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Background: Health careeassociated infections result in significant patient morbidity and mortality.
Although cleaning can remove pathogens present on hospital surfaces, those surfaces may be inade-
quately cleaned or recontaminated within minutes. Because of copper’s inherent and continuous anti-
microbial properties, copper surfaces offer a solution to complement cleaning. The objective of this study
was to quantitatively assess the bacterial microbial burden coincident with an assessment of the ability
of antimicrobial copper to limit the microbial burden associated with 3 surfaces in a pediatric intensive
care unit.
Methods: A pragmatic trial was conducted enrolling 1,012 patients from 2 high acuity care units within
a 249-bed tertiary care pediatric hospital over 12 months. The microbial burden was determined from
3 frequently encountered surfaces, regardless of room occupancy, twice monthly, from 16 rooms,
8 outfitted normally and 8 outfitted with antimicrobial copper.
Results: Copper surfaces were found to be equivalently antimicrobial in pediatric settings to activities
reported for adult medical intensive care units. The log10 reduction to the microbial burden from
antimicrobial copper surfaced bed rails was 1.996 (99%). Surprisingly, introduction of copper objects to
8 study rooms was found to suppress the microbial burden recovered from objects assessed in control
rooms by log10 of 1.863 (73%).
Conclusion: Copper surfaces warrant serious consideration when contemplating the introduction of
no-touch disinfection technologies for reducing burden to limit acquisition of HAIs.

Copyright � 2016 by the Association for Professionals in Infection Control and Epidemiology, Inc.
Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://
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INTRODUCTION

Hospital-associated infections (HAIs) continue to be one of
the most common and significant complications associated with
hospitalization across the globe. Patients admitted to intensive
care units (ICUs) are at an increased risk of being colonized or of
developing an infection frommicrobes that are resident within the
clinical environment. These increased risks result from the contri-
bution of many factors, such as underlying disease of the patient,
medical circumstance requiring hospitalization, use of invasive
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medical devices, stochastic and frequent contact with health
care workers, exposure to antimicrobial agents, emergence
and increased frequency of the presence of antibiotic-resistant
microbes in the clinical environment, prolonged lengths of hospi-
talization, and lack of compliance with existing infection control
guidelines.1 Less than 10% of hospitalized patients require ICU
treatment.2 However, care in the ICU accounts for >20% of HAIs
acquired by hospitalized patients.3 Additionally, pediatric intensive
care units (PICUs) and neonatal ICUs have higher documented HAI
acquisition rates than those seen for adult populations.4-6

Most HAIs are thought to occur via transmission from the
microbiome of the patient. However, there is ever increasing
evidence suggesting significant transmission of microbes from
personnel and the clinical environment to patients.7,8 Otter et al
have delineated the complex, continuous, and omnidirectionality
of the movement of microbes within the clinical space.9 In-
vestigators have also shown that the gloves of nurses frequently
collect viable methicillin-resistant Staphylococcus aureus (MRSA)
after touching objects near MRSA-colonized patients.10 Further,
studies have found that controlling the contamination of common
hospital touch surfaces from hand to surface contact and visa
versa can be an effective strategy to limit burden and control in-
fections.7,11,12 In one such study in a pediatric environment,
mandatory use of gloves was found to limit the incidence of
central lineeassociated bloodstream infections in the PICU during
respiratory syncytial virus season.13 Finally, in concert with hand
hygiene compliance, recommendations concerning in-hospital
infection control practices are increasingly directing attention
toward the disinfection of patient care surfaces, especially those
surfaces associated with high-touch objects, as an element of an
effective, systems-based approach toward infection prevention
and control.14

Recently, we have witnessed an increased incorporation of
no-touch technologies as a component in systematic approaches
for infection control. Ultraviolet light and the introduction of
vapor phase oxygen radicals (hydrogen peroxide vapors [HPVs])
into the hospital environment exert their antimicrobial activity
passively through an episodic introduction into the care space.
Both technologies have been found to reduce the bacterial burden
by at least 4 log10 within the clinical environment.15 In one 30-
month study evaluating the environmental and clinical impact
of the episodic use of HPVs involving 6 high-risk units in a large
tertiary care hospital, it was learned that patients admitted to
rooms decontaminated with HPV were 64% less likely (P < .001) to
accrue any multidrug-resistant microbe and were 80% less likely
to acquire vancomycin-resistant enterococci (VRE).8 These 2 sys-
tems require skilled labor to place and initiate the episodic
application of their use and the exclusion of patients and health
care workers from the environment.

