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We obtain exact formulas for moments and generating functions
of the height function of the asymmetric simple exclusion process
at one spatial point, starting from special initial data in which ev-
ery positive even site is initially occupied. These complement earlier
formulas of E. Lee [J. Stat. Phys. 140 (2010) 635–647] but, unlike
those formulas, ours are suitable in principle for asymptotics. We
also explain how our formulas are related to divergent series formu-
las for half-flat KPZ of Le Doussal and Calabrese [J. Stat. Mech.
2012 (2012) P06001], which we also recover using the methods of
this paper. These generating functions are given as a series without
any apparent Fredholm determinant or Pfaffian structure. In the long
time limit, formal asymptotics show that the fluctuations are given
by the Airy2→1 marginals.

1. Introduction. The one-dimensional asymmetric simple exclusion pro-
cess (ASEP) is a continuous time Markov process with state space {0,1}Z,
the 1’s being thought of as particles and the 0’s as holes. Each particle has
an independent exponential clock which rings at rate one. When it rings, the
particle chooses to attempt to jump one site to the right with probability
p ∈ [0,1], or one site to the left with probability q = 1−p. However, the jump
is only executed if the target site is empty; otherwise, the jump is suppressed
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and the particle must wait for the alarm to ring again. If q = 1, p = 0 (or
q = 0, p= 1, but we will assume for convenience that q ≥ p), it is called the
totally asymmetric simple exclusion process (TASEP); if 0< q 6= p it is the
(partially) asymmetric simple exclusion process (ASEP); if q = p = 1/2 it
is the symmetric simple exclusion process (SSEP). We denote by ηt(x) = 1
or 0 the presence or absence of a particle at x ∈ Z at time t. The state of
the system is completely determined at time t > 0 by the initial data ηx(0),
x ∈ Z, together with the family of exponential clocks; for more details on the
construction of the process, we refer the reader to [26]. Given η ∈ {0,1}Z,
we define η̂ ∈ {−1,1}Z by η̂(x) = 2η(x)− 1. The height function of ASEP is
defined in terms of η̂t by

h(t, x) =





2Nflux
0 (t) +

∑

0<y≤x

η̂t(y), x > 0,

2Nflux
0 (t), x= 0,

2Nflux
0 (t)−

∑

x<y≤0

η̂t(y), x < 0,

(1.1)

where Nflux
0 (t) is the net number of particles which crossed from site 1 to

0 up to time t, meaning that particle jumps 1→ 0 are counted as +1 and
jumps 0→ 1 are counted as −1.

ASEP is an important member of the one-dimensional Kardar–Parisi–
Zhang (KPZ) universality class. This is a broad class of one-dimensional
driven diffusive systems, or stochastic growth models, characterized by un-
usual, but universal asymptotic fluctuations. These should be of size t1/3,
and decorrelate on spatial scales of t2/3, with special distributions in the long
time limit, usually given in terms of Fredholm determinants, which only de-
pend on the initial data class. There are a few special classes of initial data
characterized by scale invariance: curved (or step), corresponding to start-
ing with particles at every nonnegative site; flat (or periodic), correspond-
ing to starting with particles at all even sites; and stationary, corresponding
to starting with a product Bernoulli measure. In addition, there are three
crossover classes: curved → flat, curved→stationary and flat → stationary ;
corresponding to putting two different initial conditions on either side of the
origin. Based on exact computations for TASEP and a few other models
with special determinantal (Schur) structure, the asymptotic spatial fluctu-
ations in all six cases are known to be given by the Airy processes, a family
of processes defined through their finite dimensional distributions which are
given by specific Fredholm determinants. The full space–time limit in this
KPZ scaling ε1/2h(ε−3/2t, ε−1x) is believed to be a Markov process known
as the KPZ fixed point. For more details, see the reviews [11, 31, 32].

Within the universality class, the KPZ equation

∂th=
1

2
∂2
xh+

γ

2
(∂xh)

2 + ξ,
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where ξ is space–time white noise, plays a special role as a heteroclinic orbit
connecting the Edwards–Wilkinson (linear) fixed point ∂th= 1

2∂
2
xh+ξ to the

(nonlinear and poorly understood) KPZ fixed point. It can be obtained from
other models with adjustable nonlinearity or noise in the diffusive (t= ε−2T ,
x = ε−1X) weakly asymmetric, or weak noise limit, with rigorous proofs
available in a few cases [1, 2, 4, 5, 13, 17, 18, 29].

The importance of ASEP in this context is that it has an adjustable
nonlinearity

γ = q− p.

Although in the case γ > 0 it does not have a determinantal structure, some-
what surprisingly exact formulas have been discovered for the distribution
of the height function of ASEP at a fixed t > 0 and x ∈ Z for certain ini-
tial data, starting with the work of Tracy and Widom in 2008 [34, 35]. The
first formula was for the step case ηstep0 (x) = 1x∈Z>0 . In the weakly asym-
metric limit exact formulas were obtained for the one-point distribution of
the KPZ equation with so called narrow wedge initial data (corresponding
to the curved class); see [2] and also [33]. In the t→∞ limit, one obtains
the Tracy–Widom GUE distribution. An analogous procedure was then per-
formed on the step Bernoulli, or curved→ stationary case for ASEP, corre-
sponding to half-Brownian initial data for KPZ; the t→∞ limit in this case
gives the Airy2→BM marginals, or BBP transitional distributions [12]. Par-
allel computations were performed on the physics side using the nonrigorous
replica method. The case of Brownian initial data for KPZ (corresponding
to stationary ASEP) has also recently been completed in the physics [21]
and mathematics [7] literatures. It should be emphasized that these are for-
mulas for one point distributions only, and for very special initial data. So
far, multipoint distributions have resisted rigorous analysis, though some
nonrigorous attempts have been made [14, 15, 30].

Among the primary scaling invariant initial data at the KPZ level, this
left the flat and half-flat cases. In [23, 24], Le Doussal and Calabrese gave
formulas for the one point height distribution of KPZ for the half-flat and flat
initial data via the replica method. Their half-flat formula is an uncontrolled
divergent series, with no apparent Fredholm structure. As such, it is a pure
formalism, and is mainly used as an intermediate step in order to obtain a
Fredholm Pfaffian formula for the flat initial condition, by scaling the wedge
to infinity, that is, looking farther and farther into the flat region.

Here, we will work directly with ASEP, which in particular can be re-
garded as a microscopic version of KPZ [5], and where one can avoid the
problems associated with the nonsummable moments. Later, in Section 5,
we will discuss how the methods we will use can be applied in the case of
KPZ, yielding some of the formulas appearing in [23, 24].
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We will be primarily concerned with the half-flat initial condition,

ηh-fl0 (x) = 1x∈2Z>0 .(1.2)

The superscript h-fl will be used for probabilities and expectations computed
with respect to this initial condition. The limit to the flat initial condition
ηflat0 (x) = 1x∈2Z will be pursued in an upcoming paper.

E. Lee’s thesis already contains exact formulas for the quantities we are
interested in. Here, and in the rest of the paper, we set

τ =
p

q
∈ (0,1).

Theorem 1.1 ([22]).

P
h-fl(h(t,0)≥ 2m− x)

= (−1)m
∑

k≥m

τ (k−m)(k−m+1)/2

(1 + τ)k(k−1)k!

(
k− 1
k−m

)

τ

(1.3)

×
∫

Ck
R

∏

i 6=j

ξj − ξi
p+ qξiξj − ξi

∏

i

ξxi e
tε(ξi)

(1− ξi)(ξ
2
i − τ)

×
∏

i<j

1 + τ − (ξi + ξj)

τ − ξiξj

∏

i

dξi,

where

ε(ξi) := pξ−1
i + qξi − 1.(1.4)

CR is a contour large enough to contain all the poles of the integrand, and(n
k

)
τ
= nτ !

kτ !(n−k)τ !
with the τ -factorial nτ ! defined in (1.10).

These formulas are similar in structure to earlier formulas of [35]. However,
such formulas turn out not to be conducive to asymptotics analysis. They
need considerable “postproduction” before the asymptotic behaviour can be
extracted [34, 36], and no one has been able to figure out how to do this for
(1.3), nor to extract the relevant asymptotics (even formally).

Our main result is an explicit formula for the one-point distribution in the
half-flat case, expressed as a certain series which has a structure reminiscent
of a Fredholm determinant. In an upcoming paper, we will use these formu-
las to obtain analogous moment formulas in the flat case and, furthermore,
a Fredholm Pfaffian formula for a certain transform of the height function.
Formal asymptotics lead to the expected results in the t→∞ and weakly
asymmetric limits, but turning them into rigorous proofs presents some con-
siderable technical challenges and is left for future work (see the Appendix
for a discussion of the large time case).
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Formulas for the half-flat case can be obtained by the method of [9],
together with an ansatz coming from a study of the mechanics of (1.3). Let

Nx(t) =
x∑

y=−∞

ηt(y)(1.5)

be the total number of particles to the left of x at time t. It is not hard to
check that when all particles start to the right of the origin, Nflux

0 (t) =N0(t),
and thus by (1.1)

h(t, x) = 2Nx(t)− x(1.6)

in the half-flat case. Define

Q̃x(t) =
τNx(t) − τNx−1(t)

τ − 1
= τNx−1(t)ηx(t).

Theorem 1.2. Consider ASEP with half-flat initial condition as in
(1.2). Then for any ~x ∈ Z

k we have

E
h-fl[Q̃x1(t) · · · Q̃xk

(t)]

=
τ (1/2)k(k−1)

(2πi)k
(1.7)

×
∫

Ck
1,ρ

d~z
∏

1≤a<b≤k

za − zb
za − τzb

1− zazb
1− τzazb

k∏

a=1

1

τz2a − 1
fxa,t(za),

where C1,ρ is a circle around 1 with radius 0< ρ<min{τ−1/2−1, (1+τ)−1},
Ck
1,ρ denotes the product of k copies of C1,ρ,

fx,t(z) =

(
1− τz

1− z

)x−1

eε̃(z)t,

and ε̃ is defined in terms of the function ε given in (1.4) by

ε̃(z) = ε

(
1− τz

1− z

)
= p

1− z

1− τz
+ q

1− τz

1− z
− 1.(1.8)

For simplicity, throughout the rest of the paper we will omit the bound on
the indices in products such as

∏
1≤a≤k and

∏
1≤a<b≤k when no confusion

can arise and the factors involved in the products are defined in terms of
a collection of k variables. A similar convention will sometimes be used for
sums. Additionally, we will continue using the notation Ck for the product
of k copies of a given contour C in the complex plane.

An analogous formula holds for the stochastic heat equation/KPZ/delta
Bose gas; see Section 5 for details. On the other hand, the analogous ansatz
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does not work in the case of q-TASEP and the O’Connell–Yor semi-discrete
polymer, at least with the most straightforward candidates for half-flat ini-
tial conditions.

The interesting new term here over earlier formulas [6, 9] is
∏

a<b
1−zazb
1−τzazb

,

which together with the factor
∏

a
1

τz2a−1 allows us to recover the periodic

initial data. This term leads to the double product
∏

a<b h(wa,wb; sa, sb)
appearing in (1.13) below, which is the obstacle to making long time limit
fluctuations rigorous (see the Appendix). Factors of this form were fortu-
itously absent from earlier formulas for step and step Bernoulli initial data,
which only contained the double product

∏
a<b

za−zb
za−τzb

; this last factor turns

into the determinant in (1.13) and this makes it much easier to deal with.
Similar expressions have also proved to be an obstacle in the replica formu-
las [23, 24] for half-flat and flat initial data, as well as for expressions for
multipoint distributions [14–16].

The formula for E
h-fl[Q̃x1(t) · · · Q̃xk

(t)] can be used to write a formula

for the moments of τNx(t) by using ideas of [9, 20]. The result is given in
Section 3 as Proposition 3.2. The formula for E[τkNx(t)] is given as a nested
contour integral (see Figure 1). As given, such a formula is suitable neither
for asymptotic analysis (not even at a formal level) nor for our later goal of
deriving a formula for the full flat case. In order to obtain a formula where
all the contours coincide we will expand the nested contours so that they
all coincide with largest one. The resulting formula amounts to computing
the residue expansion associated to the poles that we cross as we perform
this deformation. It is given in Proposition 3.3 as a sum of multiple contour
integrals indexed by partitions. After some rewriting, this formula leads to
our main result for ASEP with half-flat initial data. Define the following
functions:

f(w;n) = (1− τ)ne(q−p)t[1/(1+w)−1/(1+τnw)]

(
1 + τnw

1 +w

)x−1

,

g(w;n) =
(−w; τ)∞

(−τnw; τ)∞

(τ2nw2; τ)∞
(τnw2; τ)∞

,(1.9)

h(w1,w2;n1, n2) =
(w1w2; τ)∞(τn1+n2w1w2; τ)∞
(τn1w1w2; τ)∞(τn2w1w2; τ)∞

,

where the infinite q-Pochhammer symbols are defined as

(a; q)∞ =

∞∏

n=0

(1− qna).

