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Resumen

En esta tesis se aborda el problema de analizar el rendimiento de cuatro algoritmos de
super-resolución multi-imagen cuando éstos son usados para recuperar imágenes astronómicas
de alta resolución. Super-resolución multi-imagen es el nombre dado a los procesos que
usan un conjunto de imágenes de baja resolución de una misma escena para obtener una
nueva imagen con mayor resolución espacial, además de menos desenfoque y ruido, que
cualquiera de las imágenes utilizadas como input. Estos algoritmos funcionan mediante la
minimización de una función de costo, donde un prior es incluido para regularizar el proceso
de reconstrucción, usando para ello un procedimiento de optimización basado en el cálculo
del gradiente. Cada uno de los cuatro algoritmos desarrollados corresponde a una de las
cuatro posibles combinaciones entre dos priors (Laplaciano y gradiente) para la función de
costo y dos mecanismos para calcular su gradiente (la expresión anaĺıtica de dicho gradiente
y la aproximación de Zomet).

El principal objetivo de esta investigación consiste en estudiar el comportamiento del
rendimiento de estos algoritmos en función de la Razón Señal-a-Ruido (SNR) de la imágenes
de baja resolución empleadas como input en el proceso de reconstrucción. Para lograr este
objetivo se requiere hacer uso de simulaciones, ya que se necesitan conjuntos de imágenes de
baja resolución caracterizados por distintos valores de SNR para testear el funcionamiento de
los cuatro algoritmos. Las imágenes simuladas fueron obtenidas usando dos herramientas de
simulación, una basada en la replicación del proceso mediante el cual una imagen es adquirida
por un dispositivo y que se conoce como Modelo de Observación de Imágenes (IOM), y otra
basada en un enfoque de Monte Carlo y cuyo nombre es PhoSim.

Considerando un rango de siete valores de SNR, muestreados en intervalos regulares entre
1 y 100 con una escala logaŕıtmica, y usando un grupo de 100 templates de alta-resolución, se
generaron 700 conjuntos, compuesto cada uno por 10 imágenes simuladas de baja resolución,
utilizando para ello las dos herramientas de simulación previamente mencionadas. Luego,
cada uno de los cuatro algoritmos fue empleado para reconstruir una imagen de alta resolución
usando cada uno de estos conjuntos como input. El experimento descrito se llevó a cabo en
dos instancias, primero usando registro af́ın para alinear las imágenes de baja resolución
contenidas en cada conjunto utilizado como input, y luego utilizando registro cuadrático
para cumplir dicha tarea. El rendimiento de los algoritmos fue evaluado, luego de realizar
estos experimentos, usando como métricas el Peak de la Razón Señal-a-Ruido (PSNR) y el
χ2 reducido.

De acuerdo a los resultados obtenidos, para cada uno de los algoritmos el PSNR aumenta
a medida que la SNR crece, mientras que el χ2 reducido se mantiene relativamente constante
independientemente de la SNR. Los resultados correspondientes al PSNR sugieren que para
valores pequeños de la SNR la aproximación de Zomet y el prior Laplaciano representan la
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mejor opción, mientras que para valores altos de la SNR la expresión anaĺıtica del gradiente
junto al prior gradiente son la mejor opción, aunque, en este caso, por un margen estrecho. La
magnitud de la disminución de rendimiento que se observa cuando los parámetros de registro
y desenfoque son estimados es mayor cuando se usa PhoSim que cuando se usa el IOM. La
utilización de diferentes procedimientos de registro no implicó variaciones significativas en el
rendimiento de los cuatro algoritmos de super-resolución multi-imagen.
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Abstract

In this thesis we address the problem of analyzing the performance of four multi-frame
super-resolution algorithms when they are used to recover astronomical high-resolution im-
ages. Multi-frame super-resolution algorithm is the name given to any procedure that uses
a set of low-resolution images of the same scene to obtain a new image with more spatial
resolution, and also less blur and noise, than any of the low-resolution images used as input.
These algorithms work by minimizing a cost function, where a prior term is included in order
to regularize the reconstruction process, using a gradient-based procedure. Each one of the
four developed algorithms corresponds to one of the four possible combinations between two
prior terms (Laplacian and gradient) for the cost function and two mechanisms for computing
its gradient (the analytical expression of such gradient and Zomet’s approximation).

The main goal of this research consists in studying the behavior of the performance of
these algorithms as function of the Signal-to-Noise Ratio (SNR) of the low-resolution images
employed as input in the reconstruction process. To accomplish this goal, the use of simula-
tions was required, since sets of low-resolution images characterized by different SNR values
are needed to test the operation of the four algorithms. The simulated images were obtained
using two simulations tools, one based on the replication of the process by which an image is
acquired by a device and that is known as Image Observation Model (IOM), and other based
on a Monte Carlo approach and that is known as PhoSim.

Considering a range of seven SNR values, sampled in regular intervals between 1 and
100 for a logarithmic scale, and using a group of 100 high-resolution templates, 700 sets
made up of 10 simulated low-resolution images each were generated using the two previously
mentioned simulation tools. Each one of the four algorithms was then employed to reconstruct
a high-resolution image using each one of these sets as input. The described experiment was
performed twice, first using affine registration for the alignment of the low-resolution images
contained in each input set, and then using quadratic registration to accomplish such task.
The performance of the algorithms was measured, after performing these experiments, using
the Peak Signal-to-Noise Ratio (PSNR) and the reduced χ2 as metrics.

According to the results obtained, for each one of the algorithms the PSNR increases as
the SNR grows, while the reduced χ2 remains relatively stable regardless of the SNR. The
PSNR results suggest that, for small SNR values, Zomet’s approximation and the Laplacian
prior term are the best choice, while, for high SNR values, the analytical expression for
computing the gradient and the gradient prior term are the best choice, in this case, by a
narrow margin. The magnitude of the performance reduction observed when the registration
and blur parameters are estimated is larger when PhoSim is used than when the IOM is
employed. The usage of different registration procedures did not lead to significant variations
in the performance of the four multi-frame super-resolution algorithms.
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Chapter 1

Introduction

Multi-frame super-resolution is the name given to any image reconstruction technique whose
aim is the generation of one or more high-quality images, using as input a set of noisy
low-resolution images of the same scene, acquired under different conditions. These kind of
techniques process together the set of low-resolution images in order to reconstruct images
with higher resolution and less noise and blur than any of the input images.

The obtention of high-resolution images is usually desired, and even required, in many
fields where the use of images is intensive. Medical imaging, microscopy, surveillance video,
and remote sensing are classical examples of these fields. The most straightforward manner
to obtain high-resolution images would be developing new sensors, with a larger number of
pixels of smaller size. In many cases, though, this is not possible, mainly due to technical
constraints. Multi-frame super-resolution algorithms provide a different approach for dealing
with this limitation where, instead of improving the quality of the imaging devices, image
processing techniques and computing power are the key elements.

In astronomy, the situation previously described also occurs. The nature of astronomical
work requires the obtention of images with the largest possible resolution. However, due to
technical and financial limitations, the construction of new telescopes with bigger mirrors
is difficult, very slow, and very expensive. Therefore, the use of super-resolution techniques
has a relevant impact by improving the quality of astronomical images using astronomical
observations that are already available.

In this thesis we address the problem of analyzing the performance of four multi-frame
super-resolution algorithms, when employed to obtain enhanced astronomical images. The
performance of these four algorithms, developed considering the combination of two different
image models and two different optimization mechanisms, was studied as a function of the
quality degree of the astronomical images used as input. This quality degree is measured in
terms of the relation between the amount of noise and the amount signal contained in such
images.

In order to properly present the research conducted in this thesis and provide the context
required to fully understand its scope, in the following sections we discuss the basics behind
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multi-frame super-resolution operation, the main motivations for studying the performance
of these algorithms considering astronomical images, how we developed the four analyzed
algorithms, and finally a description of the work presented in this thesis. The purpose of this
description is to present all the elements required to specify the research carried out on this
thesis in an adequate manner, such as the hypotheses, the goals or the methodology, among
others.

1.1 How is multi-frame super-resolution possible?

The reconstruction of high-resolution images using super-resolution techniques is based on
the following idea: since each low-resolution image of a common scene is essentially a different
degraded version of that scene, due mainly to the motion differences with sub-pixel precision
that exist between these low-resolution images, the complementary information contained in
each image can be combined in order to generate a new image with higher resolution than
any of the originals [48]. The presence of these sub-pixel motion differences is a consequence
of controlled and/or uncontrolled displacements between the imaging system and the scene.
A simplified diagram describing this fundamental premise of multi-frame super-resolution is
presented in Figure 1.1.

From a physical perspective, each pixel in a low-resolution image can be considered as the
integral of a group of pixels of the high-resolution image. This means that each low-resolution
pixel is the result of a weighted sum of high-resolution pixels, where the scope of the sum
is defined in terms of the size relation and the relative positions between the low-resolution
and high-resolution pixels, while the weight of each high-resolution pixel is determined by
the Point-Spread Function1(PSF) of the imaging system. From a mathematical perspective,
the relation between a low-resolution pixel and its associated high-resolution pixel provides
a constraint that can be used to recover the high-resolution image. Due to the presence of
the sub-pixel motions, and also to the blur differences between low-resolution images, the
total set of constraints will not be redundant and image recovery will be possible to a certain
extent. With a larger number of low-resolution images the number of constraints will be
increased, yielding an improvement in the quality of the reconstructed high-resolution image.

There is a relevant aspect that arises from this fundamental idea behind the operation
of multi-frame super-resolution, which is the critical requirement of estimating, in the most
precise way possible, the motion differences between low-resolution images in order to ob-
tain an accurate reconstruction of the high-resolution image. This entails that registration,
the name given to the process by which these motion differences are computed, represents
a critical previous step for multi-frame super-resolution. Thus, the precision reached by the
registration process affects the performance achieved by multi-frame super-resolution algo-
rithms, since the quality of the reconstructed high-resolution image will be greater if the
degree of error introduced by the registration procedure is small.

Two different registration procedures are reviewed in further chapters. The first one,

1The Point-Spread Function is the function that models the degree of blur contained in the image generated
by an imaging system when a point source is observed.
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known as affine registration, computes the motions that differentiate the low-resolution im-
ages by performing an optimization over the parameters of a set of affine transformations that
are employed for maximizing (minimizing) a similarity (dismilarity) measure which is calcu-
lated for these images, using one of them as a common reference for all the rest. The second
registration procedure, known as quadratic registration, operates exactly in the same manner
but using quadratic instead of affine transformations. This last registration mechanism is
more sophisticated than the first one, since each quadratic transformation is defined by 12
coefficients, while affine transformations are defined using only 6 coefficients. Therefore, the
motion model employed by quadratic registration is wider and more flexible than the motion
model employed by affine registration.