Solid copper and its alloys have been used as an antimicrobial
agent for millennia. They intrinsically display strong antibacterial
activities in aquatic systems16,17 and dry surfaces.18-23 Controlled
studies within the clinical environment have evaluated the ef-
fects that antimicrobial copper surfaces have on the
microbial burden and acquisition of HAIs.7,11,24 In 2008, the
U.S. Environmental Protection Agency registered 5 families of
copper-containing alloys as antimicrobial, therefore offering that
products manufactured-surfaced from one of these alloys can kill
99.9% (log10 2.0) of bacteria within 2 hours of exposure.25 Casey
et al26 observed a median microbial reduction of between 90%
and 100% (log10 1.95-2.0) on copper-surfaced push plates, faucet
handles, and toilet seats, whereas Schmidt et al demonstrated
significantly lower bacterial burdens on 6 frequently touched
clinical surfaces, averaging an 83% (log10 1.93) reduction for all of
the objects over the course of a 43-month multicenter trial.11 In
the conduct of the same multicenter trial, it was learned that
concomitant with a reduction to microbial burden, antimicrobial
copper surfaces were found to significantly lower the rate of HAI
acquisition by 58% from 8.1% to 3.4% (P ¼ .013).7 Analysis of the
quartile distribution of infection acquisition stratified by micro-
bial burden established a significant association (P ¼ .038),
establishing linkage between microbial burden and infection
acquisition. Specifically, of the HAIs acquired, 89% were found to
occur in rooms where the microbial burden was >500 aerobic
colony forming units (ACC).7

In this study we expanded these observations by characterizing
the microbial burden associated with commonly touched objects
surfaced with and without copper in PICUs to understand whether
or not a significant reduction to microbial burden and HAI acqui-
sition observed within adult ICUs would be duplicated within a
pediatric setting housing multiple patients within each room.

MATERIALS AND METHODS

Study environment

The study was conducted at a 249-bed tertiary care facility,
Hospital de Niños Roberto del Río, which is located in Santiago,
Chile. Two, high acuity pediatric units were selected for the inter-
vention; 8 rooms from the ICU (PICU) and 8 rooms from the
intermediate care unit (PIMCU). Eligible participants were patients
admitted to one of the study units based on their respective med-
ical needs to be housed in either the PICU or PIMCU. On admission,
patients were sequentially assigned to an intervened (copper) or
control room. Patient occupancy of the beds and cradles was noted
at the time the samples were collected. Informed consent was not
required to collect burden from the objects.

ThePICUhas six2-bed roomsand2additional rooms containing a
single bed. The PIMCUhas one 4-bed room, 5 roomswith 3 beds, and
2 rooms containing a single bed (Fig. 1, Panels A and B). Eight rooms
were furnished with copper surfaced items, and 8 rooms remained
unchanged (Fig. 1, Panel AC). Intervened rooms were located in an
alternate fashion. The copper surfaced items were bed rails, bed rail
levers, intravenous poles, faucet handles, and the surface of the
healthcareworkstation. The copperalloysused to surface theobjects
were among those registeredwith theU.S. Environmental Protection
Agency as being antimicrobial and are principally brass (C27200 and
C23000 [bed rails, bed lever (DUAM S.A., Santiago, Chile), faucet
(Chase Brass, Montpelier, OH), and work surface]) or Eco Brass
(C69300 [faucet, faucet handles]). Prestudy handwashing pro-
cedures and cleaning routines were maintained and remained un-
changed through the study period. The hand hygiene compliance
rate of health care workers was assessed quarterly by staff not affil-
iated with the trial. Compliance was monitored and reported quar-
terlyas ameasure of health careworker adherence to the established
protocol for hand hygiene before and after patient contact. For the
period of the trial, the mean compliance rate for the health care
workers observed in theunits (N¼153), expressed as apercentage of
individuals that compliedentirelywith thehospital standards for the
PIMCU and PICU wards, was 93% (range, 80%-100%).