Note that g and h can be written in terms of ratios of finite q-Pochhammer
symbols, but it will more convenient for us to write them in this form. The
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formulas for g and h can alternatively be written as ratios of q-Gamma
functions,

Γq(x) =
(1− q)1−x(q; q)∞

(qx; q)∞
,

which converge (uniformly on compact sets) to the usual Gamma function
as q→ 1. We also define the q-factorial

mq! =

∏k
a=1(1− qa)

(1− q)k
.(1.10)

For later use, we further introduce the q-exponential function

eq(x) =
1

((1− q)x; q)∞
=

∞∑

k=0

xk

kq!
,(1.11)

where the second equality only holds for |x| < 1 and amounts to the q-
Binomial theorem (see, e.g., Theorem 10.2.1 in [3]). As q→ 1, this function
converges to the usual exponential function, uniformly on (−∞,A] for any
A. In keeping with the standard usage we have used the parameter q in the
definition of these q-deformed functions, but in all that follows the parameter
τ will appear in place of q.

Theorem 1.3. Consider ASEP with half-flat initial condition as in
(1.2) and let m ∈ Z≥0. Then

E
h-fl[τmNx(t)] =mτ !

m∑

k=0

νh-flk,m(t, x)(1.12)

with

νh-flk,m(t, x) =
1

k!

∑

n1,...,nk≥1
n1+···+nk=m

1

(2πi)k

∫

γk
−1,0

d~w det

[ −1

waτna −wb

]k

a,b=1

(1.13)
×
∏

a

f(wa;na)g(wa;na)
∏

a<b

h(wa,wb;na, nb),

where γ−1,0 is a (positively oriented) contour around −1 and 0, strictly con-

tained inside the circle of radius τ−1/2, which does not include any other
singularities of the integrand.

The contour γ−1,0 in the theorem can for example be chosen to be a

circle around the origin with radius in (1, τ−1/2). In fact, the determinant
clearly never vanishes for this choice, and one can check that all the other
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singularities of the integrand, except for wa = 0 and wa = −1, are outside
this contour.

With a formula for the moments of τNx(t) at our disposal we are ready to
form a generating function, namely the τ -Laplace transform of τNx(t). The
formula involves a Mellin–Barnes integral representation of the infinite sums
in n1, . . . , nk appearing in (1.13) after summing over m≥ 0.

Theorem 1.4. Let ζ ∈C \R≥0. Then, for eτ as in (1.11),

E
h-fl[eτ (ζτ

Nx(t))]

=

∞∑

k=0

1

k!

1

(2πi)2k

∫

(1/2+iR)k
d~s

∫

γk
−1,0

d~w det

[ −1

waτ sa −wb

]k

a,b=1

(1.14)

×
∏

a

(−ζ)saf(wa; sa)g(wa; sa)
∏

a<b

h(wa,wb; sa, sb).

Now set ζ = −τ−t/4−t2/3x/2+t1/3r/2. Since eτ (z) −→ 0 as z → −∞ and
eτ (z) −→ 1 as z → 0 for fixed τ , uniformly in z ∈ (−∞,0] we have (see
[6], Lemma 4.1.39)

lim
t→∞

E
h-fl[eτ (−τNt2/3x

(t/γ)−(1/4)t−(1/2)t2/3x+(1/2)t1/3r−(1/4)t1/3x2
1x≤0)]

(1.15)

= lim
t→∞

P
h-fl

(
h(t/γ, t2/3x)− (1/2)t− (1/2)t1/3x21x≤0

t1/3
≥−r

)
,

where we recall γ = q− p. In the Appendix, we show that a formal steepest
descent analysis of the right-hand side of (1.14) gives (a scaled version of)
the one-point marginals of the Airy2→1 process A2→1(x).

Outline. The rest of the paper is organized as follows. Section 2 contains
the proof of Theorem 1.2. In Section 3 we will use the formula obtained in
Theorem 1.2 to derive the moment formula given in Theorem 1.3, while in
Section 4 we will derive the formula for the τ -Laplace transform of τNx(t)

(Theorem 1.4). Section 5 explains how the methods used for ASEP can
be applied to the case of the SHE/KPZ equation (or, more precisely, the
delta Bose gas) and discusses the relation with the work of Le Doussal
and Calabrese. Finally, the Appendix contains the formal derivation of the
limiting fluctuations for ASEP with half-flat initial condition.

2. Contour integral ansatz. To prove Theorem 1.2, we will use Proposi-
tion 4.10 of [9], which shows that Eh-fl[Q̃x1(t) · · · Q̃xk

(t)] can be represented
as the solution of a certain evolution equation with boundary conditions.
We describe this result next.
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Let η0 be an ASEP configuration with a leftmost particle and consider
ASEP started with η0 as initial condition. Let ũ0(~x) =

∏k
a=1 τ

Nxa−1(0)ηxa(0)
(where, of course, Nx(0) is computed with respect to the initial condition
η0). Consider the following system of differential equations:

(1) For all ~x ∈ Z
k and t≥ 0, writing ~x±ℓ = (x1, . . . , xℓ ± 1, . . . , xk),

d

dt
ũ(t,~x) =

k∑

j=1

[pũ(t,~x−j ) + qũ(t,~x+j )− ũ(t,~x)].

(2) For all ~x ∈ Z
k such that there exists ℓ < k with xℓ+1 = xℓ +1,

pũ(t,~x−ℓ+1) + qũ(t,~x+ℓ ) = ũ(t,~x).

(3) There exist constants c,C, δ > 0 such that for all ~x ∈ Z
k with x1 <

x2 < · · ·< xk and t ∈ [0, δ],

|ũ(t,~x)| ≤Cec
∑

j |xa|.

(4) For all ~x ∈ Z
k such that x1 <x2 < · · ·< xk we have

ũ(0, ~x) = ũ0(~x).

Proposition 2.1 ([9]). Suppose that ũ(t,~x) solves (1)–(4). Then for all
~x ∈ Zk such that x1 < x2 < · · ·<xk we have

E
η0 [Q̃x1(t) · · · Q̃xk

(t)] = ũ(t,~x),

where the superscript on the left-hand side means that ASEP is started with
initial condition η0.

We proceed now to the proof of our formula for Eh-fl[Q̃x1(t) · · · Q̃xk
(t)].

Proof of Theorem 1.2. In view of Proposition 2.1 and (1.7), we need
to check that

ũ(t;~x) :=
τ (1/2)k(k−1)

(2πi)k

∫

Ck
1,ρ

d~z
∏

1≤a<b≤k

za − zb
za − τzb

1− zazb
1− τzazb

(2.1)

×
k∏

a=1

1

τz2a − 1
fxa,t(za)

satisfies (1)–(4) with ũ0 defined in terms of the half-flat initial condition
η0(x) = 1x∈2Z>0 . A straightforward computation shows that in this case

ũ0(~x) =
k∏

a=1

1xa∈2Z>0τ
∑xa−1

y=−∞ ηy(0) = τ−k
k∏

a=1

1xa∈2Z>0τ
(1/2)xa .(2.2)
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We will denote the integrand in (2.1) by Ik,t(~x;~z), that is,

Ik,t(~x;~z) =
∏

a<b

za − zb
za − τzb

1− zazb
1− τzazb

∏

a

1

τz2a − 1
fxa,t(za).(2.3)

Additionally, we will write ~x(i1,...,iℓ) and ~z(i1,...,iℓ) to denote, respectively, the
vectors ~x and ~z with the components i1, . . . , iℓ removed.

Computing d
dt ũ(t,~x) introduces a factor

∑k
ℓ=1 ε̃(zℓ) in front of the inte-

grand. Similarly, computing ũ(t,~x±ℓ ) introduces a factor (1−τzℓ
1−zℓ

)±1 in front

of the integrand. Hence, (1) is satisfied if we can show that

k∑

ℓ=1

ε̃(zℓ) =

k∑

ℓ=1

[
p
1− zℓ
1− τzℓ

+ q
1− τzℓ
1− zℓ

− 1

]
.

But this follows immediately from the definition of ε̃; see (1.8)
For (2), let ~x ∈ Z

k and suppose that there exists ℓ such that xℓ+1 = xℓ+1.
Then using the above computation of ũ(t,~x±ℓ ), we have

pũ(t,~x−ℓ+1) + qũ(t,~x+ℓ )− ũ(t,~x)

=
τ (1/2)k(k−1)

(2πi)k

∫

Ck
1,ρ

d~z Ik,t(~x
−
ℓ+1;~z)(2.4)

×
[
p+ q

1− τzℓ
1− zℓ

1− τzℓ+1

1− zℓ+1
− 1− τzℓ+1

1− zℓ+1

]
.

We need to show that the integral vanishes. The expression inside the brack-

ets equals
(q−p)(zℓ−τzℓ+1)
(1−zℓ)(1−zℓ+1)

. Note that the factor zℓ− τzℓ+1 cancels a like factor

in the denominator of the product
∏

a<b
za−zb
za−τzb

coming from Ik,t(~x
−
ℓ+1;~z),

and thus (using the fact that xℓ+1 = xℓ + 1) the integrand in (2.4) can be
rewritten as

(q− p)(zℓ − zℓ+1)(1− zℓzℓ+1)

(1− zℓ)(1− zℓ+1)(1− τzℓzℓ+1)
fxℓ,t(zℓ)fxℓ,t(zℓ+1)G(~x(ℓ,ℓ+1), ~z(ℓ,ℓ+1)),

where, as suggested by the notation, the factor G(~x(ℓ,ℓ+1), ~z(ℓ,ℓ+1)) does not
depend on xℓ, xℓ+1, zℓ and zℓ+1. This expression is antisymmetric in zℓ, zℓ+1,
and thus its integral over (zℓ, zℓ+1) ∈C2

1,ρ must vanish. This shows that the
integral in (2.4) is zero, proving (2).

(3) follows directly from the form of fx,t and the facts that C1,ρ is compact
and that the integrand is continuous in ~z ∈Ck

1,ρ.
We turn now to (4). Note that when t= 0 the essential singularity in the

exponent of fx,t in Ik,t disappears [see (2.3)], and thus we can evaluate the
integral by computing residues.
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First, if x1 ≤ 1 then fx1,0(z1) has no pole at z1 = 1. Hence, the integrand is
analytic in z1 inside C1,ρ, and thus the integral is 0. Since x1 < · · ·<xk, this
accounts for the condition that all xa’s be at least 2. So let us assume now
that 2≤ x1 < · · ·< xk. We will evaluate the zk integral first, by expanding
the contour to infinity. Note that, thanks to the decay coming from the
factor (τz2k − 1)−1 there is no pole at infinity, and thus the integral equals
minus the sum of the residues of the poles of the integrand outside C1,ρ.

In zk, the poles are ±τ−1/2, τ−1zℓ and τ−1z−1
ℓ for ℓ < k. The condition

imposed on ρ implies that all these poles lie outside the contour. Consider
first the poles at zk = τ−1zℓ, ℓ < k. The residue of Ik,0 at this point is given
by

Ik−1,0(~x
(k);~z(k))

∏

a<k
a6=ℓ

(
za − τ−1zℓ
za − zℓ

1− τ−1zazℓ
1− zazℓ

)
(1− τ)zℓ(1− τ−1z2ℓ )

1− z2ℓ

× ((1− zℓ)/(1− τ−1zℓ))
xk−1

τ−1z2ℓ − 1

= Ik−2,0(~x
(ℓ,k);~z(ℓ,k))

ℓ−1∏

a=1

(
za − τ−1zℓ
za − τzℓ

1− τ−1zazℓ
1− τzazℓ

)

×
k−1∏

b=ℓ+1

(
τ−1zℓ − zb
zℓ − τzb

1− τ−1zbzℓ
1− τzbzℓ

)

× (1− τ)zℓ
1 + zℓ

((1− τzℓ)
xℓ−1/(1− τ−1zℓ)

xk−1)

(1− τz2ℓ )
(1− zℓ)

xk−xℓ−1.

Observe that the factors za−zℓ and 1−zazℓ appearing in the denominator of
the first line are canceled by matching factors coming out of Ik−1,0(~x

(k);~z(k)).
This is crucial, because it implies that the resulting integrand has no singu-
larities in zℓ inside C1,ρ except possibly at zℓ = 1. On the other hand, since
xk ≥ xℓ+1, the simplification leading to the second line above implies again
that there is no pole at zℓ = 1. We deduce that the integrand is analytic
in zℓ inside C1,ρ, and hence the integral vanishes. An analogous argument
shows that the residues at zk = τ−1z−1

ℓ also vanish.

