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a b s t r a c t

Sleep Disordered Breathing (SDB) is a group of diseases that affect the normal respiratory function during

sleep, from primary snoring to obstructive sleep apnea (OSA) being the most severe. SDB can be detected

using a complex and expensive exam called polysomnography. This exam monitors the sleep of a person

during the night by measuring 21 different signals from an Electrocardiogram to Nasal Air Flow. Several au-

tomatic methods have been developed to detect this disorder in adults, with a very high performance and

using only one signal. However, we have not found similar algorithms especially developed for Children.

We benchmarked 6 different methods developed for adults. We showed empirically that those models’ per-

formance is drastically reduced when used on children (under 15 years old). Afterwards, we present a new

approach for screening children with risk of having SDB. Moreover, our algorithm uses less information than a

polysomnography and out performs state-of-the-art techniques when used on children. We also showed em-

pirically that no signal alone is a good SDB screening in children. Moreover, we discover that combinations of

three signals which are not used in any other previous work are the best for this task in children.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Several health systems from different countries have agreed on

the need of tackling public health by the means of a more preven-

tive, personalized and anticipatory health service. This requires to en-

couraging patients and caregivers to make them protagonists of their

healthcare, assuming responsibility to keep themselves on controlled

states without collapsing healthcare centers.

In Chile, we have a severe case of air pollution, which produce

episodes where hospitals collapse during autumn and winter. This is

why; Health Ministry is developing several programs that aim to treat

patients at home. But to do so, we need to know exactly a patient, for

example, what is their normal biomedical signals values (mean and

standard dev.) or what happens with humidity during winter inside

their home or other environmental conditions. Based on specific data

and other information from the patients and knowledge extracted

from experts we can develop an expert system similar to Echeverría,

Jimenez-Molina, and Ríos (2015) that aid patients and caregivers to

take better decisions (even from their homes).

This article focuses in the creation of an automatic screening

method for Sleep Disordered Breathing (SDB) which are a group of

chronic diseases that affect the normal respiration function during

the night. These can affect people at any age and are due to different
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auses: in newborns and young children they are related to congen-

tal defects or premature birth; in older children and adults they

ay be related to obesity, morphological causes, and hypertension

Goodwin et al., 2003a; 2003b; Levy, Bonsignore, & Eckel, 2009;

osen, Palermo, Larkin, & Redline, 2002).

The diseases -from least to most severe- considered as SDB are:

rimary snoring, upper airway resistance, and obstructive sleep ap-

ea (OSA). For example, a newborn with OSA can experience short

pisodes of apnea, total absence of airflow during night and live a

elatively normal life, while a severe OSA may lead to sudden death

Goldstein et al., 2004).

Symptoms of SDB are abnormal day sleepiness, sudden naps dur-

ng the day (for example, at a red light while driving), general tired-

ess, fatigue, trouble sleeping, and other related diseases (de la Luz

lonso Álvarez et al., 2008). It has been shown that in children SDBs

re closely related to obesity and learning problems (Goodwin et al.,

003a).

The diagnosis of SDB is accomplished through a clinical study

alled polysomnography (PSG) which collects over 20 different

iomedical signals during sleep, including: electrocardiography, elec-

roencephalography, electromyography, plethysmography, oronasal

irflow, chest movement, abdominal movement and leg movement

mong others.

Several automatic methods have been developed in the form

f expert systems to detect these disorders in adults, with a very

igh performance (Álvarez-Estévez & Moret-Bonillo, 2009; De Chazal

t al., 2003; Driver et al., 2011; Jarvis & Mitra, 2000; Khandoker,

alaniswami, & Karmakar, 2009). However, we showed empirically
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y Erazo and Ríos (2014) that those models’ performance is drasti-

ally reduced when used in children (under 15 years old).

This time we present a new algorithm able to classify children into

wo groups: the group at risk of having an SDB, and the group with

o risk (or very little risk) of having an SDB. Moreover, our algorithm

ses less information than a polysomnography and surpasses state-

f-the-art techniques when used on children. This is very important

actor since in order to develop a non-invasive solution (to be used at

ome, for example) we need to reduce the amount of signals used by

creening methods.

We showed empirically that no signal alone can be a good OSA

redictor in children and also we showed that only three signals:

MG-Chin, EOG and Leg Movement are very good predictors. We

eed to remark this result, since until today, none of these signals

ave been used on their own or in combination with other signals for

creening in any documented study reviewed in this research.

This work is based on data collected by Pablo E. Brockmann M.D.

nd his research team in the Sleep Study Center of Clinical Hospi-

al of Catholic University of Chile. This dataset consists in 78 whole

ight polysomnographies from patients under 15 years old. This is

he largest dataset of this characteristics used for OSA screening.

. Related work

Our main interest is to develop an algorithm that can distinguish

etween OSA and non-OSA individuals with the least amount of sig-

als from the PSG. In adults, several researchers (Álvarez-Estévez &

oret-Bonillo, 2009; Driver et al., 2011; Flemons et al., 2003) have

hown that some signals from PSG have enough predictive power to

erform this task. In fact, one-signal screening methods have been

uccessfully tested in adults and children (Roche et al., 2003; Tsai

t al., 2013), but those methods still require attending personnel and

vernight dedicated systems. Most of them also required a medical

valuation afterwards.

