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This paper proposes a new tool for the evaluation of face analysis systems under dynamic experimental
conditions. The tool primarily consists of a virtual environment where a virtual agent (e.g., a simulated
robot) carries out a face analysis process (e.g. face detection and recognition). This virtual agent can
navigate in the virtual environment, where one or more subjects are present, and it can observe the
subjects' faces from different distances and angles (yaw, pitch, and roll), and under different illumination
conditions (indoor or outdoor). The current view of the agent, i.e. the image that the agent observes, is
generated by composing real face and background images acquired prior to their usage in the virtual
environment. In the virtual environment, different kinds of agents and agents' trajectories can be simu-
lated, such as an agent navigating in a scene with people looking in different directions (mimicking a
home-like environment), an agent performing a circular scanning (such as in a security checkpoint), or a
camera-based surveillance system observing a person. In addition, during the recognition process the
agent can actively change its viewpoint seeking to improve the recognition results. The proposed tool
provides to the developer all functionalities needed to build the evaluation scenario: a set of real face
images with real background information, a virtual agent with navigation capabilities, a scenario config-
uration (number, position and pose of the subjects to be observed), an agent trajectory definition, the
generation of the simulated agent's view-dependent images, some basic active vision mechanisms, and the
ground truth data (e.g. face id and pose for every observation), allowing the evaluation of face analysis
methods under realistic conditions. Three usage examples are presented: the study of the robustness of
face detection and face recognition methods under pose variations, and the evaluation of an integrated face
analysis system to be used by a service robot. The proposed methodology may be of interest for researchers
and developers of face analysis methods, in particular in the robotic and biometrics communities.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Face analysis2 plays an important role in building computer
vision systems, HRI (Human–Robot Interaction) systems, and in
general in any system that uses vision to interact naturally with
humans or to process information of humans in a given scene.
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Human detection and human identification based on face infor-
mation are key abilities of intelligent machines whose purpose is
to interact with humans. Face analysis is also very important in
surveillance applications in dynamic environment, such as secur-
ity cameras at airports, and is also being included in consumer
electronics, such as face detection and smile detection in cameras.
Evaluating face analysis systems for such environments and con-
ditions is not straightforward, in particular, in the cases where the
recognition system uses active vision mechanisms to change its
viewpoint or position in the scene.

A very important aspect in the development of face analysis
methodologies is the use of suitable databases, and reproducible
testing and training methodologies. For instance, the well-known
FERET database [1], has been very important in the development
of face recognition algorithms for controlled environments. How-
ever, neither FERET nor other relatively new databases such as
LFW [2], CAS-PEAL [3] and FRGC [4,5], among others [6–8], are
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able to provide real-world testing conditions for evaluating face
recognition systems that include the use of innovative mechan-
isms such as spatiotemporal context and active vision, which are
required in applications that consider the dynamic interaction
with humans in the real world. Even the use of video face data-
bases (e.g. [9–12]) does not allow testing the use of those ideas,
because the video sequence is taken using pre-defined viewpoints.
The use of a virtual face simulator could allow accomplishing the
changes in viewpoints. However, such a simulator would not be
able to generate faces and backgrounds that look real/natural
enough, which is an important requirement for the realistic testing
of face recognition systems.

Nevertheless, the combined used of a simulation tool with real face
images and background images taken under real-world conditions
could allow accomplishing the goal of providing a tool for testing face
recognition systems under uncontrolled, dynamic conditions. In this
case, more than providing a database and a testing procedure, the idea
would be to supply a virtual environment that offers a database of real
face images and real background images, a simulated virtual envir-
onment, a virtual agent moving in that environment, active vision
mechanisms for the virtual agent, predefined benchmark problems,
ground truth data, and an evaluation methodology.

The main goal of this paper is to provide such a virtual envir-
onment. In this environment, virtual subjects are located at dif-
ferent positions and with different orientations in a virtual map.
Inside the virtual environment, a virtual agent (a virtual entity
with the ability to detect, recognize and analyze faces) can navi-
gate and observe face images from different distances and angles
(yaw, pitch, and roll). The current view of the agent, i.e. the image
that the agent observes, is generated by the virtual environment
using real face images previously acquired in indoor and outdoor
variable lighting conditions with several pitch and yaw angles (in-
plane rotations can be simulated by software ), as well as real
background images. In the virtual environment, different kinds of
agents and agents' trajectories can be simulated, such as an agent
navigating in a scene with people looking in different directions
(mimicking a home-like environment), an agent performing a
circular scanning (such as in a security checkpoint), or a camera-
based surveillance system observing a person. In addition, during
the recognition process, the virtual agent can actively change its
viewpoint seeking to improve the recognition results.

We believe that the proposed methodology and evaluation tool
are of interest to researchers involved in development and testing
of applications related with the visual analysis of human faces. Its
use allows comparing, quantifying and validating face analysis
capabilities of agents, and in general intelligent machines, under
dynamic working conditions. One of its more relevant features is
that it allows repeatability of the experiments. Therefore, it allows
the comparison and evaluation of one or more algorithms without
damaging the moving agent (e.g. the robot), and with short eva-
luation times. In the current work we focus on face recognition
and detection, although the use of the tool is straightforward in
other face analysis problems, such as pose estimation, gender
classification, and age estimation.

It is worth mentioning that a special acquisition device was
designed and built to acquire face and background images under
different view angles, which are essential for the operation of the
virtual environment. The simplicity and modularity of the device
allows its rapid deployment and use in real-world locations such
as streets, gardens, shopping malls, etc.

This article is organized as follows. First, related work on
existing face analysis and evaluation methodologies is outlined
(Section 2). Afterwards we describe the proposed virtual envir-
onment (Section 3), where we give a detailed description of its
different modules. Later, we present some usage examples of the
proposed system (Section 4), to finally conclude (Section 5).
2. Related work

The availability of standard databases, benchmarks, and evaluation
methodologies is crucial for the appropriate development and com-
parison of face analysis systems. There is a large number of face
databases and associated evaluation methodologies that consider dif-
ferent number of subjects, camera sensors, and image acquisition
conditions, and that are suited to test different aspects of the face
recognition problem such us illumination invariance, aging, expression
invariance, etc. (e.g. the surveys and comparatives studies [13–17,46]).
An overview and basic information about existing face databases can
be found in [7,18]. Although some new databases (e.g. LFW database
[2] and Photoface database [19]) are designed to include real-world
images, most databases and evaluation protocols (including LFW
database [2] and Photoface database [19]) are designed to test meth-
ods using images captured by static cameras. Also, similar methodol-
ogies are commonly used in face recognition infrared images [20,21].