Sampling plan

Themicrobial burden resident in the built clinical environment
is not normally distributed on surfaces because of individualized
care provided to patients, variations to room occupancy, individ-
ualized shedding of microbes by patients, and health care workers
and visitors with subsequent deposition and retention of viable
microbes onto surfaces. Given the nonparametric distribution of
the microbial burden resident on the surfaces sampled, the Mann-



Table 1
Common surfaces within the PICU harbor significant concentrations of bacteria

Objects evaluated

Preintervention period

Aerobic colony counts (CFU/100 cm2)

n Mean Median

Bed rails 281 4,800 2,910
Faucet handles 135 5,200 1,126
IV poles 97 530 65
HCW workstation 136 550 120
Nurse pad 85 980 540
Overall 734 3,080 810

NOTE. Mean and median values of bacterial burden (aerobic colony forming units/
100 cm2) were associated with samples recovered from surfaces assessed prior to
commencing the intervention as described in the Materials and methods section
and according to the protocol of Attaway et al.34

CFU, colony forming units; HCW, health care worker; IV, intravenous; PICU, pediatric
intensive care unit.

Fig 1. Sampling locations and item placement within the PICU and PIMCU. (A) Locations of the rooms sampled in the PICU and PIMCU rooms containing antimicrobial copper
objects or control items are indicated on the diagram. (B) Particular placement of the 5 interventional surfaces: beds, cradles, faucet handles, intravenous pole, and work surfaces.
Three objects (bed rails, cradles, and faucet handles) were sampled twice each month for the duration of the study. C, control rooms; Cu, copper rooms; PICU, pediatric intensive care
unit; PIMCU, intermediate intensive care unit.
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Whitney test, Wilcoxon 2-sample test, or Kruskal-Wallis test (Epi
Info; Centers for Disease Control and Prevention, Atlanta, GA) was
used to compare differences between microbial burden collected
from control and intervention surfaces. Sample size was estimated
on the basis of available local data collected during a pre-
intervention period. It was anticipated that there might be some
seasonal variation; the study was statistically powered to test for
differences on a monthly basis. Fifty samples per group per month
were found to yield an approximate 90% statistical power to show
a 90% reduction of the bacterial burden in the intervention group
compared with the control group, with a 2-sided type I error of
0.05. Having sufficient power to compare means enabled suffi-
cient power to test differences between the medians observed
using theMann-Whitney test, Wilcoxon 2-sample test, or Kruskal-
Wallis test (Epi Info; Centers for Disease Control and Prevention,
Atlanta, GA).

Rooms were sampled on alternating weeks for the length of the
trial. A total of 734 samples were collected during the pre-
intervention phase as delineated in Table 1, and 1,230 samples were
collected during the intervention (Table 2). Each of the surfaces
monitored (Fig. 1) was assessed for total ACC, expressed as viable
colony forming units (CFU) per 100 cm2, and the presence of in-
dicator microbes, staphylococci, MRSA, VRE, and gram-negative
microbes as previously described.11
Statistical methods

The mean and median microbial burden of each item assessed
during the interventional period was determined, and the signifi-
cance of the data was assessed using the Kruskal-Wallis test to
compare the microbial burden associated with objects and rooms
(Epi Info; CDC, Atlanta, GA). A P value of <.05 was considered sta-
tistically significant.