Automated classification methods aim to avoid unnecessary

esource consuming screening methods. The most important contri-

ution to this respect was made by the Computers in Cardiology Chal-

enge of 2000. In that work the task was to automatically tag, minute

y minute, a single ECG signal as OSA or non-OSA and get to a final

iagnosis: OSA or non-OSA for every record (De Chazal et al., 2003;

arvis & Mitra, 2000; Khandoker et al., 2009; Mendez et al., 2007).

ome of these methods reached a precision of 100% in the binary

iagnosis and over 85% in minute-by-minute tagging. Unfortunately,
Table 1

Automated OSA screening approaches tested in our previous work (Erazo & Ríos, 2014).

Author, Year Brief description R

Jarvis and Mitra (2000) Apnea diagnosis based on ECG signal. Features used

derived from spectral analysis. Classification based

on threshold criteria.

A

De Chazal et al. (2003) Apnea diagnosis based on ECG signal. Features

extracted using black-box methods. Classification

methods: linear discriminant, quadratic

discriminant.

A

Mendez et al. (2007) Apnea binary diagnosis based on ECG signal. Features

extracted: derived signals (EDR, HRV) coefficients.

Classification method: K-Nearest Neighbour.

A

Álvarez-Estévez and

Moret-Bonillo (2009)

A fuzzy reasoning is used to detect apneic events; Air

flow signal and Oxygen Saturation signals are used

Se

Khandoker et al. (2009) Apnea binary diagnosis (OSA+, OSA-) based on ECG

signal. Features extracted: Wavelet Transform

coefficients. Classification method: Support Vector

Machine.

A

Driver et al. (2011) Validation of MediByte (portable monitor) as

screening method.

Se
one of these studies on automatic classification was performed on

hildren. Besides, most of the algorithms were trained and tested on

atabases specially designed for this task. In particular, models tested

n the Computers in Cardiology 2000 database can not be compared,

ecause this database has been preprocessed to obtain clean, but not

ealistic data.

This is why we performed a benchmark with real data from 78

hildren and compared the results among them. This was published

y Erazo and Ríos (2014) and a summary of methods tested is shown

n Table 1. The best classifiers from all approaches tested were those

ased on: a Support Vector Machine (SVM), an Artificial Neural Net-

ork (ANN). Besides we implemented a Logit classifier to evaluate a

imple model, though it is not in the literature. We also selected the

hree signals that reported best results in the literature, which are:

lectrocardiography (ECG or ECGI channel), Air Flow (Patient Airflow

hannel) and Oxygen Saturation (SpO2 channel).

Afterwards, we pre-processed ECG, Air Flow and SpO2 with

avelet transform to extract features. All algorithms were trained

ith all 14 features generated. Then we trained the models with a

ross-validation approach with 70% of the dataset to train the models

nd 30% to test; and finally, experiments were performed 30 times

o generate the final benchmark results computing several measures

hown in Section 3.3.

The best performing models were the ANN applied over oronasal

ir Flow signals, with Sensitivity = 84.36%. The second best model

as the SVM with Air Flow signal that resulted in a Sensitivity =
5.64%. Both classifiers were far from the 90% sensitivity considered

s the clinical minimum for a successful classifier. We demonstrated

xperimentally that state-of-the-art models for OSA screening in

dults are not good enough to be used in children.

. Model construction methodology

After performing our benchmark by Erazo and Ríos (2014), we

ould not find a good predictor for OSA+ and OSA- in children’s data.

owever, models using Air Flow signal had an outstanding sensi-

ivity, over 80% and regular accuracy (in the Neural Network mod-

ls). ECG based models, on the other hand showed high specificity,

eaning that they have the ability to detect healthy people. This sug-

ests that a combination of these signals may lead to a successful

odel.

This section describes a novel approach to this task. From a purely

athematical point of view, signal selection is performed in order
esults Comments

cc=100% Tested on Computers in Cardiology 2000 database.

75 records tagged minute-by-minute. All registers

corresponding to adults.

cc=100% Tested on Computers in Cardiology 2000 database.

75 records tagged minute-by-minute. All registers

corresponding to adults.

cc=85,5%, Sens=83,9%,

Spec=88,5%

Tested on Physionet Apnea ECG Database (50

registers) tagged as OSA+ or OSA-.

ns=87%, Spec=89% Tested on a 12 patients database (Sleep Heart Health

Study), it does not diagnose OSA, it only detects

apneic events. All registers corresponding to

adults.

cc=100% Tested on three combined databases: Sleep Research

Unit Database, Physionet Apnea ECG Database and

Saint Vincent’s University Hospital/University

College Dublin Sleep Apnea Database. All 125

registers corresponding to adults.

ns=80%, Spec=87% This monitor requires a clinician to perform the

diagnosis.
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Table 2

State-of-the-art benchmark results’ summary (Erazo & Ríos, 2014).