Out of the existing databases for face recognition, probably the
most well known is the FERET database [1] and its associated
evaluation methodology, which has become the standard choice
for evaluating face recognition algorithms under controlled con-
ditions. Alternative popular databases used with the same purpose
are the Yale Face Database [22] and BioID [23]. Other databases,
such the AR Face Database [24], ORL database [47] and the Uni-
versity of Notre Dame Biometrics Database [25], include faces with
different facial expressions, illumination conditions, and occlu-
sions. However, from our point of view, all of them are far from
considering real-world conditions.

The Yale Face Database B [26] and PIE [27] are the most utilized
databases to test the performance of algorithms under variable
illumination conditions. The Yale Face database contains 5 760
single light source images of 10 subjects, each seen under 576
viewing conditions (9 poses�64 illumination conditions). For
every subject in a particular pose, an image with ambient (back-
ground) illumination was also captured. PIE is a database con-
taining 41,368 images of 68 people, each person under 13 different
poses, 43 different illumination conditions, and with 4 different
expressions. Both databases consider only indoor illumination.

The LFW database [2] consists of 13,233 face images of 5749
different subjects, obtained from news images by means of a face
detector. There are no eyes/fiducial point annotations; the faces
were just aligned using the output of the face detector. The images
have a very large degree of variability in the face’s pose, expres-
sion, age, race, and background. However, given that the LFW
images are obtained from news, which in general are taken by
professional photographers, the images are obtained under good
illumination conditions, and mostly in indoors.

FRGC ver2.0 database [5] consists of 50,000 face images divided
into training and validation sets of controlled and uncontrolled
images. The uncontrolled images were taken under varying illu-
mination conditions in indoors and outdoors. Each set of uncon-
trolled images contains two expressions, smiling and neutral.

The Photoface database [19] is a database of 3D faces, which consist
of 3187 sessions of 453 subjects, captured in two recording periods of
approximately six months each. The Photoface device was located in
an unsupervised corridor allowing real-world and unconstrained
capture. Each session comprises four differently lit colour photographs
of the subject, from which surface normal and albedo estimations can
be calculated. This allows for many testing scenarios and data fusion
modalities. Eleven facial landmarks have been manually located on
each session for alignment purposes. Additionally, metadata such as
gender, facial hair, pose and expression is available.

The EURECOM Kinect Face Dataset [28] consists of multimodal
facial images of 52 people (14 females, 38 males) acquired with a
Kinect sensor. In each session images are collected according to dif-
ferent facial expressions, lighting and occlusion conditions: neutral,
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smile, open mouth, left profile, right profile, occluded eyes, occluded
mouth, side occlusion with a sheet of paper and light on. An RGB
color image, a depth map, as well as the associated 3D data are
provided for all samples. The dataset includes 6 manually labeled
landmark positions for every face and information, such as gender,
year of birth, ethnicity, presence of glasses, and the time of each
session.Some databases, and the corresponding methodologies, have
focus on learning issues, such as incremental learning [29], active
learning [30], and weakly labeled data [31].

There are also many video face databases that have been pro-
posed in the literature [9,10,12,32–36]. Although these databases
allow evaluating non-statics scenarios (e.g. with moving subjects),
they are still restrictive and can only be used on very specific sce-
narios that do not allow considering active vision mechanisms. It is
important to stress that none of the mentioned databases allows the
evaluation of face analysis systems under fully dynamic conditions.
Fig. 1. Diagram of the evaluation tool.
3. Realistic virtual environment

The evaluation of any method to be used in a real-world system
must be done in conditions as close as possible to the ones observed
in a real scenario. In this section we describe in detail the proposed
virtual environment for evaluating face analysis systems. The tool
was developed to evaluate, in a simulated environment, face
recognition and detection systems that later will be used by a
moving agent, such as a service robot or a pan-till-zoom camera.
The moving agent is a virtual entity that can move within the vir-
tual environment and sense it. While moving in the virtual envir-
onment, the agent has the ability to detect, recognize and analyze
faces. The main advantage of using a simulator is that it allows
repeatability of the experiments. Therefore it allows the comparison
and evaluation of one or more algorithms without damaging the
moving agent (e.g. the robot), and with short evaluation times. The
tool can be used to evaluate any existing face analysis system, even
if it not meant to be used in robotic applications.

The proposed tool allows testing face analysis systems in
uncontrolled conditions (pose, illumination, expression, etc.).
More specifically, within a virtual environment, a virtual agent can
move and observe images generated by the simulator according to
the current agent’s position. The observed images can be used by
the agent for tasks such as face detection and face recognition.
Given that the system allows the agent to navigate in the envir-
onment, the agent can observe the faces from various viewpoints
(distances and angles). This can allow the agent to improve its
recognition performance during the face analysis process, because
the agent can actively change its position in the environment.

Two key features of this tool are that: (i) the face images
observed by the agent are generated using real face and background
images obtained in real conditions, and (ii) one or more environ-
ments can be generated, for example considering varying the
location of the subjects in the virtual environment's location map.

The tool consists of three main modules (a block diagram of the
evaluation tool is presented in Fig. 1):

� Image Generation, which generates the realistic images to be
observed by the agent,

� Agent Vision, which processes and analyzes the generated
images, and

� Agent Navigation and Positioning, which moves the virtual agent
inside the virtual environment.

At every given time, the state of the virtual environment is defined
by the pose of the agent and the pose of N subjects in the virtual
environment (represented using the Global Map). The virtual agent can
navigate and make observations inside this virtual scenario.
The simulator generates images containing faces seen from dif-
ferent distances and angles, considering different illumination
conditions (indoors or outdoors). For this, it uses images that are
captured and stored in the Image Database in an offline process.
During the navigation process, the agent can move inside the map
to change its relative viewpoint and distance to the subject using
active vision in order to modify its observations, seeking to improve
its face recognition results. The Image Generation module composes
the image observed by the agent by taking the relative positions of
the subjects and the agent within the map. The virtual environment
offers all the functions that the agent could have in a real scenario:
navigation, positioning, and visual sensing by generating the images
observed by the agent at a given time according to its current pose.

3.1. Image Generation

In the Image Generation module, real face and background images
are used to compose the scene as observed by the virtual agent (real
face and background images are acquired using the device described
in the Section 3.1.1). Every time the agent changes its pose, the
simulator generates the corresponding new image as requested by
the vision module. For instance, Fig. 2 shows a given set of agent
poses, and the corresponding images generated by the simulator.

The Image Generation module reads the position and angular
pose of the agent ðXA;YA;θAÞ from the Global Map, with XA;YAð Þ the
position and θA the orientation of the agent, as well as the list of
positions and angular poses of the subjects in the virtual scene,
and then composes an observation (image) for the virtual agent.
The images stored in the Image Database are used to compose the
observed images. The Image Database contains two types of ima-
ges: face images with different out-of-plane rotations and back-
ground images. In-plane rotations are generated by the simulator.