Figure 1.1: Fundamental idea that explains the mechanism used by multi-frame super-
resolution algortihms to obtain a high-resolution image.

1.2 Why super-resolution in astronomical images?

In the last years, the classical approach in astronomy for observing the sky has changed
dramatically. In the past, an astronomer would go to an observatory and use the telescope
to observe a specific object of their interest. Now, this observation approach is being pro-
gressively replaced by a new system based on surveys. A survey is an automatic observation
of different portions of the sky. In this new model, the telescopes of the survey observe dif-
ferent parts of the sky every night, which have been previously defined according to scientific
considerations, and the images obtained in the process are immediately uploaded to online
databases. These databases are then used by astronomers to gather the images and catalogs2

required for their scientific tasks.

Some examples of this new trend in astronomical observations are the Sloan Digital Sky

2An astronomical catalog is a list of astronomical objects, typically grouped together because they share
a common type, morphology, origin, means of detection, or method of discovery.
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Survey (SDSS) [17], the Visible and Infrared Survey Telescope for Astronomy (VISTA) [63]
and the Large Synoptic Survey Telescope (LSST) [35], a new telescope currently under con-
struction, that is expected to be operational in the year 2022. Projections for LSST indicate
that this telescope will take more than 800 panoramic images each night with its 3.2 billion-
pixel camera, recording the entire visible sky twice a week. Each patch of sky it images will
be observed 1000 times during the operation of this survey. With a light-gathering power
equivalent to a 6.7-meter diameter primary mirror, each of its 30-seconds observations will
be able to detect objects 10 million times fainter than visible with the human eye.

Multi-frame super-resolution algorithms have a great impact in any discipline where there
is an intense utilization of images, as this kind of algorithms allow the obtention of enhanced
images that can help to yield improved technical or scientific results. This explains the main
motivation to analyze the performance of these algorithms when they are employed with
astronomical images, since astronomy is probably the best example of this sort of fields with
an intense usage of images and where multi-frame super-resolution techniques can be very
useful. Therefore, with this performance analysis we can have an estimation of the degree of
improvement associated to the usage of these algorithms for the case of astronomical images.

It is important to notice, considering the ideas exposed above, that the data generated
by a survey corresponds to an enormous set of images that can be used to generate new
enhanced images with multi-frame super-resolution algorithms. In fact, since there is always
some extent of error in the procedure by which some sky portion is pointed by a telescope,
the presence of motion differences between each one of the images generated by a survey,
for a common sky portion, is something expected and that enables the usage of multi-frame
super-resolution algorithms.

Besides, since surveys generate a huge amount of data, the utilization of multi-frame
super-resolution algorithms with a large number of astronomical images represents also an
appealing challenge from the perspective of big-data. For example, the LSST will be capable
of capturing images of the same portion of the sky 1000 times during its operation, making
it possible to generate high-resolution images using these 1000 images as the input for one
or more multi-frame super-resolution procedures.

Another relevant reason for using multi-frame super-resolution as a tool for processing
astronomical images is its flexibility for dealing with other classical problems that arise for
this kind of images, such as deconvolution or denoising. Actually, these two problems are two
specific cases of the super-resolution problem, which means that super-resolution represents
a wide framework for image processing in the context of astronomical images.

1.3 Development of multi-frame super-resolution algo-

rithms

Four multi-frame super-resolution algorithms were developed in this thesis in order to study
their performances. The operation of these algorithms is based in the Bayesian approach
known as Maximum A Posteriori (MAP), where the likelihood, which is the probability of
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obtaining one reconstructed image in terms of the available data (that corresponds to the
set of low-resolution images), is maximized according to an image model previously selected
and which is employed to establish some characteristics that should be satisfied by the high-
resolution image that is being reconstructed.

In practice, these algorithms obtain a high-resolution image by minimizing a cost function
in several iterations. In each iteration this cost function is computed employing the high-
resolution image estimate, then its gradient is calculated to improve the high-resolution image
estimate and have a lower value for the cost function in the next iteration. Therefore, when
the global minimum of the cost function is reached, the best possible image reconstruction
is achieved.

The cost function used by each multi-frame super-resolution algorithm is defined by two
elements: the first one is the data term, that corresponds to the sum of the differences between
each low-resolution image available and the corresponding low-resolution version of the high-
resolution image estimate. The second element is given by a prior term that represents the
image model previously mentioned. This prior term corresponds to a penalization value
computed for the high-resolution image estimate according to the characteristics imposed by
the image model, such as smoothness or amplitude constraints.

The four multi-frame super-resolution algorithms were developed with the aim of dispose
of useful tools for reconstructing astronomical high-resolution images. Therefore, their de-
velopment supposed the combination of different tools whose purpose is to deal with the
presence of noise in images, since this factor represents the main source of distortion in as-
tronomical images. In fact, each one of these four algorithms corresponds to one of the four
possible combinations between two different prior terms and two different gradient compu-
tation procedures.

The two prior terms employed in the development of these algorithms, which are known as
gradient and Laplacian priors, introduce smoothness restrictions for the reconstructed image
in order to impose the noise remotion during the cost function minimization. On the other
hand, the two procedures selected for computing the gradient of the cost function correspond
to the standard mechanism, which corresponds to the analytical computation of the gradient,
and to Zomet’s approximation, where the data term of the gradient (that corresponds to the
derivative of the data term of the cost function) is estimated using a median operator. The
purpose of this approximation is to have robustness against the noise presence in the gradient
computation procedure.

After reviewing the theoretical aspects of multi-frame super-resolution, these four algo-
rithms will be introduced with more detail. However, we present below the notation that
will be employed in this thesis from now on to reference each one of these four multi-frame
super-resolution algorithms that are our subject of study:

LA: Laplacian prior in the cost function and utilization of the analytical expression for
computing the gradient.

LZ: Laplacian prior in the cost function and utilization of Zomet’s approximation for com-
puting the gradient.

GA: Gradient prior in the cost function and utilization of the analytical expression for
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computing the gradient.

GZ: Gradient prior in the cost function and utilization of Zomet’s approximation for com-
puting the gradient.

1.4 Thesis description

In order to provide some context, we have introduced the basics behind multi-frame super-
resolution operation as well as the main reasons that motivate the study of this kind of
techniques when they are employed with astronomical images. Also, we have described
how each one of the four multi-frame super-resolution algorithms, which are studied in this
thesis, was developed by combining different tools. Now, using the information and concepts
introduced so far, we present all the elements required for properly posing the research that
is conducted in this thesis.

1.4.1 Research problems and hypotheses

The main aim of the research presented in this thesis is to understand how multi-frame super-
resolution algorithms behave when they are employed for recovering a high-resolution image
from a set of astronomical low-resolution images. Evidently, this problem is too general and
not specific enough to actually be used as a research problem, since its scope is not properly
limited and finding a clear answer would not be possible. However, the statement of this
general problem is useful to have a first notion of the kind of questions that this work seeks
to answer.

A more suitable research problem for structuring this thesis is given by understanding how
the performance of each one of the four multi-frame super-resolution algorithms, which were
previously introduced, is related to the Signal-to-Noise Ratio (SNR) value that describes
the images used as input by these algorithms in the reconstruction process. This problem is
substantially more concrete than the one presented above, since in this case we only expect to
understand how the performance of four specific algorithms behaves as a function of a specific
parameter that describes the set of images which are used as input by these algorithms.

For this problem we propose the following hypothesis: the performance of each one of
the four multi-frame super-resolution algorithms (that is measured using two metrics which
will be later introduced) is proportional to the SNR value, which means that the algorithms’
performance improves as the SNR value grows. We expect this behavior because the SNR
represents a quality measure for an astronomical image, as its value corresponds to the ratio
between the amount of signal and the amount of noise contained in that image. Therefore,
if we have an increase in the SNR value then we have an enhancement in the quality of the
astronomical low-resolution images and, as a consequence of this situation, we can expect an
improvement in the performance of the algorithms.

Another interesting reseach problem, that is fully related to the one already stated, is
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discovering which one of the four multi-frame super-resolution algorithms has the best per-
formance in terms of the SNR. For this research problem we only have a very limited hypoth-
esis, which states that we can expect a better performance of LZ and GZ over LA and GA
for small SNR values, and the inverse behavior for large SNR values. This is expected as a
consequence of the employment of Zomet’s approximation in LZ and GZ, since this procedure
offers a robust mechanism for computing the gradient in presence of noise. Therefore, we
can expect a better performance of the algorithms that use this mechanism when a great
amount of noise affects the image quality, situation that happens when small SNR values
are considered. Moreover, since this mechanism computes the gradient of the cost function
using an approximation, we can expect better results with the analytical expression, which
is exact and not an approximation, when a low level of noise affects the images employed as
input by the algorithms. Thus, LA and GA should have the best performance when large
SNR values are considered, since this means that only an small amount of noise is corrupting
the low-resolution images.

We can only offer this limited hypothesis because we do not have any notion about the
behavior of the gradient and Laplacian prior terms, in the context of noise removal in as-
tronomical images during the minimization of a cost function. Therefore, we are not able
to provide an interpretation to compare the performances between algorithms that employ
different prior terms.

In third place, we are interested in discovering if there is a significative reduction in the
performance results achieved by each one of the algorithms when there are errors in the es-
timation of the different parameters required for performing super-resolution reconstruction,
such as the registration information and the blur. For this research problem we pose as hy-
pothesis that, actually, there is a reduction in the algorithms’ performance as consequence of
the non-accurate values calculated for the different parameters required for super-resolution
process, which means that the quality of the reconstructed high-resolution image is affected
by these errors.

It is important to highlight two relevant points about this third research problem. First,
for finding out if this performance reduction exists, we need to compare the performance
results obtained by each algorithm when all the parameters required for multi-frame super-
resolution are precisely known, with the results obtained when the parameter values are
not accurate due to the presence of errors. In second place, we need to consider that the
magnitude of this performance reduction, if it exists, will be strongly determined by the
metric employed to measure the algorithms’ performance as well as by the mechanisms used
for the estimation of the parameters.

The fourth and final research problem is related with a secondary, but still very relevant,
input of these algorithms which corresponds to the registration information. The accurate es-
timation of the motions that differentiate the low-resolution images is crucial for obtaining an
adequate reconstruction of the high-resolution image. There are multiple and diverse mech-
anisms for compute the registration parameters but, in this case, the idea behind this fourth
research problem is to find out if the algorithms’ performance improves when the registration
parameters are computed using quadratic registration instead of affine registration.