Method WT func. ECG Air flow SpO2

Sens Spec Acc Sens Spec Acc Sens Spec Acc

[%] [%] [%] [%] [%] [%] [%] [%] [%]

SVM Db1 8,3 82,1 50,0 75,6 26,3 54,2 9,7 82,6 50,9

Db9 2,7 88,2 51,0 75,4 28,7 55,1 15,0 79,7 51,6

Haar 10,0 79,7 49,4 70,8 32,7 54,2 13,3 77,2 49,4

Sym8 5,3 85,1 50,4 75,1 27,0 54,2 12,3 82,1 51,7

NN Db3 34,3 60,3 49,0 84,4 19,0 55,9 30,0 75,1 55,5

Db4 36,3 63,9 51,9 80,5 21,7 54,9 19,7 77,7 52,5

Haar 25,7 65,9 48,4 80,3 26,3 56,8 38,7 60,0 50,7

Sym1 28,7 67,7 50,7 80,3 24,3 55,9 41,0 63,3 53,6

Logit Db3 44,6 54,5 50,2 18,9 74,6 43,7 44,5 51,4 48,4

Db4 41,9 53,0 48,2 19,3 78,9 44,9 55,1 61,9 59,0

Haar 43,6 58,4 51,8 39,3 58,1 46,3 47,0 55,8 52,1

Sym7 43,9 51,0 47,9 19,1 75,6 43,4 52,2 57,0 55,0
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t

to construct a minimal signal model able to satisfactorily screen the

pediatric population.

3.1. Data understanding

All children included in this study came to the Sleep Center be-

cause their parents or doctors had concerns about the quality of

their breathing during sleep. Patients’ parents had to answer a stan-

dard questionnaire in order to evaluate the severity of the potential

disorders. Only children considered as a risk population underwent

polysomnographic test.

Each patient spent a whole night in the hospital where 20 or

21 different biomedical signals were recorded (approximately 8 h of

records),1 including Electroencephalography (11 channels: EEG F3-

1,EEG C3-A1, EEG P3-A1, EEG O1-A1, EEG F4-A2, EEG C4-A2, EEG

P4-A2, EEG O2-A2, EEG A1-A2, EEG Fp1-A1, EEG Fp2-A2), Electro-

cardiography (ECG or ECGI channel), Electroculography (EOG Right

and EOG Left), Electromiography (EMG Chin), Air Flow (Patient Air-

flow channel) and Oxygen Saturation (SPO2 channel) among others.

PSG was collected in Sleep Study Center with an Alice® 5 Diagnostic

Sleep System from Respironics (Philips) and transformed using the

corresponding software (Alice® Sleepware) to the generally accepted

format for biomedical time series: European Data Format (EDF).

Afterwards each test was manually scored by Dr. Pablo E. Brock-

mann or one of his fellows according to AASM (American Academy of

Sleep Medicine) criteria (General, 2005). Apnea, hypopnea, arousals,

leg movement, and any other event of interest were reported.

Data corresponds to 78 complete night PSG from 78 different pa-

tients of ages from 2 to 16 years old (mean ± SD: 9.7 ± 3.6 years).

Sixty-four percent of them are girls.

According to AASM criteria, children are diagnosed with OSA with

an Apnea Hypopnea index equal or greater than 1 (General, 2005).

Using this specification, 43% of the PSG correspond to children with

OSA.

No PSG was excluded because of other diseases presented in

patients.

It is important to mention that most studies of OSA screening have

small databases, no more than 20 registers. Even though some bigger

databases are available, in child data, this is the biggest database doc-

umented (as far as this research went).

3.2. Feature extraction

The feature extraction method selection was based on the most

referenced one in literature, as explained by Erazo and Ríos (2014).
1 originally records were almost 9 hours long, but after data cleaning; approximately

8 h remained.

n

A

c

ccording to this criteria, the Wavelet Transform method was

dopted.

Wavelet Transform is used in 1D non–stationary signals to process

ime series as the ones collected by PSG. It allows for the collecting of

requency information contained in the time series. Also, there is no

equirement of the frequency stability, thus it is frequently used for

CG feature extraction.

Several wavelets were tested in order to extract features.

aubechies and Symlet of levels from 1 to 10 were tested, in addi-

ion to the Haar function. This means that every signal was processed

1 times under each of these 21 functions of a Wavelet Transform

Daubechies1, Daubechies2, Daubechies3, and so on).

To process the dataset, the Wavelet Toolbox for Matlab was se-

ected. With this objective, EDF’s had to be transformed into a com-

atible Matlab format.

Each signal processed with Wavelet Transform was decomposed

o its 14th detail level, obtaining 14 time series for each decompo-

ition function, i.e. 14 time series for ECG processed with the Haar

unction, 14 time series for ECG processed with Daubechies of level 1

unction, and so on.

In order to reduce data and extract features, three features were

alculated for each time series, these were: mean, variance and en-

rgy; calculated as follows:

ean: x̄ = 1

N

N∑
i

xi (1)

ariance: σ 2 =
N∑
i

(x̄ − xi)
2 (2)

nergy: E =
N∑
i

x2
i (3)

oefficients obtained from the preprocessing stage were named

b1mean1, Db1var1, Db1ene1 for the mean, variance and energy of the

rst detail level for Daubechies1 WT function. The same process was

pplied for every WT function and to every signal. This way, 21 dif-

erent databases were generated for every signal –one for each WT

unction–, each of them containing 42 features: mean1, var1, ene1,

ean2, var2, ene2 up to mean14, var14, ene14.

.3. Evaluation measures

In order to compare models we will compute well known evalua-

ion measures. The main point is to describe the strengths and weak-

esses of the models (Fig. 1).

