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h i g h l i g h t s
� A fractal time temperature model for cylindrical Li-ion cells is proposed.
� A spatially isolated single cell and two arrays of cells were experimentally studied.
� Cell surface temperature measurements were obtained at 1 C discharge rate.
� Stretched models show better agreement with experimental data than pure exponentials.
� The proposed fractal models predict thermal response and heat generation of cells.
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a b s t r a c t

This paper presents a experimentally-validated fractal time thermal model to describe the discharge and
cooling down processes of air-cooled cylindrical Lithium-ion cells. Three cases were studied, a spatially
isolated single cell under natural convection and two spatial configurations of modules with forced air
cooling: staggered and aligned arrays with 30 and 25 cells respectively. Surface temperature measure-
ments for discharge processes were obtained in a single cell at 1 C, 2 C and 3 C discharge rates, and in the
two arrays at 1 C discharge rate. In the modules, surface temperature measurements were obtained for
selected cells at specific inlet cooling air speeds. The fractal time energy equation captures the anomalous
temperature relaxation and describes the cell surface temperature using a stretched exponential model.
Stretched exponential temperature models of cell surface temperature show a better agreement with
experimental measurements than pure exponential temperature models. Cells closer to the horizontal
side walls have a better heat dissipation than the cells along the centerline of the module. The high
prediction capabilities of the fractal time energy equation are useful in new design approaches of thermal
control strategies of modules and packs, and to develop more efficient signal-correction algorithms in
multipoint temperature measurement technologies in Li-ion batteries.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Energy storage is a technological problem for a wide range of
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applications. Many types of energy storage devices (ESD) have been
developed in the past, including water dams for hydraulic turbines,
heat storage for solar energy conversion systems, electric energy for
electromobility and stationary storage systems. Currently, batteries
are the main component in most electric storage systems.

The cells with higher energy densities are based on Lithium-ion
technology, where modules and packs are designed to satisfy high
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standards in safety and electrical requirements. Most of the appli-
cations for batteries in electromobility and energy storage for grid
stabilization require high capacities and levels of power [1,2].

A wide set of chemical reactions are involved in charge and
discharge processes of Lithium-ion batteries [3]. These reactions
produce thermal processes that can release or absorb heat, yielding
non-uniform temperature distributions in cells, modules, and packs
[4]. Temperature differences among cells within modules and
battery packs greatly affect the electrical performance of cells,
reducing the expected lifetime of eachmodule and consequently, of
the whole battery [5]. This problem needs to be addressed with
better cells and a well designed thermal system [6,7]. The main
purpose of the cooling systems typically installed on battery packs
is to remove temperature hot spots and keep the average temper-
ature of modules between 25 �C and 40 �C, as well as a maximum
cell to cell temperature difference of 5 �C. This allows us to achieve a
good balance between performance and lifetime [8], as well as to
prevent catastrophic accidents due to thermal runaways [9]. One of
the most commonly used cooling systems in battery packs is forced
air flow, mainly due to its simplicity in terms of equipment and low
cost. This allows dissipating heat and keeping maximum temper-
ature of the cells under control. However, it is necessary to design a
strong forced air cooling system to minimize cell-to-cell tempera-
ture differences. An strategy to obtain an uniform temperature is to
use distributed air flow [10].

The thermal control of a battery module would be easier if a
mathematical model were known. System identification is very
crucial in a thermal system with convection because the heat
transfer coefficient is difficult to estimate with precision and may
vary over time due to spatial configuration of cells and physical or
chemical changes at the cell surface. Other heat transfer co-
efficients, such as heat capacity and thermal diffusivity of cells, also
have to be determined. Instead of finding each coefficient sepa-
rately, it seemsmore convenient to estimate a combined group that
best fits experimental data. A lumped-parameter energy balance in
which the temperature of the system is assumed to be spatially
uniform is commonly used to model transient conductive systems
exposed to convective heat fluxes at their boundaries [11]. When
the heat convection away from the cell surface is faster than the
heat conduction inside of it, there is a difference between the actual
temperature field and the spatial average used in the lumped
model. Non-integer order differential equations have been pro-
posed as an approximate mathematical model, which can be
readily fitted to temperature measurements and can be used to
back out the heat transfer coefficients in real time at a low
computational cost [12]. Examples of non-integer order differential
equations are fractal derivatives, which have been applied to
problems in physics and engineering, such as turbulence and
anomalous diffusion [13e15].