The expected answer for the question posed by this last research problem is positive,
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meaning that we expect to find an improvement in the performance of the algorithms when
the results obtained employing quadratic registration are compared with the results obtained
using affine registration. The main reason to expect this comes from the usage of a more
complex motion model in quadratic registration with respect to the one employed in affine
registration, since we believe that this higher degree of complexity entails the obtention of
more accurate results.

1.4.2 Goals and objectives

The goals of this thesis are related to finding the answers for the questions derived from the
research problems previously stated. This means that we expect to achieve the following four
goals with the work developed in this thesis:

G1: To find out the relation between the performance results of the four multi-frame super-
resolution algorithms and the SNR value that describes the images used as input.

G2: To determine which one of these four algorithms has the best performance results as a
function of the SNR value of the low-resolution images of the input set.

G3: To analyze if the algorithms’ performance decreases with the presence of errors in the
values computed for the blur and registration parameters.

G4: To check if the employment of quadratic registration, instead of affine registration,
entails an improvement in the performance results of each one of these four algorithms.

The achievement of these four goals supposes the accomplishment of multiple objectives
or specific goals. In most cases, the achievement of one of these objectives is a requirement
needed to accomplish more than one goal, which basically means that many of these objectives
are shared by different goals. Now we present a list of the main objectives whose achievement
structured a great part of the work developed in this thesis:

O1: To select a template set of astronomical images that can be used for obtaining simulated
low-resolution images.

O2: To simulate low-resolution images from astronomical images, employing them as tem-
plates, and considering adjustable values for the pixel size, the PSF, the SNR and the
motions between images.

O3: To implement the four multi-frame super-resolution algorithms whose performance we
pretend to study.

O4: To implement affine and quadratic registration.

O5: To find and use a mechanism for estimating the PSF of an astronomical image.

O6: To choose one or more metrics for measuring the performance of these four multi-frame
super-resolution algorithms.

O7: To test these algorithms and computing their performances using sets of simulated
low-resolution images generated with predefined parameter values.
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1.4.3 Methodology

The methodology employed in this thesis to achieve the four posed goals was an experimental
one, which means that we performed a group of experiments with the aim of obtaining all
the information required to answer the questions related with each one of these goals. This
experimental methodology is based on the utilization of simulated astronomical images and
the employment of two metrics for measuring the algorithm’s performance. The description
of this methodolgy can be confusing due to the close relation that exists between the goals,
which entails that some experiments provide information that is useful for more than one
goal.

In the multiple experiments conducted for this thesis, we generated different sets of astro-
nomical images considering specific SNR values by using two different simulation schemes.
The first simulation scheme is based in the utilization of the Image Observation Model
(IOM), which is a mathematical representation of the degradation process that affects a
high-resolution image and whose result is its corresponding low-resolution version. The sec-
ond simulation scheme considers the utilization of PhoSim, a computational tool that allows
the simulation of astronomical images using an approach based on Monte Carlo techniques
for sampling photons according to a great number of physical parameters. By degrading each
one of the images contained in a template set multiple times, employing the IOM and also
PhoSim, we generated the different sets of low-resolution images required for the experiments
and which were provided as input for the four multi-frame super-resolution algorithms.

To measure the performance of these algorithms we considered the Peak Signal-to-Noise
Ratio (PSNR) and the reduced χ2 as metrics. The first one compares the high-resolution
image recovered, by each one of the four multi-frame super-resolution algorithms, with the
template image used for simulating the input set provided to these algorithms. On the other
hand, the reduced χ2 assesses how well the recovered image reflects the information contained
in the images used as input for the reconstruction process. With these two metrics, we are
measuring the performance of the algorithms in two different and independent ways, since
in each case the reconstructed image is compared with distinct elements. Therefore, if the
same trend is detected in the results obtained from the experiments using both performance
metrics, then we can expect that such trend actually exists and that is not biased by one of
these metrics.

The experiments conducted in this thesis are organized in two experimental frameworks
that represent different situations. In the first experimental framework (1EF), a wide range
of SNR values was considered and all the simulation parameters that are required by the
algorithms, such as the blur and the registration parameters, were considered known. Since
in PhoSim all the parameters can not be explicitly controlled, due to the great complexity
of the model and its random elements, we only used the IOM to simulate astronomical
low-resolution images in the 1EF.

In the second experimental framework (2EF) all the parameters required by the algo-
rithms were estimated and the simulated images were obtained using the IOM and PhoSim
considering a common range of SNR values. In this framework, the PSF and the registration
information represent all the parameters that need to be estimated. The PSF was estimated
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using two astronomical tools developed for that purpose, which are known as SExtractor and
PSFEx, while the registration parameters were estimated using affine and quadratic registra-
tion. The parameter values computed by the different mechanisms are never totally accurate,
since none of these mechanisms is perfect and their operation is affected by noise and other
perturbing elements.

Since we are considering two different simulation schemes, PhoSim and IOM, and two
different registration approaches, affine and quadratic registration, we arranged the experi-
ments of the 2EF in four cases. Each one of these cases represents one of the four possible
combinations between the two options for simulating astronomical low-resolution images and
the two options for performing image registration.

In summary, we have a total number of five experiments that were performed for for
this thesis, where the first one is part of the 1EF and the four others are part of the 2EF.
With the results obtained from all these experiments we were able to gather the information
required to analyze the veracity of the hypotheses posed for the research questions. For
example, with the results obtained in each experiment we obtained the information required
for characterizing the performance of the four multi-frame super-resolution algorithms as
function of the SNR, which allowed us to find answers for the first and the second research
problems and achieving the two goals related to these questions. Also, by comparing the
results obtained in both experimental frameworks, we were able of studying and measuring
the variation in the algorithms’ performance in order to achieve the third goal of this thesis.
Also, using the results of the four cases of the 2EF, it was possible to analyze the effects
associated to the employment of quadratic and affine registration accomplishing, then, the
last and fourth goal.
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Chapter 2

Literature review

Since the pioneering work of Tsai and Huang [71] in 1984, multi-frame super-resolution has
been an active research field with an increasing interest through the years. This is closely
related to the continuous increase of the available computing power during the last decades,
which is the main resource required for employing multi-frame super-resolution techniques
in order to obtain enhanced images.

This thesis focuses in multi-frame super-resolution, which is the name given to the tech-
niques that generate one or more high-resolution images using a set of low-resolution images
of the same input scene. This super-resolution approach is usually referred as digital or geo-
metrical super-resolution, and should not be confused with the methods used for transcending
the optical diffraction limit and that are grouped under the name of optical super-resolution
[30, 81]. It is also important not to confuse multi-frame super-resolution with single-frame
super-resolution, which is likewise used to increase the resolution of a single image using only
the information that what is contained within it [36, 25]. In single-frame super-resolution,
several assumptions are considered in order to estimate the information between pixels and
generate a high-resolution image. This approach differs strongly from the basic idea behind
multi-frame super-resolution, where the combination of the information contained in different
images is used to generate a high-resolution image.

In this chapter, a review of multi-frame super-resolution techniques is presented, to later
discuss the application of these techniques in astronomy. Details concerning registration, the
procedure used to align two or more images of the same scene, are also reviewed. Registration
is an early step required for multi-frame super-resolution, since an estimation of a motion
model that relates the set of low-resolution images is needed to process them together and
generate a high-resolution image. In fact, registration is a critical step for super-resolution,
because if the error degree is significant in the estimation of the registration parameters, then
the quality of the reconstructed image will be severely affected. Finally, a short summary
about currently available super-resolution software is presented, and the impossibility of using
it for this thesis is discussed.
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2.1 Super-resolution methods

A comprehensive review covering the wide variety of multi-frame super-resolution techniques
was presented by Park et al. [48] in 2003. In this article, the basic concepts required to
understand the different approaches used by the most classical multi-frame super-resolution
algorithms are reviewed. However, it is important to note that since Park et al.’s publication,
a great deal of new super-resolution techniques have been developed, but they are usually
focused on more specific cases and work under more restrictive assumptions for the super-
resolution problem.

In the following sections, a summary analyzing the multi-frame super-resolution techniques
more widely reviewed in the image processing literature is presented. These techniques can
be classified, first, according to the domain where the problem is posed. The first multi-
frame super-resolution techniques developed consider the utilization of the frequency domain
to process the set of low-resolution images. Later on, the problem was addressed in the
spatial domain, which means to use only the pixel values and their coordinates. Besides
these two main categories, another type of methods, known as Projection Onto Convex Sets
(POCS), are presented, which base their operation on the definition of constraints (that can
be established either in the spatial or the frequency domain) for the high-resolution image
that is to be reconstructed.

Another relevant characteristic that is employed to classify these algorithms is given by
the mathematical formulation used to find a solution of the problem. There are two main
categories in regards to this formulation. The first one is known as Maximum Likelihood
(ML) and groups all the methods that generate a high-resolution image by maximizing the
probability of obtaining the set of low-resolution images under an specific model. The second
category, in which most algorithms can be included and that is known as Maximum A Pos-
teriori (MAP), considers the explicit utilization of prior information about the image that
should be reconstructed when the probability is maximized according to the available set of
low-resolution images. The classification of the different algorithms into these two categories
is also discussed in the following sections.

Finally, an overview about the modern approaches towards multi-frame super-resolution
is presented. These approaches are usually mixed versions of the ones already mentioned,
but they also use more sophisticated tools to handle the different processes and estimate the
parameters involved in multi-frame super-resolution reconstruction, such as machine learning
or sparse representations.

2.1.1 Frecuency domain methods

Tsai and Huang [71] were the first to develop a multi-frame super-resolution method in 1984
by posing the problem in the frequency domain. In their approach, a high resolution image
is obtained considering its relation with many low-resolution images as a function of the
shifting and aliasing properties of the Continuos and Discrete Fourier Transforms (CFT and
DFT). In their formulation only translational motion is included, and the translations are
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considered known parameters. In this formulation, a model for the blur and the noise that
affect an image when acquired through an imaging device is not considered. This work was
later extended by Kim et al. [40, 7], precisely by adding spatial blurrying and observational
noise to the previous model, as well as introducing Tikonov regularization [65] in order to deal
with the multi-frame super-resolution problem even when it is ill-posed (which happens when
not enough complementary information is available from the set of low-resolution images used
as input).

Tom and Katsaggelos [69, 70] apply a two step approach for multi-frame super-resolution.
The first step corresponds to denoising, deblurring and registration of the low-resolution
images of the input set (the two first procedures are used to improve the quality of each low-
resolution image). The second step is given by the inclusion of the low-resolution pixels into a
high-resolution grid to then obtain the new image using interpolation. Although most of the
problem is posed in the spatial domain, the image reconstructed in the second step is anyway
presented as the solution obtained for a frequency domain problem. Nguyen and Milanfar
[45] have proposed the use of wavelet models for the super-resolution problem, considering
an approach similar to the methods that work in the Fourier space. In their algorithm, they
represent each low-resolution image in terms of the coefficients of their wavelet transforms,
to then relate these coefficients with the ones of the high-resolution image that is expected
to be recovered.