Indicators selected for these tasks are Sensitivity, Specificity and

ccuracy (commonly used to assess clinical tests performance); Pre-

ision, Recall and F-measure (to assess the classification performance
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Feature 
Extraction

Feature 
Selection

Minimum Feature Selection

PSG Data

Multi-signal Models Training

SVM ANN Logit

Sub set of features (70% data)

Multi-signal Models Test

SVM ANN Logit

Sub set of features (30% data)

Cross-Validation

Evaluation

Sensitivity Specificity Precision Recall FAccuracy

Fig. 1. Summary of Experimental Methodology.
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f algorithms). They will be calculated as follows:

ecall = Sensitivity = TP

TP + FN
(4)

pecificity = TN

TN + FP
(5)

ccuracy = TP + TN

TP + TN + FP + FN
(6)

recision = TP

TP + FP
(7)

= 2 ∗ TP

2 ∗ TP + FN + FP
(8)

nterpretation of these indicators is based on the ability to detect un-

ealthy individuals. This is because it is more important to correctly

lassify sick children as sick than healthy children as healthy.

Sensitivity is the ability to detect unhealthy individuals, Speci-

city is the ability to detect healthy people, Accuracy is the abil-

ty to correctly classify, that is, how many children were correctly

lassified.

On the other hand, Precision is the proportion of the ill individuals

roup that are correctly classified. Finally, the F-measure shows how

ccurate is the model, is in a range of 0 to 1, where 1 is the best model

ossible.
.4. ECG feature extraction

To extract relevant features from an ECG signal, it is important to

nderstand how it is analyzed by clinicians.

Fig. 2 shows a sample of an ECG signal corresponding to the

0011823 patient.

A regular ECG wave can be characterized according to some

oints. As seen in Fig. 3, points P, Q, R, S and T describe a complete

ulse of an ECG.

The relevant characteristics for respiratory functions are associ-

ted with the QRS complex. This is the name of the area formed by

, R and S points. Commonly the features are extracted from derived

ignals from the ECG recording. These signals are: Heart Rate Vari-

bility (HRV) and ECG Derived Respiratory Signal (EDR).

HRV corresponds to the time series constructed from R–R inter-

als; this is the time between successive R points. EDR corresponds

o the time series constructed from QRS amplitude. This is the vertical

istance between Q and R points.

Before extracting features, all signals had to be normalized to ig-

ore the variance associated with natural variations among different

ndividuals. While a certain heart rate might be normal to a person, it

ould be considered accelerated for another, so normalization is the

tandard proceeding when working with biological signals.

Common features extracted from HRV and EDR signal are:

ean: x̄ = 1

N

N∑
i

xi (9)
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Fig. 2. ECG sample.

Fig. 3. ECG wave characteristics.

Fig. 4. Electrode positions for an EEG.

3

E

a

n

Variance: σ 2 = 1

N

N∑
i

(x̄ − xi)
2 (10)

Also, some time domain features were extracted from the HRV

signal. In order to do this a new time series had to be constructed,

corresponding to the successive differences of the HRV signal. These

features were:

Root Mean Square of Successive Differences: =
√

N∑
i

(xi − xi−1)2

(11)

Standard Deviation of Successive Differences: =
√

1

N

N∑
i

(x̄ − xi)2

(12)

With all these transformations the resulting feature set to character-

ize the ECG signal is: meanHRV, varHRV, meanEDR, varEDR, RMSSD and

SDSD.
.5. EEG feature extraction

The EEG performed during a PSG has 11 signals as output:

EGF p1 − A1, EEGF p2 − A2, EEGA1 − A2, EEGF3 − A1, EEGF4 − A2,

EEGC3 − A1, EEGC4 − A2, EEGP3 − A1, EEGP4 − A2, EEGO1 − A1 and

EEGO2 − A2. Each of them characterized by the position of the elec-

trode in the head, where A1 corresponds to the left side, and A2 to the

right side, as seen in Fig. 4.

Not all patients present every signal. In small children (under 2

years old) not all the electrodes are placed on the head, mainly be-

cause they have smaller heads, so 31 of the registers do not contain

the signals EEGA1 − A2, EEGF p1 − A1, EEGF p2 − A2, EEGO1 − A1 y

EEGO2 − A2. Although, some techniques propose to process them

ll together (by adding the signals or applying Principal Compo-

ents Analysis for example), the selected approach was to process
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Fig. 5. EEG sample corresponding to patient A0001945.

Fig. 6. Spectrogram sample corresponding to patient A0001945.
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hem separately for two reasons: first, clinicians analyze them

eparately, and second, if there is a combination that allows for

rocessing them all together it should be reflected in the feature

election stage. This is, if the signals are giving redundant infor-

ation, the feature selection will detect this effect and eliminate

edundancy.

When a PSG is processed, clinicians look into EEG signals to tag

ime windows according to the sleep stage the patient is in. For ex-

mple in Fig. 5 is easy to distinguish two stages. So, the main task

ith these signals is to detect variations in the wave frequencies in

rder to characterize different stages.

What matters most is to determine how much a wave varies dur-

ng night, for which a methodology was developed.

First, a spectrogram was constructed. Spectrograms are frequently

sed to analyze sound waves or pixels. They are a graphic represen-

ation of the variety of frequencies in a wave as time varies.

On the X-axis a spectrum of frequencies is represented. On the Y-

xis the time is divided in small windows for analysis, and the color

cale shows how strong is the presence of a frequency in a specific

ime window.

If columns are analyzed independently, the variation of a specific

requency can be observed. Based on this, the features to be extracted

haracterize the number of times a big variation occurs, that is, a

hange in the sleep stage is suspected.