Some recent studies in thermal management of batterymodules
and packs have focused in the development of low computational
cost parametric models. For example, Hu et al. [16] developed a
Foster-Network model to represent the interaction among cells
achieving a low error with respect to a computational fluid dy-
namics (CFD) simulation. Park et al. [17] created a one-dimensional
heat conduction model for a cell, coupled with a battery module
model to predict the cell to cell temperature variation and power
consumption. They found that a wide battery module with a small
cell to cell gap is desirable for the air type battery thermal man-
agement system (BTMS), while a narrow battery module with a
small gap is desirable for liquid type BTMS. Mousavi et al. [18] used
genetic algorithms to find an optimal thermal management of a
Lithium-ion battery. Fast design process and optimal design algo-
rithms of battery modules and packs can benefit from the use of
low-cost computational models with accurate prediction
capabilities [19].
Experimentally-validated thermal models have been developed

for single cylindrical cells. For instance, Shah et al. [20] studied the
temperature rises due to transient heat generation rates and the
effect of thermal parameters on temperature distribution in the
cell. Radial thermal conductivity and the axial convection heat
transfer coefficient can contribute significantly to a temperature
reduction of the cells [21]. Forgez et al. [22] developed an estima-
tion method of the internal temperature based on the surface
temperature of a cylindrical cell. Li et al. [23] found significant
temperature non-uniformity and differences between experi-
mental measurements and CFD simulations of surface temperature
in a battery module of cylindrical cells.

Thermophysical properties of cylindrical cells have been ob-
tained in the literature through experimental measurements. For
example, Drake et al. [24] proposed a method to measure the axial
and radial thermal conductivity and heat capacity of cylindrical
cells. Murashko et al. [25] introduced a methodology to determine
the thermal conductivity and heat capacity in a pouch cell using
gradient heat flux sensors.

In this paper, we investigate the discharge and cooling down
processes in terms of temperature and heat generation of a spatially
isolated single cell under natural convection, as well as 30-cell and
25-cell modules with forced air cooling through physical experi-
ments. Surface temperature measurements for single cells were at
1 C, 2 C and 3 C discharge rates, and for modules were at 1 C
discharge rate. A novel fractal time energy balance equation is
presented and the temperature in both processes is well described
by stretched exponential models where the thermal time constant
and the influence of the speed of cooling flow are considered, and
as a consequence, a model for the heat generation of cells is ob-
tained for the discharge process. A comparison between stretched
exponential and pure exponential models in the cooling down
process for the single cell case is also presented.
2. Review of fractal differential equations

Fractal differential equations are applied to model a variety of
non-integer power law scaling phenomena such as turbulence,
fractional quantum mechanics, and anomalous diffusion [13,14].
Fractal time models describe systems with highly intermittent self-
similar temporal behavior that does not possess a characteristic
time scale. The time scale exists when the average time of an event
is finite. Therefore, for fractal time the average time of an event
must be infinite. For instance, this event can be the time a fluid
particle spends in a given vortex. The lack of an average time in-
duces fractional exponents. More details and explanation about
fractal time can be found in Ref. [26].

We employ the fractal derivative defined as follows in Eq. (1)
[14],

dFb

dtg
¼ lim

Dt/ 0

Fbðt þ DtÞ � FbðtÞ
ðDt þ tÞg � tg

; (1)

where b > 0 is scaling or stretching factor for the dependent vari-
able F and g > 0 is a scaling or stretching factor for the time t. For
explanation purposes, we consider a fractal derivative anomalous
diffusion equation as shown in Eq. (2),

dFb

dtg
¼ �FbðtgÞ: (2)

The analytical solution of Eq. (2) is found to be in the form of a
stretched Gaussian distribution defined as follows in Eq. (3) [14].



Fig. 1. Experimental setup.

Table 1
Design of the experimental setup.