A method based on the Second-Generation Wavelet Transform (SWGT) is proposed by
Bose et al. [8], showing good results for images that present high levels of noise corruption.
Islam et al. [34] have presented a single-image super-resolution method based on regression
analysis and Neighborhood Dependent Component Feature Learning (NDCFL). Considering
a low-resolution image as input, this method estimates the regression kernel adaptively, using
directional Fourier phase feature components, based in the analysis of local covariances to
then recover a high-resolution version of the input image.

2.1.2 Spatial domain methods

Spatial domain methods have been developed in parallel to the methods that operate in the
frequency domain. These methods handle the multi-frame super-resolution problem using the
values and coordinates of the pixels, providing a better mechanism to deal with the presence
of noise in images and a better treatment of the blurring effects that can not be approximated
by a single convolution. One of the first spatial domain methods was proposed by Peleg et
al. [52] in 1987, where the reconstruction of a high-resolution image is achieved by using
the sub-pixel motions that are considered known. The optimization procedure behind this
reconstruction mechanism was performed using simulated annealing.

Keren et al. [39] propose a registration method that deals with a more sophisticated motion
model, which includes translations and rotations in the plane of the images. However, they
do not achieve much improvement in terms of the recovery of high-frequency information in
the reconstructed high-resolution image. Irani et al. [31, 32] based their work on the same
registration algorithm used in [39], but developed a more detailed method to recover the
high-resolution image based on the utilization of back-projections (which is essentially the
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difference between the low-resolution version of the high-resolution image estimate and each
low-resolution image used as input). They also consider a procedure to estimate the blur
present in the images by analyzing the degradation of features as sharp edges or small points.
Later work [33] shifts the focus of their approach to using the registration of rigid objects
that are tracked in an image sequence, in order to obtain high-resolution images of these
objects. In this case, three different models (with 2, 6 and 8 degrees of freedom) are used to
identify, with enough flexibility, the motion of the objects to then obtain a high-resolution
image considering a segmentation of the relevant zones of the input images.

Rudin et al. [27, 56] and Ur and Gross [72] propose methods using a more complex imaging
model, where translations, rotations, warping and resampling of the images are contemplated.
Although these methods perform well in general, the treatment of the high frequencies is not
good enough to recover sharp edges correctly. Elad and Hel-Or [20] limited the imaging
model to develop faster algorithms. Their methods work for shifting motions restricted only
to vertical and horizontal integer displacements of the high-resolution pixels, and consider a
common noise model, zoom factor and spacially-invariant blur function for each one of the
images used as input. With these restrictions, they treat the blur after the interpolation of
the high-resolution image, using a deconvolution scheme based in the utilization of a Wiener
filter.

2.1.3 Projection onto convex sets

A third relevant approach towards multi-frame super-resolution is represented by a group of
algorithms that rely in the utilization of a technique know as Projection Onto Convex Sets
(POCS). The work of POCS is based on the definition of constraints, in the form of convex
sets, that should be satisfied by the pixels of the high-resolution image [48]. Mainly, this
constraints are defined as a function of the pixel values contained in each one of the low-
resolution images, but other types of restrictions can be also included (such as smoothness) in
order to obtain a better solution. Then, an estimate of the high-resolution image is iteratively
improved by projecting it sucessively into each one of these convex sets. As more iterations
are performed, the estimate converges to the intersection of the convex sets, which means
that the reconstructed image will satisfy all the constraints previously defined.

Strictly speaking, the POCS approach is not an independent category respect to the two
ones presented above, since the set of restrictions can be established either in the spatial
or the frequency domain. However, this approach contemplates a different mechanism to
recover a high-resolution image, where all the parameters involved can be included in the
super-resolution model with more flexibility. Among the disadvantages of the POCS method
we can mention non-uniqueness of the obtained solutions, slow convergence and a high-
computational cost [48].

Since the first works by Stark and Oskoui [61] were proposed, which were based on spatial
domain methods, many extensions have been applied to the POCS method for multi-frame
super-resolution. Eren et al. [21] extend early work by Patti et al. [50], by using segmentation
maps on pre-registered input images. Elad and Feuer [18] propose an hybrid method that
combines Machine Learning with POCS methods to optimize the set of convex constraints.
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Later work by Elad and Feuer [19] and by Patti et al. [51] use Kalman filtering to make the
solution more computationally efficient. Patti and Altunbasak [49] consider a scheme where
prior knowledge of the high-resolution image is included in the set of constraints, which yields
to a regularization of the super-resolution problem under the POCS approach.

Panda et al. [47] use adaptative regularization parameters, based on the noise variance
of the input images, achieving an stabilization in the operation of previous methods which
yields better performances. Shen et al. [59] propose a method that combines POCS in both
the space and the frequency domains. This method reduces the presence of artifacts and
noise in the high-resolution image that is reconstructed.

2.1.4 Formulations of the super-resolution problem

All the different methods presented so far can be also classified according to the formulation
considered to obtain a solution of the multi-frame super-resolution problem. As was pre-
viously mentioned, there are two main categories in terms of formulation. The first one is
known as Maximum Likelihood (ML) while the second one is known as Maximum A Posteriori
(MAP).

In the ML approach for multi-frame super-resolution, a high-resolution image is recon-
structed by maximizing the probability of obtaining each one of the low-resolution images,
used as input of the process, from this reconstructed image according to the different pa-
rameters considered, such as the registration information and the blur. On the other hand,
in the MAP approach, prior knowledge about the high-resolution image that is expected to
be reconstructed is included in the super-resolution model before maximizing the probability
of obtaining each low-resolution image from this reconstructed high-resolution image. The
mathematical aspects behind these two approaches are dealt with more detail in Chapter 3.

In practice, there is greater prevalence of methods based in the MAP approach over the
ones based in the ML approach. This is consequence of a practical situation: usually, the
quality or the amount of available low-resolution images is not enough to properly reconstruct
a high-resolution image. The use of prior information in the MAP approach is equivalent to
regularizing the reconstruction problem, allowing then for the obtention of a solution of the
multi-frame super-resolution problem even under these limitations.

The first multi-frame super-resolution methods, such as the ones presented in [39, 31, 32,
40, 7, 61], were developed considering a ML approach, while modern ones tend to consider
a MAP formulation of the super-resolution problem. One of the earliest examples of MAP
super-resolution belongs to Cheeseman et al. [12] with their reconstruction of images of Mars
based in a Bayesian scheme, for modelling the likelihood between each low-resolution image
and the reconstructed high-resolution, and the utilization of an extremely simple Gaussian
prior (that related each high-resolution pixel with its four immediate neighbors) in order to
incorporate the prior knowledge required in the reconstruction process.

Woods et al. [74] developed an Expectation-Maximization (EM) algorithm for performing
joint registration, deconvolution and interpolation under a MAP formulation for the multi-
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frame super-resolution problem. All the prior distributions are assummed Gaussian for each
one of the three procedures considered. Chantas et al. [11] use a locally adaptative edge
preserving prior for their MAP version of the multi-frame super-resolution problem. They
combine this with an iterative algorithm to perform a simultaneous restoration, registration
and interpolation in the Fourier domain. Belekos et al. [2] present a multichannel approach
for MAP-based super-resolution reconstruction. The multichannel prior incorporates regis-
tration information between different frames. This approach has been successfully used in the
past for video reconstruction [13]. Lukes et al. [43] introduce a high-performance and MAP-
based super-resolution method that was developed for the reconstruction of high-resolution
microscopy images.

2.1.5 Modern approaches towards multi-frame super-resolution

A popular branch of current multi-frame super-resolution algorithms relies on the minimiza-
tion of cost functions defined in terms of the L1 norm [77], considering a regularized model
based in the utilization of total variation priors. The success of these methods depends on
the assumption that good image priors are available. Research on wavelet-based image de-
noising suggests that the sparsity in wavelet coefficients can be used as a good prior [16].
The idea of finding a sparse prior in the context of multi-frame super-resolution derives from
the compressed sensing principle, which states that a high-resolution sparse signal can be
recovered from its downsampled version by finding the sparsest solution, known as sparse
representation, with respect to a properly chosen dictionary.

The mathematical background behind multi-frame super-resolution algorithms based on
sparse representation has been provided by Càndes et al. [9]. Dong et al. [15] have taken
advantage of the success of sparse representation and presented image deblurring techniques
based on adaptive sparse domain selection. Yang et al. [79] deal with the multi-frame super-
resolution problem using the compressed sensing approach. They demonstrate that sparsity
is an effective prior for regularizing the super-resolution problem. In [80], they show that
a high-resolution image, superior in quality than those produced by other super-resolution
methods, can be obtained from a set of randomly chosen raw patches from training images.

Machine-learning approaches towards multi-frame super-resolution have also been devel-
oped in the last years. Yang et al. [78] used machine-learning techniques on their raw-patch
developments. They employed a dictionary training method for single image super-resolution.
The learned dictionaries use sparse representation to relate the low and high-resolution im-
age patches. Using neural networks, they achieved a substantial minimization of the time
required to find the sparse representation employing their dictionary learning algorithms. Wu
et al. [76] presented a machine-learning approach based on the utilization of a Kernel Partial
Least Squares (KPLS) regression model [3], which is employed to relate a high-resolution
image with its low-resolution version.

Deep-learning methods are also being developed in the context of super-resolution. For
example, Dong et al. [14] propose a deep-learning method, based on the utilization of con-
volutional networks and sparse-representation, for dealing with the problem of single im-
age super-resolution. Using the patches defined by the sparse representation, their method
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directly learns an end-to-end mapping between the low-resolution and the high-resolution
images.

Although all of these techniques present novel, interesting, and successful approaches to
the super-resolution problem, they cannot be used in the context of this thesis, since all of
them are based on sparse-representation and the identification of patches within the images.
With the techniques mentioned above, the detection of a set of common patches for a set of
low-resolution images is not feasible due to the presence of noise. Without a set of common
patches is not possible to relate all these low-resolution images with the high-resolution image
that is expected to be reconstructed.

2.2 Super-resolution techniques in astronomy

In the following sections, two techniques used in astronomy to generate high-resolution images
from a set of low-resolution images as input are presented. Their relation with the multi-frame
super-resolution problem is also discussed, since both techniques were developed considering
restrictions or some strong assumptions for this problem.