If smaller time windows are used, smaller changes can be de-

ected, but this effect is not desired, since changes in sleep stages are

haracterized by big variations, so only eight time windows will be

sed for the analysis.
In order to do this, an auxiliary time series is defined as the dif-

erence of a frequency from one time window to the next. This is per-

ormed for every frequency considered in the spectrogram (Fig. 6).

The main idea is to detect significant variations, so the relative dif-

erences were calculated as the difference divided by the initial value.

ith this, a new time series was constructed for each signal. Later,

his signal was filtered to make it easier to detect big variations.

Fig. 7 shows the processed signal corresponding to the sample in

ig. 5, every frequency analyzed is shown in a different color, the vari-

tion in time is represented graphically. This means, peaks represent

he big changes indicating a change in the sleep stage is suspected.

Finally, features extracted from each EEG signal correspond to the

umber of local minimum and the number of local maximum from

very frequency filtered signal.

.6. Abdominal and thoracic effort feature extraction

Abdominal and Thoracic Effort Signals correspond to a band that

oes around the abdomen and chest to register a patient’s move-

ents while sleeping.

The main idea is to detect peaks of movement, that is, when a

atient has a regular respiratory function, no abnormality should ap-

ear in the signal. In Fig. 8 for example, an abnormality appears at the

nd of both signals (time ∼ 8500). In order to detect peaks wavelet

ecomposition was used for its ability to show them in the signal. The

ethodology implemented to extract features from the signal con-

iders the mean, standard deviation and energy of the signals derived

rom the decomposition.
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Fig. 7. Processed EEG signal corresponding to patient A0001945.

Fig. 8. Abdominal Thoracic Signal (blue) and Abdominal Effort Signal (red) corresponding to patient A0000678. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

Fig. 9. Different Wavelet Decompositions (blue) for the Thoracic Effort Signal (red) corresponding to patient A0000678. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

t

l

3

a

As said in the previous section, many families of functions can be

used with this decomposition. A visual inspection was done to select

the signal that best fits the objectives of this task.

Fig. 9 shows three of the wavelet functions tested. Although

all functions seem to detect variations equally, Daubechies 3 had

a better performance amplifying small variations, as the one seen

at the end of the time window shown in the figure. This is why
he function selected to process both signals was Daubechies 3 of

evel 4.

.7. Air flow feature extraction

The Air Flow Signal registers the air movement through the nose

nd the mouth. So, to detect the presence of OSA, one must detect
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Fig. 10. Air Flow Signal corresponding to patient A0000739.

Fig. 11. (a) Leg1 Signal corresponding to patient A0001484. (b) Leg2 Signal corresponding to patient A0001484. (c) Legs Signal corresponding to patient A0011947.
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hen an abnormal flow occurs, this is, the complete absence of flow

r a big decrease in it.

Fig. 10 shows a complete night record. The task is to detect the flat

reas in the signal.

The same task was approached by Erazo and Ríos (2014) using a

avelet Transform where the features extracted were used as input

or one-signal models. This resulted in high performance models.

Therefore the same strategy was followed and the selected func-

ion was Daubechies 3 of level 14.

.8. Leg movement feature extraction

Of the 78 patients, 36 had only one signal that recorded their leg

ovement during sleep. Forty-one of them had only one record for

ach leg, this is two signals per patient to record leg movement. One

atient had no record.

As seen on Fig. 11 both legs are highly correlated, so no lost infor-

ation is suspected in the case of only one record. Yet, both signals

ere included in the analysis. If the information results are redun-

ant, the Feature Selection Stage should detect it.

The characterization of the signal had to represent the variation

f the leg movement to detect abnormal movement or big movement

pisodes.

As before, the Wavelet Transform has the ability to extract these

eatures from the signal.
After testing a variety of functions, Daubechies 8, of level 6 was

elected. As in previous cases, mean, variance and energy of every

etail level were calculated, obtaining a set of 18 features.

.9. Body position feature extraction

Body Position signal detects the changes of position of the body,

rom supine (back facing down) to prone (chest facing down). The

ain idea is to detect change in positions, as a measure of the move-

ent during the night. The sensor used for this task assigns a num-

er to each position. It is a nominal variable that detects changes in

osition.

In order to reflect the number of times a patient moves during

he night an auxiliary signal was constructed as the successive differ-

nces of the signal. Therefore only changes in position would appear

s different from zero as seen in Fig. 12. With this, the feature ex-

racted was an index of the number of changes divided by the sleep

ime.

.10. Electromyogram feature extraction

The Electromyogram signal (EMG) registers the electrical poten-

ial generated by muscle cells, in a PSG in particular is used to regis-

er chin movement during sleep. Chin movement is important in the

iagnosis of SDB, and OSA, because respiration may occur through
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Fig. 12. (a) Body Position Signal corresponding to patient A0001460. (b) Auxiliary signal derived from Body Position Signal for patient A0001460.

Fig. 13. EMG Chin Signal corresponding to patient A0002197.
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nose or mouth, thus chin movement is used as an indicator of mouth

movement.

On the other hand, tension in the chin might indicate snoring or

another abnormalities during sleep, like bruxism for example.

As other signals that register movement, signal processing was

made by a Wavelet Transform. The same selection process was per-

formed, the chosen function was Daubechies 7 of level 8, resulting in

24 features (Fig. 13).