Monitoring

Temperature sensor LM335DZ
Data Adquisitor NI 9201 Module
Software LabView 2013
Electrical monitoring Custom Inversor
Cooling Flow
Dc Fans Embpapst 4412FNH
Velocity inlet 0, 2.0, 2.5 ms�1

Electrical Information
Configuration 30 and 25 series cell
Discharge current 4 A
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FðtÞ ¼
�
e�tg

�1=b
: (3)

The physical idea of the fractal timemodel is that the anomalous
relaxation is the consequence of the breakdown of the adiabatic
approximation in strongly coupled systems, in other words, the
relaxation is a quasi-stationary process. Under the adiabatic
approximation, the relaxation is a continuous process in terms of
time. This approximation fails at a limiting time scale in strongly
coupled systems [27].

3. Physical experiments

Battery cells generate heat during charge and discharge pro-
cesses due to chemical reactions. The operating conditions of a
module in a battery pack are determined by the specific application.
The electrical requirements can change abruptly in some cases, and
the cooling system has to be able to dissipate heat quickly in order
to secure the module and cells. Thermal management of electrical
devices involves the design of cooling systems to achieve the
required heat dissipation rates and temperatures. The thermal
inertia of modules and packs depends on the cooling system. In
terms of thermal control, a cooling strategy can be qualified ac-
cording to its thermal time constant. Our goal is to measure the
temperature of cells in the discharge and cooling down processes,
and estimate the heat generation of a cell and the effects of cooling
flow speed in two spatial configurations of the cells: aligned and
staggered.

3.1. Experimental setup

The experimental case, shown in Fig. 1a, was constructed with
acrylic for an easy visual inspection of the testing section. The cells
were connected in series, as shown in Fig. 1b. The design of the
experimental setup was based on the specifications shown in
Table 1. The experimental layout consisted of a 30-cell aligned
array, shown in Fig. 2a, and a 25-cell staggered array, shown in
Fig. 2b. Each cell has a 4.2 Open Circuit Voltage (OCV), so the aligned
and staggered arrays have 125 and 105 OCV, respectively. A
different number of cells is used in each array tomaintain thewidth
and length of the experimental domain, and consequently, to put at
the same location lateral and horizontal walls, and cooling air inlet
and outlet sections in both arrays. The cooling air flow is obtained
using two Embpaspt 4412 FNHDC fans. Each fanwas connected to a
3 m tube to ensure the developed flow regime. Each pack was
discharged and electrically monitored using a custom made Power
Inverter. The temperature of the remarked cells was monitored
using LM35DZ temperature sensors. These sensors were connected
to a National Instrument 9201 module. The data from the sensors
was obtained using a National Instruments CompactRio module,
and processed with the National Instrument LabView 2013 soft-
ware using an acquisition frequency of 1 s. The test set-up for
experimental measurements is shown in Fig 2c.

3.2. Methods

The experiments were performed on a spatially isolated single
cell under natural convection and two modules with forced air
cooling at 1 C discharge currents. This discharge rate was chosen
since according to the electric specifications of the cylindrical cells
ICR-26650 being used, shown in Table 2, it is the nominal operating
condition and there should not be any issue to perform the sensor
and variability analysis by repeating the experiments with the same
cells. When the cells in the modules reach the cut-off voltage
shown in Table 2, the DC fans were turned on. The temperature of
the cells weremonitored both in the discharge of themodule and in
the cooling down process. Due to technical limitations, experi-
ments at 1 C, 2 C and 3 C discharge currents were performed on a
A123 ANR26650 M1A spatially isolated single cell.



Fig. 2. Experimental layout and test set-up for experimental measure-ments.

Table 2
Specifications of cylindrical Lithium-ion cell (ICR-26650 manufactured by Bat-
tery Building Group).