RESULTS

Baseline microbial burden found within the PICU on commonly
touched objects

Before the intervention, we assessed the microbial burden
associated with the rails of pediatric beds, faucet handles of the
faucets used for hand hygiene, intravenous poles, health care
workstation, and nurses pad and learned that the PICU and PIMCU
were similarly burdened to the concentrations found for bed rails in
adult ICUs.11 Collectively, the average baseline burdenwas found to
be 4,800 CFU/100 cm2 for bed rails and 5,200 CFU/100 cm2 for



Table 2
Copper alloyed surfaces limited the concentration of bacteria resident on frequently touched surfaces in the PICU

Standard objects Copper objects

Patient occupied Unoccupied Kruskal-Wallis Patient occupied Unoccupied Kruskal-Wallis

n Mean Median n Mean Median pO/U n Mean Median Nn Mean Median pO/U pS/C

Bed rails 136 1451 1,020 84 766 484 0.0000 186 43 0 139 26 8 0.0000 0.0000
Cradle rails 91 1,806 1,170 78 979 640 0.0004 50 97 0 21 289 0 0.3165 0.0000
Faucet handles NA NA NA 221 1,412 165 NA NA NA NA 224 373 0 NA 0.0000

NOTE. Mean and median values of bacterial burden (aerobic colony forming units/100 cm2) were recovered from surfaces assessed as described in the Materials and methods
section and according to the protocol of Attaway et al34; samples collected during the first month were excluded from analysis because occupancy status was not recorded.
NA, not applicable; PICU, pediatric intensive care unit; pO/U, Kruskal-Wallis test for significance of medians observed between occupied beds and cradles and unoccupied beds
and cradles for the standard or copper arms during the intervention; pS/C, Kruskal-Wallis test for significance of median values observed between standard objects and objects
surfaced with copper during the intervention.

M.G. Schmidt et al. / American Journal of Infection Control 44 (2016) 203-9206
faucet handles (Table 1). Given the concentrations associated with
all of the frequently touched objects sampled were well above the
postulated risk threshold of 500 CFU,7 we hypothesized that the
microbial burden found within the pediatric setting represented an
equivalent risk to that found in adult care settings and that this
concentration, and therefore risk, might be ameliorated through an
introduction of a limited number of continuously active antimi-
crobial copper-copper alloyed surfaces.
Copper surfaces limited the concentration of bacteria associated
with the intervention objects within the PICU and PIMCU

In total, 1,320 objects were sampled during the intervention
phase from the 16 study rooms; 668 objects were surfaced with
antimicrobial copper, and 652 were fabricated from polypropylene
(bed rails) or stainless steel (faucet handles). A total of 1,012 pa-
tients were admitted to both units (PICU or PMICU) during the
intervention. Themean bed occupancy rate during the study period
was 70% (monthly range, 14%-121%) for the PICU and 43% (monthly
range, 12%-94%) for the PMICU. For a period of 2 months (July and
August; winter season) room occupancy exceeded 100% of capacity
as a consequence of clinical need: 22 days in July and 14 days in
August or 58% of the aforementioned period. To accommodate the
clinical surge, control objects (beds and cradles) were introduced
into the intervention-copper arm of the study. This accounted for
an estimated deviation from protocol of 12% over the 868 patient
days associated with the surge months.

The presence of copper alloyed surfaces were collectively found
to be significantly lower than the microbial burden on the sampled
objects in the pediatric units by 88% (log10 1.94; P ¼ .0000),
regardless of whether or not the bed or cradle was occupied at the
time of sampling. The average concentration for all of the objects
sampled in the roomwith standard objects was 1,381 CFU/100 cm2

(n ¼ 652; median concentration, 574 CFU/100 cm2), whereas the
average concentration observed for copper surfaced objects was
172 CFU/100 cm2 (n ¼ 668; median concentration, 0 CFU/100 cm2).
The microbial burden recovered from the sampled copper objects
was well below the postulated environmental risk threshold for
HAI acquisition of 500 CFU.7

The average concentration observed for copper surfaced rails
from occupied beds was 43 CFU/cm2 and 97 CFU/cm2 for copper
cradles. The antimicrobial effectiveness of copper rails for the
occupied copper beds was approximately 34-fold less than the
equivalent mean concentration of bacteria recovered from occu-
pied control beds (1,451 CFU/100 cm2) (Table 2). The observed
mean difference between the cradles, although less, was still
significantly lower, with copper surfaced cradles harboring 19-fold
fewer microbes than the controls (97 vs 1,806 CFU/100 cm2 for
copper vs control cradles, respectively).
Similarly, the concentration of bacteria recovered from unoc-
cupied beds with copper surfaced rails and copper cradles was
found to be significantly different than the control surfaces (P ¼
.0000) (Table 2). Evaluation of the microbial burden recovered from
occupied and unoccupied groups found that the average concen-
tration from unoccupied control objects was 47% (bed rails) and
46% (cradles) lower than the concentration of ACC recovered from
occupied objects. The average concentration between unoccupied
and occupied copper surfaced bed rails was also significantly lower
than unoccupied beds, having approximately 40% fewer bacteria
than their occupied counterparts. However, the concentration
observed for the unoccupied copper cradles did not significantly
differ.
DISCUSSION