Thus, the only important poles are those at ±τ−1/2. We have

Res
zk=τ−1/2

Ik,0(~x;~z) = Ik−1,0(~x
(k);~z(k))

k−1∏

a=1

(
za − τ−1/2

za − τ1/2
1− τ−1/2za

1− τ1/2za

)

× ((1− τ1/2)/(1− τ−1/2))xk−1

2τ1/2



12 J. ORTMANN, J. QUASTEL AND D. REMENIK

= Ik−1,0(~x
(k);~z(k))(−1)xk−1 1

2
τ (1/2)xk−k.

Similarly,

Res
zk=−τ−1/2

Ik,0(~x;~z) = Ik−1,0(~x
(k);~z(k))

k−1∏

a=1

(
za + τ−1/2

za + τ1/2
1 + τ−1/2za

1 + τ1/2za

)

× ((1 + τ1/2)/(1 + τ−1/2))xk−1

−2τ1/2

=−Ik−1,0(~x
(k);~z(k))

1

2
τ (1/2)xk−k.

If xk is odd then the two residues cancel each other out. Therefore,

Res
zk=τ−1/2

Ik,0(~x;~z) + Res
zk=−τ−1/2

Ik,0(~x;~z)

=−Ik−1,0(~x
(k);~z(k))1xk∈2Z≥0

τ (1/2)xk−k.

Recalling that we have computed the residues on the outside of C1,ρ, which
introduces a minus sign, we get

ũ(0, ~x) =
τ (1/2)k(k−1)

(2πi)k

∫

Ck
1,ρ

d~z Ik,0(~z)

= τ−1
1xk∈2Z>0τ

(1/2)xk
τ (1/2)(k−1)(k−2)

(2πi)k−1

∫

Ck−1
1,ρ

d~z Ik−1,0(~x
(k);~z).

Equation (2.2) follows by induction, and this proves (4). �

3. Moment formulas. Recall that Theorem 1.2 provides a formula for
the expectation of Q̃x1(t) · · · Q̃xℓ

(t), where Q̃x(t) = ηx(t)τ
Nx−1(t) and the xa’s

have to be different. To turn this into a formula for the moments of τNx(t),
we will use the following identity, first proved as Proposition 3 of [20] (in
[20] the identity was stated only for the expected value of both sides, the
more general form stated here appears as Lemma 4.17 in [9]).

Lemma 3.1. Let η ∈ {0,1}Z and write Nx(η) =
∑

y≤x ηy. Then

τkNx(η) =
k∑

ℓ=0

(−1)ℓ
(
k
ℓ

)

τ

(τ ; τ)ℓ
∑

x1<···<xℓ≤x

ηx1τ
Nx1(η) · · ·ηxℓ

τNxℓ
(η),(3.1)

where the summand for ℓ= 0 should be interpreted as 1.

Note that this result is not specific to ASEP, which is why we have intro-
duced the notation Nx(η). For the case of ASEP, and in view of (1.5), we are



EXACT FORMULAS FOR HALF-FLAT RANDOM GROWTH 13

Fig. 1. Contours appearing in Proposition 3.2 in the case k = 3. The dashed contours
correspond to multiplying each of the contours by τ and illustrate the nesting condition
described in the proposition.

writing Nx(t) =Nx(ηt). The expected value of the right-hand side of (3.1)
is explicit in this case (i.e., when we take η to be the ASEP configuration at
time t, ηt) thanks to (1.7), and we will turn it into a single multiple integral
it using arguments similar to those in Section 4 of [9].

Proposition 3.2. For any k ∈ Z≥0, we have

E[τkNx(t)]
(3.2)

=
τ (1/2)k(k−1)

(2πi)k

∫
d~y

∏

a<b

(
ya − yb
ya − τyb

1− τ−2yayb
1− τ−1yayb

)∏

a

Fx,t(ya)

ya
,

where

Fx,t(y) =
τ + y

τ − y2

(
1 + y

1 + τ−1y

)x−1

etε̂(y),

ε̂(y) = ε̃(−τ−1y), and the integration contours are given as follows. For each
a= 1, . . . , k, the ya contour is composed of two disconnected pieces: a circle
around −τ with radius small enough so that −τ1/2 is on its exterior, and
a circle around 0 with radius small enough so that τ1/2 is on its exterior.
The radii of these circles are chosen so that, in addition, for all a < b the
ya contour does not include the image under multiplication by τ of the yb
contour (see Figure 1).

Proof. By (1.7) and Lemma 3.1, we have

E[τkNx(t)] =

k∑

ℓ=0

(−1)ℓ
(
k
ℓ

)

τ

(τ ; τ)ℓGℓ
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with

Gℓ =
τ (1/2)ℓ(ℓ−1)

(2πi)ℓ

∫

Cℓ
1,ρ

d~z
∏

a<b

za − zb
za − τzb

1− zazb
1− τzazb

(3.3)

×
∑

x1<···<xℓ≤x

∏

a

eε̃(za)t

τza2 − 1

(
1− τza
1− za

)xa−1

.

For ease of notation, let ξ̃a =
1−τza
1−za

. A computation shows that

∑

x1<···<xℓ≤x

ℓ∏

a=1

ξ̃xa−1
a =

ℓ∏

a=1

ξ̃x−1
a

ℓ∏

a=1

1

ξ̃1 · · · ξ̃a − 1
.

Using this in (3.3), changing variables za =−τ−1ya and writing ξa =
1+ya

1+τ−1ya
we get

Gℓ =
τ (1/2)ℓ(ℓ−1)

(2πi)ℓ

∫

Cℓ
−τ,τρ

d~y
∏

a<b

ya − yb
ya − τyb

ℓ∏

a=1

1

ξ1 · · · ξa − 1

(3.4)

×
∏

a<b

1− τ−2yayb
1− τ−1yayb

ℓ∏

a=1

ξx−1
a

τ − y2a
etε̂(ya),

where the new contour C−τ,τρ is a circle around −τ with radius τρ (note

that this implies that −τ1/2 lies on its exterior). Now the symmetrization
identities appearing in Lemma 7.2 of [9] imply straightforwardly that

∑

σ∈Sℓ

∏

a<b

yσ(a) − yσ(b)

yσ(a) − τyσ(b)

∏

a

1

ξσ(1) · · ·ξσ(a) − 1

=
(−1)ℓ

(τ ; τ)ℓ

∏

a

τ + ya
ya

∑

σ∈Sℓ

∏

a<b

yσ(a) − yσ(b)

yσ(a) − τyσ(b)
.

Note that, crucially, the last two factors on the right-hand side of (3.4) are
already symmetric, so the above identity can be used to symmetrize the
whole integral, yielding

Gℓ = (−1)ℓτ (1/2)ℓ(ℓ−1)−(1/2)k(k−1) 1

(τ ; τ)ℓ
ν̃ℓ

with

ν̃ℓ =
τ (1/2)k(k−1)

(2πi)ℓ

∫

Cℓ
−τ,τρ

d~y
∏

a<b

ya − yb
ya − τyb

1− τ−2yayb
1− τ−1yayb

×
ℓ∏

a=1

etε̂(ya)

τ − y2a

(
1 + ya

1 + τ−1ya

)x−1 τ + ya
ya

.
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Therefore, we have

E[τkNx(t)] =

k∑

ℓ=0

(
k
ℓ

)

τ

τ (1/2)ℓ(ℓ−1)−(1/2)k(k−1) ν̃ℓ.

We have written things so that we may easily compare with Lemma 4.20 in
[9]. Note that ν̃ℓ may be rewritten as

ν̃ℓ =
1

(2πi)ℓ

∫

Cℓ
−τ,τρ

∏

a<b

ya − yb
ya − τyb

s(ya, yb)
∏

a

f(ya)
1

ya
,

where s(y, y′) = (1 − τ−2yy′)/(1 − τ−1yy′) has no poles in y and y′ in a
suitable contour encircling 0 and −τ , while f is a function with no poles in
a ball around 0 and such that f(0) = 1. This is exactly the structure of ν̃ℓ
in Lemma 4.20 of [9], and it is easy to see the extra factor

∏
a<b s(ya, yb) in

our formula makes no difference in the argument. Hence, using their result,
we deduce that E[τkNx(t)] has the form claimed in (3.2). �

As we explained in the Introduction, we would like to manipulate the
formula (3.2) given in the last result into one where all contours coincide.
Doing this involves expanding the nested contours one by one so that they all
end up coinciding with the largest one. As this multiple contour deformation
is performed, many poles are crossed. The associated residues group into
clusters, and this leads to a formula which is a sum of contour integrals
naturally indexed by partitions λ= (λ1 ≥ λ2 ≥ · · · ≥ 0). We will write λ ⊢ k
if
∑

a λa = k and we will denote by ℓ(λ) the number of nonzero elements of
λ. Additionally, we will write λ= 1m12m2 · · · if a appears ma times in λ, so
in this case ℓ(λ) =

∑
ama and λ ⊢∑

a ama.
The contour shift argument referred to above was used in the setting

of Macdonald processes in [6] and later for q-TASEP and ASEP in [9]. In
the setting of the delta Bose gas (or Yang’s system) with general type root
systems, it goes back to the work of [19]. Section 7 of [8] contains a detailed
presentation of this argument, and in fact the proposition that follows is a
particular case of a result proved there.

Proposition 3.3.

E[τkNx(t)]

= kτ !
∑

λ⊢k
λ=1m12m2 ···

(1− τ)k

m1!m2! · · ·
1

(2πi)ℓ(λ)

(3.5)

×
∫

γ
ℓ(λ)
−τ,0

d~wdet

[ −1

waτλa −wb

]ℓ(λ)

a,b=1

×H(w1, τw1, . . . , τ
λ1−1w1, . . . ,wℓ(λ), . . . , τ

λℓ(λ)−1wℓ(λ)),
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where γ−τ,0 is a (positively oriented) contour around −τ and 0, strictly con-

tained inside the disk of radius τ1/2 and which does not include any other
singularities of the integrand, and

H(y1, . . . , yk) =
∏

a<b

1− τ−2yayb
1− τ−1yayb

∏

a

Fx,t(ya).

Proof. It is not hard to check that the contours and the integrand
which appear on the right-hand side of (3.2) satisfy the hypotheses of Propo-
sition 7.4 of [8], and thus

E[τkNx(t)]

=
∑

λ⊢k
λ=1m12m2 ···

(−1)k(1− τ)k

m1!m2! · · ·
1

(2πi)ℓ(λ)

∫

γ
ℓ(λ)
−τ,0

d~w det

[
1

waτλa −w(b)

]ℓ(λ)

a,b=1

×
ℓ(λ)∏

a=1

wλa
a τ (1/2)λa(λa−1)

×E(w1, τw1, . . . , τ
λ1−1w1, . . . ,wℓ(λ), . . . , τ

λℓ(λ)−1wℓ(λ))

with

E(y1, . . . , yk)

=
∑

σ∈Sk

∏

1≤b≤a≤k

yσ(a) − τyσ(b)

yσ(a) − yσ(b)

∏

a<b

1− τ−2yσ(a)yσ(b)

1− τ−1yσ(a)yσ(b)

∏

a

Fx,t(yσ(a))

yσ(a)
.

Note now that the second and third products in the definition of E are sym-
metric under permutation of the indices in ~y. On the other hand, by III.(1.4)
in [27] the first double product in the same identity can be symmetrized as

∑

σ∈Sk

∏

a>b

yσ(a) − τyσ(b)

yσ(a) − yσ(b)
= (1− τ)−k(τ ; τ)k = kτ !.(3.6)

Hence, E(y1, . . . , yk) = kτ !
∏

a<b
1−τ−2yayb
1−τ−1yayb

∏k
a=1

Fx,t(ya)
ya

. Evaluating E at the

point (y1, . . . , yk) = (w1, τw1, . . . , τ
λ1−1w1, . . . ,wℓ(λ), . . . , τ

λℓ(λ)−1wℓ(λ)) leads,
after some simplifications, to (3.5). �

As we will see below, the strings of geometric progressions appearing in
(3.5) account for the ratios of q-Pochhammer symbols in (1.9) [see (3.12)],
which in this case can be thought of as ratios of q-Gamma functions. This
is analogous to the strings of arithmetic progressions which appear in the
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case of the delta Bose gas, which give rise to ratios of Gamma functions (see
Section 5).

We are now ready for the proof of our main moment formula for τNx(t) in
the half-flat case.

Proof of Theorem 1.3. The formula given in Proposition 3.3 can be
rewritten as

E[τkNx(t)] = kτ !

k∑

ℓ=0

∑

m1,m2,···∑
ama=ℓ,

∑
a ama=k

1

ℓ!