Mechanical properties

Diameter 26 mm
Height 65 mm
Mass 0.095 Kg
Heat capacity [24] 1650 JKg�1 K�1

Electric Properties
Nominal voltage 3.7 V
Cut off voltage 2.7 V
Nominal capacity @1 C at 20 �C 4.0 Ah
Initial internal resistance 26 mU
Maximum continuous current 4 A

Fig. 3. Variability analysis based on surface temperature measurements for cooling
down process of cell #1 in aligned module. T is the average sur-face cell temperature
over time and _ is the standard deviation.
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3.2.1. Sensor and system variability analysis
A variability analysis was performed on a set of 10 experiments

designed to measure surface temperature as a function of time in
the cooling down process for a specific cell, whose specifications
are shown in Table 2, in the aligned 30-cell module. The operating
conditions were complete discharge at room temperature, then
the cooling air velocity was set at 2.5 ms�1. The average surface
temperature as a function of time and standard deviation are
shown in Fig. 3. In this figure T±s indicates the average tempera-
ture obtained in 10 experiments plus or less 1 standard deviation.
Since the standard deviation is small, the experimental setup and
data acquisition equipment and setting can be considered able to
satisfy a reasonable repeatability and reproducibility of the
experiment.
4. Mathematical modeling

4.1. General lumped-parameter energy balance equation

The general lumped-parameter energy balance equation for a
single cell in a module is written as follows in Eq. (4),

dT
dt

¼ �1
t
ðTðtÞ � T∞Þ þ 1

rcCpVc
QgenðtÞ; (4)

where t ¼ rcCpVc=hmAc is the thermal time constant and T is the
surface temperature of the cell, t is time, rc is the density, Cp is the
specific heat of the cell, Vc is the volume of the cell, Ac is the surface
area of the cell, hm is the convective heat transfer coefficient for a
specific cell, T∞ is the room temperature, and Qgen(t) is the heat
generated inside the cell. The specific heat coefficient is weakly
dependent on temperature [22,28], so the assumption of constant
specific heat of the cell is well justified.

A mathematical model describing the cell temperature is useful
to perform the thermal control of a battery module. A thermal
model based on a lumped-parameter energy balance, as described
in Eq. (4), is valid to predict cell surface temperature as a function of
time in the cooling down process under the assumption that the
cell temperature is spatially uniform. In terms of heat transfer, it
means that heat conduction inside the cell is faster than the heat
convection away from the cell surface, and there are no exothermic
or endothermic processes inside the cell during the cooling down
process.
4.2. Fractal time energy balance equation

We propose a fractal time energy balance equation to describe
the surface temperature for a single cell in the battery module, as
shown in Eq. (5),

dTa

dta
¼ � 1

ta

�
TaðtaÞ � Ta∞

�þ 1�
rcCpVc

�aQa
genðtaÞ: (5)

The stretching parameter, a, represents a scaling factor of the
temperature and the time in the model. A fractal differential
equation model is a non-integer differential equation to model
complex systems. Recently, non-integer differential equations have
been used to model transient thermal systems with anomalous
heat dissipation [12,14,15].



Fig. 4. Temperature differences between stretched and pure exponential models with
respect to surface temperature measurements for cooling down process of cell #1 in
aligned module.
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4.3. Cooling down process

4.3.1. Pure exponential model
A pure exponential model to describe the cell surface temper-

ature as a function of time in the cooling down process is presented
in Eq. (6)

TðtÞ ¼ ðTð0Þ � T∞Þe
�
�

t
t

�
þ T∞: (6)

This model is the solution of the energy balance equation shown
in Eq. (7), which corresponds to the general lumped-parameter
energy balance equation for a single cell shown in Eq. (4) when
Qgen(t) ¼ 0.

dT
dt

¼ �1
t
ðTðtÞ � T∞Þ: (7)

4.3.2. Stretched exponential model
A stretched exponential model to describe the cell surface

temperature as a function of time in the cooling down process is
presented in Eq. (8)

TðtaÞ ¼
h�
Tað0Þ � Ta∞

�
e
�
�

t
t

�a

þ Ta∞
i1=a

: (8)

This model is the solution of the fractal timemodel shown in Eq.
(9), which corresponds to the proposed energy balance equation for
a single cell shown in Eq. (5) when Qa

genðtaÞ ¼ 0.

dTa

dta
¼ � 1

ta

�
TaðtaÞ � Ta∞

�
: (9)

Stretching exponential models have many applications in
modeling numerous types of experimental relaxation data in
complex systems with anomalous relaxation. Examples of temporal
scaling laws involving non-integer exponents include dielectric
relaxation, nuclear magnetic relaxation, and stress-relaxation
[26,29,30].