The role that the built environment serves in the transmission of
pathogens has received increased attention from the infection
control community. The data reported here established that anti-
microbial copper surfaces are equivalently effective for their ability
to control the environmental microbial burden in a pediatric
setting. Collectively, an 88% reduction (log10 1.944) was observed
when considering the values from the 3 objects sampled, whereas
an 83% reduction (log10 1.919) was reported from a comparable
study where the efficacy of 6 antimicrobial copper surfaces were
evaluated from adult Medical Intensive Care Units.11

This study represents the first comprehensive evaluation of
the effectiveness of copper to limit bacterial contamination
on surfaces within multibed rooms. Substantial variability was
seen among samples collected from within the control and inter-
vention (copper) groups (Fig. 2). This observation well illustrates
the nonparametric distribution of bacterial contamination associ-
ated with surfaces within the built environment. Similar to the
adult study, such variation encountered in the pediatric setting was
attributed to the stochastic nature of care common to the PICU
and PIMCU and the level and extent to which patients and health
care workers shed his or her respective flora. However, in this
trial additional confounding variables could have impacted the
nonparametric distribution of microbes within the built environ-
ment. Unlike adults in the MICU trial, where there was only 1
patient per room,11 in our study each room could host multiple
patients with variable rates of occupancy. On discharge, the
formerly occupied bed and immediate area associatedwith the care
area of the discharged patient was terminally cleaned and not
terminally cleaned again until subsequent patient occupancy and
discharge. This resulted in the observation that occupied beds and
occupied cradles had higher concentrations of bacteria than the
unoccupied beds or unoccupied cradles (Fig. 2). During 2 of the 12
months of the trial (July and August 2013), occupancy exceeded
100% for 36 days. During the clinical surge, noncopper objects were



Fig 3. Copper surfaces were consistently able to limit the concentration of bacteria
associated with commonly touched surfaces within the PICU and PIMCU. The anti-
microbial consistency of copper surfaced objects was assessed by determining the
frequency at which bed rails, cradles, or faucet handles fabricated from U.S. Environ-
mental Protection Agencyeregistered antimicrobial copper alloys were able to limit
the concentration of bacteria associated with those surfaces to <500 CFU/100 cm2. The
frequency that the microbial burden was below the limit of detection (green bars),
above the limit of detection but less than the risk threshold (<500 CFU/cm2; yellow
bars), or exceeded the risk threshold (>5 CFU/cm2; red bars) was determined by
scoring the number of occasions that the ACC for individual samples from both the
PICU and PIMCU was observed (N ¼ 460 copper arm; N ¼ 446). The limit of detection
for the bed rails was 30 CFU/100 cm2; cradles, 30 CFU/100 cm2; and faucet handles,
30 CFU/100 cm2. ACC, aerobic colony forming units; CFU, colony forming units; PICU,
pediatric intensive care unit; PIMCU, intermediate intensive care unit.

