obtained using contin-
uum RPA [44, 55]. We also plan to determine the damp-
ing width and the energy shift using the multiparticle-
multihole configuration mixing method [56].

2.2 Integro-differential Schrödinger equation

The integro-differential Schrödinger equation for bound
states and scattering is solved without localization proce-
dures. The radial Schrödinger equation reads

− �
2

2μ

[
d2

dr2
− l(l + 1)

r2

]
flj(r)

+ r

∫
νlj(r, r′;E)flj(r′)r′dr′ = Eflj(r), (12)

where flj(r) = rφlj(r) is the partial wave for the
projectile-target relative motion, E is the incident nucleon
energy and νlj(r, r′;E) is defined from the multipole ex-
pansion of the nonlocal potential

V (rσ, r′σ′;E) =
∑
ljm

Yljm(r̂σ)νlj(r, r′;E)Y†
ljm(r̂′σ′),

(13)
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Fig. 6. Phase-shift in the HF field for neutron (panels (a) and
(b)) and proton (panels (c) and (d)) scattering from 40Ca as a
function of incident energy for the first ten partial waves.

with
Yljm (r̂σ) ≡ [Yl(r̂) ⊗ χ1/2(σ)]jm. (14)

The potential, V , is complex and energy dependent for
E > 0, and real and energy independent for E < 0. Dis-
crete solutions are obtained by expressing eq. (12) on a
mesh in coordinate space and performing the correspond-
ing matrix diagonalization [57]. For positive energies, the
scattering problem with the correct asymptotic conditions
turns into a matrix inversion following Raynal’s method
for scattering exposed in the DWBA code explanatory
leaflet [58].

2.3 Resonances in the intermediate wave

We now would like to emphasize the impact of an exact
treatment of φλ on the second-order terms of the potential,
V RPA and V (2) (see eqs. (7) through (10)); especially, the
role of single-particle resonances already discussed by Rao
et al. [59] within a phenomenological approach. In previ-
ous works, φλ has often been approximated by a plane
wave for neutron and a Coulomb wave for proton [41] or
discretized [40]. In this work, we include both discrete and
continuum spectra of φλ determined in the HF field with
the correct asymptotic solutions. Phase-shifts for neutron
and proton scattering from 40Ca in the HF field are shown
in fig. 6. We observe single-particle resonances for sev-
eral partial waves each time phase-shift increases rapidly
through an odd multiple of π/2. The corresponding res-
onance energies are summarized in table 1. Those reso-
nances will result into fluctuations of the imaginary part
of V RPA and V (2) (eqs. (7) and (10)) whenever the energy
E−EN matches a resonance energy ελ of the intermediate

Table 1. HF single-particle resonance energies (in MeV) for
neutron (n) and proton (p) scattering from 40Ca.

n p

12.18 (j = 7/2, l = 4) 3.70 (j = 1/2, l = 1)

3.15 (j = 9/2, l = 4) 2.15 (j = 3/1, l = 1)

14.87 (j = 11/2, l = 5) 5.65 (j = 5/2, l = 3)

31.09 (j = 13/2, l = 6) 20.69 (j = 7/2, l = 4)

9.55 (j = 9/2, l = 4)

22.08 (j = 11/2, l = 5)

39.78 (j = 13/2, l = 6)
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Fig. 7. Reaction cross section vs. proton incident energy with
V = V HF + Im[V RPA/2] coupling only to the first 1− excited
state in 40Ca (Ex = 9.7 MeV). Comparison between φλ treated
as a Coulomb (Coul) wave (dashed line) or as a distorted wave
(DW) in the HF field (solid line).

single-particle state. As a consequence, those resonances
will strongly influence the corresponding cross section. As
an illustration of resonance effects, in fig. 7 we show the
reaction cross section for proton scattering as a function of
the energy of the projectile. The potential includes the HF
potential as real part and the imaginary part of the RPA
potential, restricting couplings to the second Jπ = 1− ex-
cited state of 40Ca, with Ex = 9.7MeV excitation energy.
This is done taking Γ (EN ) = 0MeV in eq. (7) in order to
emphasize the effect of resonances. This result is compared
with a calculation using a Coulomb wave as intermediate
state. The exact treatment of the intermediate state leads
to a global enhancement of the reaction cross section. Each
bump in the reaction cross section is related to one of the
intermediate single-particle resonances listed in table 1.
Moreover we notice that coupling to only one excited state
of the target already leads to four resonances between 10
and 20MeV. One expects to get a large number of reso-
nant contributions once coupling to the thousand target
excited states. As an example, we show in fig. 8 the same
calculation as in fig. 7 but including all the open chan-
nels for a given incident energy. Once again as discussed
in sect. 2.1, one needs to average fluctuating contributions
before comparing scattering observables with experiment.
This shows the importance of a complete treatment of the
intermediate wave.
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2.4 Double counting