3.1.1. Data acquisition and database construction
Real face images of each subject, as well as background images

of the same location, are acquired under several yaw and pitch
angles using a custom designed acquisition device, which uses a
CCD camera mounted in a rotating structure (see Fig. 3(b)). During
the acquisition process, the person being scanned is in a still
position, while the camera, placed at the same height as the per-
son's face (the camera height is adjustable) and at a fixed distance
of 140 cm from the person, rotates in the axial plane.

The acquisition device is manually moved and an encoder
placed in the rotation axis calculates the face's yaw angle. The



Relative positioning of the subject and the agent
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Fig. 2. Example of the agent's positioning and the image generated by the simulator. The relative position of the subject and the agent is shown in (f). The agent is located in
five positions (a, b, c, d e), and the corresponding generated images are shown in figures (b)–(e). The arrows in (f) indicate pose, while the x, y and θ values indicate relative
translation and rotation (yaw).
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system is able to acquire images with a 1° resolution. The scanning
process takes 25 s, and we use a 1280�960 pixels CCD camera
(DFK 41BU02 model). In a frontal face image, the face's size is
about 200�250 pixels. The acquisition device is portable (it does
not require any special installation), and therefore it can be used at
different places. Thus, the complete acquisition process can be
carried out at different locations (streets, laboratory environment,
shopping environment, etc.).

Variations in pitch are obtained by repeating the described
process with the different pitch angles. In each case, the camera
height is maintained, but the person looks at a different reference
points located at 160 cm in front of the person at different heights
in the vertical axis (see Fig. 3(a)).
For the experiments reported later in Section 4, a database that
consists of face images of 50 subjects, captured in indoors (labora-
tory with windows) and outdoors (in the university campus), was
built. During the acquisition process, there were no restrictions on
the person’s facial expression. For each person, 726 registered face
images (121�3�2) were acquired and stored. The yaw angle range
was [120°, 120°], with a resolution of 2°, which gives 121 images.
For each different yaw angle, 3 different pitch angles were con-
sidered (�15°, 0°, and 15°). In our experience this is enough to
represent typical human face variations. For each yaw–pitch com-
bination, one indoor and one outdoor image was taken. Background
images (without any subject) for each location, camera-height, and
yaw–pitch angle combination are captured with the acquisition
device. Using these images the simulator will generate, later on, the



Fig. 3. (a) Diagram of the image acquisition system. (b) The system operating in outdoors.

Yaw: 50°, Pitch: -15 Yaw: 0°, Pitch: 15
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Fig. 4. Example of images taken using the device in indoors (first row) and outdoors (second row).
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images to be shown to the agent. In Fig. 4, some images taken with
the described acquisition device are shown. This database will be
made available for academic research purposes (upon request at
http://vision.die.uchile.cl/databases.php).

3.1.2. Image composition
The image composition process consists basically of 4 steps, as

illustrated in Fig. 5: first, the closest subject in the field of view is
select; second, the image corresponding to the relative pose
between the agent and the subject is selected from the database;
third, additional background information is added to the image,
and finally the image is rescaled, translated and cropped to obtain
the composed image. In addition, it is possible to add an occluding
object (see Fig. 6). The details of the complete process are pre-
sented in the following.

In order to generate the image observed by the virtual agent,
the simulator first estimates which subject, if any, is in the field of
view of the agent. If more than one subject is in the field of view of
the agent, the closest one within its field of view is selected.

First, the simulator calculates the relative pose from the agent
to every subject located in the Global Map. Then, the closest sub-
ject within the field of view of the agent is selected. Let us define

http://vision.die.uchile.cl/databases.php


Fig. 5. Example of the image generation process. (a) Position of the agent (magenta) and the observed subject (blue) in the global map. (b) Image for the corresponding
relative pose (retrieved form the DB). (c) Image with added background information. (d) Composed image after rescaling and translating (image observed by the agent). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Occlusion example. (a) Generated image without occlusion and (b) generated image with occlusion.
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ðXi;Yi;θiÞ to be the pose of subject i in the virtual map, with
iA 1;…;Nf g, and ðXA;YA;θAÞ the current pose of the agent in the
map. Then, the angle of the subject i with respect to a reference
axis X fixed to the agent, φx

i , and the distance between the agent
and the subject i, di; are calculated as:

φx
i ¼ 1801þ tan �1 Xi�XA

�YiþYA

� �
�θA ð1Þ
di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi�XAð Þ2þ Yi�YAð Þ2

q
ð2Þ

The closest subject satisfying the field of view constraints is
obtained as:

i� ¼ argmini A 1;…Nf g dið Þ
s:t: diodmax

φx
i

�� ��oφx
max; ð3Þ
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with dmax and φx
max the linear and angular parameters that define

the field of view of the agent.
If there is no subject who satisfies the constraints, an image

containing no faces is generated using background images. If a
subject is found, the yaw angle of the subject relative to the agent
is calculated as follows:

θ�
yaw ¼ tan �1 Xi� �XA

�Yi� þYA

� �
þ901�θi� ð4Þ

with ðXi� ;Yi� ;θi� Þ the position and orientation of the closest subject
i�, in the virtual map.

Next, using the distance d�i between the agent and the subject,
a scale factor SFS is calculated as:

SF�S ¼
dc
d�
i

ð5Þ

where dc is the distance between the subject and the camera at
which the images in the database were taken (in our case this is
equal to 140 [cm]). Since the database has only 3 different pitch
angles (-15°, 0° and 15°), the pitch angle of the image is estimated
as:

θ�
Pitch ¼

01 if j Hi� �HAð Þjo tan 151ð Þ�d�i
2

151 if Hi� �HAð Þ4 tan 151ð Þ�d�i
2

�151 �

8>><
>>:

ð6Þ

with HA the height of the agent and Hi� the height of the selected
subject.

Using this information, the image of subject i�, containing a face
with the rotation angles θ�

yaw and θ�
Pitch is selected from the database

of captured images. The image is resized using the scale factor SF�S .
When composing the image, background information is added to
ensure that the generated image has the required resolution after
rescaling and translating it. Once the image has been rescaled, the
rotations Δyaw and Δpitch, produced by the relative pose between the
agent and the observed subject, are calculated as follows:

Δyaw ¼ 1801þ tan �1 YA�Yi�

Xi� �XA

� �
�θA ð7Þ

Δpitch ¼ tan �1 Hi� �HA

d�i

� �
: ð8Þ

Finally, the translation in the image plane Δx and Δy, produced
by the relative pose between the agent and the observed subject,
is calculated as follows:

Δx ¼
Δyaw � IW
FOVH

ð9Þ

Δy ¼
Δpitch � IH
FOVV

ð10Þ

with FOVH and FOVV the horizontal and vertical FOV (Field of
View) parameters of the camera used to capture the database
(inourcaseFOVH ¼ 56:31 and FOVV ¼ 42:31).