From the variability analysis in the cooling down process shown
in Fig. 3, it is obtained that the stretched exponential model pro-
vides a better fitting to experimental measurements than the pure
exponential model. Due to this, the stretched exponential model
can be used to identify in real time and at a low computational cost
convection heat transfer coefficients in the group t that best fits
experimental data. The differences between the predicted tem-
peratures from stretched and pure exponential models with
respect to surface temperature measurements for a case of cooling
down process are shown in Fig. 4. These temperature differences
were used to obtain the prediction errors of the models. The per-
centage errors were calculated at every time as the ratio between
the temperature differences and the surface temperature mea-
surement. The stretched exponential model has a maximum error
of 3.22% compared to average values from experimental data, on
the other hand the pure exponential has a maximum error of 9.36%.
Besides, the cumulative error for the stretched exponential model
is 95.11� Celsius and for the pure exponential model is 378.11�

Celsius.

4.4. Discharge process

For the spatially isolated cell, natural convection is taking out
the cell heat not only in the cooling down process, but also in the
discharge process. On the other hand, the discharge process for
each cell in the modules is under natural convection conditions
since the forced cooling is only used in the cooling down process. A
model of the cooling down process allows us to estimate the heat
dissipation under the specific configuration and operating condi-
tions. This heat dissipation from the cells is useful to determine the
heat generation term in the general lumped-parameter energy
balance equation for a single cell as described in Eq. (4) with a
thermal time constant, t0, using a natural convection heat transfer
coefficient.

Since natural convection is taking out the cell heat and due to
experimental results shown in Figs. 3 and 4, we also proposed a
fractal time model as energy balance equation to describe the
surface temperature in the discharge process for a single cell in the
battery module, as shown in Eq. (5).

4.5. Empirical surface temperature model in discharge process

The solution of Eq. (4) and Eq. (5) to predict the cell surface
temperature depends on the heat generation of the cell, Qgen(t). In
order to estimate the heat generation in both the general lumped-
parameter and fractal time models, we propose a fitting model to
surface temperature measurements in discharge process, as
described in Eq. (10),

TðtaÞ ¼
�
Ce

a

�
t
m

�a

tanh
�
b
�
t
m

�a�
þ Tað0Þ

	1=a
; (10)

where a, b and C are constants and m is the discharge time. This
temperature model for the discharge process, the stretched expo-
nential model for the cooling down process and experimental
measurements for the spatially isolated cell are shown in Fig. 5a.

4.6. Heat generation model

For comparison purposes, the cell heat generation is obtained
using the general energy equation and the fractal time energy
equation for the discharge process, Eq. (4) and Eq. (5), respectively.
Model parameters and thermal coefficients have to be known in
order to obtain the cell heat generation.

The heat generation using the general lumped-parameter model
is:

QgenðtÞ ¼ rcCpVc

�
dT
dt

þ 1
t0

ðTðtÞ � T∞Þ
	
: (11)

The heat generation using the fractal time model is:



Fig. 5. Spatially isolated single cell under natural convection at 1 C discharge rate. a) Surface temperature as a function of time and fitting of discharge process and stretched
exponential models to experimental data with a ¼ 1.21 and t ¼ 1070.55. b) Heat generation rate.
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QgenðtaÞ ¼ rcCpVc

"
dTa

dta
þ 1
ta0

�
TaðtaÞ � Ta∞

�#1=a
: (12)

5. Results and discussion

5.1. Fitting models to experimental data

5.1.1. Surface temperature of spatially isolated single cell under
natural convection

Surface temperature measurements made in a single cylindrical
cell under specifications shown in Table 2, were performed in a
Table 3
Specifications of cylindrical Lithium-ion cell (A123 ANR26650 M1A).