ℓ!

m1!m2! · · ·
1

(2πi)ℓ

(3.7)

×
∫

γℓ
−τ,0

d~w Iℓ(λm1,m2,...; ~w),

where λm1,m2,... is specified by λm1,m2,... = 1m12m2 · · · and

Iℓ(λ; ~w)

= det

[ −1

waτλa −wb

]ℓ(λ)

a,b=1

H(w1, . . . ,w
λ1−1
1 , . . . ,wℓ(λ), . . . ,w

λℓ(λ)−1

ℓ(λ) )(3.8)

×
∏

a

(1− τ)λa .

In the above sum, m1,m2, . . . encodes the partition λm1,m2,... of k of length ℓ.
Observe on the other hand that, by the symmetry of the integrand, the right-
hand side of (3.7) is unchanged if we permute the λa’s. Thus, we can get rid
of the multinomial coefficient ℓ!

m1!m2!···
by replacing the sum over the ma’s

by a sum over (unordered) n1, . . . , nℓ with the following correspondence: for
each a, exactly ma out of the n1, n2, . . . , nℓ equal a. This gives

E[τkNx(t)] = kτ !
k∑

ℓ=0

1

ℓ!

∑

n1,...,nℓ≥1∑
na=k

1

(2πi)ℓ

∫

γℓ
−τ,0

d~w Iℓ((n1, . . . , nℓ); ~w),(3.9)

where the notation (3.8) has been extended trivially to unordered ℓ-tuples
(n1, . . . , nℓ).

What remains is to simplify the integrand. Define

g1(w) =
(−τ−1w; τ)∞
(τ−1w2; τ2)∞

(
τ

τ +w

)x−1

e(q−p)t(τ/(τ+w)),

g2(w1,w2) =
(τ−1w2

1; τ
2)∞

(τ−3w2
2; τ

2)∞

(τ−3w2
2; τ)∞

(τ−2w1w2; τ)∞
,
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and write ~w ◦ ~n= (w1, . . . ,w
n1−1
1 , . . . ,wℓ, . . . ,w

nℓ−1
ℓ ). We have

H(~w ◦ ~n) = H̃(~w ◦ ~n)
k∏

a=1

na−1∏

b=0

Fx,t(τ
bwa)

(3.10)

with H̃(y1, . . . , yk) =
∏

a<b

1− τ−2yayb
1− τ−1yayb

.

One checks directly that Fx,t(y) = g1(y)/g1(τy), whence

k∏

a=1

g1(wa)

g1(τnawa)
=

k∏

a=1

na−1∏

b=0

Fx,t(τ
bwa).(3.11)

On the other hand, we have

H̃(~w ◦ ~n) = H̃(~w(1) ◦ ~n(1))
∏

0≤a1<a2<n1

1− τa1+a2−2w2
1

1− τa1+a2−1w2
1

×
k∏

b=2

n1−1∏

a1=0

nb−1∏

a2=0

1− τa1+a2−2w1wb

1− τa1+a2−1w1wb
.

The first product on the right-hand side equals

n1−2∏

a1=0

1− τ2a1−1w2
1

1− τa1+n1−2w2
1

=

n1−2∏

a1=0

(τ2a1−1w2
1; τ

2)∞
(τ2a1+1w2

1; τ
2)∞

(τa1+n1−1w2
1; τ)∞

(τa1+n1−2w2
1; τ)∞

= g2(w1, τ
n1w1).

One checks similarly that, for fixed b, the second product equals h(τ−1w1,

τ−1wb;n1, nb). We deduce that H̃(~w ◦ ~n) = H̃(~w(1) ◦ ~n(1))g2(w1, τ
n1w1) ×∏k

b=2 h(τ
−1w1, τ

−1wb;n1, nb). Proceeding inductively to rewrite the right-
hand side yields and using (3.10) and (3.11) yields

H(~w ◦ ~n) =
∏

a

g1(wa)

g1(τnawa)
g2(wa, τ

nawa)
∏

a<b

h(τ−1wa, τ
−1wb;na, nb).(3.12)

To finish, we note that there is a simplification in the τ -Pochhammer symbols
coming from the factors g1(wa)/g1(τ

nawa) and g2(wa, τ
nawa):

(−τ−1w; τ)∞
(τ−1w2; τ2)∞

(τ−1+2nw2; τ2)∞
(−τ−1+nw; τ)∞

(τ−1w2; τ2)∞
(τ−3+2nw2; τ2)∞

(τ−3+2nw2; τ)∞
(τ−2+nw2; τ)∞

=
(−τ−1w; τ)∞

(−τ−1+nw; τ)∞

(τ−1+2nw2; τ2)∞
(τ−2+nw2; τ)∞

(τ−3+2nw2; τ)∞
(τ−3+2nw2; τ2)∞

=
(−τ−1w; τ)∞

(−τ−1+nw; τ)∞

(τ−2+2nw2; τ)∞
(τ−2+nw2; τ)∞

.
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The right-hand side is exactly g(w,n). Using this in (3.12) and (3.8), we
deduce that

Iℓ((n1, . . . , nℓ); ~w) = det

[ −1

waτλa −wb

]ℓ

a,b=1

∏

a

f(τ−1wa, na)g(τ
−1wa, na)

×
∏

a<b

h(τ−1wa, τ
−1wb;na, nb).

Comparing with (3.9) and (1.12) yields the result after the change of
variables wa 7→ τwa (absorbing the Jacobian from the change of variables
into the determinant). �

4. Generating function. Since, by definition, Nx(t)≥ 0, we have τNx(t) ≤
1 and thus by (1.11) we have for |ζ|< 1 that

E[eτ (ζτ
Nx(t))] =

∑

m≥0

ζm

mτ !
E
h-fl[τmNx(t)].(4.1)

Using (1.12) to write the expectation on the right-hand side explicitly and
interchanging the sums in m and k formally leads to

E[eτ (ζτ
Nx(t))] =

∑

k≥0

1

k!

∑

n1,...,nk≥1

1

(2πi)k

∫

γk
−1,0

d~wdet

[ −1

waτna −wb

]k

a,b=1

(4.2)
×
∏

a

ζnaf(wa, na)g(wa, na)
∏

a<b

h(wa,wb;na, nb).

As we will see in the proof of Theorem 1.4, the application of Fubini’s
theorem here can be justified, which implies that the above formula holds
as long as |ζ|< 1. In order to analytically extend this identity beyond this
region, we proceed as in [6] and use a Mellin–Barnes representation for the
sums in na. The precise result we will use is the following.

Lemma 4.1. Let g be a meromorphic function and C1,2,... a negatively
oriented contour enclosing all positive integers (e.g., C1,2,... =

1
2 +iR oriented

with increasing imaginary part) but no other singularities of g(τ s) (in s).4

Then for ζ ∈C \R≥0 with |ζ|< 1 we have

∞∑

n=1

g(τn)ζn =
1

2πi

∫

C1,2,...

ds
π

sin(−πs)
(−ζ)sg(τ s),

provided that the left-hand side converges and that there exist closed con-
tours Ck, k ∈N enclosing the positive integers from 1 to k and such that the

4Here, z 7−→ zs is defined by taking a branch cut along the negative real axis.
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Fig. 2. Contours in Definition 4.2.

integral of the integrand on the right-hand side over the symmetric difference
of C1,2,... and Ck goes to zero as k→∞.

The statement follows easily from the fact that π/ sin(−πs) has a pole at
each s= k ∈ Z with residue equal to (−1)k+1.

We will also need some precise estimates on h, which will be provided
by the lemma that follows. These estimates will be valid when the relevant
variables lie inside some carefully chosen contours, which we define next.

Definition 4.2. Let B(x, r)⊆C denote the ball of radius r centered at
x. For x1 < x2 and suitably small r1, r2 > 0, we define a positively oriented
contour γ̄(x1, r1;x2, r2) consisting on the left half of ∂B(x1, r1), the right half
of ∂B(x2, r2), and two lines connecting, respectively, the top and bottom
ends of the two half circles. Additionally, for θ,M > 0 we define a contour
Dθ,M going by straight lines from M − i∞, to M − iθ, to 1

2 − iθ, to 1
2 + iθ,

to M + iθ, to M + i∞. See Figure 2.

Lemma 4.3. Define the function

h0(z; s1, s2) =
(z; τ)∞(τ s1+s2z; τ)∞
(τ s1z; τ)∞(τ s2z; τ)∞

.

Then there exist constants C > 0 and ρ ∈ (0,min{1
2 (τ

−1/2−1),1}) such that,
given any δ ∈ (0,1) there are θ,M > 0 with the following property: if s1, s2 lie
to the right of Dθ,M and z is inside γ̄(0, δ; 1, ρ), then |h0(z; s1, s2)|< 1+Cδ.

Proof. Fix δ0 ∈ (1, τ−1/2) and ρ0 ∈ (0,min{1
2(τ

−1/2 − 1),1}). For fixed
s1 and s2, h0(z; s1, s2) is a meromorphic function of z, with poles at z =
τ−s1−ℓ and z = τ−s2−ℓ for ℓ ≥ 0. Since we are interested only in ℜ(s1) =
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ℜ(s2)≥ 1
2 , all these poles lie outside of B(0, τ−1/2), and thus h0(z; s1, s2) is

analytic in z inside γ̄(0, δ0; 1, ρ0). Now, in general, if D1, . . . ,Dm are bounded
domains in C and f is a complex-valued function defined on D =D1 × · · ·×
Dm which is analytic in each variable, then by the mean value theorem there
exists a constant C > 0 such that for every ~w ∈D and every ~w′ ∈B(~w, δ)∩D
we have

|f(~w′)− f(~w)| ≤Cδ.(4.3)

We deduce that there is a C1 > 0 such that if z, z′ lie inside γ̄(0, δ0; 1, ρ0)
and |z − z′|< r, then

|h0(z; s1, s2)| ≤ |h0(z′; s1, s2)|+C1r.(4.4)

Now for x,α1, α2,∈ [0,1] let

g(x;α1, α2) =
(x; τ)∞(α1α2x; τ)∞
(α1x; τ)∞(α2x; τ)∞

.

A computation shows that ∂xg(x;α1, α2)|x=0 = (τ − 1)−1(1 − α1)(1 − α2).
We deduce that

C0 :=− sup
s1,s2∈[1/2,∞)

∂xg(x; τ
s1 , τ s2)|x=0 ∈ (0,∞).(4.5)

On the other hand, we claim that g(x;α1, α2) is concave in x ∈ [0,1] for
every fixed α1, α2 ∈ (0,1). To see this, write g(x;α1, α2) =

∏
ℓ≥0 gℓ(x;α1, α2)

with gℓ(x;α1, α2) =
(1−τℓx)(1−τℓα1α2x)
(1−τℓα1x)(1−τℓα2x)

. Then it is enough to show that each

gℓ is positive, decreasing, and concave. The positivity of gℓ is clear, while
the decrease and concavity can be checked by computing ∂xgℓ and ∂2

xgℓ (we
leave the details to the reader). As a consequence of this and (4.5), and since
h0(x; s1, s2) = g(x; τ s1 , τ s2) and g(0; s1, s2) = 1, we deduce that

h0(x; s1, s2)≤ 1−C0x(4.6)

for all s1, s2 ∈ [12 ,∞) and x ∈ [0,1].
Choose ρ <min{ρ0,C0/C1} and let r(x) = (1−x)δ+xρ. In order to prove

the result it is enough to prove the following statement: there are θ,M > 0
(depending on δ) and C2 > 0 such that for all x ∈ [0,1], z ∈B(x, r(x)) and
s1, s2 lying to the right of Dθ,M we have

|h0(z; s1, s2)| ≤ 1 + (C1 +C2)δ.(4.7)

Assume first that s1, s2 ∈ [12 ,∞). Fix x ∈ [0,1] and z ∈B(x, r(x)). Then by
(4.4) and (4.6), we have

|h0(z; s1, s2)| ≤ |h0(x; s1, s2)|+ r(x)C1
(4.8)

≤ 1 +C1δ+C1(ρ− δ)x−C0x < 1 +C1δ,
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so, in particular, (4.7) holds.
Now we want to extend this to all s1, s2 lying to the right of Dθ,M . Write

sa = ηa + iθa. There are four cases to consider, depending on whether or
not η1 and η2 are larger than M . Let us assume first that η1, η2 ≥M . Since
z ∈ B(0,2) (because δ, ρ < 1) we have that τ sz ∈ B(0,2τM ) ⊆ B(0, 12δ) for

ℜ(s)≥ 1
2 and large enough M , and thus |τ s1z − τη1z|< δ, |τ s2z − τη2z|< δ

and |τ s1+s2z − τη1+η2z| < δ. An argument similar to the one above, based
on (4.3), shows then that there is a constant C2 > 0 such that

|h0(z; s1, s2)− h0(z;η1, η2)|<C2δ.