Having occluding subjects in the generated image is also possible.
In particular, we added the option of simulating pillars (cylindrical
columns) in the environment, as illustrated in Fig. 6. The position of a
pillar is predefined for a particular scenario, and the pillar's size in
the generated image depends on the relative position of the pillar
with respect to the agent. For simulating the occlusion, four images
of real pillars at a distance dp of 100 [cm] were captured using the
device described in Section 3.1. The image of the occluding pillar to
be used in a particular scenario is chosen at random.

Given ðXo;YoÞ, the location of the occluding pillar in the global
map, and ðXA;YA;θAÞ the current pose of the agent in the global
map, the distance do between the agent and the obstacle, and the
scale factor SFo are calculated as follows:

do ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xo�XAð Þ2þ Yo�YAð Þ2

q
ð11Þ

SFo ¼
dp
do

ð12Þ

Then, the translation of the obstacle in the image plane, Δxo ,
with respect to the agent, is calculated as follows:

Δθyaw ¼ 1801þ tan �1 �YoþYA

Xo�XA

� �
�θA ð13Þ

Δxo ¼
Δθyaw � IW
FOVH

ð14Þ

3.2. Agent Navigation and Positioning

The Agent Navigation and Positioning module allows the virtual
agent to move inside the virtual environment. Specific movements
are allowed depending on the scenario being simulated. The
simulator provides four basic commands that are used to move the
agent from its current pose ðXA;YA;θAÞ:

� MoveAgent Δx;Δyð Þ: It moves the agent relative to its current
pose. The final pose of the agent is:

ðXAþΔx;YAþΔy;θAÞ ð15Þ

� TurnAgent Δθ
� �

: It rotates the agent relative to its current
orientation. The final pose of the agent is:

ðXA;YA;θAþΔθÞ ð16Þ

� SetAgentPosition x; y;θ
� �

: It set the agent's absolute pose. The
final pose of the agent is:

ðx; y;θÞ ð17Þ

� NextPositionðÞ: It moves the agent to the next point ̃Xk; ̃Y k; ̃θk
� �

in a defined trajectory (see more on trajectories below).

These commands allow the movement of the agent, and
therefore the use of active vision mechanisms to improve the
recognition results. In order to have realistic conditions, the virtual
environment can simulate uncertainties in the movement and
odometry of the agent (robot in this case).

The virtual environment provides three kinds of navigation
modalities:

� Constrained navigation: in this modality the agent moves under
constrained conditions. The agent has a predefined trajectory
for approaching every subject. After this trajectory is executed,
the agent moves to the next subject.

� Predefined navigation: in this modality the agent follows a
predefined trajectory. However, at any position the agent can
decide to move out of the trajectory to explore and change its
perceptions.

� Free navigation: in this modality the agent does not have a
predefined trajectory and it moves freely inside the virtual
environment without any restriction or guidance. Thus, in this
modality the agent controls its movement using the observed
images as the only information source.

A trajectory T is defined as a sequence of K triplets
̃X1; ̃Y 1; ̃θ1
� �

;…; ̃Xk; ̃Y k; ̃θk
� �

;…; ̃XK ; ̃YK ; ̃θK
� �� 	

, where ̃Xk; ̃Y k; ̃θk
� �

indicates the k-th position ̃Xk; ̃Y kð Þ and pose angle ̃θk of the agent



Fig. 7. Examples of the implemented trajectories. See main text for details.
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in the Global Map. The following types of trajectories are defined
for the constrained and predefined navigation modalities:

� Constrained navigation trajectories: Five variants of these tra-
jectories are provided (see Fig. 7(a–e)):
a) Frontal: the agent approaches the subject while having a

frontal view of him. The agent is looking directly at the sub-
ject in every point of the sequence.

b) Side-to-side: the agent moves perpendicular to an imaginary
line coming from the observed subject. The relative yaw angle
and the distance changes. The agent is looking perpendicular
to the trajectory in every point of the sequence.

c) Circular: the agent moves around the subject at a fixed dis-
tance. The relative yaw angle changes, but the distance
remains constant. The agent is looking directly at the subject
in every point of the sequence.

d) Strafe: this movement is a combination of Frontal and Side-to-
side. The agent moves with respect to an imaginary line that
is not perpendicular to the frontal view of the subject. The
movement does not maintain a fixed distance between the
agent and the subject because the agent approaches the
subject. The agent is looking in a fixed angle relative to the
trajectory in every point of the sequence. The angle can be
defined by the user.

e) Random: the agent is placed by the simulator in front of the
subject, at a random position within a region defined in front
of the subject (rectangle in Fig. 7(e)). The agent always looks
directly at the subject.

� Predefined navigation trajectory: Given a trajectory T, the agent
will visit all the positions ̃Xk; ̃Y kð Þ defined by the trajectory. At
each point in the trajectory, the angle θ̃k is defined as parallel to
the tangent of the trajectory. The agent moves from one location
to the next one as defined by the trajectory, but in addition, the
agent can move freely from and around each point on the tra-
jectory. After the exploration is complete, the agent can continue
to the next point on the trajectory. This allows the agent to visit
each subject and also explore around it, but without the need to
implement sophisticated navigation mechanisms. The imple-
mented trajectories pass near every subject in the map as the
agent moves through each of the points ð̃Xk; ̃Y k; ̃θkÞ of the tra-
jectory (see example in Fig. 7(f)). Given that the agent can freely
move out of the predefined trajectory to explore and capture
specific views of the scene, it can easily make use of the active
vision mechanisms implemented in the Active Vision module.
The different navigation modes and trajectories allow simulating
different types of application scenarios, such as (i) a moving agent
(robot) in an indoor environment (using free navigation), (ii) a
security camera observing people passing in front of it (constrained
navigationwith strafemovements), (iii) a scanning device performing
a circular moving around a subject (constrained navigation with cir-
cular movements), or (iv) a simple frontal view of the subjects
(constrained navigation with frontalmovement), among many others.

3.3. Agent vision

The agent's vision system receives as input the current view of
the scene as generated from the Image Generation module. The
agent processes these images using the selected vision function-
alities (face detection, recognition, etc.). After the virtual agent has
finished processing the image, it will move in the virtual scenario
and request a new image to the simulator. In case the agent’s
active vision module is used, the agent's request to move within
the virtual scenario can be outside the predefined trajectory, with
the requested new position being determined from the sensed
visual information. The particular active vision mechanism to be
used must be implemented by the user in the Active Visionmodule,
so that the agent makes decisions to move using visual informa-
tion. The request to move to the new position will be processed by
the Agent Navigation and Positioning module, which will estimate
the new position of the agent in the scene.