Mechanical properties

Diameter 26 mm
Height 65 mm
Electric Properties
Nominal voltage 3.3 V
Cut off voltage 2.0 V
Nominal capacity @1 C at 20 �C 2.3 Ah
Maximum continuous current 70 A
discharge process at 1 C and in the cooling down process without
forced air cooling. Temperature reaches a maximum value at full
electrical discharge, as shown in Fig. 5a. The cooling down process
is governed by natural convection heat transfer from the cell sur-
face at room temperature.
5.1.2. Heat generation rate of spatially isolated single cell under
natural convection

Temperature measurements of a spatially isolated single cell
were used to estimate the heat generation shown in Fig. 5b. The
pure exponential and the stretched exponential surface tempera-
ture models were used to obtain the heat generation rate. The
predicted heat generation rate using the pure exponential model
shows that there is a peak in the first half of the discharge process
and a valley in the second half, while at the end of the discharge
process the heat generation rate tends to increase. Using the
stretched exponential model, the heat generation rate increases
approximately at 0.0065 Ws�1 during the first 500 s, after this the
heat generation rate increases slower approximately at
0.00016 Ws�1. The predicted heat generation rate using the
stretched exponential is always higher than the one predicted us-
ing the pure exponential model. Well-established heat generation
models take into account internal electric resistance (Joule heating)
and entropy changes [31]. The proposed model does not consider
the Joule heating and entropy changes explicitly. However, the



Fig. 6. Surface temperature as a function of time and fitting of dis-charge process and
stretched exponential models to experimental data in a spatially isolated A123 cell
under natural convection at higher discharge rates. a) 1 C discharge current, a ¼ 1.12
and t ¼ 1095.21. b) 2 C discharge current, a ¼ 1.15 and t ¼ 1344.11. c) 3 C discharge
current, a ¼ 1.17 and 1 t ¼ 1315.77.
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predicted heat generation from Eq. (12) is in agreement with the
trend of heat generation rates during constant current discharges
as recently reported [32].
Fig. 7. Experimental measurements of surface temperature in aligned array. Contin-
uous line represents the fitting of stretched exponential model. a) Cooling air flow
speed at 2.5 ms�1. b) Cooling air flow speed at 2.0 ms�1.
5.1.3. Surface temperature of spatially isolated single cell under
natural convection at higher discharge rates

The manufacturer of the cylindrical cells specified in Table 2 do
not recommend to operate the cells at higher discharge rates than
1 C. Due to this and the fact that we are not performing destructive
tests, we select to use a cylindrical A123 ANR26650 M1A cell under
specifications shown in Table 3, at 1 C, 2 C and 3 C discharge cur-
rents and measuring surface temperature as shown in Fig. 6. We
found that the stretched exponential model provides a better fitting
of the cell surface temperature as a function of time in the cooling
down process than the pure exponential model.

5.1.4. Modules with forced air cooling
Measurements show similar surface temperature values be-

tween cells 1 and 2, and between cells 3 and 4, in both, aligned and
staggered configurations. Due to this, only temperature measure-
ments for cells 1 and 3 are considered for analysis and discussion in
this study. Examples of temperature measurements for the aligned
configuration with forced air speeds of 2.5 ms�1 and 2.0 ms�1 are
shown in Fig. 7. These measurements allow us to determine the
changes in the model parameters due to variations in the heat
dissipation rates. These particular values of forced air speeds were
chosen to satisfy the requirement of developed flow regime in the
inlet of the testing section, taking into account the length and
diameter of tubes (120 mm) between the fans and testing section,
and also fans technical specifications. In order to obtain these
forced air speeds, the fans are set at 100% and 80% of their nominal
electrical power. Model fitting results show that a and the thermal
time constant t increases with a lower cooling air flow speed in the
air flow direction. For the staggered configuration, examples of
temperature measurements with forced air speeds of 2.5 ms�1 and
2.0 ms�1 are shown in Fig. 8. Model fitting results show that a



Table 4
Fractal model parameters for aligned arrays. SE: Standard deviation, CI: Confidence
interval.