Using this together with the bound (4.8) for h0(z;η1, η2) yields (4.7).
The other three cases are similar. For example, if both s1 and s2 are in

[12 ,M ]× i[−θ, θ] then, for M fixed as above, we can choose a small enough θ
so that |τ s1z − τη1z|< δ, |τ s2z − τη2z|< δ and |τ s1+s2z − τη1+η2z|< δ, and
then the same argument works. The mixed case works similarly (although
it may yield a different constant). �

Proof of Theorem 1.4. We will prove this result in three steps. The
first one will consist in showing that (4.2) holds when |ζ|< 1. In the second
step we will apply the Mellin–Barnes representation given by Lemma 4.1 to
turn (4.2) into (1.14) for |ζ|< 1, ζ /∈R≥0. Finally we will analytically extend
the resulting formula to all ζ /∈R≥0.

Assume then that |ζ|< 1, so that (4.1) holds. Using this formula together
with (1.12) leads to

E
h-fl[eτ (ζτ

Nx(t))] =
∑

m≥0

m∑

k=0

1

k!

∑

n1,...,nk≥1
n1+···+nk=m

Ik(~n),

where

Ik(~n) =
1

(2πi)k

∫

γk
−1,0

d~wdet

[ −1

waτna −wb

]k

a,b=1

×
∏

a

ζnaf(wa;na)g(wa;na)
∏

a<b

h(wa,wb;na, nb).

Interchanging the sums in k and m leads to

E
h-fl[eτ (ζτ

Nx(t))] =
∑

k≥0

∑

m≥k

1

k!

∑

n1,...,nk≥1
n1+···+nk=m

Ik(~n)

(4.9)

=
∑

k≥0

1

k!

∑

n1,...,nk≥1

Ik(~n).



EXACT FORMULAS FOR HALF-FLAT RANDOM GROWTH 23

In order to justify the application of Fubini’s theorem, it is enough to ver-
ify that the sum

∑
k≥0

∑
m≥k | 1k!

∑
n1+···+nk=m Ik(~n)| is finite, which by the

triangle inequality, will follow if we verify that

∑

k≥0

1

k!

∑

n1,...,nk≥1

|Ik(~n)|<∞.(4.10)

The main difficulty we face at this point is the fact that the absolute value of
h(wa,wb;na, nb) is in general not bounded by 1, which in principle introduces

a factor of order ck
2
into our sum for some c > 1. To deal with this issue, we

will have to choose the contour γ−1,0 carefully, and moreover let it depend
on k. Note, however, that this choice is made at this point only in order to
obtain a suitable estimate, and does not fix the contour in the statement of
the theorem.

Now fix ρ > 0 and C > 0 as in Lemma 4.3 and, for fixed k, let δk =
C−1(21/k − 1) and choose θk,Mk > 0 as in Lemma 4.3 for δ = δk. Further-
more, let δ′k, ρ

′ > 0, θ′k < θk and M ′
k > Mk, and write γ̄k = γ̄(−1, ρ′; 0, δ′k)

and D̄k =Dθ′k,M
′
k
(D̄k will be used in the second step). Note that γ̄k is star-

shaped with respect to the origin (i.e., any ray emanating from the origin
intersects the contour in one and only one point). This implies, in partic-
ular, that the denominator inside the determinant appearing in I(~n) never
vanishes. On the other hand, by choosing δ′k and ρ′ to be suitably small we

may assume that γ̄k is contained inside B(0, τ−1/2), in which case it is easy
to check that there are not singularities of h inside. Therefore, our choice of
γ̄k satisfies the requirements of Theorem 1.3.

Having made this choice of contour, we claim that we can choose an
η > 0 such that if δ′k = ηδk and ρ′ is small enough then whenever wa,wb ∈ γ̄k
we have that wawb is contained inside γ̄(0, δk; 1, ρ). To see this, observe
that {ww′ :w,w′ ∈ [−1,0]}= [0,1] and, therefore, given any open neighbor-
hood U of [0,1] we can find an open neighborhood V of [−1,0] such that
{ww′ :w,w′ ∈ V } is contained inside U . Our claim follows easily from this
because given any such neighborhood V we can choose δ′k and ρ small enough
so that γ̄k is contained inside V .

Making these choices, and thanks to our earlier choices of parameters and
using Lemma 4.3, we get

|h(wa,wb;na, nb)|= |h0(wawb;na, nb)| ≤ 21/k(4.11)

for wa,wb ∈ γ̄k and na, nb ∈ Z≥1 (since in this case na and nb trivially lie
to the right of D̄k). On the other hand, the only singularity of f(wa;na)
occurs at wa =−1, and since γ̄k stays at distance at least ρ′ from −1, this
factor is uniformly bounded along the contour, say by some constant c1 > 0
(independently of k). A similar argument shows that |g(wa;na)| is uniformly
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bounded (say by c1 again), and we deduce that

|Ik(~n)| ≤
c2k1 2(1/2)(k−1)

(2π)k

∫

γ̄k
k

d~w
∏

a

|ζ|na

∣∣∣∣det
[ −1

waτna −wb

]k

a,b=1

∣∣∣∣

≤ ck2 |ζ|
∑

a na

∫

γ̄k
k

d~w
∏

a

1

|wa|

∣∣∣∣det
[ −wa

waτna −wb

]k

a,b=1

∣∣∣∣(4.12)

≤ ck2k
k/2|ζ|

∑
a na

∫

γ̄k
k

d~w
∏

a

1

|wa|
sup

a,b=1,...,k

∣∣∣∣
wa

waτna −wb

∣∣∣∣
k

for some c2 > 0, where in the last inequality we used Hadamard’s bound.
The supremum is clearly bounded by some constant c3 > 0, uniformly in wa,
wb and na. On the other hand, it is not hard to check that

∫

γ̄k

dwa
1

|wa|
≤ c4|log(δ′k)|= c4|log(ηδk)| ≤ c′4 log(k)

for some c4, c
′
4 > 0 by our choice of δk and δ′k. We deduce that

|Ik(~n)| ≤ ck(k1/2 log(k))k|ζ|
∑

a na

for some c > 0 and thus, since we are taking |ζ|< 1, (4.10) holds. Therefore,
(4.9) holds for |ζ|< 1.

As we mentioned at the beginning of the proof, the next step is to apply
the Mellin–Barnes representation to (4.9). The idea is to focus on the kth
term of the sum on the right-hand side of (4.9) for some fixed k, and then
apply Lemma 4.1 one by one to each of the sums in n1, . . . , nk with the
contour C1,2,... taken as D̄k = Dθ′k,M

′
k
[and γ−1,0 as γ̄k = γ̄(−1, ρ′; 0, δ′k)],

which would prove the identity

E
h-fl[eτ (ζτ

Nx(t))] =

∞∑

k=0

1

k!

1

(2πi)2k

∫

D̄k
k

d~s

∫

γ̄k
k

d~wdet

[ −1

waτ sa −wb

]k

a,b=1

(4.13)
×
∏

a

(−ζ)saf(wa; sa)g(wa; sa)
∏

a<b

h(wa,wb; sa, sb)

for ζ /∈ R≥0 with |ζ| < (1 − τ)−1. To this end, we need to verify that the
conditions of the lemma are satisfied. Note that, in view of the preceding
argument, we are free to choose θ′k and M ′

k to be respectively even smaller
and even larger than in our original choice. We start by observing that
waτ

sa −wb never vanishes for sa along this contour. To see this, note first
that M ′

k can be chosen to be sufficiently large so that if γ̄k is scaled by

τM
′
k then any rotation of the resulting contour is contained inside γ̄k, which

shows that waτ
sa −wb 6= 0 for sa with ℜ(sa)≥M ′

k. On the other hand, since
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γ̄k is star-shaped, waτ
sa −wb 6= 0 for sa ∈ [12 ,∞), and thus the same holds

in the strip [12 ,M
′
k]× i[−θ′k, θ

′
k] if θ

′
k is small enough. This shows that there

are no singularities of the determinant in the integrand in (4.13) for sa lying
to the right of D̄k. The singularities of the remaining factors are all avoided
in this region for similar reasons.

What is left to check is that there are closed contours Ck,m enclosing
1, . . . ,m [and contained in {s :ℜ(s)≥ 1

2}] such that the integral on the sym-
metric difference of D̄k and Ck,m goes to 0 as m→∞. We choose Ck,m to
be union of the piece of D̄k lying inside B(0,m + 1

2) and the arc on the
boundary of this ball lying to the right of D̄k. But this is actually not hard
to see. We have already checked that f(wa; sa), g(wa; sa), h(wa,wb; sa, sb)
and the determinant have no singularities for sa, sb lying to the right of D̄k,
and since these factors depend on sa, sb only through τ sa, τ sb , which live in
a compact set, they are bounded uniformly. The necessary decay is going
to come from the product |π/ sin(πsa)||ζsa|. In fact, as |ℑ(sa)| → ∞ with
ℜ(sa) = 1

2 we have that |π/ sin(πsa)| decays exponentially while |ζsa| stays
bounded. The same exponential decay applies in the circular part of Ck,m

restricted to |arg(sa)|> π
4 [since here |ℑ(sa)| →∞ as before]. Finally, note

that on the circular piece of Ck,m with |arg(sa)|> π
4 we have that sa stays

bounded away from all integers, so that |π/ sin(πsa)| is uniformly bounded,
while ℜ(sa) → ∞, so that |ζsa| decays exponentially. Putting these facts
together shows that the integrand has the right decay, and gives (4.13).

Our third step is to analytically extend (4.13) to all ζ /∈ R≥0, for which
we need to show that both sides are analytic in ζ in that region. Observe
first that the left-hand side is given by

E
h-fl[eτ (ζτ

Nx(t))] =
∑

n≥0

P
h-fl(Nx(t) = n)

((1− τ)ζτn; τ)∞
.

For each ζ /∈ {(1− τ)−1τ−m}m∈Z≥0
, this series is uniformly convergent on a

neighborhood of ζ , and thus the left-hand side is analytic for ζ /∈R≥0.
Turning to the right-hand side of (4.13), observe that each summand in

the series is clearly analytic in ζ /∈ R≥0. We will use now the fact that the
limit of a uniformly absolutely convergent series of analytic functions is an-
alytic to show that the right-hand side of (4.13) is analytic in ζ in any fixed
neighborhood which avoids R≥0. Consider the kth term of our series and
recall that we have chosen δ′k and ρ′ so that wawb is inside γ̄(0, δk; 1, ρ) for
wa,wb ∈ γ̄k, while on the other hand θ′k < θk and M ′

k > Mk. As a conse-
quence, and thanks to Lemma 4.3 and our choice of parameters, we deduce
as in (4.11) that |h(wa,wb; sa, sb)| ≤ 21/k for wa,wb ∈ γ̄k and sa, sb ∈ D̄k. As
in the previous step, we have that f(wa; sa), g(wa; sa), h(wa,wb; sa, sb) are
uniformly bounded and proceeding as in (4.12) we deduce that the kth term
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of the series on the right-hand side of (4.13) is bounded in absolute value by

ck1
k!

1

(2πi)2k

∫

D̄k
k

d~s

∫

γ̄k
k

d~w
∏

a

∣∣∣∣
π

sin(πsa)

∣∣∣∣
|ζsa|
|wa|

sup
a,b=1,...,k

∣∣∣∣
wa

waτ sa −wb

∣∣∣∣
k

≤ ck2(k
1/2 log(k))k

k!

1

(2πi)k

∫

Dk
k

d~s
∏

a

∣∣∣∣
π

sin(πsa)

∣∣∣∣|ζ
sa| ≤ ck3(k

1/2 log(k))k

k!

for some constants c1, c2, c3 > 0 which are uniform in ζ in a compact subset
of C [here we have used again the fact that |π/ sin(πsa)| decays exponentially
as ℑ(sa)→∞]. This shows that the right-hand side of (4.13) is absolutely
summable, uniformly in ζ on a fixed neighborhood away from R≥0 as re-
quired, and thus finishes the analytic extension of (4.13) to all ζ /∈R≥0.