2.2.1 Variable-pixel linear reconstruction

There is only one clear example of the utilization of multi-frame super-resolution algorithms
in astronomy. This example corresponds to the algorithm known as Variable-Pixel Linear
Reconstruction, also known as Drizzle, which was developed for obtaining the high-resolution
image known as Hubble Deep Field in 1996 using images obtained by the Hubble Space
Telescope. The operation of this algorithm is based on the weighted combination of the pixels
of different images as function of their statistical weigths [23]. This supposes to project the
pixels of the images considered over a new pixel grid with more resolution, where the new
pixels have a smaller size than the original ones, in order to establish the value of each one of
these new pixels as the weighted average of the original pixels that contain (or overlap) the
new set of pixels. The weight is then calculated in terms of the overlap areas of every original
pixel and the new ones. It is important to note that the alignment parameters between the
images considered should be known beforehand, to project in a proper manner each one of
the images into the new grid of pixels.

This rescaling process implies the introduction of a new convolution in the resulting image,
which is a function of the new pixel distribution, affecting then the quality of this new image.
In order to reduce this effect, before calculating the new pixel values and after projecting
the original pixels into the new grid, an artificial reduction in the size of these original pixels
is introduced, as means to concentrate the contribution of each original pixel over a small
number of new pixels, to diminish the effects of the convolution in the final result. Therefore,
this reduction factor in the pixel size should be small enough to minimize the degradation
effects in the resulting image, but large enough to totally cover the new grid of pixels and
combine enough data (from the original pixels) in each one of the new pixels. A diagram of
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the procedure described is presented in Figure 2.1.

Figure 2.1: Diagram of the operation of the variable-pixel linear reconstruction algorithm.

Improved versions of this algorithm have been developed afterwards, both for astronomi-
cal use [64] and for other areas related with image processing [44]. Although this algorithm
corresponds to a multi-frame super-resolution technique, its use is limited to very specific
cases, due to the lack of a mechanism to deal with the presence of blur (which is a typical
problem in astronomical images). In fact, the images obtained by the Hubble Space Telescope
represent one of these specific cases where this technique is useful, since there is a minimal
presence of blur distortions (because the observations of this telescope, unlike to what hap-
pens with observations from ground-based telescopes, are not affected by the presence of the
atmosphere).

2.2.2 Lucky imaging

Another technique used in astronomy that can be partially related with multi-frame super-
resolution is lucky imaging. This technique bases its operation in the utilization of high-speed
cameras to obtain a great deal of images of an astronomical object, with small exposure times
of about ten milliseconds [60], in order to avoid a decrease in image quality as a consequence
of atmospheric turbulence. Degradation of image quality can be relevant even for short
exposure times of about 200 milliseconds [1].

After the obtention of the images with the high-speed camera, a subset of these images is
constructed by selecting the best of them in terms of a quality measure (such as the Strehl
ratio1). The portion of images considered in this subset is typically between 5% and 20%
of the total images. Later, these images are aligned using the location of the pixel with the
highest value, and then they are projected on a common high-resolution grid to finally obtain
the final image from the average of these projections.

1The Strehl ratio is usually defined as the ratio between the peak intensity value of an aberrated image of
a point source and the maximum attainable intensity, using an ideal optical system limited only by diffraction
over the aperture of the system. The Strehl ratio is used in situations where optical resolution is compromised
due to lens aberrations or due to imaging through a turbulent atmosphere.

18



Improved versions of this technique have been proposed in the last years. For example,
in [24] the lucky imaging procedure is improved by performing the selection of the best
images in the Fourier space. Although this technique can be considered as a super-resolution
procedure, it works only under strict conditions on the images that are used (very short
exposure times), which can only be satisfied with specialized instrumentation (high-speed
cameras). Therefore, as in the previous case, this technique is not useful for the problem of
multi-frame super resolution that is addressed in this thesis.

2.3 Image registration and super-resolution

Image registration represents a crucial early step for multi-frame super-resolution. In this
step, a motion model is estimated in order to locate the pixels of the low-resolution images
in a common system of coordinates. Since motions with sub-pixel precision should exist to
use super-resolution techniques, the registration procedure should be able to estimate the
motion parameters with a high level of accuracy (otherwise, the errors in the estimation of
the registration parameters will affect the quality of the reconstructed high-resolution image).
There are few cases where multi-frame super-resolution algorithms do not use motion changes
to define the constraints required to reconstruct a high-resolution image, but instead defocus
[55] or zoom variations [37] are used.

Image registration techniques can be classified into two main categories. In the first
one, known as feature-based registration, the main idea is to find a group of distinctive
features contained in two (or more) images. Then, by analyzing the correspondences between
these features it is possible to establish a geometric transform that is used to map the
pixel coordinates of one image into the other [82, 26]. A popular mechanism to perform
registration under this approach is to use block-matching algorithms [58]. On the other
hand, intensity-based registration works by comparing the pixel values of two or more images
using similarity (or dissimilarity) metrics that should be maximized (or minimized) in order
to find an estimation of the registration parameters [82, 26]. As examples of these metrics
we can mention the Sum of Squared Differences (SSD), Cross Correlation (CC) and Mutual
Information (MI). Both approaches can be even used in spaces other than the spatial domain,
such as the frequency [73] or the wavelet domains [42].

Although in most cases the registration process is considered as an independent task with
respect to multi-frame super-resolution reconstruction, there are some examples where both
procedures are performed simultaneously. For example, Hardie et al. [28] propose a method,
based on a MAP framework, where the registration parameters are iteratively updated with
the high-resolution image estimate during the optimization procedure. Also, Woods et al.
[74, 75] present two methods for a joint estimation of the registration parameters and the
high-resolution image, the first one based on an expectation-maximization approach while
the second one is based on a MAP formulation of the joint problem.

In the context of astronomical imaging, one can rely only on the use of intensity-based
registration algorithms. This is due to the fact that features which can be identified in an
astronomical image are not usually distinctive enough to be used in order to estimate a

19



geometrical transform. In astronomical images, stars and galaxies usually have circular or
elliptical shapes (which can be severely affected by the multiple disturbing effects involved
in the acquisition process of astronomical images), and these shapes are repeated multiple
times in the same image, meaning it is not easy to use feature-based registration without
human-inspection, which would be the only way of obtaining a proper feature selection.

Because of the situation described above, and since registration is not the main concern
of this thesis, a simple registration procedure was considered, based on the minimization
of the SSD between two or more images. This allowed us to state the problem of image
registration as an optimization problem. Also, two motion models were considered with
this procedure: the first model uses affine transforms (6 degrees of freedom) to estimate the
motion parameters for the set of low-resolution images, while the second model considers
quadratic transforms (12 degrees of freedom) to perform this estimation.

2.4 Super-resolution software

In simple terms, the problem addressed is to reconstruct a high-resolution image using a set
of astronomical images of the same scene as input, where the reconstructed image should
not only have a higher resolution, but also less blur and less noise that any of the input
images. As far as we know, there is no computational tool that can be used to properly
cope with this problem, since most of the multi-frame super-resolution applications do not
include a mechanism to deal with the presence of blur (which is a relevant degradation factor
in astronomical imaging).

Because of this, the available multi-frame super-resolution tools are not useful for the
purposes of this thesis, where the blur is one of the relevant parameters to be considered in the
evaluation performance of the multiple parameter algorithms. Besides, the study developed
in this thesis contemplates other complex aspects about multi-frame super-resolution, such
as different approaches for the optimization procedure, as well as the utilization of different
procedures to deal with the presence of noise. Thus, the tools available are not useful since
they are not flexible enough to include these relevant aspects that need to be analyzed.

Below, some of the available multi-frame super-resolution tools, which have been developed
as an outcome of publications or for astronomical purposes, are listed and described:

1. IRAF: The Image Reduction and Analysis Facility [67, 68], commonly known as IRAF,
is a software developed for processing astronomical data. The dither package contains a
set of routines that allow the obtention of high-resolution images using the variable-pixel
linear reconstruction algorithm that was previously introduced. This software performs
registration using the astrometric information of the images, which is essentially the
location of the observed scene in the sky (this information is stored as meta-data in the
image file), this being a non ideal approach since the astrometric information already
contains some degree of error.
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2. Montage2: This software is virtually an improved version (in technical terms) of the
multi-frame super-resolution procedure implemented by IRAF, since the reconstruction
algorithm and the registration mechanism are almost the same. Montage was devel-
oped to process large amounts of images, considering a parallel and scalable design.
This tool can be downloaded or used on-line.

3. Software related to publications: There are multiple implementations of the algorithms
in different publications. In general, these implementations are focused only on the par-
ticular case analyzed in the corresponding publication, and not all relevant parameters
are considered (at least for the case of astronomical images) or their values are hard-
coded. Also, the scope of the study developed in this thesis considers a more complex
approach where we also analyze two different mechanisms for the optimization pro-
cedure in which multi-frame super-resolution relies, as well as the utilization of some
schemes to deal with the presence of noise in the input images. Thus, it is not possi-
ble to use these implementations as tools for developing the analysis proposed by this
thesis. Some examples of these codes can be found in the following links:

� http://www.robots.ox.ac.uk/~vgg/software/SR/index.html

� http://decsai.ugr.es/pi/superresolution/software.html

� http://www.ece.lsu.edu/ipl/Software.html

2http://montage.ipac.caltech.edu/
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Chapter 3

Super-resolution theory

The purpose of this chapter is to present, in a detailed manner, all the concepts related to
multi-frame super-resolution that will be used as part of this thesis. In order to do this, we
first present the Image Observation Model (IOM), which is the mathematical basis required
to properly state the super-resolution problem. All the parameters involved in this model
will be explained and reviewed. Then, different expressions that pose the multi-frame super-
resolution as an optimization problem will be derived under several assumptions. Also, the
gradients of these expressions will be calculated as they will be required by the optimization
procedures for reconstructing high-resolution images.

The expressions obtained here will be employed in following chapters to describe, in a
more specific manner, each one of the four multi-frame super-resolution algorithms that are
analyzed in this thesis and that were previously introduced. These expressions are given
by two cost functions and two different formulas derived for computing the corresponding
gradient of each one of these cost functions. The importance of these expressions comes from
the fact that they are employed by each one of the multi-frame super-resolution algorithms,
since these algoritms are defined as different combinations between a cost function, that
must be minimized in order to find a high-resolution image, and a mechanism to compute
the gradient of such cost function.

Finally, we present the mathematical basis required to understand how image registration
works, since the obtention of an accurate estimate of the registration parameters represents
a crucial requirement for the operation of each multi-frame super-resolution algorithm. Im-
age registration is also posed as an optimization problem, where a cost function must be
minimized, using its gradient, for obtaining an estimation of the registration parameters.
The cost function with its corresponding gradient is derived for the two image registration
mechanisms employed in this thesis: affine and quadractic registration.