3.3.1. Vision
Given that the main goal of the evaluation tool is to analyze

methods related to the analysis of faces, the evaluation tool pro-
vides some functionality to the agent. First, it includes basic face
analysis modules, such as face detection, face recognition, eye
detection, face alignment, face cropping, and gender classification,
modules that can be used as baseline methods for comparison or
replaced with other implementations (the user can use its own
algorithms). For example, to evaluate a face recognition method,
the user can make use a “perfect face detector” that uses the
ground truth, or he can choose a more realistic scenario and make
use of the OpenCV face detector [37]. Also, the system provides the
required data structures to store a set of detected faces, which can
be used as gallery/training images for future recognition. It also
provides a map, where the agent can store its own estimated map
of the location of observed subjects. Therefore, there are two
databases to aid the implementation of the agent’s vision system:
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� Person Map Database: The virtual environment provides to the
virtual agent a Person Map database to store information of the
subjects detected in the environment. The agent incrementally
adds the pose of the every detected person, and then uses that
information to determine if a set of detections corresponds to
the same subject or not.

� Face Gallery Database: The virtual environment provides a Face
Gallery database that the agent uses to store information of the
subjects seen so far (and the corresponding ID in the Person
Map) in order to perform the recognition. The information can
be stored before the agent starts to navigate the virtual envir-
onment, thus this gallery can be built online or offline
depending on the experiment being performed. The stored
information corresponds to a set of face images for each subject,
the corresponding ID in the Person Map and the face repre-
sentation (features).

The output of the face detection is the position of the face in
the image FDx; FDy

� �
, and the size of the bounding box that frames

the faces Fw; FHð Þ. Then, using the output of the face detector, the
distance Cf Re

1
2 from the subject to the agent and its relative

angular pose θF
x ;θ

F
y


 �
are estimated as:

dei ¼
τ � ρ � IF

Fw
; ð18Þ

θF
x ¼

FDx� IWð Þ
IW

FOVH

2
; ð19Þ

θF
y ¼

FDy� IH
� �

IH

FOVV

2
; ð20Þ

with IW ; IHð Þ the image size, τ the mean size of a face (in pixels) at a
distance of ρ [cm], and IF a scaling factor of distance estimation
(relative to an image of resolution IWB � IHB):

IF ¼
IW
IWB

; ð21Þ

In our database the values of these parameters are: τ¼ 75
pixels
� 

;ρ¼ 100 cm½ �; IWB ¼ 320 pixels
� 

; andIHB ¼ 240 pixels
� 

.
Given that the estimation of dei can have errors, before adding a

new face to the Person Map, this error (EiÞ is estimated and used to
determine if the new detected face is added to the Person Map or
not. The error is calculated using a linear equation:

Ei ¼ αþβdei ; ð22Þ
where the values of parameters α and β (α¼50 and β¼1/3) were
estimated using several images for which the faces where at a
known distance.

The construction of the Person Map is done in the following
way. The Person Map is first empty. Then, every time a face is
detected the Person Map is updated using the information of the
detected face. The information of the faces already in the map is
used to determine if the new detected face needs to be added to
the map.

The detected face's information (dei ;θ
F
x ;θ

F
y ; EiÞ and the agent's

pose ðXA;YA;θAÞ are used to estimate the position and orientation
of the subject in the person map:

Xi ¼ dei � cos θAþθF
x


 �
þXA ð23Þ

Yi ¼ dei � sin θAþθF
x


 �
þYA ð24Þ

θi ¼ 180þθA ð25Þ
The subject's orientation θi is estimated under the assumption

that the agent is facing the subject. A face pose estimator can be
used to improve the angular pose estimation.
After the position of the detected subject has been estimated, the
closest subject in the person map within a radius DMin is determined
( NA is the number of subjects stored in the person map):

jmin ¼ argminjϵ 1;::;NAf g Dij
� �

s:t: Dijo DMin

with Dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi�Xj
� �2þ Yi�Yj

� �2q
ð26Þ

If the estimated error (Ei) associated to the new subject is
smaller than the estimated error of the actual subject in the Person
Map (Ejmin

), then the subject in the map is replaced by the new,
detected one. If there is no subject in the person map within a
radius DMin, then the new person is stored in the Person Map, and
the counter of subjects, NA, is increased by one.

3.3.2. Active vision
As mentioned, during the face recognition process, the agent

can move in the map, and change its point of view and distance
from the subjects in order to actively modify its observations and
improve the performance of the vision system. Thus active vision
mechanisms can be implemented.

Given a trajectory T, the agent starts positioned at the begin-
ning of the defined trajectory ̃X1; ̃Y 1; ̃θ1

� �
. Then from each location

̃Xk; ̃Y k; ̃θk
� �

the agent is allowed to move freely and modify its
observations. After the exploration is complete, the agent can
continue along the next point on the trajectory. For example, given
a detected face, the agent could use a face pose estimator to
estimate the pose of the detected subject (yaw angle θy

i ), and then
to move in order to change its view angle. The agent can repeat
this process as many times as necessary to fulfill the conditions
(e.g. yaw rotation less than 15°) before applying a face recognition
algorithm). After the agent finishes this process, it can return to
the trajectory and continue traversing the scenario.
4. Example applications of the evaluation tool

In order to validate the applicability of the evaluation tool, three
experiments were carried out. In the first experiment, three state-of-the
art face detection methods are compared under different yaw and pitch
face angles. In the second experiment, five different face recognition
algorithms are analyzed under different yaw and pitch face angles, and
under simulated incorrect face alignment. In the third experiment, a
simulated scenario where a virtual humanoid robot navigates, detects
and recognizes the subjects in the scene, three unsupervised face
recognition methods are compared under different viewing conditions,
with and without the use of active vision mechanisms. This last eva-
luation would be very difficult to perform using existing databases that
do not support the use of active vision mechanisms.

4.1. Evaluation of face detectors under out-of-plane rotations

The virtual scenario is first used to evaluate face detection
methods in a static setting using a constrained navigation trajectory
with random movements (see details in Section 3.2). The agent is
placed by the system at a fixed distance of 100 cm in front of each
subject (initial pose). The scenario contains N¼20 subjects chosen
at random order. The experiment was repeated 10 times, with
variations in the positioning of each subject (position, angle, pose,
etc.). The agent’s camera and the observed face are at the same
height, and the agent cannot move its head independently of the
body. The agent processes the generated images seeking to detect
human faces. The following variations in the agent’s relative
position and viewpoint are incorporated before the agent starts
recognizing subject i:



Table 1
Detection rates under different maximal yaw and pitch angles of the observed face θymax; θ

p
max

� �
. DR: detection rate. FP: number of false positives. See main text for details.