In this study, special attention is given to the issue of dou-
ble counting of the uncorrelated second-order diagram (see
eq. (5)). As discussed in terms of self-energy in ref. [48],
the subtraction of the second-order term leads to unphys-
ical results such as negative occupation numbers in the
discrete part as well as negative cross sections at low in-
cident energy caused by narrow single particle resonances
in the intermediate wave. An ideal determination of the
self-energy requires a consistent treatment of escape and
damping widths as mentioned in sect. 2.1. Those widths
result in a smoothing of integral cross sections above a
given incident energy (about 10MeV for neutron scatter-
ing off 40Ca). At lower energy the cross section experiences
rapid fluctuations due to the formation of compound nu-
cleus. Once again an ideal model would describe those
compound nucleus states. In the present work, we look
for a potential averaged in energy sticking to the usual
definition of optical potential (see for example ref. [53]).
This averaged potential does not allow the resolution of
low-energy compound nucleus resonances. It yields the
energy-averaged S-matrix. As a result, eq. (5) now im-
plies the subtraction of two smooth functions. The ob-
tained averaged NSM potential does not lead to patho-
logical behaviors when positive incident energy is consid-
ered. In fig. 9, we compare the two contributions V RPA

and V (2), from eqs. (7) and (10), respectively, for neutron
scattering of 40Ca at 9.91MeV. The RPA contribution is
always larger than the second-order potential so that the
subtraction does not imply any unphysical change of sign.
Moreover, NSM potential and the cruder approximation
ΔV ≈ Im[V RPA/2] provide very similar contributions for
the real and imaginary parts of the potential [47]. This
approximation bypasses the issue of double-counting and
this agreement with NSM gives a strong indication of the
correct behavior of NSM potential regarding this aspect.
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potential (solid curve) and V (2) potential (dashed curve) for
r = r′, as a function of radius r for various partial waves.
PW = 0, 1, 2, . . . stand for (l = 0, j = 1/2), (l = 1, j = 1/2),
(l = 1, j = 3/2), . . . partial waves, respectively. Neutron scat-
tering off 40Ca at 9.91 MeV is considered.

In the near future, this approximation could help in ex-
ploring compound-nucleus fluctuations within NSM.

3 Microscopic potential and cross section
data

As a first application, NSM has been applied to neu-
tron and proton scattering from 40Ca using Gogny D1S
interaction. The corresponding differential cross sections
for incident energies below 40MeV are presented in
fig. 10. Compound-elastic corrections furnished by the
Hauser-Feshbach formalism using Koning-Delaroche po-
tential with TALYS are applied to cross sections obtained
from NSM and Koning-Delaroche potential, respectively.
It is mostly relevant below 10MeV for neutron projectile
while it gives a smaller contribution for proton. NSM re-
sults compare very well to experiment and those based
on Koning-Delaroche potential up to about 30MeV in-
cident energy. References to data are given in ref. [22].
Error bars are smaller than the size symbols. Beyond
30MeV, backward-angle cross sections are overestimated.
Discrepancies at 16.9MeV (23.5MeV) for neutron (pro-
ton) scattering are related to resonances in the intermedi-
ate single-particle state when not completely averaged. A
detailed treatment of the width might cure this issue. In
fig. 11, we show calculated analyzing powers for neutron
and proton scattering at several energies, in good agree-
ment with measurements. Moreover, agreement with data
is comparable to that obtained from Koning-Delaroche po-
tential. These results suggest that NSM potential retains
the correct spin-orbit behavior. In fig. 12, we show re-
action cross section for proton scattering and total cross
section for neutron scattering. Calculated reaction cross
sections are in good agreement with experiments. For neu-
trons, however, we underestimate the total cross section
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Fig. 11. Same as fig. 10 for analyzing powers.

below 10MeV. Considering that the differential elastic
cross sections are well reproduced (see fig. 10(a)), this
underestimation suggests that part of absorption mecha-
nisms is not accounted for, by target-excited states beyond
RPA, double-charge exchange process or an intermediate
deuteron formation.