22



3.1 Image Observation Model (IOM)

The first step required to state the super-resolution problem is to establish a relation between
the set of low-resolution images and a high-resolution image, considering that every low-
resolution image is a degraded version of this high-resolution image. Such relation is expressed
through the IOM [48], which attempts to capture the physical process by which observed data
(in this case, the set of low resolution images) is generated by an underlying imaging system.

Since a perfect imaging system does not exist, due mainly to technical limitations and the
influence of the atmosphere, the process of acquiring an image is always affected by various
kinds of degrading effects. The purpose of the IOM is to represent this process, illustrated
by the diagram presented in Figure 3.1, in the most precise and accurate way possible. The
input of an imaging system is a continuous scene, whose sampling (at or above the Nyquist
rate), affected by atmospheric turbulence, generates a degraded version of the high-resolution
image which is expected to be recovered by the super-resolution procedure. Then, this image
is affected by some sort of motion between the imaging system and the scene to be captured,
generating a different displaced version for every motion considered. This set of images is
then affected by blurring effects (such as motion blur and/or optical blur), which means that
every image is convolved by a blur kernel. All these blurred images are then downsampled
into pixels in the imaging system sensors, to finally be affected by the different kinds of
sensor noise. In other words, every low-resolution image of a common scene obtained using
an imaging system is a corrupted by the atmosphere, displaced, blurred, decimated, and
noisy version of a common high-resolution image.

Figure 3.1: Diagram of the image acquisition process

3.1.1 Mathematical formulation

Considering a set of N low-resolution images, each one represented by the vector Yk (with
k = 1, ..., N), and their corresponding high-resolution image, represented by the vector X,
the IOM expresses the degradation process previously described as the following system of
N matricial linear equations:

Yk = DkBkMkX + Vk ; k = 1, ..., N (3.1)
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where Mk, Bk and Dk are matrices that represent the motion operator, the blur operator
and the downsampling operator, respectively, while the vector Vk represents the noise term
for the k-th low-resolution image.

In these equations, all the images are represented by vectors considering a lexicographical
notation, which means that all the pixels contained in an image are rearranged in a vector
but maintain their relative order (every row is transformed in a column and then all these
columns are vertically concatenated in an unique new column). Therefore, if the size of the
high-resolution image is LN1 × LN2 and the size of each one of the low-resolution images is
N1 × N2, then the size of the vector X will be L2N1N2 and the size of the vector Yk will
be N1N2 (for k = 1, ..., N). The size of the other elements included in Eq. (3.1) will be
defined as a function of the sizes of X and Yk: the motion matrix Mk and the blur matrix
Bk will have a size of L2N1N2 × L2N1N2, the downsampling matrix Dk will have a size of
(N1N2)2 × L2N1N2, while the noise vector Vk will have a size of N1N2 (for k = 1, ..., N).

A more compact form of expressing the system of matricial linear equations specified in
Eq. (3.1), which will be useful for further calculations, is given by:

Yk = WkX + Vk ; k = 1, ..., N (3.2)

where the matrix Wk, with a size of (N1N2)2 ×L2N1N2, represents the matricial product of
matrices Dk, Bk and Mk (for k = 1, ..., N). This means that matrix Wk contains almost
all the information (except for the noise) associated to the degradation process of the k-th
low-resolution image.

The system of N linear equations specified by the IOM is not easy to solve and is typically
ill-posed, since the matrix Wk is usually ill-conditioned. In practice, an analytical expression
for the matrices Mk, Bk and Dk does not exist, and their estimates should be obtained from
the set of available low-resolution images, which complicates the resolution of the equation
system even further. This situation leads to the use of regularization as a key element in
order to find a solution for the super-resolution problem.

3.1.2 Parameters of the image observation model

The IOM considers the following 4 parameters for representing, in mathematical terms, the
physical process of image acquisition in an imaging system:

1. Motion: The matrix Mk represents the motion that affected the high-resolution image
when the low-resolution image Yk was acquired. This motion is essentially a geo-
metrical transformation such as an affine or a quadratic transform. Since this motion
information is generally unknown, but used as a parameter of this model, it is necessary
to estimate the motion of the low-resolution images (with respect to one of them used
as reference) using a registration procedure.

2. Blur: The blurring that affects the quality of the low-resolution images is the combined

24



result of three different types of blur: optical blur (which may be a consequence of
defocus, aberrations, the diffraction limit, etc), motion blur (relative motion between
the imaging system and the observed scene) and the PSF. The combined effect of these
three factors in the acquisition of the low-resolution image Yk is represented by the
matrix Bk in the IOM.

3. Downsampling: This is the process by which low-resolution pixels are obtained as the
weighted sum of a group of high-resolution pixels. The weight of each high-resolution
pixel in its associated low-resolution pixel will be defined by the relative size between
these pixels and by the blur that affects the high-resolution image. The downsampling
of the low-resolution image Yk is represented by the matrix Dk in the IOM.

4. Noise: The noise contained in a low-resolution image is represented in the IOM by the
vector Vk. In practice, there are multiples sources of noise (such as shot noise, read
noise, dark current, etc) and each one follows an specifc distribution. In the context
of the IOM, the elements of the noise term must exhibit a Gaussian distribution with
zero-mean.

3.2 Probabilistic framework of super-resolution

In a probabilistic context, an estimation of the high-resolution image (X̂) can be obtained
from the maximization of the conditional probability of the high-resolution image (X) given
the set of available low-resolution images (Y1, ...,YN):

X̂ = ArgMax
X

[
P(X | Y1, ...,YN)

]
(3.3)

Due to Bayes’ theorem and considering that P(Y1, ...,YN) is constant with respect to X,
the previous expression can be rewritten as:

X̂ = ArgMax
X

[
P(Y1, ...,YN | X) P(X)

]
(3.4)

where P(Y1, ...,YN | X) is the likelihood of the data (low-resolution images) and P(X) is the
prior term on the expected high-resolution image.

From the expression of the IOM given by Eq. (3.2), and under the assumption of Gaussian
distribution with zero mean and standard deviation σ for the elements of the noise vector
Vk (Vk,i ∼ N (0, σ2), for i = 1, ..., N1N2), the likelihood of the low-resolution image Yk given
the high-resolution image X may be written as:
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P(Yk | X) =

(
1

2πσ2

)N1N2
2

exp

(
− 1

2σ2
‖WkX−Yk‖2

2

)
(3.5)

Therefore, considering the independence of the likelihood corresponding to each one of
the low-resolution images, the likelihood of the whole set of N low resolution images, given
the high resolution image X, can be expressed as:

P(Y1, ...,YN | X) =

(
1

2πσ2

)NN1N2
2

exp

(
− 1

2σ2

N∑
k=1

‖WkX−Yk‖2
2

)
(3.6)

With the result obtained above, the selection of the prior term, P(X), is the only pend-
ing step required to complete the formulation of the problem as the optimization of a
parametrized cost function. The selection of the prior term usually falls into one of two
main approaches. The first approach, known as Maximum Likelihood, bases its operation in
seeking only the high-resolution image that maximizes the conditional probability of the set
of available low-resolution images given that same image. The second approach, known as
Maximum a Posteriori, obtains the high-resolution image using explicit information about
it. The details concerning each one of these methods will be reviewed below.

Before continuing, it is important to highlight one relevant and critical assumption consid-
ered in this probabilistic formulation of the super-resolution problem: for every low-resolution
image Yk, the degradation matrix Wk is assumed to be known. This means that the reg-
istration, blur, and downsampling parameters should be estimated beforehand, for every
low-resolution image, in order to obtain the high-resolution image X using super-resolution
techniques.

3.2.1 The Maximum Likelihood approach

The Maximum Likelihood (ML) approach is based on the selection of an uniform prior term
to obtain the high-resolution image. The only condition that this image should satisfy is
the maximization of the likelihood of the complete set of low-resolution images. Therefore,
considering that P(X) = α (with α a positive constant) and using the relation obtained in
Eq. (3.6) for the likelihood, it is possible to express Eq. (3.4) for this case as it follows:

X̂ML = ArgMax
X

[
α P(Y1, ...,YN | X)

]

= ArgMax
X

[
α

(
1

2πσ2

)NN1N2
2

exp

(
− 1

2σ2

N∑
k=1

‖WkX−Yk‖2
2

) ] (3.7)
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Since the expression that should be maximized corresponds to a monotonically decreasing
function of

∑N
k=1 ‖WkX−Yk‖2

2, the super-resolution problem can be equivalently expressed
as the following minimization problem:

X̂ML = ArgMin
X

[
N∑
k=1

‖WkX−Yk‖2
2

]
(3.8)

This minimization problem has an analytical pseudoinverse solution which is obtained
differenciating Eq. (3.8) with respect to X and equating this derivative to zero, yielding to:

X̂ML = (WTW)−1WTY (3.9)

where W is a matrix of size N(N1N2)2×L2N1N2, generated by stacking the N degradation
matrices Wk, and the vector Y, with a size of NN1N2, is the stack of the N low-resolution
image vectors Yk. This expression repressents a direct solution for obtaining X from the set
of Wk matrices.

In practice, ML multi-frame super-resolution is an ill-posed problem whose solution can
be affected by a great deal of elements. For example, if WTW is a singular matrix, then
there is an infinite number of possible solutions. Also, due to the high-dimensionality of this
problem, the computation of the inverse matrix of WTW is computationally prohibitive.
However, the main downside of ML multi-frame super-resolution is that it does not include
any mechanism for preventing overfitting, which means that the suitability of the recovered
images can be compromised by this effect.

3.2.2 The Maximum A Posteriori approach

In order to deal with the limitations of the ML approach, the selection of a suitable prior
term for X is required for discarding implausible solutions and convenient to avoid overfitting.
This is the basic idea behind the functioning of the multi-frame super-resolution methods
based in the Maximum A Posteriori (MAP) approach.