Detector θpmax ¼ 0

θymax ¼ 0 3 θymax ¼ 20 3 θymax ¼ 40 3 θymax ¼ 60 3

Indoor Outdoor Indoor Outdoor Indoor Outdoor Indoor Outdoor

DR FP DR FP DR FP DR FP DR FP DR FP DR FP DR FP

HaarCascade 97.4 2 78.3 5 92.1 3 87.0 3 71.1 4 65.2 8 47.4 1 82.6 4
NestedCascade1 89.5 4 100 0 86.8 5 100 0 71.1 6 100 0 55.3 9 69.6 3
NestedCascade2 100 0 100 0 97.4 0 100 0 73.7 1 95.7 0 50.0 2 73.9 1

θpmaxA �151;151½ �

θymax≔0 θymaxA �201;201½ � θymaxA �401;401½ � θymaxA �601;601½ �

Indoor Outdoor Indoor Outdoor Indoor Outdoor Indoor Outdoor

DR FP DR FP DR FP DR FP DR FP DR FP DR FP DR FP

HaarCascade 94.7 2 95.7 1 84.2 4 69.6 7 65.8 6 78.3 5 60.5 6 65.2 8
NestedCascade1 94.7 2 100 0 84.2 4 100 0 60.5 11 100 0 42.1 12 69.6 4
NestedCascade2 97.4 0 100 0 94.7 0 100 0 63.2 1 95.7 0 52.6 3 82.6 1
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� The initial pose of the agent is modified by adding uniformly
distributed random values Δxi, Δy, andΔθi. The maximal variation
in each axis, Δxmax;Δymax;Δθmax

� �
, are simulation parameters.

� The pose of the face of subject i is set at θy
i (yaw angle), θp

i (pitch
angle), and θr

i (roll angle). The maximal allowed rotation value
in each axis, θy

max;θ
p
max;θ

r
max

� �
, are simulation parameters.

Three face detection methods are compared. First, the standard
Haar cascade detector provided by OpenCV (OpenCV’s HaarTrain-
ing). This detector implements the cascade detector described in
[38], which is an extension of the classical Viola & Jones face
detector [39], and that uses the Gentleboost training algorithm,
Haar-like features, and decision stumps as weak classifiers. Sec-
ond, a face detector proposed by Verschae et al. [40], which uses
nested cascades of classifiers, the real Adaboost boosting algo-
rithm, and domain-partitioning based classifiers. Third, a face
detector proposed by Verschae [41], which improves its former
detector by using a coarse-to-fine approach when training the
cascades. These three detectors are called HaarCascade, Nes-
tedCascade1, and NestedCascade2, respectively, in the experiments.

The detection rate (DR) and the number of false positives (FP)
of the three detectors are compared for each different viewpoint
conditions; the yaw angle of the observed faces is uniformly
sampled in the range �θy

max;θ
y
max

� 
, as well as the pitch angle is

uniformly sampled in the range �θp
max;θ

p
max

� 
. Other simulation

parameters are kept unchanged Δxmax ¼Δymax ¼Δθmax ¼
�

θr
max ¼ 0Þ.
In Table 1, the obtained results for θy

max values of 0°, �201;201½ �,
�401;401½ � and �601;601½ �, and θp

max values of 0° and �151;151½ �,
under indoor and outdoor illumination conditions are shown.
Main conclusions of these experiments are: (i) NestedCascade2 has
better performance than the other two detectors, having a very
small number of false positives, (ii) in most of the experiments the
performance of the methods decrease in outdoors, and (iii) when
large out-of-plane rotations are considered, the detection rate of
all detectors is decreased in about 40%.

This kind of experiment shows how the proposed system can
be used for evaluating the robustness of face detection methods
under rotations. It allows characterizing the response of the
algorithms (in this case face detectors) to yaw and pitch rotations.
For example, from the results of this particular case, it is clear that
all detectors have good detection rates for frontal faces, but their
performance is very different when larger yaw rotations are
considered, with the NestedCascade2 detector having lower false
positive rates for similar detection rates for most yaw and pitch
rotations. This experiment also shows that it is possible to simu-
late errors in the acquisition process (through Δxi, Δyi, and Δθi).
This kind of analysis cannot be easily done when using existing
databases.

4.2. Evaluation of face recognition methods under out-of-plane
rotations

The scenario contains N¼20 subjects. A constrained navigation
trajectory with random movements (see details in Section 3.2) is
used. The agent is placed by the system at a fixed distance of
100 cm in front of each subject (initial pose). The evaluation of face
recognition algorithms is tested in several cases, taking into
account more variability in the pose of the faces.

The agent processes the generated images seeking to recognize
the faces. Three local-matching face recognition methods are
evaluated: histograms of LBP (Local Binary Patterns) features [42],
Gabor-Jet features with Borda count classifiers [43], and histo-
grams of WLD (Weber Local Descriptor) features. The first two
methods have shown a very good performance in comparative
studies of face recognition systems [13,43]. The third method is
proposed in [44], and it is based on the use of WLD features [45].
In all cases, the methods' parameters were selected using standard
face datasets [13], and not using the face images included in the
proposed virtual environment.

Following the results reported in [13], two different flavors of
the histograms of LBP features method are used, one using the
histogram intersection (HI) similarity measure, and one using the
Chi square (XS) measure. In both cases, face images are scaled to
81�150 pixels and divided into 40 regions to compute the LBP
histograms. The two implemented face recognition systems are
called LBP-HI-40 and LBP-XS-40. The implemented Gabor-based
method uses 5 scales and 8 orientations, and face images scaled to
122�225 pixels, as reported in [13]. Finally, in the case of the WLD
based method, following [13] and the results obtained in the FERET,
BioID and LFW databases, the following parameters were selected:
histogram intersection and Chi square similarity measures, face
images scaled to 93�173 pixels and divided into 40 regions to
compute the WLD histograms, 2 dominant orientations (T¼2), and
26 cells in each orientation (C¼26).



Table 2
Top-1 recognition rates [%] under different maximal yaw angles of the observed
face (θymax). The other parameters are not varied Δxmax ¼Δymax ¼Δθmax ¼

�
θpmax ¼ θrmax ¼ 0Þ.