Cell 1, 2.5 ms�1

Estimate SE CI

a 0.65 0.01 0.64e0.66
t 195.56 1.15 192.61e198.52
a 0.70 0.24 0.23e1.16
b 1.49 0.43 0.63e2.34
C 2.19 0.71 0.80e3.57
Cell 2, 2.5 ms�1

Estimate SE CI
a 0.57 0.01 0.640e0.660
t 178.86 1.47 175.06e182.66
a 1.13 0.39 0.13e2.13
b 1.43 0.70 �0.37e3.23
C 0.67 0.36 �0.27e1.60
Cell 3, 2.5 ms�1

Estimate SE CI
a 0.71 0.01 0.70e0.72
t 319.53 1.63 315.33e323.73
a 1.41 0.07 1.27e1.55
a 2.26 0.19 1.88e2.64
C 1.16 0.09 0.99e1.34
Cell 4, 2.5 ms�1

Estimate SE CI
a 0.78 0.01 0.76e0.79
t 325.43 2.60 318.73e332.14
a 1.25 0.05 1.12e1.38
b 2.46 0.14 2.09e2.83
C 1.70 0.08 1.48e1.92
Cell 1, 2.0 ms�1

Estimate SE CI
a 0.75 0.01 0.74e0.76
t 259.44 1.14 256.49e262.39
a 0.55 0.10 0.36e0.74
b 1.80 0.20 1.41e2.20
C 3.90 0.45 3.01e4.79
Cell 2, 2.0 ms�1

Estimate SE CI
a 0.68 0.01 0.67e0.70
t 224.01 1.55 220.01e228.01
a 0.93 0.11 0.64e1.23
b 1.89 0.25 1.25e2.53
C 1.32 0.17 0.87e1.77
Cell 3, 2.0 ms�1

Estimate SE CI
a 0.86 0.01 0.84e0.87
t 373.22 1.68 368.89e377.55
a 0.89 0.07 0.76e1.02
b 2.08 0.15 1.78e2.37
C 4.33 0.31 3.73e4.93
Cell 4, 2.0 ms�1

Estimate SE CI
a 0.93 0.01 0.90e0.95
t 422.61 3.30 414.09e431.13
a 1.04 0.03 0.96e1.11
b 2.73 0.09 2.49e2.98
C 4.63 0.13 4.30e4.97

Fig. 8. Experimental measurements of surface temperature in staggered array.
Continuous line represents the fitting of stretched exponential model. a) Cooling air
flow speed at 2.5 ms�1. b) Cooling air flow speed at 2.0 ms�1.
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decreases slightly as the cooling air is reduced, and takes higher
values for cells located downstream in the module. On the other
hand, t increases strongly as the cooling air flow is reduced, and
also takes higher values for cells located downstream in the mod-
ule, where the increase is substantially higher in the staggered case
than in the aligned case. This could be due to the pressure drop of
the cooling air flowing through the cells in the testing section.
Experimental measurements need to be done in the near future to
determine the behavior of t and a at lower forced air speeds. The
model parameters were obtained using non-linear fitting in the
softwareWolframMathematicawith a confidence level of 0.95. The
estimate values, standard errors (SE) and confidence intervals (CIs)
of t, a, a, b and C are shown for the aligned and staggered arrays in
Tables 4 and 5, respectively.
5.2. Thermal effects and stretching parameter

In order to describe the discharge and cooling downprocesses in
terms of surface temperature and heat generation, a spatially iso-
lated single cell under natural convection, as well as 30-cell and 25-
cell modules with forced air cooling at two speeds were studied.
Variations in the stretching parameter, a, play a major role in var-
iations of the thermal time constant, t. In the model, a takes into
account the temporal variations of heat transfer coefficients, such
as convection and heat capacity, as well as spatial configurations of
cells. The results show that a increases in the air flow direction and
t is lower for those cells closer to the horizontal side walls of the
module. This indicates that the horizontal side walls of the module
contribute to the heat dissipation. A pure exponential model re-
quires a ¼ 1, under anomalous relaxation a s 1. Anomalous relax-
ation in the cell cooling process is a relaxation with an intrinsic
time, ta, that takes into account an intermittent process instead of a
continuous process [26]. A normal relaxation is a continuous pro-
cess which can be modeled with a pure exponential model. Results
show that 0 < a < 1 in themodules with forced air cooling and a > 1
for the cells under natural convection.