We now study the variations of the total cross section
for various prescriptions of the width Γ (E) (see eqs. (7)
and (10)) in the case of neutron scattering off 40Ca.
Starting from the phenomenological width described in
sect. 2.1, a 20% variation of the width leads to a 3% vari-
ation of the total cross section whereas a 40% variation of
the width leads to a 5% variation of the total cross sec-
tion. In fig. 13, we present the effect of a variation of ±40%
of the width on the differential cross section for neutron
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tween data (symbols), NSM results (solid curve) and Koning-
Delaroche potential (dashed curve).

scattering off 40Ca at 25.5MeV. Above about 10MeV the
cross section is not sensitive anymore to compound elastic
processes and we can test the averaging effect of the width.
As expected, a depletion (increase) of the width leads to
an enhancement (reduction) of the differential cross sec-
tion. Results indicate that a wide range of width is able to
give a reasonable agreement with cross section data. More-
over increasing the width from Γ to 1.4× Γ only leads to
slight changes in the differential cross section indicating
that the average of single-particle resonance is accurately
achieved. Further microscopic determinations of the width
should provide more insight.

This microscopic potential makes the bridge between
cross section data and effective interaction. It is worth
mentioning that we already get nice agreement with data
without any adjustable parameter and using an effective
interaction, the Gogny D1S interaction, originally tailored
for structure purposes. This framework opens the way for
new effective interactions based both on structure and re-
action constraints.
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Fig. 13. Differential cross sections for neutron scattering off
40Ca at 25.5 MeV for different values of width: 0.6× Γ , Γ and
1.4 × Γ . Corresponding total cross sections are given.

4 Phenomenological potential and
microscopic potential

We shall now highlight the possible crosstalk between
microscopic and phenomenological potentials depicted in
fig. 2. A large variety of local potentials have been de-
veloped in order to describe reaction data. Mahaux and
Sartor have then demonstrated the need for the poten-
tial to satisfy a dispersion relation, connecting its imag-
inary part to its real part, which provides a link with
shell model [60]. Along that line, local dispersive poten-
tials have been developed [61,62]. One issue in those local
approaches is the spurious energy dependence of the po-
tential coming from the use of a local ansatz to represent
a nonlocal object. This issue has been overcome building
a dispersive potential with a nonlocal static real compo-
nent [63]. A recent version of this dispersive potential is
fully nonlocal both in its real and imaginary parts [64]. It
is parametrized only for 40Ca but using all the structure
and reaction data available for this nucleus. Another non-
local dispersive potential is currently being developed for
a broader range of nuclei [65]. It is interesting to compare
such phenomenological potentials with microscopic and ab
initio ones [33, 66]. This connection can help identifying
missing components in microscopic potentials. Recipro-
cally microscopic potential can provide some guidance for
next-to-come potential parametrizations regarding for ex-
ample the shape and the range of the nonlocality or the
incident energy dependence.

As an illustration, we now consider the case of neu-
tron scattering from 40Ca at E = 9.91MeV. In fig. 14, we
compare the NSM potential with the nonlocal dispersive
(NLD) potential from ref. [64]. We focus on the multipole
expansion (see eq. (13)) of the imaginary part of both
nonlocal potentials and depict their diagonal contribu-
tions. NSM and NLD potentials compare very well around
r = 4.3 fm at the nucleus surface. In the volume region,
NSM provides a much stronger contribution to the imag-
inary potential than NLD potential. Nevertheless, NSM
leads to a reasonable agreement with cross section data
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Fig. 15. Same as fig. 14 for nonlocality of the imaginary po-
tential at r = 4.3 fm. s = |r − r′| is the nonlocal parameter.

as shown in fig. 10. At relatively low incident energy the
projectile nucleon is only sensitive to the surface region.
In other words, low-energy elastic observables do not con-
strain the volume contribution of the potential. Further
inelastic scattering calculations using both potentials may
help disentangling this discrepancy as wave functions play
a major role in such calculations. In fig. 15, we compare the
nonlocality of both imaginary components at the surface
of the nucleus (r = 4.3 fm) as a function of the nonlocal
parameter s = |r− r′|. We get a good agreement between
the microscopic approach and the phenomenological one.
Even though small emissive contributions appear in some
of the multipoles, NSM validates the choice of a Gaussian
nonlocality as originally proposed by Perey and Buck [67]
and used as well for NLD potential. NSM also reproduces
the range of the nonlocality of the NLD potential which
corresponds to a nonlocality parameter β = 0.94 fm at the
surface of the nucleus.
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We have presented here results only for a given pro-
jectile at a given incident energy. A more exhaustive and
hopefully conclusive study is in progress. Along the same
line, it will be interesting to look at the nucleon asym-
metry dependence of the NSM potential, for example, go-
ing toward neutron-rich Ca isotopes and comparing with
the dispersive potential obtained by Charity et al. for
40,42,44,48,60,70Ca [35].