The prior term is typically defined, in the MAP approach, by the Gibbs distribution:

P(X) =
1

Z
exp

(
− βA(X)

)
(3.10)

where A(X) is a non-negative potential function (also known as energy function), β is a
positive constant and Z is simply a normalization factor. Then, replacing the prior term in
Eq. (3.4) with this definition leads to expressing the super-resolution problem in the MAP
approach as it follows:
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X̂MAP = ArgMax
X

[
P(Y1, ...,YN | X)

1

Z
exp

(
− βA(X)

) ]

= ArgMax
X

[
1

Z

(
1

2πσ2

)NN1N2
2

exp

(
− 1

2σ2

N∑
k=1

‖WkX−Yk‖2
2 − βA(X)

) ] (3.11)

Since the expression that should be maximized corresponds to a monotonically decreasing
function of 1

2σ2

∑N
k=1 ‖WkX−Yk‖2

2 + βA(X), the super-resolution problem can be equiva-
lently expressed as the following minimization problem:

X̂MAP = ArgMin
X

[
N∑
k=1

‖WkX−Yk‖2
2 + λA(X)

]
(3.12)

where the regularization parameter λ absorbs the variance of the noise (σ2) and the constant
β. With this last expression, which represents the classical formulation of the MAP super-
resolution problem, it is evident that the ML approach can be considered as a particular case
of the MAP approach, where λ is set to zero. The functional that needs to be minimized in
Eq. (3.12), and which will be referred in the successive as cost function, is composed by two
elements: the data term (similarity cost) and the prior term A(X) (regularization cost). The
balance between these two elements is established by the regularization parameter λ, which
is also known as a Lagrange multiplier in the context of mathematical optimization.

3.3 Priors for MAP super-resolution

The main conclusion of the previous section is that the super-resolution problem, considering
a MAP approach, can be expressed as the minimization with respect to X of the following
cost function:

F =
N∑
k=1

‖WkX−Yk‖2
2 + λA(X) (3.13)

where it is still required to define the prior term A(X), also known as regularization cost
function, in order to have an explicit expression for F . In the following sections, two of the
most widely referenced priors will be reviewed.

3.3.1 Laplacian prior

The Laplacian prior represents an specific case of the Tikonov cost function [18, 46], which
is one of the most referenced regularization techniques in literature. The Laplacian prior is
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given by:

Al(X) = ‖ΓlX‖2
2 (3.14)

where Γl is a matrix that represents the Laplacian operator. The purpose of selecting a
Laplacian operator in this type of priors is to force spatial smoothness, as the noisy and edge
pixels will be removed in the regularized minimization process and the resulting image will
not contain sharp edges [22].

3.3.2 Gradient prior

The total variation (TV) method is one of the most popular image priors, specially for de-
noising and deblurring problems. In this method, the element penalized by the regularization
cost function is the total amount of change in the image. This penalization is calculated as
the L1-norm of the magnitude of the image gradient. The mathematical expression for this
prior is given by:

Ag(X) = ‖∇X‖1 (3.15)

where ∇ is a matrix that represents the gradient operator. One of the advantages of this
prior is that it tends to preserve edges in the regularized reconstruction process, as there is
not a severe penalization over steep local gradients [57, 10]. Improved versions of this prior
have been developed later, considering, for example, an adaptative local calculation for the
gradient along the different structures detected in an image [62].

3.4 Optimization for MAP super-resolution

Although a solution for the minimization problem presented in Eq. (3.12) could be obtained
with the exclusive utilization of the cost function F , using optimization procedures such as
the Powell’s conjugate direction method [54], this approach would be extremely inefficient
since these kind of methods base their functioning in numerical calculations of the gradient.
Due to the high dimensionality of the super-resolution problem, where each high-resolution
pixel represents a variable that should be calculated, the utilization of these methods is not
feasible.

Therefore, the derivation of an analytical expression for the gradient is a relevant step in
order to use super-resolution techniques. In fact, if the gradient of the cost function F is
known, the most straightforward way to obtain a solution of the multi-frame super-resolution
problem would be to use a gradient-based optimization procedure. For example, the high-
resolution image X can be generated, considering a gradient-descendent approach, using the
following iterative rule:
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Xn+1 = Xn + δ G(Xn) (3.16)

where Xn and Xn+1 are the estimates of the high-resolution image X for the iterations n and
n+1 respectively, while G is the gradient of the cost function F and δ is a scale factor defining
the step size in the direction of the gradient. In fact, the optimization scheme presented in
Eq. (3.16) is used in [83] for the obtention of high-resolution images, but only considering a
ML formulation of the super-resolution problem.

In the following sections, and due to the importance of having an analytical expression for
the gradient of the cost function F , two expressions of the gradient, each one considering one
of the two prior terms previously introduced, will be presented. Also, an alternative method
for estimating the data term (corresponding to the gradient of the similarity cost) in both
gradients is introduced.

3.4.1 Gradient for MAP cost function with Laplacian prior

The MAP cost function with a Laplacian prior (Fl) is constructed by replacing the definition
of the Laplacian prior Al(X) given by Eq. (3.14) into the general expression previously
obtained for the cost function F in Eq. (3.13). The result obtained after this replacement is
shown below:

Fl =
N∑
k=1

‖WkX−Yk‖2
2 + λ ‖ΓlX‖2

2 (3.17)

Thus, an expression for the gradient of the MAP cost function with a Laplacian prior (Gl)
can be obtained by differenciating Fl with respect to X:

Gl =
∂Fl
∂X

=
∂

∂X

(
N∑
k=1

‖WkX−Yk‖2
2 + λ ‖ΓlX‖2

2

)

=
N∑
k=1

WT
k (WkX−Yk) + λ ΓT

l ΓlX

(3.18)

3.4.2 Gradient for MAP cost function with gradient prior

The MAP cost function with a gradient prior (Fg) is constructed by replacing the definition of
the gradient prior Ag(X) given by Eq. (3.15) into the general expression previously obtained
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for the cost function F in Eq. (3.13). The result obtained after this replacement is shown
below:

Fg =
N∑
k=1

‖WkX−Yk‖2
2 + λ ‖∇X‖1 (3.19)

Thus, an expression for the gradient of the MAP cost function with a gradient prior (Gg)
can be obtained by differenciating Fg with respect to X:

Gg =
∂Fg
∂X

=
∂

∂X

(
N∑
k=1

‖WkX−Yk‖2
2 + λ ‖∇X‖1

)

=
N∑
k=1

WT
k (WkX−Yk) + λ ∇T sign(∇X)

(3.20)

3.4.3 Zomet’s method

An approximate method for computing the common term of Gl and Gg is proposed by Zomet
et al. in [84]. This term, which will be denoted as Gdata, represents the derivative of the
data term of the cost function F with respect to X and is given by:

Gdata =
N∑
k=1

WT
k (WkX−Yk) =

N∑
k=1

Pk (3.21)

where the notation Pk ≡WT
k (WkX−Yk) was introduced. In this sum, the term (WkX−

Yk), that represents the diference between the low-resolution version of the high-resolution
image estimate (WkX) and one of the low-resolution images (Yk), is back-projected in the
high-resolution pixel grid by its multiplication with WT

k . This is the reason why the term
Pk is usally called back-projected difference image.

In order to introduce robustness in the optimization procedure, this method suggests to
compute an estimate of Gdata as a scaled pixel-wise median of the set of N back-projected
difference images:

Gdata ≈ N ·median(P1, ...,PN) ≡ GZ
data (3.22)

The fundamental idea behind this method is that the median can approximate the mean
quite accurately if a sufficient set of low-resolution images is provided. Therefore, since

31



the median is much more robust than the mean if distant outliers are present in the set of
low-resolution images, the utilization of Zomet’s approximation is useful to obtain accurate
results when noise and other distorting effects are present. Based on this approach, two new
alternative expressions for the gradients Gl and Gg can be established as it follows:

GZ
l = GZ

data + λ ΓT
l ΓlX = N ·median(P1, ...,PN) + λ ΓT

l ΓlX (3.23)

GZ
g = GZ

data + λ ∇T sign(∇X) = N ·median(P1, ...,PN) + λ ∇T sign(∇X) (3.24)

3.5 Image registration

In the context of multi-frame super-resolution, registration represents a preliminary step
required to estimate the relative displacements between each one of the low-resolution images.
The basic idea is to find a motion model, represented by a geometric transformation, that
relates each low-resolution image to one of the images previously selected as the reference (in
order to use its pixel grid as the common coordinate system).

One of the simplest approaches to find an estimation of the registration parameters that
describe the motion model relating two images is to minimize the degree of dissimilarity
between these two images. This can be performed using the Sum of Squared Differences
(SSD) as a dissimilarity measure, in order to quantify how different two images are. Thus,
image registration can be posed as another optimization problem (the previous one was
multi-frame super-resolution) where a solution can be obtained using any gradient-based
minimization scheme.

In this section, the mathematical formulation of the image registration problem is pre-
sented, where the minimization of a functional defined by the SSD between two images is
required to have an estimation of the registration parameters. Since it is expected to employ
this registration procedure using a gradient-based minimization method, the derivation of
an expression for the gradient of the SSD with respect to the registration parameters is also
presented.

For the motion models, two cases were considered: affine and quadratic transformations
(with 6 and 12 degrees of freedom respectively), which are the tools used to describe the
motion relations between low-resolution images. The purpose of having two motion models
in the context of multi-frame super-resolution is to figure out if the use of a more complex
model (represented by the quadratic transformation, in comparison with the affine one) can
help dealing with the distortion effects that degrade the quality of the low-resolution images,
since these distortions tend to severely affect the results of the image registration procedures.

32



3.5.1 Registration using sum of squared differences

Let I and T be matrices with a size of m×n representing the current image (this is, the image
that is expected to be registered) and the reference (or template) image respectively. Let x
and y be the possible pixel coordinates of these images, meaning that (x, y) ∈ {1, 2, ...,m}×
{1, 2, ..., n}. And let ω(p, x, y) be a transformation function (affine, quadratic, etc) defined in
terms of the elements of the vector p that maps pixel positions (x, y) from the template to the
current image. The pixel with position (x, y) in the image T should have the same value of the
pixel with position ω(p, x, y) in the image I, which simply means that T(x, y) = I(ω(p, x, y)).

Moreover, the SSD between the current and the template image can be expressed, as
function of the vector p of the transformation ω, as follows:

SSD(p) =
∑
(x,y)

(
T(ω(p, x, y))− I(x, y)

)2

(3.25)

where the sum is over all the possible pixel positions (x, y). Since the SSD corresponds to
a disimilarity measure, whose value is minimum when the images are as similar as possible,
the registration procedure can be formulated as the minimization problem:

p̂ = ArgMin
p

[ ∑
(x,y)

(
T(ω(p, x, y))− I(x, y)

)2
]

(3.26)

where p̂ is the estimate of the vector p that defines the transformation ω(p, x, y) that repre-
sents the geometric transform expected to be obtained after performing a registration task.