3.11. Electro-oculogram feature extraction

The Electro-oculogram (EOG) registers the movement of the eyes

by placing electrodes around them. The result of this exam is one sig-

nal for each eye. So, in a complete PSG, two signals correspond to EOG,

and they are tagged as EOG Right, and EOG Left for the right eye, and

the left eye respectively.

Even though these are separated signals, a high correlation is ex-

pected, since eye movements are not independent from each other in

most cases.

In Fig. 14 we see the correlation between both left and right eye of

patient A0006225. The same correlation is observed in every record

from this signal, yet every signal was processed because the feature

extraction process should be able to detect these highly correlated

features.

In order to be consistent in the treatment of signals, all movement

signals were processed with Wavelet Transform. The function used

for the EOG feature extraction was Daubechies 7 of level 8.
.12. Pulse feature extraction

The pulse signal as predictor for OSA prevalence has been used in

ther studies. As expected, an abnormal pulse rate might be a good

ndicator of an apnea episode due to the lack of oxygen generated as

consequence.

In particular, Noehren et al. (2010) use four time series derived

rom the pulse signal:

• APRD: Absolute Pulse Rate Decrease
• APRI: Absolute Pulse Rate Increase
• RPRD: Relative Pulse Rate Decrease
• RPRI: Relative Pulse Rate Increase

For the purpose of this study, only the first two were used.

The pulse signal was normalized to avoid variation among pa-

ients (see Fig. 15(a)). Then a Butterworth filter was used to eliminate

he noise from the signal and detect easily peaks of local minima and

ocal maxima (see Fig. 15(b)).

The APRD length corresponded to the number of peaks found, and

ach value was calculated as the difference of a local minimum and

he local maximum immediately before (see Fig. 15(d)). The same

rocedure was applied to construct the APRI (see Fig. 15(c)), calculat-

ng the difference between a local maximum and the local minimum

mmediately before.

After this, the results are two time series. The decision is to extract,

rom both of them: mean, standard deviation, median, maximum and

inimum.
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Fig. 14. EOG Sinals of Left (blue) and Right (Red) ayes corresponding to patient A0006225. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

Fig. 15. (a) Pulse signal corresponding to patient A0000294. (b) Filtered pulse signal. (c) Absolute Pulse Rate Increase (APRI) derived from pulse signal. (d) Absolute Pulse Rate

Decrease (APRD) derived from pulse signal.
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.13. Snore feature extraction

The snore signal is used to diagnose not only OSA, but other SDB’s,

ike primary snoring. Although very useful for SDB diagnosis, the final

lassification into OSA+ and OSA- groups can not rely only on this

ignal.

Snoring is measured by a sensor located on the throat that detects

ibration. As snoring is produced by an obstruction of the airway, vi-

ration is produced, and measured this way.

The resulting signal is normalized since the relevant aspects are

ariations in the signal. As output for the PSG, a signal from 0 to 1 is

hown.

The goal when processing this signal was to determine when an

bnormal vibration episode occurred. The signal provided by the PSG

s already normalized, so an abnormal episode was considered when

he signal crosses over 0.7 or under 0.3 (blue lines on Fig. 16). This

election was based on preliminary analysis of the signal behavior.

The features extracted correspond to the number of abnormal

pisodes up and abnormal episodes down. The resulting feature set

as: Snoreup and Snoredown.
.14. Oxygen saturation feature extraction

PSG also include a sensor that measures the blood’s oxygen satu-

ation during the whole night. Usually saturation measures are done

eriodically. Therefore a PSG is one of the few clinical tests that allows

Saturation Signal.

Evidently this is one of the most important signals to determine

diagnosis, since it is directly related to apnea episodes. A desatura-

ion episode is a clear symptom of an abnormal respiratory function.

n particular, it might be the perfect indicator of an apnea episode.

ig. 17 shows a time window of the Oxygen Saturation Signal col-

ected by a PSG from patient A0001183.

Many indicators are used for processing this signal. The most se-

ected and relevant for this study are: DEI (Desaturation Event In-

ex), defined as a saturation signal drop in four or more points

on a scale from 1 to 100); and ODI (Oxygen Desaturation In-

ex), also known as CT90 (Cumulative Time 90). Corresponds to the

mount of time the patient has a saturation under 90%. DEI and ODI

ere selected because of their previous use in continuous positive

irway pressure devices (CPAP) tests and previous experiences in
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Fig. 16. Snore Signal corresponding to patient A0000884.

Fig. 17. Oxygen Saturation Signal corresponding to patient A0001183.
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diagnosing apnea episodes (Chang, Wu, & Cao, 2012; Chung et al.,

2012).

So, as result, the feature set was: DEI and ODI for each signal.

4. Feature selection

Resulting from the Feature Extraction process, 355 features are

used to resume the information collected in a PSG. Table 3 summa-

rizes the features resulting from the previous section.

The hypothesis is that not all the information is needed to perform

a high quality screening. If this is true, a less resource-consuming

clinical test may be developed to pre-diagnose children with sus-

pected OSA.

The first step to accomplish this is to select features. The selec-

tion should imply a reduction in the signals needed to perform a

screening.

A filter approach was selected to perform the Feature Selection.

This allows the use of the same subset with all three models and al-

lows comparison under the same conditions as shown by Erazo and

Ríos (2014).