5 Phenomenological potential and effective
NN interaction

We now consider the connection between phenomenologi-
cal potential and effective NN interaction through the mi-
croscopic potential and the structure calculation as shown
in fig. 2. The link between microscopic potential and phe-
nomenological one is done using volume integrals. Volume
integrals are useful means of comparison between poten-
tials as they are well constrained by scattering data. Here
we focus on the real part of the potential. The volume
integral for a given multipole (l, j) of the real part of the
nonlocal potential is defined as,

J lj
V (E) =

−4π

A

∫
dr r2

∫
dr′r′2 Re[νlj(r, r′, E)], (15)

where A is the nucleon number of the target. The HF
potential is the leading contribution to the real part of
NSM potential in eq. (1). In fig. 16, we present the volume
integral of the multipole expansion of the HF potential,
eq. (2), as a function of the partial wave. We compare it
to the same quantity obtained from Perey-Buck (PB) non-
local potential [67]. HF potential gives results similar to
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PB potential up to about the twelfth partial wave. Black
segments denote the strongest partial-wave contributions
accounting for 80% of the reaction cross section at the se-
lected incident energies. Hence taking the PB potential as
a reference, the HF potential has a reasonable behavior
up to about 17MeV incident energy. Beyond this energy
HF saturates, following the trend of the Hartree poten-
tial which is local and thus partial-wave independent. As
a result increasing incident energy, HF yields a much too
large volume integral reflected in an overestimate of the
differential cross section at backward angles as shown in
fig. 10. We present here results obtained with the D1S
parametrization of the Gogny force, but we came to the
same conclusions using the D1M parametrization [8]. The
behavior of the volume integral as a function of the par-
tial wave is dictated by the shape and the range of the
nonlocality. PB potential is built with a Gaussian nonlo-
cality whereas the HF potential is made of a local Hartree
term and a nonlocal Fock term as shown in eq. (2). Those
two contributions can be related to the different terms
of the effective NN interaction, v in eq. (2). The central
part of the D1S interaction contains two different finite-
range components, with a Gaussian form factor, and a
contact density dependent component. The contributions
of those components to the Hartree potential are shown in
panel (a) of fig. 17. In panel (b), we show the contributions
of the two central terms with finite range to the nonlocal-
ity of the first partial wave of the Fock term. Following
the shape of the finite-range components of the effective
interaction, the resulting nonlocalities are Gaussian. The
summation of those two nonlocalities with opposite sign
yields the “W” shape of the total nonlocality. We then
present in panel (c) the volume integral corresponding
to the nonlocal Fock potential. The good behavior of the
HF volume integral for low partial waves is related to the
downward slope of the Fock volume integral and its change
of sign around the seventh partial wave. Then for higher
partial waves, the Fock volume integral converges to the
zero limit. The corresponding behavior of the Fock term
as a function of the partial wave is depicted in panel (d).

We plan to investigate to what extent the effective in-
teraction could be improved in order to get a better behav-
ior of the HF potential above 30MeV. This issue emerges
from the use of a local and energy-independent ersatz for
the effective NN interaction instead of the actual g-matrix
with its full complexity. One way to get a fully nonlocal
HF potential would be to use a nonlocal effective NN in-
teraction as proposed for example by Tabakin [68].

6 Next decade

The present work constitutes a promising step forward
aimed to a model keeping at the same footing both re-
action and structure aspects of the many-nucleon sys-
tem. Starting from an effective NN interaction, NSM ac-
counts reasonably well for low-energy scattering data. We
use consistently the Gogny D1S interaction, although this
scheme can be applied to any interaction of similar nature.
An important feature of the approach is the extraction of
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Fig. 17. Details of the V HF potential for n+40Ca. (a) Decom-
position of the Hartree potential with respect to the different
central components of the D1S interaction: contribution of the
first finite-range component, μ1 = 1.2 fm (dashed line), of the
second finite-range component, μ2 = 0.7 fm (dash-dotted line),
of the zero-range density-dependent term (dotted line). The
sum of these three components is displayed as a solid line. (b)
First partial wave of the nonlocal Fock term at r = r′ = 4.3 fm:
Total (solid line), first range of D1S (dashed line) and second
range of D1S (dash-dotted line). s = |r − r′| is the nonlocal
parameter. (c) Volume integral of the Fock potential as a func-
tion of partial wave: Negative slope (solid line), positive slope
(dashed line). (d) Same as (c) for the Fock components nonlo-
cality at r = r′ = 4.3 fm.

the imaginary part of the potential by means of intermedi-
ate excitations of the target. The study has been restricted
to closed-shell target but can be extended to account for
pairing correlations as well as axial deformation. We now
expose in more detail our plans for the forthcoming years.