At this point, we have proved (4.13). We may now deform the contours
D̄k and γ̄k in each of the summands to the contours 1

2 + iR and γ−1,0 by
appealing to Cauchy’s theorem, thus finishing the proof. �

5. Formulas for the KPZ/stochastic heat equation. The one-dimensional
Kardar–Parisi–Zhang (KPZ) “equation” is given by

∂th= 1
2∂

2
xh− 1

2 [(∂xh)
2 −∞] + ξ,

where ξ is a space–time white noise. This SPDE is ill-posed as written but,
at least on the torus, it can be made sense of by a renormalization procedure
introduced by Hairer in [17, 18]. His solutions coincide with the Cole–Hopf
solution (which is known to be the physically relevant solution; see, e.g., the
review [31]) obtained by setting

h(t, x) =− logZ(t, x),(5.1)

where Z is the unique solution to the (well-posed) stochastic heat equation
(SHE)

∂tZ = 1
2∂

2
xZ + ξZ.(5.2)

We will now give a contour integral ansatz for the moments of Z with the
“tilted” half-flat initial data defined by Z(0, x) = e−θx

1x≥0.
To be more precise, we will provide a solution for the delta Bose gas with

this initial data, which we interpret as the solution v(t, x) to the following
system of equations, where we write Wk = {~x ∈R

k :x1 < x2 < · · ·<xk} (see
[6] for more details):

(1) For ~x∈Wk,

∂tv(t,~x) =
1
2∆v(t,~x),

where the Laplacian acts on ~x.
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(2) For ~x on the boundary of Wk, with xa = xa+1,

(∂xa − ∂xa+1 − 1)v(t,~x) = 0.

(3) For ~x∈Wk,

lim
t→0

v(t,~x) = v0(~x).

In the (tilted) half-flat case, we take v0(~x) =
∏

a e
−θxa1xa≥0.

It is widely accepted in the physics literature that, if Z(t, x) is a solution
of the SHE, then v(t;~x) = E[Z(t, x1) · · ·Z(t, xk)] is a solution of the delta
Bose gas. This fact is proved in [29], where it is also shown that there is at
most one solution. Therefore, our formulas below for the solution of the delta
Bose gas are indeed identifying the E[Z(t, x1) · · ·Z(t, xk)]. In any case, in the
last result of this section (Proposition 5.3) we will state a formula both for
the delta Bose gas and for the moments of the solution of the SHE, with a
proof for the second part which is independent of this correspondence.

Given α ∈R
k, we will write ~α+ (iR)k = (α1 + iR)× · · · × (αk + iR).

Proposition 5.1. The delta Bose gas with tilted half-flat initial condi-
tion given by v0(~x) =

∏
a e

−θxa1xa≥0, θ ≥ 0, is solved by

v(t,~x) =
1

(2πi)k

∫

~α+(iR)k
d~z

∏

a<b

(
za − zb

za − zb − 1

za + zb − 1

za + zb

)

(5.3)

×
k∏

a=1

1

za
e(t/2)

∑k
a=1(za−θ)2+

∑k
a=1(za−θ)xa ,

where α1 > α2 + 1> · · ·>αk + k− 1> k− 1 and x1 < · · ·< xk.

Proof. We only verify that (3) is satisfied, the rest follows as in the
case of δ0 initial condition [6]. We need to show that

lim
t→0

v(t,~x) =

k∏

a−1

e−θxa
1xa≥0.

We will denote the integrand by Ik(z1, . . . , zk). Assume first that x1 < 0.

Thanks to the factor e(1/2)t(z1−α)2 we may move the z1 contour to α1 +
R + iR, R > 0. Note that we do not cross any poles. Changing variables
z1 7→ z1 +R gives

v(t,~x) =
1

(2πi)k

∫

~α+iR
d~zIk(z1 +R,z2, . . . , zk).

Now me may compute the limit t→ 0, which removes the quadratic term in
the exponential. The resulting integrand in limt→0 v(t,~x) contains a factor
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1
z1+Re

x1(z1+R), and since x1 < 0, we may take R → ∞ to deduce without
difficulty that the integral vanishes in this case.

So we assume now that x1 ≥ 0 (and so xa ≥ 0 for all a = 1, . . . , k). Our
goal is to move the zk contour to −M + iR (with M >α1). We may do this
thanks to the Gaussian factor as before. Observe that the poles for zk on
{−M ≤ℜ(zk)≤ αk} are 0 and −za for a < k. We begin with the second type
of pole. We have, for ℓ < k,

Res
zk=−zℓ

Ik(z1, . . . , zk)

=

∫
d~z Ik−1(z1, . . . , zk−1)

2zℓe
−(zℓ+α)xk+(1/2)t(zk−α)2

2zℓ − 1

1

−zℓ

×
k−1∏

a=1
a6=ℓ

za + zℓ
za + zℓ − 1

za − zℓ − 1

za − zℓ

=

∫
d~z Ik−2(z1, . . . , zℓ−1, zℓ+1, . . . , zk−1)

× −2e−zℓ(xk−xℓ)−α(xℓ+xk)+(1/2)t(zℓ−α)2+(1/2)t(zk−α)2

zℓ(2zℓ − 1)

×
k−1∏

b=ℓ+1

1 + zℓ − zb
zℓ − zb − 1

.

Observe that, due to the cancellation leading to the second line, the zℓ
integral has no poles on {ℜ(zℓ)> αℓ}. As before we may freely move the zℓ
contour to αℓ +R+ iR, R > 0. Changing variables zℓ 7→ zℓ +R and taking
t→ 0 yields an integral over the original z1, . . . , zk−1 contours and containing
a factor e−(zℓ+R)(xk−xℓ)−α(xℓ+xk) and no quadratic term in the exponent.
Since xk > xℓ, taking R→∞ shows that this term vanishes.

We still need to compute the pole at zk = 0, but let us first observe that the
zk integral over the new contour −M+iR also vanishes after taking the limit
t→ 0. In fact, proceeding as above, now changing variables zk → zk −M ,
the resulting k-fold integral equals

v(t,~x) =
1

(2πi)k

∫

~α+iR
d~z Ik(z1, z2, . . . , zk −M).

In the limit t → 0, the integrand contains a factor of the form exk(zk−M),
and since we are assuming xk > 0 we may take M →∞ to deduce that the
whole integral goes to 0.
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So the only term left in the limit t→ 0 is the one corresponding to the
pole at zk = 0. We have

Res
zk=0

Ik(z1, . . . , zk)

=

∫

αj+iR
d~z Ik−1(z1, . . . , zk−1)e

(1/2)tα2−αxk

k−1∏

a=1

(
za

za − 1

za − 1

za

)
.

The last product is obviously 1, so we have proved that

lim
t→0

v(t,~x) = lim
t→0

1xk≥0

∫

αj+iR
d~z Ik−1(z1, . . . , zk−1)e

(1/2)tα2−αxk

= 1xk≥0e
−αxk lim

t→0
v(t, (x1, . . . , xk−1)).

The result follows by induction. �

Observe that, as should be expected, multiplying (5.3) by θk and letting
θ → ∞ yields (after shifting contours by θ and changing variables za 7→
za + θ) the solution of [6] for the delta Bose gas with narrow wedge initial
condition [which corresponds to Z(0, x) = δ0(x) at the level of the SHE],
given by

v0(t,~x) =
1

(2πi)k

∫

~α+(iR)k
d~z

∏

a<b

za − zb
za − zb − 1

k∏

a=1

e(t/2)
∑k

a=1 z
2
a+

∑k
a=1 zaxa(5.4)

for x1 < · · ·< xk.
When θ = 0, (5.3) gives the solution for the half-flat initial condition

Z(0, x) = 1x≥0, which can also be obtained by taking the weakly asymmetric
limit of (1.7) (see the proof of Proposition 5.3 for a similar computation).

By linearity of (5.2), we have that, if Z(0, y; t, x) is the solution to the SHE
with initial data Z(0, y; 0, x) = δy(x), then Z(t, x) =

∫∞
−∞ dyZ(0, y, t, x)f(y)

solves the SHE with initial condition Z(0, x) = f(x), and hence

Ef [Z(t, x1) · · ·Z(t, xk)] =

∫

Rk

d~yE

[∏

a

Z(0, ya; t, xa)

]∏

a

f(ya)

(with the subscript in Ef denoting the initial condition for the SHE). Al-
though we do not have a formula for the integrand on the right-hand side
in general note that, by statistical time reversal invariance, we do have

E

[∏

a

Z(0, ya; t, xa)

]
= E

[∏

a

Z(0, xa; t, ya)

]
.

Now if all the xa’s are the same, we can use the spatial statistical invariance
and symmetry to see that E[

∏
aZ(0, xa; t, ya)] = E[

∏
aZ(t, x− ya)]. Finally,
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changing variables and then restricting to the Weyl chamber Wk = {~x ∈
R
k :x1 < · · ·< xk}, we obtain

Ef [Z(t, x)k] = k!

∫

Wk

d~yE

[∏

a

Z(t, yk − x)

]∏

a

f(x− ya).

Specializing to the tilted half-flat initial condition given by f = fθ with
fθ(x) = e−θx

1x≥0, and in view of the relation between the delta Bose gas
and the moments of the SHE discussed above, this suggests an alternative
route for obtaining a formula for v(t;x, . . . , x) in this case, namely

v(t;x, . . . , x) = k!

∫

Wk

d~y v0(t;~y)
∏

a

e−θ(x−ya)1ya≤x(5.5)

with v0 as in (5.4). Although this identity can be justified directly from the
linearity of the delta Bose gas itself, it is not at all clear at a first look that
this alternative computation would lead to the same formula as the one in
Proposition 5.1.

To see directly why the above formula holds, we start by using the explicit
formula for v0(t;~y) and computing the ya integrals over Wk, which yield

k!

(2πi)k

∫

~α+(iR)k
d~z

∏

a<b

za − zb
za − zb − 1

k∏

a=1

1

z1 + · · ·+ za
e(t/2)

∑k
a=1 z

2
a+

∑k
a=1 zax.

Now deform the za contours one by one so that they all coincide with the
leftmost one. The answer is obtained by an argument analogous to the proof
of Proposition 3.3, and is given by

∑

λ⊢k
λ=1m12m2 ···

k!

m1!m2! · · ·
1

(2πi)ℓ(λ)

∫

(α+iR)ℓ(λ)
d~wdet

[
1

wa + λa −wb

]ℓ(λ)

λ1,λb=1

×H(w1,w1 + 1, . . . ,w1 + λ1 − 1, . . . ,wℓ(λ),wℓ(λ)+1, . . . ,wℓ(λ)+λℓ(λ)−1)

with

H(z1, . . . , zℓ) =
ℓ∏

a=1

e(t/2)z
2
a+zax

∑

σ∈Sℓ

∏

a

1

zσ(1) + · · ·+ zσ(a)

∏

a>b

zσ(a) − zσ(b) − 1

zσ(a) − zσ(b)
.

Using the same procedure as in (3.9) to get rid of the multinomial coefficient
k!

m1!m2!···
, the above turns into

k∑

ℓ=0

1

ℓ!

∑

m1,...,mℓ≥1

m1+···+mℓ=k

1

(2πi)ℓ

∫

(α+iR)ℓ
d~w det

[
1

wa +ma −wb

]ℓ

λa,λb=1
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×
ℓ∏

a=1

e(t/2)z
2
a+zax

×H(w1,w1 +1, . . . ,w1 +m1 − 1, . . . ,wℓ,wℓ+1, . . . ,wℓ +mℓ − 1).

In order to compute the sum over the symmetric group appearing in the
definition of H , we will appeal to the following summation formula, which
was used in [24].

Lemma 5.2. For q1, . . . , qN , κ ∈C,
∑

σ∈SN

µ~q(σ)
∏

a<b

qσ(a) − qσ(b) − iκ

qσ(a) − qσ(b)
=

∏

a<b

qa + qb + iκ

qa + qb
,

where

µ~q(σ) := q−1
σ(1)(qσ(1) + qσ(2))

−1 · · · (qσ(1) + · · ·+ qσ(N))
−1

∏

a

qa.

This identity was discovered and checked for small values of N on Math-
ematica by Le Doussal and Calabrese. The formula can, in fact, be derived
as a suitable limit of an analogous symmetrization identity proved in [22] in
the context of ASEP with flat initial condition (see Lemma 2 in that paper).

Using the lemma, we obtain

H(z1, . . . , zℓ) =

ℓ∏

a=1

e(t/2)z
2
a+zax

∏

a<b

za + zb − 1

za + zb
.

Replacing this formula above and doing some algebra leads directly to (5.9)
below, which as we will see next is another way of writing the solution given
in Proposition 5.1 when all the xa’s are the same, thus proving (5.5).

In what follows, we will turn our formula for the tilted half-flat delta Bose
gas (with all xa’s the same) into one in which all the integration contours
coincide. As we will see, this alternative version of our half-flat formula is
essentially equivalent to the formulas given in [23, 24] [see (5.9) and the
discussion that follows it]. We will argue afterwards (see Proposition 5.3),
based on the convergence of ASEP to KPZ, that this formula does indeed
give the half-flat SHE moments.