Embedded methods were discarded due to their dependency on

the selected model. Therefore, different models would have ended up
ith different feature subsets. Wrapper methods were discarded also,

ecause they did not allow for the control of the number of resulting

eatures in the subset.

Before starting the selection, data quality was checked. Features

orresponding to the Pulse signal were discarded since only 6 pa-

ients had complete Pulse records.

The selection procedure was based on correlation analysis and

rincipal Component Analysis. The step by step methodology is de-

cribed as follows:

1. First. Principal Component Analysis (PCA) was computed over all

the Features included, using Varimax rotation criterion. The main

objective was to extract variables that explain most of the vari-

ance in order to incorporate as much information as possible in

the modeling section.

2. Second. The first five components resulting from Factorial Anal-

ysis were analyzed, as they explained 89.9% of the variance, and

the sixth component added only 2% to the variance explanation.

3. Third. Variables eigenvalues were extracted, and only variables

with an eigenvalue of 0.05 (5%) or more for the first five principal

components were kept.

4. Fourth. As mentioned, all features corresponding to selected sig-

nals were kept. Resulting from these steps, features corresponding
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Table 3

Summary of resulting features from a complete PSG.

Signal Features extracted Total

ECG meanHRV, varHRV, meanEDR, varEDR, RMSSD and SDSD. 6

EEG (11) max1, max2, max3, max4, max5, max6, max7, min1, min2, min3, min4, min5, min6 and min7. 154

Abdominal effort Db3mean1, Db3var1, Db3ene1, Db3mean2, Db3var2, Db3ene2, Db3mean3, Db3var3, Db3ene3, Db3mean4, Db3var4 y Db3ene4. 12

Thoracic effort Db3mean1, Db3var1, Db3ene1, Db3mean2, Db3var2, Db3ene2, Db3mean3, Db3var3, Db3ene3, Db3mean4, Db3var4 y Db3ene4. 12

Air flow Db3mean1, Db3var1, Db3ene1, Db3mean2, Db3var2, Db3ene2, Db3mean3, Db3var3, Db3ene3, Db3mean4, Db3var4, Db3ene4,

Db3mean5, Db3var5, Db3ene5, Db3mean6, Db3var6, Db3ene6, Db3mean7, Db3var7, Db3ene7, Db3mean8, Db3var8, Db3ene8,

Db3mean9, Db3var9, Db3ene9, Db3mean10, Db3var10, Db3ene10, Db3mean11, Db3var11, Db3ene11, Db3mean12, Db3var12,

Db3ene12, Db3mean13, Db3var13, Db3ene13, Db3mean14, Db3var14 and Db3ene14.

48

Leg movement (2) Db8mean1, Db8var1, Db8ene1, Db8mean2, Db8var2, Db8ene2, Db8mean3, Db8var3, Db8ene3, Db8mean4, Db8var4, Db8ene4,

Db8mean5, Db8var5, Db8ene5, Db8mean6, Db8var6 and Db8ene6.

36

Body position CI 1

EMG Db7mean1, Db7var1, Db7ene1, Db7mean2, Db7var2, Db7ene2, Db7mean3, Db7var3, Db7ene3, Db7mean4, Db7var4, Db7ene4,

Db7mean5, Db7var5, Db7ene5, Db7mean6, Db7var6, Db7ene6, Db7mean7, Db7var7, Db7ene7, Db7mean8, Db7var8 and Db7ene8.

24

EOG (2) Db7mean1, Db7var1, Db7ene1, Db7mean2, Db7var2, Db7ene2, Db7mean3, Db7var3, Db7ene3, Db7mean4, Db7var4, Db7ene4,

Db7mean5, Db7var5, Db7ene5, Db7mean6, Db7var6, Db7ene6, Db7mean7, Db7var7, Db7ene7, Db7mean8, Db7var8 and Db7ene8.

48

Pulse APRDmean, APRDstd, APRDmedian, APRDmax, APRDmin, APRImean, APRIstd, APRImedian, APRImax andAPRImin . 10

Snore Snoreup and Snoredown 2

Oxygen saturation DEI and ODI 2

TOTAL 355

Table 4

Summary of selected features.

Signal Features selected Total

Leg 1 Db8mean1, Db8mean2, Db8var2, Db8mean3, Db8mean4,

Db8mean5, Db8var5 and Db8mean6.

8

Leg 2 Db8mean3, Db8mean4, Db8mean5 and Db8var5. 4

Legs Db8mean1, Db8var1, Db8mean2, Db8mean3, Db8mean4 and

Db8mean5.

6

EOG right Db7mean1, Db7mean2, Db7mean3, Db7mean4, Db7mean5,

Db7mean6, Db7mean7 and Db7var7.

8

EOG left Db7mean1, Db7var1, Db7mean2, Db7mean3, Db7var3,

Db7mean4, Db7mean5, Db7mean6, Db7mean7, Db7var7 and

Db7mean8.

11

EMG chin Db7mean1, Db7var1, Db7mean2, Db7mean3, Db7mean4,

Db7mean5, Db7mean6, Db7mean7, Db7var7, Db7mean8 and

Db7var8.

11

TOTAL 51
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Table 5

SVM performance using the feature subset from PSG.

Model Sensitivity Specificity Accuracy Precision Recall F-measure

SVM 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%

Table 6

NN performance using the feature subset from PSG.