Fig 2. Copper surfaces limited the concentration of bacteria associated with the
intervention objects within the PICU and PIMCU. Bed rails, cradles, and faucet handles
were sampled twice each month as described in the Materials and methods section.
The concentrations recovered for the rails are plotted against the date of collection and
whether or not the bed was occupied (filled squares: control rails; filled triangles:
copper rails) or unoccupied (open squares: control rails; open triangles: copper rails)
at the time of sampling. The solid grey line denotes the average concentration of
occupied control beds. The dashed grey line represents the average concentration
found on unoccupied control rails. The dashed black line denotes the average con-
centration for unoccupied copper beds. The dashed-dotted line denotes the average
concentration for occupied copper beds. The solid red line drawn at 500 CFU/cm2

suggests an average concentration at which the risk of microbial transference may
increase. CFU, colony forming units; PICU, pediatric intensive care unit; PIMCU, inter-
mediate intensive care unit.
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introduced into the copper rooms as a consequence of the
increased clinical need. Therefore, the likelihood of introducing
additional microbial burden into the patient care setting, irre-
spective of cause, was increased. However, in spite of increased
opportunities to introduce additional burden into the patient care
setting, the antimicrobial efficacy of the copper surfaces monitored
was consistently <500 CFU/100 cm2 for most of the samples eval-
uated regardless of occupancy status (Fig. 2). Although it was
observed that health care staff caring for patients made no
distinction as to whether they were assigned patients in an inter-
vention or control group, there is still a formal possibility that bias
might be introduced into the unblinded study. The antimicrobial
activity of the copper surfaces is continuous and requires no
intervention on the part of the study or health care teams to exert
its ability to disinfect the surfaces to which it was applied.

Presently, regulatory agencies assessing the antimicrobial effi-
cacy of surface disinfectants require that products under evaluation
reduce the microbial burden, using a defined in vitro protocol by a
factor between 2 and 4 logs (eg, from 1�107 CFU viable cells to 1 �
105 or 1 �103 CFU viable cells). Using the same in vitro conditions,
the antimicrobial efficacy of copper is generally between 5 and 7
logs within the prescribed time period. The rate observed here
during active clinical care was log10 1.99, was extremely close to
the required in vitro disinfection standard, and was nearly equiv-
alent to the rate observed in previous clinical evaluations of copper
surfaces.11 These observations prompted us to consider an alter-
native method for assessing the value that continuously active
antimicrobial copper surfaces might offer in mitigating the risk that
the microbial burden plays in HAI acquisition. The approach was
based on a comparison of the frequencies with which individual
samples from control and copper groups harbored concentrations
of bacteria above which the risk of HAI acquisition and microbial
transference was thought to increase. Salgado et al reported when
the microbial burden for environmental surfaces collectively
exceeded 500 CFU in an adult MICU, the rate with which HAI was
acquired significantly increased.7 Here, we learned that collectively
only 3% of the copper bed rails, 6% of the cradles, and 9% of the
faucet handles from the pediatric sites were found to harbor con-
centrations above the postulated HAI risk threshold of 500 CFU/100
cm2, whereas 68% of the polypropylene bed rails, 80% of the cradles,
and 30% of the faucet handles from the control groups were found
above this concentration (Fig. 3). However, more remarkably were
the number of occasions when the microbial burden associated
with copper surfaces fell below the limit of detection for our
sampling protocol. Here 62% of the copper rails, 56% of the cradles,
and 56% of the faucet handles failed to yield any microbial burden
when sampled, whereas this was only the case for 1% of the control
rails and 6% of the faucet handles (Fig. 3).

Interestingly, when the mean microbial burden of pre-
intervention phase control objects was contrasted with the inter-
vention phase control objects, the concentration observed was
significantly lower; the mean ACC observed for the rails was
reduced from 4,800 to 1,313 CFU/100 cm2 and from 5,200 to
1,412 CFU/100 cm2 for the faucet handles. This represented an
almost 2 log10 reduction (log10 1.86; 73%) to the microbial burden
resident on these critical surfaces in the control rooms (Table 3). A
similar result was seen in the trial conducted in adult MICUs. Here,
in a similar log10 reduction, 1.80 (63%) was observed for the mi-
crobial burden associated with bed rails from the preintervention
phase when contrasted against the mean observed for the control
beds, suggesting that an introduction of a continuously active, no-
touch antimicrobial solution, such as copper surfaces, could have an
ability to suppress the microbial burden in rooms located in close
proximity to those containing an active antimicrobial agent, such as
copper surfaces. Given that the study design was similar for both
trials and the antimicrobial effect observed between the copper
arms was nearly equivalent (log10 1.99 adult MICU vs log10 2.0
PICU), these data offer insight into future trial designs that will
evaluate the utility of no-touch disinfection strategies for miti-
gating risk from the intangible microbial burden present in the
patient care setting.