Method θymax

5° 10° 15° 20° 25° 30° 35° 40° 60°

LBP-HI-40 100 100 100 100 95 95 80 85 55
LBP-XS-40 100 100 100 95 95 95 85 75 30
GJD-BC 100 100 100 95 85 85 75 80 35
WLD-HI-40 100 100 95 95 90 90 85 70 45
WLD-XS-40 100 100 90 90 95 90 75 70 45
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In a first set of experiments, the recognition rate of the different
methods is compared under different viewpoint conditions; the
yaw angle of the observed faces is uniformly selected (random
value) in the range �θy

max;θ
y
max

� 
. The other simulation parameters

are kept unchanged Δxmax ¼Δymax ¼Δθmax ¼ θp
max ¼ θr

max ¼ 0
� �

. In
this experiments no active vision mechanisms are used, a simu-
lated face detection rate of 100% is considered (ground truth of the
face and eye positions is used) and a simulated pose estimator is
considered (ground truth is used). Table 2 shows the obtained
results. Main conclusions of these experiments are: (i) LBP based
methods that use the Chi square similarity measure are more
robust to yaw rotations than Gabor and WLD based methods, and
(ii) all methods have good performance under yaw rotations
within the range 730°.

In a second set of experiments, the recognition rate of the dif-
ferent methods is compared under more uncontrolled conditions:

1. The yaw angle of the observed faces is randomly sampled
(uniform distribution) in the range [�45°, 45°], and the pitch
angle in [�15°, 15°]. The roll angle is not modified (θr

max ¼ 0).
2. The position of the observer agent is modified in each axis, by a

random value uniformly selected in the range [�20,20] or
[�40,40] cm (The agent places itself randomly in front of the
subject within inside a region defined in front of the subject, see
Fig. 7(e)). The agent is not rotated (Δθmax ¼ 0).

The following face detection and pose estimation conditions
are considered: (i) a face detection rate of 80% with no false
positives; (ii) a face pose estimation with an error, pe, uniformly
selected (random value) in the range 740% or 780% of the
estimated value; and (iii) active vision mechanisms: given a
detected face, a face pose estimator is used to estimate the pose of
the subject (yaw angle θy

i ); the agent’s position ðX�
A;Y

�
A;θ

�
AÞ is used

to ensure that the agent is positioned facing the person. Finally the
face is recognized. Table 3 shows the obtained results. Main con-
clusions of these experiments are: (i) LBP based methods are more
robust to the defined uncontrolled conditions than Gabor and
WLD based methods, (ii) the agent’s initial position error has a low
influence on the final performance of the recognition systems, (iii)
a maximal error of 715° in the pitch angle reduces in �5% the
face recognition rate, and (iv) a pose estimation error increase
from 40% to 80% reduces in �5% the recognition rate.

The systematic evaluation of face recognition algorithms, when
considering realistic scenarios, is not an easy task. For example,
having a good estimation of the performance of a face recognition
algorithm under large rotations can be important in many appli-
cations, but it is often neglected. The proposed framework allows
evaluating and characterizing the performance of face recognition
methods under different rotations, and in particular to simulate
pose estimation errors. Pose estimation and face alignment algo-
rithms are part of the standard pipeline in face recognition
methods, and in many cases their effect is not taken into account
when evaluating face recognition systems. The ability to simulate
pose estimation errors in the proposed framework allows having a
better idea of the robustness of face recognition algorithms to
these errors.

4.3. Active vision in face analysis for a Humanoid Robot Platform

In this experiment a humanoid robot moving inside a room
with N subjects is simulated, and its goal is to detect and recognize
all subjects. The robot has a predefined navigation trajectory (as
described in Section 3.2) that allows him to pass near each of the
subjects in the room, however not all subjects are facing directly
the robot. In this experiment the use of active vision is evaluated,
thus the robot can navigate freely and it can change its pose
relative to the subject when the active vision module is activated.

In order to recognize faces properly, the virtual agent uses the
following modules:

1. Face Detection: The agent detects a face (i.e. the face region) in a
given image.

2. Face Pose Estimation: The agent estimates the face’s angular
pose in the lateral, sagittal and coronal plane.

3. Active Vision: Using information about the detected face and its
pose, as well as information observed in the input images, the
agent can take actions in order to change its viewpoint for
improving face’s perception.

4. Face Recognition: The identity of the person contained in the
face image is determined. The module can include abilities such
as face alignment or illumination compensation.

In this experiment the OpenCV Viola&Jones face detector, a
LBP-based face recognition method, a perfect face and eye detec-
tion (using the ground truth), and a face pose estimation (also
provided using the ground truth) are evaluated. The OpenCV
Viola&Jones face detector, and the LBP-based face recognition
method and well-known methods commonly used in this kind of
applications. Given the results obtained in Section 4.2, LBP with
histogram intersection (HI) as similarity measure was used.

The number of subjects (N) in the map was set to 10 subjects in
the first group of experiments, while 20 subjects were used in the
last two experiments. It is important to recall that the same sub-
ject may be observed in many frames when the robot is navigating
the scenario. Also, each experiment is run 10 times, each time with
a different subset of subjects out of the 50 subjects of the database
and using several robot trajectories (see Fig. 4(f) for an example).
Note that the same samples (same subjects and trajectories) are
used to evaluate all considered variants (e.g. with and without
active vision).

The height of the agent is fixed and equal to the base height of
the subjects (160 cm). The height of subjects follows a uniform
distribution in [136, 184] cm, i.e. a 15% variation around the agent’s
height.

With respect to how the gallery of faces for recognition is
constructed, we consider two modes:

1. Offline Gallery: The virtual environment provides a face gallery
before the recognition process starts. The gallery contains one
image of each person to be recognized. The gallery’s images are
frontal pictures (no rotations in any plane), and are taken under
indoor illumination conditions. This is the standard
operation mode.

2. Online Gallery: There is no offline gallery. The agent needs to
navigate through the virtual scenario twice. In the first round,
the agent should create the gallery online, i.e., face detection,
and pose estimation are needed to build the database. In the
second round, all subjects change their position in the scene,



Table 3
Top-1 recognition rates [%] under different maximal pitch angles of the observed face (θpmax), θ

y
maxA �451;451½ �, different maximal agent’s positioning errors Δxmax;Δymax

� �
and variable face pose estimation error (pe).

Method θpmax ¼ 0 θpmax ¼ 0 θpmaxA �15;15½ � θpmaxA �15;15½ � θpmaxA �15;15½ � θpmaxA �15;15½ �
Δxmax ¼ 20 Δxmax ¼ 40 Δxmax ¼ 20 Δxmax ¼ 40 Δxmax ¼ 20 Δxmax ¼ 40
Δymax ¼ 40 Δymax ¼ 40 Δymax ¼ 20 Δymax ¼ 40 Δymax ¼ 20 Δymax ¼ 40
pe¼ 40% pe¼ 40% pe¼ 40% pe¼ 40% pe¼ 80% pe¼ 80%

LBP-HI-40 85 85 80 75 75 70
LBP-XS-40 85 85 80 80 80 75
GJD-BC 85 80 75 70 70 65
WLD-HI-40 80 85 70 65 70 65
WLD-XS-40 80 85 70 65 70 65

Table 4
Evaluation of a face recognition system based on LBP features [42].