Model Sensitivity Specificity Accuracy Precision Recall F-measure

NN 28,67% 100,00% 28,67% 100,00% 28,67% 39,91%

Table 7

Logit Regression performance using the feature subset from PSG.

Model Sensitivity Specificity Accuracy Precision Recall F-measure

LOGIT 47,30% 100,00% 47,30% 100,00% 47,30% 62,69%
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to the following signals formed the preliminary subset: EMG Chin,

EOG (Left and Right), Snore and Legs. Preliminary subset had 129

features.

5. Fifth. Correlation Matrix was computed over the preliminary sub-

set.

6. Sixth. Every pair of signals was analyzed. If a correlation of over

0.6 was found, only one of the pair of signals was kept.

7. Seventh. Resulting from these steps, 51 features remain in the

subset. This is the definitive Features Subset.

Table 4 shows the resulting subset of features from the Feature

election process.

. Classification models

Models used to classify patients into the two groups defined are

he same as those used by Erazo and Ríos (2014). These are: Sup-

ort Vector Machine, Artificial Neural Networks and Logit Regres-

ion. Also, the same validation methodology was implemented, as

escribed in Section 3.3.

Thirty different training and testing balanced sets were created

nd used to train and test every model. Performance metrics were

alculated each time.

The resulting performance corresponds to the average of the met-

ics resulting from every iteration (this is, the result from one training

et and one testing set).
. Results

Tables 5–7 describe the results obtained from each classification

odel separately.

Support Vector Machines showed an outstanding performance

hen the minimal signal set are used as input. This result is unex-

ected because, as far as this research went, no other published re-

earch used EMG, EOG and leg movement as input signals. In fact,

linicians use these signals for auxiliary information, and never as the

ain source of information for diagnosis.

The other models showed poorer performance compared to SVM,

ut they also showed unexpected Precision results.

. Discussion

Having as a starting point the previous results presented by Erazo

nd Ríos (2014), where it is shown that no signal alone can be a

ood predictor for OSA in children when using black-box methods

or feature extraction. As a consequence, it can be inferred that a more

hysiological approach to feature extraction may lead to good quality

lassification methods.

Evidence in adults and some studies conducted in children

howed good-quality screening methods were mainly based on phys-

ological feature extraction methods. Most of these studies also, were

ased on one-signal only. The few of them that were based on more
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than one signal did not show any criterion for the signal selection

beyond clinicians criteria.

Always having present the goal of finding the minimum feature

set that can effectively screen for OSA. This is why the approach pre-

sented here describes a novel method for OSA screening: Signal se-

lection was based only on statistical and optimization criteria.

We discover that three signals: EMG-Chin, EOG and Leg Move-

ment combined are the best predictor for OSA in children. Sur-

prisingly none of these signals have been used on their own or in

combination with other signals for screening in any documented

study reviewed in this research.

Also, all of this signals are collected with ordinary electrodes,

widely available on the market. This fact allows us to think of this

algorithm as an actual screening method for future research in devel-

oping countries where resources are scarce, and OSA consequences

in infant populations are largely overlooked.

Our approach is able to screen OSA with 100% precision was devel-

oped using signals collected by polysomnography and the pertinent

information needed was reduced using data mining techniques, so

only three signals are needed to perform a high quality screening.

Another result of this work, a high quality repository of

polysomnographic children data tagged by qualified clinicians is

available for further testing and model construction.

It is very important to consider that today is a world wide ten-

dency the development of ubiquitous health (u-health) expert sys-

tems that allow the monitoring of patients even at home (Echeverría

et al., 2015). Most methods for screening OSA use oxygen saturation

and ECG signals (see Table 1); which need very good quality sen-

sors (expensive) in order to obtain good quality measures. This is a

barrier to develop a system for use at home or in third world coun-

tries. However, the sensors required to measure our approach signals

(EMG-Chin, EOG and Leg Movement) are more simple in construc-

tion, price and allow to have good quality data for a u-health expert

system.

8. Recommendations and future work

For signals like ECG or Air Flow, widely used in screening methods

for adults, the results showed no relevance or correlation with the

target variable in the feature selection process (see Section 4). Clini-

cians base their diagnosis on these signals, although they use all the

information available from a polysomnography. The intuitive reason-

ing lead them to think that these signals should appear as relevant

in the feature selection. This fact may be evidence that extracted fea-

tures are not representative enough of the information contained in

the signal.

Therefore new approaches to feature extraction should be sought

after with more adequate methods for each signal. Some research

devote most of the work to performing feature extraction correctly,

therefore a comparison of different feature extraction methods is rec-

ommended in order to correctly represent signals for the feature se-

lection process.

If this algorithm, or any other, is intended to be implemented as a

valid screening method, it must meet minimum requirements. First,

is has to be precise. Second, it has to be easier to perform than the

gold-standard, less resource consuming and independent of clinician

supervision. The proposed method in this research actually meets

some of these requirements. But there is a third requirement, not less

important: clinicians must trust the screening test in order to actually

prescribe it.

As previously mentioned, as far as this research went, no docu-

mented work uses any of the resulting signals (EMG Chin, EOG, Leg

Movement) alone or combined with others for prediagnosis. This is

mainly because these signals are not the main source of information

in a regular diagnosis process, so is necessary to check doctor’s opin-

ion and their disposition to prescribe this kind of clinical test.
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