Table 3
Presence of limited antimicrobial copper surfaces in adjoining rooms suppressed the microbial burden in rooms without copper

Resident burden on bed rails in standard and control rooms Resident burden on bed rails in rooms with copper objects

Mean
preintervention

burden

Mean
intervention

burden

Burden reduction
(log10) preintervention-

intervention

% Burden reduction
preintervention-
intervention Mean

Burden reduction
(log10) preintervention-

intervention

% Burden reduction
preintervention-
intervention

MICU 17,336 6,471 1.80 63 366 1.99 98
PICU 4,800 1,313 1.86 73 43 2.00 99

NOTE. An assessment with which the bacterial burden was reduced in control rooms as a consequence of a limited introduction of antimicrobial copper surfaces in adjoining
rooms was conducted by comparing the mean values (total aerobic colony forming units/100 cm2) recovered from the bed rails prior to the intervention with the mean values
observed during the intervention in the care of adults in the MICUs reported by Schmidt et al11 with those observed here for pediatric bed rails.
MICU, medical intensive care units; PICU, pediatric intensive care unit.
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More than 45 years ago Spaulding suggested a predicted degree
of risk associated with inanimate objects.27 Unfortunately, many of
the objects found in the setting of patient care were relegated to the
category of noncritical items, leading the infection control commu-
nity to consider them unlikely to be responsible for significant
transmission of infectious agents to patients given adherence to
accepted hand hygiene practices and routine cleaning.27 However, it
is now recognized that the bacteria responsible for many of the se-
vere and debilitating hospital-acquired infections can survive for
days, weeks, or months on these surfaces in spite of the best efforts
of the health care team to keep the bacterial burden within limits
considered safe for patient care.28-31 Several publications have
argued that terminal cleaning must achieve a threshold where
<250 CFU/100 cm2 of aerobic bacteria are detectable immediately
after cleaning on commonly touched surfaces to lower the microbial
burden to a concentration where it only represents a minimal risk
that the microbes resident on those surfaces might be transferred to
health care workers or patients, with others linking microbial
burden to HAI risk.32,33 However, the frequency and efficacy with
which cleaning may occur, especially in multibed rooms, represent a
substantial challenge to the infection control community. Schmidt24,
Attaway34, and colleagues established that in spite of the best
cleaning and disinfection efforts, microbes easily re-establish
themselves on frequently encountered surfaces within the patient
care setting, such as the rails of beds. Copper-alloyed surfaces such as
the ones used here offer a continuous way to limit and control the
environmental burden. Hospital and environmental services need
not perform additional steps, follow complex treatment protocols, or
require additional training, oversight, or support from other workers
for copper to manifest its antimicrobial activity.

It is intuitive to argue that to minimize the risk of HAI acquisi-
tion among the pediatric population, any method that can augment
the effectiveness of hand hygiene and routine cleaning will likely
translate into lower rates of HAIs and hospital-acquired coloniza-
tion by MRSA, VRE, and other potential pathogens, such as
extended spectrum b-lactamase and New Delhi metallo-b-lacta-
mase-1eproducing gram-negative microbes. The demonstration
here that the antimicrobial activity of copper surfaces was equiv-
alent to the levels witnessed for adult care settings encouraged us
to address this very issue in a companion study. This study showed
that through a reduction to burden, through this intervention in the
PICU, the HAI rates decreased from 13.0 per 1,000 patient days for
patients treated in the control settings to 10.6 per 1,000 patient
days for patients treated in rooms with a limited number of copper
objects (Dessauer BV, Navarrete MS, Benadof D, Schmidt MG. Un-
published data). Although the relative risk reduction failed to
achieve statistical significance, we are encouraged that through
reducing burden with copper surfaces, we were able to observe
fewer infections among patients within the PICU. Given the prag-
matic manner with which the trial was conducted, copper surfaces
warrant serious consideration involving any systematic approach
for reducing HAI acquisition in adult and pediatric settings.
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