(*) It does not use Person Map. (**) 20 subjects are present in the scene; otherwise there are 10 subjects.

Face detection Active
vision

Gallery
database

Subjects added to the
gallery

Subjects correctly
detected [%]

Recognition [%] (out of all subjects
in the scene)

Recognition [%] (out of the
detected subjects)

Viola&Jones No Offline 10.0 84.0% – 78.4% (*)
Viola&Jones No Offline 10.0 84.0% 73.0% 86.8%
Viola&Jones No Online 14.8 84.0% 59.0% 70.2%
Viola&Jones Yes Offline 10.0 84.0% 78.0% 92.9%
Viola&Jones Yes Online 12.2 84.0% 73.0% 86.9%
Ground Truth Yes Offline 10.0 100.0% 92.0% 92.0%
Ground Truth Yes Online 10.0 100.0% 90.0% 90.0%
Viola&Jones No Offline 20.0 (**) 91.8% 83.0% 90.5%
Viola&Jones Yes Offline 20.0 (**) 91.8% 87.5% 95.7%
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and the agent must detect and recognize them using the gallery
already built. In both rounds, the agent observes the person’s
faces at variable distance and angles, in indoor or outdoor
illumination conditions. The subjects pose in the scenario, and
the illumination conditions are randomly chosen in all cases.

As mentioned, the case of predefined trajectories is considered.
With respect to how the agent moves, two cases are considered:
with and without the use of active vision. In both cases the use of
online and offline gallery DB is taken into consideration, which
gives 8 cases in total. When active vision is used, the algorithm
works as follows: if a face is detected, the face pose estimator is
used to determine whether the detected face has small rotations
(relative angles smaller than 15°). If this is the case, the face is
either stored in the database (first time detected) or used for
recognition. If the rotation is larger than 15°, the next agent’s
position ðX�

A;Y
�
A;θ

�
AÞ is estimated to ensure that the agent is posi-

tioned in front of the person and the face rotation is minimal.
Given this position, the agent moves, gets new observation, and
detects faces again. If the new detected face still has a rotation
angle larger than 15°, this process is repeated, otherwise the agent
returns to the original trajectory.

Table 4 shows the obtained results. The first, second and third
columns show which face detector was used, whether the active
vision module was used or not, and how the gallery database was
built, respectively. The fourth column displays the number of subjects
added to the gallery database (normally when the gallery is built
online, there are some false detections); the fifth column shows the
rate of number of subjects correctly detected while traversing the
environment; the sixth column shows the face recognition rate out of
all subjects in the scene; and the seventh column shows the face
recognition rate considering only the detected subjects.

From the first two rows of the table we can see that when the
Person Map module is used, the recognition rate improves from
78.41% to 86.77%. This is because the same subject is not added
several times to the map, and at the same time there are less false
detections. In all the other results (remaining rows in the table)
the Person Map is used. From the table it can also be observed that
using the active vision module allows, among other things, to
build a better gallery database (when the gallery database is built
online), and to improve the recognition rate. When the database is
built offline, using active vision improves the recognition rate from
86.77% to 92.92% on average.

As it can be observed, the systematic evaluation of a face analysis
system for a service robot under real world conditions can be done
using the proposed evaluation tool. In this particular experiment,
the simulation tool was used to evaluate: (i) the effect of using
active vision mechanics during the gallery building process and
during the recognition process, (ii) the use of a perfect face detector
(using the ground truth) versus the use of a realistic face detector,
and (iii) the use of simple (person) mapping mechanisms such as
the Person Map. As shown in the experiments, such mechanisms are
very important in real world applications, as they can have a high
impact in the performance of a face analysis system.

It must be stressed that performing this kind of evaluation
using standard face databases and methodologies is not possible,
while performing such a systematic quantitative evaluation with a
robot in a real scenario is very difficult and time consuming.
However, the proposed evaluation tool enables the systematic
evaluation of the complete pipeline of algorithms in a robot’s face
analysis system, and in particular using changing scenarios (e.g.
gallery database building) with dynamic moving agents (e.g. active
vision mechanisms).
5. Conclusions

An evaluation tool for testing face analysis systems under
uncontrolled conditions is proposed. The tool combines the use of
a simulator with real face and background images taken under
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real-world conditions. Inside the virtual environment, a virtual
agent navigates and observes face images (from different distances
and angles), and with either indoor or outdoor illumination.
During the face detection and recognition process, the agent can
actively change its viewpoint and relative distance to the faces in
order to improve the detection and recognition results.

The applicability of the proposed tool is validated in three
scenarios: evaluation of the robustness of face detection methods
to pose changes, evaluation of face recognition methods when an
active vision mechanisms is used, and simulation of a robot
moving in an environment with several subjects. In this last case
the face recognition performance was evaluated using online and
offline procedures for building the gallery databases, as well as
when active vision mechanisms instead of static trajectories
are used.

The reported experiments show that the proposed system can
be used for evaluating the robustness of face detection methods
under rotations, and that it allows characterizing the response of
the algorithms (in this case face detectors) to yaw and pitch
rotations. For example, from the reported results it can be con-
cluded that although the analyzed detectors have good detection
rates for all frontal faces, their performance is very different when
larger yaw rotations are considered. This kind of analysis cannot be
easily done when using existing databases.

In the case of face recognition methods, the use of the proposed
tool allows evaluating and characterizing the performance of face
recognition methods under different rotations, and in particular to
simulate pose estimation errors. Pose estimation and face align-
ment algorithms are part of the standard pipeline in face recog-
nition methods, and in many cases their effect is not taken into
account when evaluating face recognition systems. The ability to
simulate pose estimation errors in the proposed framework allows
having a better understanding of the robustness of face recogni-
tion algorithms to these errors.

In the case of the robot scenario, the proposed evaluation tool
enabled the systematic evaluation of the complete pipeline of face
analysis algorithms. In particular, it was possible to evaluate the
effect in the recognition performance of the gallery database
generation mode (offline versus online), of the employed active
vision mechanisms, and of the use of person maps containing
information of previously detected faces. The reported results
show how the proposed evaluation tool enables the systematic
evaluation of face analysis systems for a robot. Performing such an
evaluation in a real scenario would be very difficult and time
consuming, and implementing it using standard face databases
and methodologies not possible.

Possible future research lines and improvements include the
development and evaluation of more sophisticated active vision
mechanism, the use of several detected faces in the recognition of
the faces of the same subject, and the evaluation of other face
analysis tasks, such as age and gender classification.
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