5.3. Improvements in designing battery modules

The thermal behavior of the cells in a module can be improved



Table 5
Fractal model parameters for staggered array. SE: Standard deviation, CI: Confidence
interval.

Cell 1, 2.5 ms�1

Estimate SE CI

a 0.67 0.01 0.65e0.68
t 148.99 1.42 145.33e152.66
a 0.62 0.11 0.41e0.83
b 1.76 0.21 1.34e2.17
C 1.59 0.20 1.19e1.99
Cell 2, 2.5 ms�1

Estimate SE CI
a 0.59 0.01 0.56e0.61
t 78.78 1.57 74.71e82.85
a 0.80 0.33 �0.04e1.64
b 1.42 0.58 �0.08e2.92
C 0.73 0.33 �0.13e1.60
Cell 3, 2.5 ms�1

Estimate SE CI
a 0.65 0.01 0.64e0.66
t 156.88 1.28 153.58e160.18
a 0.76 0.23 0.32e1.20
b 1.45 0.49 0.66e2.24
C 1.60 0.50 0.63e2.58
Cell 4, 2.5 ms�1

Estimate SE CI
a 0.68 0.01 0.66e0.69
t 151.30 1.46 147.53e155.06
a 0.79 0.21 0.24e1.33
b 1.47 0.38 0.49e2.46
C 1.58 0.45 0.41e2.75
Cell 1, 2.0 ms�1

Estimate SE CI
a 0.72 0.01 0.71e0.73
t 283.52 1.70 279.12e287.92
a 0.22 0.01 0.03e0.41
b 1.77 0.19 1.39e2.15
C 4.03 0.47 3.11e4.96
Cell 2, 2.0 ms�1

Estimate SE CI
a 0.66 0.01 0.65e0.68
t 241.41 2.24 235.61e247.20
a 0.57 0.31 �0.24e1.38
b 1.47 0.57 0.01e2.93
C 1.58 0.68 �0.16e3.33
Cell 3, 2.0 ms�1

Estimate SE CI
a 0.76 0.01 0.75e0.78
t 331.77 1.95 326.75e336.80
a 0.57 0.11 0.35e0.78
b 1.67 0.21 1.26e2.08
C 3.03 0.41 2.23e3.83
Cell 4, 2.0 ms�1

Estimate SE CI
a 0.81 0.01 0.80e0.83
t 327.43 1.99 322.28e332.58
a 0.62 0.08 0.42e0.82
b 1.89 0.16 1.48e2.31
C 3.29 0.29 2.55e4.03
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by reducing the number of cells facing at the same time the cooling
air flow. For a specific number of cells, a spatial configurationwhere
the side walls of the module in the air flow direction is larger than
the side facing the cooling air flow improves the cooling of the cells,
taking advantage of the interaction with the side walls.

6. Conclusions

Thermal behavior of a Li-ion cell in a module due to the inter-
actionwith upstream cells and operating conditions is important in
practical applications for energy storage and conversion. We ob-
tained a stretched exponential model based on experimental
measurements of discharge and cooling down that predicts
satisfactorily the surface temperature as a function of time in cy-
lindrical Li-ion cells within a module, showing a better agreement
with experimental measurements than pure exponential models.
These stretched exponential models can be easily extended tomore
cells in the module, and may be used in developing a complete
thermal model for a battery pack. Results were also confirmed for a
single cell at higher discharge rates. The proposed models predict
the thermal response and heat generation of cells in a module at
low computational cost and with low error, becoming an efficient
tool in new thermal control strategies and in quick explorations in
optimization algorithms of suitable and novel Lithium-ion battery
modules and packs design. Additionally, we think that these
models could be used in new signal-correction algorithms in
multipoint temperature measurement technologies, where
detailed temperature measurements with high spatial resolution
and envisioned temperature changes in modules and packs are
required.

Future work should investigate other possible effects of the
operating conditions which could change the stretching parameter
of the fractal timemodel and the constants a,b and C. These include
the effects of different C rates, forced air speeds and cell arrays.
Lastly, it is advisable to study the applicability of the stretched
exponential and fractal time models to different kind of Li-ion cells,
such as prismatic and pouch.
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