The first step is to deform the za contours in (5.3) one by one so that they
all coincide with αk + iR. The arguments are similar to the ones we used
for ASEP in Section 3, so we only sketch them. We proceed similarly to the
proof of Proposition 3.3, now accounting for poles of the form za = zb + 1
for a > b and computing the corresponding residues. Doing this in the case
that all xa’s are equal, using the symmetrization identity

∑

σ∈Sk

∏

a>b

zσ(a) − zσ(b) − 1

zσ(a) − zσ(b)
= k!,
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which plays the role of (3.6) (and follows from suitably rescaling it5), and
rewriting the sum over partitions as in (3.9) yields the following formula
for the moments of the delta Bose gas with initial condition v(0;x, . . . , x) =
e−θx

1x≥0 (here, and below, x is repeated k times in the argument of v):

v(t;x, . . . , x) = k!
k∑

ℓ=0

1

ℓ!

∑

n1,...,nℓ,
n1+···+nℓ=k

1

(2πi)ℓ

∫

(α+iR)ℓ
d~wdet

[
1

wa + na −wb

]ℓ

a,b=1

× H̄(w1, . . . ,w1 + n1 − 1, . . . ,wℓ, . . . ,wℓ + nℓ − 1)

with

H̄(z1, . . . , zm) =
∏

a<b

za + zb − 1

za + zb

m∏

a=1

1

za
e(t/2)(za−θ)2+x(za−θ),

where α> 0. Rewriting the result as in the proof of Theorem 1.3 yields (after
some simplification)

v(t;x, . . . , x)

= 2kk!
k∑

ℓ=0

1

ℓ!

∑

n1,...,nℓ,
n1+···+nℓ=k

1

(2πi)ℓ

∫

(α+iR)ℓ
d~wdet

[
1

wa + na −wb

]ℓ

a,b=1

×
∏

a

Γ(2wa + na − 1)

Γ(2wa +2na − 1)
(5.6)

× exp

{
1

2
t

[
1

3
n3
a −

1

2
n2
a +

1

6
na + na(wa − θ)2 + na(na − 1)wa

]

+ x

[
1

2
n2
a −

1

2
na + na(wa − θ)

]}

×
∏

a<b

Γ(wa +wb + na − 1)Γ(wa +wb + nb − 1)

Γ(wa +wb − 1)Γ(wa +wb + na + nb − 1)
.

Now we change variables wa 7→wa − 1
2(na − 1) to obtain

v(t;x, . . . , x)

= 2kk!
k∑

ℓ=0

1

ℓ!

∑

n1,...,nℓ≥1
n1+···+nℓ=k

1

(2πi)ℓ

∫

α+(1/2)(n1−1)+iR
dw1 · · ·(5.7)

5It also corresponds to a certain degeneration of the special case of the Hall–Littlewood
polynomial normalization given in Section III.1 of [27].
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×
∫

α+(1/2)(nℓ−1)+iR
dwℓIθ(~w,~n)

with

Iθ(~w,~n)

= det

[
1

wa −wb + (1/2)na + (1/2)nb

]ℓ

a,b=1

(5.8)

×
∏

a

exp

{
t

[
1

24
n3
a −

1

24
na +

1

2
na(wa − θ)2

]
+ xna(wa − θ)

}

×
∏

a

Γ(2wa)

Γ(2wa + na)

×
∏

a<b

Γ(wa +wb + (1/2)(na − nb))Γ(wa +wb − (1/2)(na − nb))

Γ(wa +wb − (1/2)(na + nb))Γ(wa +wb + (1/2)(na + nb))
.

The last step is to shift back the wa contours from α + 1
2(na − 1) + iR to

α+ iR. As we will see, we will not cross any poles as we do this. To be more
precise, we begin by moving the w1 contour from α+ n1−1

2 + iR to α+ iR.
There are three types of possible singularities, the first from the Cauchy
determinant and the other two from the Gamma functions:

(1) w1 =wb − 1
2(n1 + nb) for b > 1.

(2) w1 =−ℓ for ℓ ∈ Z≥0.
(3) w1 =−wb ± 1

2(n1 − nb)− ℓ for ℓ ∈ Z≥0 and b > 1.

The first two types of singularity lie to the left of the origin, whereas our
deformation region lies entirely to the right of the origin. Turning to (3), both
singularities may or may not lie inside the deformation region, but in any
case the singularity is removable: the simple pole coming from the numerator
cancels with the zero of the denominator since w1 = −wb ± 1

2(n1 − nb)− ℓ

implies w1 +wb ∓ 1
2(n1 − nb) =−ℓ ∈ Z<0, which is a zero of 1

Γ(·) .

It remains to show that, having moved w1, . . . ,wj−1 from their respective
starting points to α+iR, we do not incur any residues when moving wj from

α+
nj−1
2 + iR to α+ iR. The argument is analogous to the case w1 and is

left to the reader.
This leads to the following.

Proposition 5.3. For the delta Bose gas with tilted half-flat initial con-
dition v0(t;~x) =

∏
a e

−θxa1xa≥0 we have

v(t;x, . . . , x) = 2kk!

k∑

ℓ=0

1

ℓ!

∑

n1,...,nℓ≥1

n1+···+nℓ=k

1

(2πi)ℓ

∫

(α+iR)k
d~w Iθ(~w;~n)(5.9)
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with Iθ given by (5.8). Moreover, in the pure half-flat initial condition cor-
responding to θ = 0, the same identity holds for the moments of the SHE,
that is,

E
h-fl[Z(t, x)k] = 2kk!

k∑

ℓ=0

1

ℓ!

∑

n1,...,nℓ≥1
n1+···+nℓ=k

1

(2πi)ℓ

∫

(α+iR)k
d~w I0(~w;~n).

In [24], the authors compute a formal series6 for the generating function
of Z(t, x) using the explicit basis of eigenfunctions of the delta Bose gas [25,
28]. The generating function is expanded in the “number of strings”, which
essentially corresponds to the parameter ℓ in (5.9) (the “strings” essentially
correspond to n1, . . . , nℓ, and index the eigenfunctions). The coefficients in
this expansion are given in their formula (88), and one can check that, as
expected, that formula coincides essentially with (5.9). By this we mean that,
for fixed n1, . . . , nℓ, the summand in (5.9) coincides7 with the summand on
the right-hand side of (88) in [24] with ns = ℓ and ma = na for a= 1, . . . , ns.
This correspondence is consistent with (39) in their paper. See also [23].

Proof of Proposition 5.3. The delta Bose gas case follows directly
from the above discussion. The formula in the case of the moments of the
half-flat SHE can be recovered directly as a weakly asymmetric limit of the
half-flat ASEP moment formula given in Theorem 1.3. Let us briefly sketch
how this is done.

Recall from (1.6) that (for the half-flat case) h(t, x) = 2Nx(t) − x. Ac-
cording to the WASEP scaling theory (see [5]), if γ = q − p = ε1/2 and we
let

νε = 1− 2
√
pq =

1

2
ε+

1

8
ε2 +O(ε3),

(5.10)

λε =
1

2
log

(
q

p

)
= ε1/2 +

1

3
ε3/2 +O(ε5/2),

then

hε(t, x) := λεh(ε
−3/2t/γ, ε−1x)− νεε

−2t

6As written, the computation in [24] is only formal, since in view of (88) in their paper
the series given in their formula (40) is clearly divergent. Nevertheless, their computation
implicitly leads to a formula like (5.9) in view of their formula (39).

7A diligent reader will notice two minor differences between (5.9) and the formula in
[24]. First, the formulas differ by a factor of

∏
a(−1)na in the integrand, reflecting the fact

that their generating function computation is implicitly calculating E[(−Z)k], as opposed
to E[Zk] [see (40) in their paper]. Second, one needs to replace t by 2t in our formula to
recover theirs. This is because in their definition of the SHE the Laplacian term lacks the
prefactor 1

2
[see (8) in their paper and compare with (5.2)].
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converges to the Cole–Hopf solution h(t, x) of KPZ starting with h(0, x) = 0
for x > 0 and h(0, x) =∞ for x < 0, which in view of (5.1) corresponds to
Z(0, x) = 1x≥0. Translating back to Nx(t), and in view of (5.10), we have

Nε−1x(ε
−2t) =

1

2λε
[hε(t, x) + νεε

−2t] +
1

2
ε−1x

≈ 1

2
ε−1/2h(t, x)− 1

48
ε−1/2t+

1

4
ε−3/2t+

1

2
ε−1x.

Therefore, since log(τ)≈−2ε1/2, we deduce that

τNε−1x(ε
−2t)−(1/4)ε−3/2t−(1/2)ε−1x ≈ e−h(t,x)−(1/24)t = e−(1/24)tZ(t, x).

This, together with tightness of the moments (which, e.g., can be obtained
by adapting the arguments in Section 2.15 of [31]), gives

E
h-fl[τk(Nε−1x(ε

−2t)−(1/4)ε−3/2t−(1/2)ε−1x+(1/24)t)] →
ε→0

E
h-fl[Z(t, x)k].(5.11)

Now in view of (1.12), the left-hand side of (5.11) is given by

kτ !
k∑

ℓ=0

1

ℓ!

∑

n1,...,nℓ≥1
n1+···+nℓ=k

1

(2πi)ℓ

∫

γℓ
−1,0

d~w det

[ −1

waτna −wb

]ℓ

a,b=1

×
∏

a

e(1/24)natτ−((1/4)ε−3/2t−(1/2)ε−1x)naf(wa;na)g(wa;na)(5.12)

×
∏

a<b

h(wa,wb;na, nb).

Observe that the two sums are finite, so in order to obtain (5.9) it is enough
to show that the multiple integral converges to I0(~w;~n). This results in a rela-
tively simple problem in asymptotic analysis. The starting point for the criti-

cal point analysis is to consider the product τ−((1/4)ε−3/2t−(1/2)ε−1x)naf(wa;na),
which is given by

(1− τ)na exp

{(
1

1 +wa
− 1

1 + τnawa
− 1

4
log(τ)

)
ε−3/2t

− 1

2
ε−1x log(τ)na + log

(
1 + τnawa

1 +wa

)
(ε−1x− 1)

}
.

Scaling wa near 1 through the change of variables wa 7→ 1 − (1 − τ)w̃a,
the exponent above can be written as (16n

3
a +

1
2n

2
aw̃a +

1
2naw̃

2
a)t + (12n

2
a +

naw̃a)x + O(ε1/2). The change of variables (for all the ℓ variables) gives
a prefactor of (−1)ℓ(1 − τ)ℓ, while the factor

∏
a(1 − τ)na coming from
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the above product turns into (1 − τ)k. We leave it to the reader to ver-
ify that, with this scaling, det[ −1

waτna−wb
]ℓa,b=1 ≈ (1− τ)−ℓ det[ 1

w̃a+na−w̃b
]ℓa,b=1,∏

a g(wa;na)≈ 2k(1− τ)−k
∏

a
Γ(2w̃a+na)
Γ(2w̃a+2na)

and

∏

a<b

h(wa,wb;na, nb)≈
∏

a<b

Γ(w̃a + w̃b + na)Γ(w̃a + w̃b + nb)

Γ(w̃a + w̃b + na + nb)Γ(w̃a + w̃b)
.

Note that near the critical point wa = 1 the contour γ−1,0 turns into iR,
negatively oriented. Introducing an additional factor (−1)ℓ to flip the ori-
entation of the resulting contour, we deduce from the above estimates that
(5.12) is approximately

2kk!

k∑

ℓ=0

1

ℓ!

∑

n1,...,nℓ,
n1+···+nℓ=k

1

(2πi)ℓ

∫

(iR)ℓ
d~̃w det

[
1

w̃a + na − w̃b

]ℓ

a,b=1

×
∏

a

Γ(2w̃a + na)

Γ(2w̃a +2na)

×
∏

a

exp

{
t

[
1

6
n3
a +

1

2
n2
aw̃a +

1

2
naw̃

2
a +

1

24
na

]
+ x

[
1

2
n2
a + naw̃a

]}

×
∏

a<b

Γ(w̃a + w̃b + na)Γ(w̃a + w̃b + nb)

Γ(w̃a + w̃b)Γ(w̃a + w̃b + na + nb)
.

Turning this into a rigorous proof involves estimating the integrand away
from the critical point in order to show that the only contribution from the
integral that survives in the limit is that near wa = 1. This is not hard to
do in this case because we do not need an estimate which is uniform in
ℓ (which is the basic source of difficulty in turning the calculations of the
Appendix into a rigorous proof), so we will leave the details to the reader.
Now changing variables w̃a 7→ w̄a − 1

2 turns the above formula into (5.6)

(with α= 1
2 ), which by (5.7) gives the desired result. �

APPENDIX: ASYMPTOTICS FOR HALF-FLAT ASEP AND THE
AIRY2→1 MARGINALS

In this section, we provide a formal critical point analysis of the long-time
asymptotics of the τ -Laplace transform of τNx(t) in the half-flat case which,
in view of (1.15), gives the asymptotic distribution of the fluctuations of the
height function h(t, x).
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More precisely, our derivation will provide a nonrigorous confirmation of
the conjectured asymptotics

lim
t→∞

P
h-fl

(
h(t/(q − p), t2/3x)− (1/2)t− t1/3x21x≤0

t1/3
≥−r

)

(A.1)
= P(A2→1(2

−1/3x)≤ 21/3r),

where A2→1 is the Airy2→1 process. For background on this process and
more details about this conjecture, see [32].