6.1 Spherical target nuclei

In the short-term future, we wish to investigate the NSM
scheme for spherical targets according to the following
plan:

– NSM will be applied to a broader range of target nuclei
well described within RPA including 48Ca, 90Zr, 132Sn
and 208Pb.

– The link between NSM potential and phenomenology
can be carried on exploring energy, multipole and mass
dependences of the potential. The NSM potential can
also provide some trends for the shape and the range
of the nonlocality. We plan to investigate the origin
of surface and volume contributions as a function of
target excitations.
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– Above about 50MeV incident energy, a connection can
be established between the NSM potential and the
folding potential relying on g-matrix and thus with
the bare NN interaction. This can be a fertile ground
for new effective interactions.

– At low incident energy, NSM provides a volume part
of the imaginary potential larger than phenomenology.
The small volume contribution in phenomenological
potential is often justified by the fact that the pro-
jectile does not have sufficient energy to knock out a
target nucleon. This discrepancy is possibly due to the
fact that at low energy the volume part of the imagi-
nary potential is not well constrained because the pro-
jectile does not explore the interior of the potential. We
plan to use the NSM potential in inelastic scattering
calculations in order to disentangle this issue.

– In its present version, NSM requires a phenomeno-
logical width. This width has several microscopic ori-
gins, as discussed in sect. 2.1. A microscopic account
of those widths is planed using continuum RPA [55]
and multihole-multiparticle configuration mixing [56]
for the escape and the damping widths, respectively.

– The NSM potential will be used to provide trans-
mission coefficients for compound-elastic calculations.
Moreover, we plan to develop a compound-nucleus for-
malism based only on NSM. Indeed, NSM gives access
to the fluctuating contribution of the S-matrix and as
a consequence to the compound-elastic contribution.

– The study of the volume integral of the real part of the
potential has exhibited the possible crosstalk between
phenomenological potentials and effective NN interac-
tions. In particular, the interaction is not well suited
for the description of partial waves with more than
about � = 7. Those reaction constraints will be used
for new parametrizations of the interaction. Moreover,
a nonlocal version of the effective NN interaction could
tackle the issue of the saturation of the HF volume in-
tegral to the Hartree one.

6.2 Spherical target nuclei with pairing correlations

The main next step will be to take into account pairing
correlations in spherical nuclei.

– We plan to develop a HFB potential in coordinate
space. The mean-field and the pairing field have al-
ready been studied in coordinate space in a previ-
ous work on Cooper’s pairs [69]. The goal is then to
deal with quasiparticle scattering with a special care
of resonances in both mean-field and pairing channel
as shown in refs. [70, 71].

– In the present approach, the intermediate particle has
the same nucleonic nature than the incident and the
outgoing particle. Previous studies by Osterfeld et
al. [42] have shown the importance of double charge
exchange. This process can be accounted for in a con-
sistent way using HFB [72].

– The target excited states will then be described within
QRPA [3].

6.3 Deformed target nuclei

In the midterm future, we plan to deal with axially-
deformed targets according to the following plan:

– This will require the development of an axially de-
formed HFB potential in coordinate space. The corre-
sponding mean field and the pairing field have already
been studied in coordinate space in a previous work on
Cooper’s pairs [73].

– Axially deformed QRPA [3] will be used to generate
excited states in the intrinsic frame of the target.

– A projection on “good” angular momentum, using the
rotational approximation [74], will provide the monop-
ole and different coupling potentials to model nucleon
elastic scattering from axially deformed targets.

– The problem of solving coupled equations with nonlo-
cal potentials will have to be addressed.

7 Conclusion

The present discussion has focused on recent advances in
calculations of optical potentials from a microscopic stand-
point, namely employing Gogny interaction. We have con-
sidered the example of proton and neutron scattering off
40Ca as a proof-of-principle application. The results ob-
tained through this approach compare very nicely to the
existing scattering data. Comparison to more phenomeno-
logical models are also presented. We then have presented
longer-term perspectives.

HFA acknowledges partial funding from FONDECYT under
Grant No 1120396.
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