Our starting point is the formula for the eτ -Laplace transform
of τNx(t) given in Theorem 1.4, where we take ζ =

−τ−(1/4)t−(1/2)t2/3x+(1/2)t1/3r−(1/4)t1/3x2
1x≤0 and let r̃ = r− 1

2x
2
1x≤0:

E
h-fl[eτ (−τNt2/3x

(t/γ)−(1/4)t−(1/2)t2/3x+(1/2)t1/3 r̃)]

=

∞∑

k=0

1

k!

1

(2πi)2k

∫

(δ+iR)k
d~s

∫

γk
−1,0

d~w det

[ −1

waτ sa −wb

]k

a,b=1

(A.2)
×
∏

a

τ−[(1/4)t+(1/2)t2/3x−(1/2)t1/3r]sa f̃(wa; sa)g(wa; sa)

×
∏

a<b

h(wa,wb; sa, sb)

for δ ∈ (0,1), f, g and h as in (1.9), and with f̃ defined as f with t replaced
by t/γ (recall that γ = q − p).

We will perform a formal critical point analysis on the right-hand side.
The reason the limit is not rigorous is that so far we have not been able to
control the double product

∏
a<b h(wa,wb; sa, sb) on the part of the contour

away from the critical point, nor find an alternative contour where this can
be done.8 The derivation here is done to clarify the algebraic structure of
the expansion around the critical point where one sees the Airy crossover
distributions.

The leading order (in t) factor in the integrand comes f̃(wa, sa) and the
factor τ−(1/4)t, and can be written as

∏
a exp[t(

1
1+wa

− 1
1+τsawa

− 1
4sa log(τ))].

8More precisely, |h(wa,wb;sa, sb)| can be bounded uniformly by some constant C, but

this constant is necessarily larger than one. This yields an estimate of the form Ck2

for

some C > 1, which is too big (note that
∑

k≥0
1
k!
Ck2

is divergent). Therefore the rigorous
asymptotics remains an interesting open problem. Observe that if the double product
could be turned into a determinant [as happens for the first double product in (3.2),
which turns into the determinant in (A.2)], then this problem would disappear, because
by Hadamard’s bound our estimate on |h(wa,wb;sa, sb)| would essentially yield a factor
Ckkk/2, which is small enough for our purposes.
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One can verify that the only critical point of 1
1+w − τ

1+τsw − 1
4s log(τ) occurs

at (w,s) = (1,0). Moreover, the Hessian of this function vanishes at this
point, while the third-order partial derivatives are not all 0, which suggests
a t1/3 scaling. On the other hand, this suggests that the wa contour should
be chosen to cross the line R≥0 at wa = 1. In view of this we change variables
as follows:

wa = 1+ t−1/3w̃a, sa =− 1

log(τ)
t−1/3s̃a.(A.3)

We will need the following lemma.

Lemma A.1. Let a ∈R, ℓ ∈ Z and k ∈ Z>0. If −ℓ= kj for some j ∈ Z≥0

(i.e., ℓ= 0 or k is a factor of −ℓ) then, as ε→ 0,

(τ ℓ(1 + εa); τk)∞ =−εa
∞∏

n=0
n 6=j

(1− τkn+ℓ) +O(ε2).

On the other hand, if ℓ 6= 0 and k is not a factor of −ℓ then, as ε→ 0,

(τ ℓ(1 + εa); τk)∞ = (τ ℓ; τk)∞

[
1− εa

∞∑

m=0

τkm+ℓ

1− τkm+ℓ

]
+O(ε2).

Proof. In the first case, we have τkj+ℓ = 1 so

(τ ℓ(1 + εa); τk)∞ =
∞∏

n=0

[1− (1 + εa)τkn+ℓ]

= [1− (1 + εa)]

∞∏

n=0
n 6=j

[1− (1 + εa)τkn+ℓ]

=−εa

∞∏

n=0
n 6=j

(1− τkn+ℓ) +O(ε2).

In the second case, we have

(τ ℓ(1 + εa); τk)∞ =
∞∏

n=0

[(1− τkn+ℓ)− εaτkn+ℓ]

=

∞∏

n=0

[1− τkn+ℓ]− εa

∞∑

m=0

τkm+ℓ
∞∏

n=0
n 6=m

[1− τkn+ℓ] +O(ε2)

≈ (τ ℓ; τk)∞ − εa(τ ℓ; τk)∞

∞∑

m=0

τkm+ℓ

1− τkm+ℓ
. �
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The scaling (A.3) leads to the following asymptotics:

π

sin(−πsa)

1 +wa

1 + τ sawa
(1− τ)sa ≈ log(τ)t1/3

s̃a
,

1

waτ sa −wb
≈ τ−1t1/3

w̃a − w̃b − s̃a
,

t

[
1

1 +wa
− 1

1 + τ sawa
− 1

4
sa log(τ) +

1

2
t1/3sar log(τ)

]

≈ 1

48
(s̃3a − 3s̃2aw̃a +3s̃aw̃

2
a)− r̃s̃a,

(
1 + τ sawa

1 +wa
τ−(1/2)sa

)t2/3x

≈
(
1− s̃2a − 2s̃aw̃a

8t2/3

)t2/3x

≈ e−(1/8)(s̃2a−2s̃aw̃a)x,

while, using Lemma A.1,

(−wa; τ)∞
(−τ sawa; τ)∞

(τ2saw2
a; τ)∞

(τ saw2
a; τ)∞

≈ (1 + 2(w̃a − s̃a)t
−1/3; τ)∞

(1 + (2w̃a − s̃a)t−1/3; τ)∞

≈ 2(s̃a − w̃a)

s̃a − 2w̃a
,

and similarly

(wawb; τ)∞(τ sa+sbwawb; τ)∞
(τ sawawb; τ)∞(τ sbwawb; τ)∞

≈ (w̃a + w̃b)(w̃a + w̃b − s̃a − s̃b)

(w̃a + w̃b − s̃a)(w̃a + w̃b − s̃b)
.

Additionally, there is a factor of (−1)kt−2k/3(τ/ log(τ))k coming from the
change of variables which, except for the (−1)k, cancels exactly with fac-
tors coming out from the first line of the above list of asymptotics. To
write the limit choose first δ = −t−1/3/(2 log(τ)) in (A.2) and deform the
sa contour so that it departs the real axis at angles ±π/3, and likewise
deform the wa contours so that they go through 1 and depart from that
point at angles ±π/3. The limiting contours then become 1

2 + 〈 for s̃a
and 〈 for w̃a, where 〈 consists on two infinite rays departing 0 at an-
gles ±π/3 (oriented with increasing imaginary part) and thus using the
above asymptotics in (A.2) we obtain that the formal limit as t → ∞ of

E[eτ (−τNt2/3x
(t/(q−p))−(1/4)t−(1/2)t2/3x+(1/2)t1/3 r̃)] is given by

Fx(r̃) =

∞∑

k=0

1

k!

1

(2πi)k

∫

(1/2+〈)k
d~̃s

1

(2πi)k

∫

(〈)k
d~̃w det

[
1

w̃b − w̃a + s̃a

]k

a,b=1

×
∏

a

exp

{
1

48
(s̃3a − 3s̃2aw̃a +3s̃aw̃

2
a)−

1

2
r̃s̃a −

1

8
(s̃2a − 2s̃aw̃a)x

}
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× 2(s̃a − w̃a)

s̃a(s̃a − 2w̃a)

×
∏

a<b

(w̃a + w̃b)(w̃a + w̃b − s̃a − s̃b)

(w̃a + w̃b − s̃a)(w̃a + w̃b − s̃b)
.

Now we introduce the change of variables w̃a = ua and s̃a = ua− va. The ua
contour is 〈, but we may freely deform it (thanks to the cubic terms in the
exponent) to 1+ 〈. A priori va depends on ua, but again one can check that
it can be deformed to 〉, which is defined in the same way as 〈 but departing
the origin at angles ±2π/3. We obtain

Fx(r̃) =

∞∑

k=0

1

k!

1

(2πi)k

∫

(1+〈)k
d~u

1

(2πi)k

∫

(〉)k
d~v det

[
1

ub − va

]k

a,b=1

×
∏

a

exp

{
1

48
(u3a − v3a) +

1

8
(u2a − v2a)x− 1

2
(ua − va)r̃

}
2va

u2a − v2a

×
∏

a<b

(ua + ub)(va + vb)

(ua + vb)(va + ub)
.

Now we note that the determinant and the cross-product above simplify into
a single determinant: using the Cauchy determinant formula

det

[
1

xa − yb

]k

a,b=1

=

∏
a<b(xa − xb)(yb − ya)∏

a,b(xa − yb)
,

we have

det

[
1

ub − va

]k

a,b=1

∏

a<b

(ua + ub)(va + vb)

(ua + vb)(va + ub)

=
1∏

a(ua − va)

∏

a<b

(u2b − u2a)(v
2
a − v2b )

(u2a − v2b )(u
2
b − v2a)

=

∏
a(v

2
a − u2a)∏

a(va − ua)
det

[
1

u2a − v2b

]k

a,b=1

=
∏

a

(ua + va)det

[
1

u2b − v2a

]k

a,b=1

.

Using this above, we get

Fx(r̃) =
∞∑

k=0

1

k!

1

(2πi)k

∫

(1+〈)k
d~u

1

(2πi)k

∫

(〉)k
d~v det

[
1

u2b − v2a

]k

a,b=1

×
∏

a

2va
ua − va

e(1/48)(u
3
a−v3a)−(1/8)(u2

a−v2a)x−(1/2)(ua−va)r̃
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=

∞∑

k=0

1

k!

1

(2πi)k

∫

(1+〈)k
d~u

× det

[
1

2πi

∫

〉
dv

2v

ua − v

e(1/48)u
3
a−(1/8)u2

ax−(1/2)ua r̃

e(1/48)v
3−(1/8)v2x−(1/2)vr̃

1

u2b − v2a

]k

a,b=1

.

This last expression is just the series expansion of a Fredholm determinant:

Fx(r̃) = det(I −K)L2(1+〈)

with

K(u,u′) =
1

2πi

∫

〉
dv

2v

u− v

e(1/48)u
3+(1/8)u2x−(1/2)ua r̃

e(1/48)v
3−(1/8)v2x−(1/2)vr̃

1

u′2 − v2

=
1

2πi

∫ ∞

0
dλ

∫

〉
dv

2v

u′2 − v2
e(1/48)u

3+(1/8)u2x−u(λ+(1/2)r̃)

e(1/48)v
3+(1/8)v2x−v(λ+(1/2)r̃)

.

For more details on Fredholm determinants, see Section 2 of [32]. Using the

cyclic property of the Fredholm determinant, we deduce that Fx(r̃) = det(I−
K̃)L2([0,∞)) with K̃(λ,λ′) = 1

(2πi)2

∫
du

∫
dv 2v

u2−v2
e(1/48)u

3+(1/8)u2x−u(λ+(1/2)r̃)

e(1/48)v
3+(1/8)v2ax−v(λ′+(1/2)r̃)

and the same u and v contours. Scaling u and v by 24/3 and changing
variables λ 7→ 2−4/3λ− 1

2r and λ′ 7→ 2−4/3λ′ − 1
2r finally yields

lim
t→∞

E[eτ (−τNt2/3x
(t/γ)(−1/4)t−(1/2)t2/3x+(1/2)t1/3 r̃)]

(A.4)
= det(I −K2→1)L2([21/3r,∞))

with

K2→1(λ,λ′) =
1

(2πi)2

∫

1+〈
du

∫

〉
dv

2v

u2 − v2
e(1/3)u

3+2−1/3u2x−u(λ−2−2/3x2
1x≤0)

e(1/3)v
3+2−1/3v2x−v(λ′−2−2/3x21x≤0)

.

The u and v contours can be easily deformed to match those appearing in the
kernel inside the Fredholm determinant which gives the finite dimensional
distributions of the Airy2→1 process, see [10]. Comparing with that formula,
we deduce that the right-hand side of (A.4) equals P(A2→1(2

−1/3x)≤ 21/3r)
which, in view of (1.15), finishes our formal derivation of (A.1).
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