3.5.2 Optimization of registration based on SSD

As was mentioned before, if the minimization of a functional is required, the derivation of an
analytical expression of its gradient is a fundamental step. Then, in order to find a solution
for Eq. (3.26), the gradient of the SSD with respect to p (Gssd) must be calculated as is
presented below:
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Gssd =
∂SSD

∂p

=
∂

∂p

( ∑
(x,y)

(
T(ω(p, x, y))− I(x, y)

)2
)

= 2
∑
(x,y)

(
T(ω(p, x, y))− I(x, y)

) ∂

∂p

(
T(ω(p, x, y))

)

= 2
∑
(x,y)

(
T(ω(p, x, y))− I(x, y)

) (
∇T

∂ω

∂p

)T
(3.27)

where∇T is the gradient of the image T and ∂ω
∂p

is the partial derivative of the transformation
ω with respect to the vector p. Under the assumption that p is a vector of N elements, then
term ∇T ∂ω

∂p
will be a matrix of size 1×N (row vector) and will have the following form:

∇T
∂ω

∂p
=
(

∂T
∂x

∂T
∂y

)( ∂ωx

∂p1
... ∂ωx

∂pN
∂ωy

∂p1
... ∂ωy

∂pN

)
=
(

∂T
∂x

∂ωx

∂p1
+ ∂T

∂y

∂ωy

∂p1
... ∂T

∂x
∂ωx

∂pN
+ ∂T

∂y

∂ωy

∂pN

) (3.28)

3.5.3 Registration of affine transformations

In the case of affine transformations, the vector p has 6 elements (degrees of freedom) and
the transform function ω takes the form:

ωa(x, y) = ( p1x+ p2y + p3 , p4x+ p5y + p6 ) (3.29)

which implies that the term ∇T ∂ω
∂p

will be given, in this case, by the following expression:

∇T
∂ωa

∂p
=
(

∂T
∂x

∂T
∂y

)( ∂ωa,x

∂p1
... ∂ωa,x

∂p6
∂ωa,y

∂p1
... ∂ωa,y

∂p6

)

=
(

∂T
∂x

∂T
∂y

)( x y 1 0 0 0
0 0 0 x y 1

)
=
(

∂T
∂x
x ∂T

∂x
y ∂T

∂x
∂T
∂y
x ∂T

∂y
y ∂T

∂y

)
(3.30)

Thus, the replacement of Eq. (3.30) into Eq. (3.27) yields the expression for the gradient
of the SSD when an affine transform is considered to represent the motion model in the
registration problem.
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3.5.4 Registration of quadratic transformations

In the case of quadratic transformations, the vector p has 12 elements (degrees of freedom)
and the transform function ω takes the form:

ωq(x, y) = ( p1x+p2y+p3x
2 +p4y

2 +p5xy+p6 , p7x+p8y+p9x
2 +p10y

2 +p11xy+p12 ) (3.31)

which implies that the term ∇T ∂ω
∂p

will be given, in this case, by the following expression:

∇T
∂ωq

∂p
=
(

∂T
∂x

∂T
∂y

)( ∂ωq,x

∂p1
... ∂ωq,x

∂p12
∂ωq,y

∂p1
... ∂ωq,y

∂p12

)

=
(

∂T
∂x

∂T
∂y

)( x y x2 y2 xy 1 0 0 0 0 0 0
0 0 0 0 0 0 x y x2 y2 xy 1

)
=
(

∂T
∂x
x ∂T

∂x
y ∂T

∂x
x2 ∂T

∂x
y2 ∂T

∂x
xy ∂T

∂x
∂T
∂y
x ∂T

∂y
y ∂T

∂y
x2 ∂T

∂y
y2 ∂T

∂y
xy ∂T

∂y

)
(3.32)

Thus, the replacement of Eq. (3.32) into Eq. (3.27) yields the expression for the gradient
of the SSD when a quadratic transform is considered to represent the motion model in the
registration problem.
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Chapter 4

Astronomical images and
super-resolution

In this chapter, an overview about the aspects of astronomical images that should be consid-
ered under the perspective of multi-frame super-resolution is presented. It begins with a brief
description of the process by which astronomical images are acquired, to then discuss the
content that can be found in these images, considering two simple categories to classify the
signals from astronomical sources. The two main types of noise and distortions that affect
the quality of astronomical images are also reviewed. Then, a description of survey images
based on two particular features that characterize this specific kind of astronomical images
is presented.

Finally, we introduce two relevant parameters which are employed to describe, in a broad
manner, the quality on an astronomical image: the Point-Spread Function (PSF) and the
Signal-to-Noise Ratio (SNR). These two parameters are used to quantify the degree of blur
degradation and noise corruption that affect an astronomical image during its acquisition.
Both parameters, which can be estimated using astronomical software, play an important role
in multi-frame super-resolution, since they represent a quantification of these two degrading
effects which are considered in the Image Observation Model (IOM).

4.1 General description of astronomical images

In this section, a brief overview about the process of acquisition of astronomical images is
presented. A simple classification of the sources that can be found in this type of images is
also introduced. Finally, some of the distortion effects and the different kinds of noise that
are present in astronomical images are reviewed.
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4.1.1 Acquisition of astronomical images

The fundamental technology behind astronomical imaging is the Charge-Coupled Device
(CCD), which has been the standard device for astronomical image acquisition since the
1980s. A CCD detector consists, basically, of an array of pixels, usually arranged in a square
shape, located at the focal plane of an optical instrument such as a telescope. Each pixel
is a circuit element covered in silicon, which is very sensitive to light, and which bases its
operation on the photoelectric effect1.

When a CCD receives light, photons will reach the pixels in the detector and will then
be transformed into electronic charge, which will induce a voltage in the circuit (see the
diagram presented in Figure 4.1). The Analog-to-Digital (A/D) electronics measure the
voltage created by these electrons at the serial output and turn this voltage into an electronic
number, which can then be digitally transmitted and saved to a computer. ADU (Analog-
to-Digital Unit) is the name given to the A/D electronics output units. Therefore, in an
astronomical image, the value of a pixel represents essentially a number of ADU units, and
these ADU units represent the amount of photons that reached this specific pixel during the
process of image acquisition (which can be very long, in order to capture a suitable number
of photons).

Figure 4.1: CCD detector and its mechanism of operation.

Before performing analyses over them, astronomical images acquired by a CCD detector
must be calibrated, following a correction process known as reduction. A reduced astronom-
ical image is obtained through the following steps: first, a dark field is subtracted from the
original (raw) image. A dark field is a 0-second exposure image, taken on the same CCD that
will be used to obtain the astronomical images. This dark field exhibits the dark current of
the CCD, which corresponds to the spontaneous electrons generated by thermal excitation
on the CCD chip. If the dark current is not removed, voltage corresponding to thermal pro-
cesses within the CCD will be incorrectly considered as signal from the observed astronomical
objects.

1The photoelectric effect is the physical observation that many metals emit electrons when light shines
upon them. Electrons emitted in this manner are usually called photoelectrons.
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The second step in the reduction process corresponds to a division between the image
obtained after the subtraction of the dark field from the raw image, and a flat field image. A
flat field image is another special kind of image, obtained with the same CCD detector. In
this case, an image of an homogeneous light field (which can be generated artificially using a
lamp and a backdrop, or naturally with an image of the sky during sunset or sunrise) must
be used to account for the different sensitivies to light of the CCD pixels. On an ideal CCD,
all pixels would present the same sensitivity to light, and would convert photons to electrons
in the same, fixed rate. In reality, this is not the case. Dividing the images for this flat field
serves as a normalization of pixel light sensitivity, and also partially corrects optical defects
from the imaging device.

4.1.2 Source characterization

The content of astronomical images can be characterized in terms of the photon sources, or
signals, that are present in them. The two main photon sources, which have an influence
over the content of this sort of images, are the background and the astronomical objects.

The background represents the light contribution of the sky in an astronomical image.
Usually, the background is reflected in the images as a fixed constant that is present in all
the pixels; thus, the background can be estimated and removed by subtracting this constant
from all the image pixels. In more complex cases, the background can not be easily removed,
since gradients or more complicated behaviors may be influencing it.

Background subtraction makes it possible to easily detect the actual astronomical objects.
Typically, photon emissions from astronomical objects are not readily distinguished from
the background, thus they can be properly detected only after background subtraction and
within an error range. In the most generic definition, two types of astronomical sources can
be identified in an image: point and extended sources. A brief and simple characterization of
each one of these sources in the context of astronomical images is described below.

In an ideal approach, stars would be modeled as point sources due to their far location,
and they would appear as a single pixel in the image (in the context of this non-rigorous
classification, “star” represents every astronomical object which, due to its far location, does
not permit to obtain a notion of its shape). Evidently, this does not happen in practice.
Many factors can affect the path of a photon from the astronomical object to the pixels
of a CCD detector but, in ground-based telescopes, the influence of the atmosphere is the
most relevant one. Since the atmosphere is a turbulent layer that surrounds the Earth, each
photon that crosses the atmosphere will be scattered, meaning that the shape of a wave front
of photons hitting the CCD will be modified. The atmospheric effects can be regarded as
the application of a blur operator over the original, non-perturbed astronomical objects and
this is why, in an astronomical image, a star appears as a circle in terms of shape, and as a
narrow peak in terms of intensity (high values spanning over a reduced amount of pixels).

On the other hand we have extended sources, which are all the objects whose shape can
be noticed by a telescope, such as galaxies, and thus they can not be considered simply as
point sources in the sky. Even under ideal assumptions, photons from these extended sources
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will reach a group of contiguous pixels on the CCD detector, spanning an area of the image.
Atmospheric effects also tend to modify the real shape of this type of objects. In astronomical
images, these objects usually show elliptical shapes, while their intensity curves are soft and
span over a group of adjacent pixels.

4.1.3 Noise sources in astronomical images

Noise is one of the undesirable effects always present in astronomical images, and its diminu-
tion is required in order to improve the quality of the images. The two main sources of noise
are reviewed below.

1. Shot noise: This type is noise is caused by the arrival of random photons to the CCD
pixels. Since the arrival of each photon is an independent event (not determined by
any previous arrival), there is no way to accurately predict the arrival of any of these
photons. In probabilistic terms, this physical process is modeled by a Poisson distribu-
tion. If we consider a large enough image acquisition time, this random photon arrival
proccess can be approximated by a normal distribution, which means that the shot
noise effects will be smaller as the image exposure time increases (since more photons
are collected). Another mechanism to deal with this type of noise is to combine images,
by stacking them in one new image, which is essentially another form of increasing the
image exposure time.

2. Read-out noise: CCD electronics do not measure the amount of charge in each packet
of electrons perfectly. They add a slight amount of uncertainty, or noise, as they
perform the measurement process, due to the different electronic procedures. This sort
of noise exhibits a Gaussian distribution and its influence on astronomical images can
be reduced by combining frames or using the standard image processing techniques for
noise removal.

In a first instance, the main concern in the context of multi-frame super-resolution is the
removal of read-out noise, since the Gaussian distribution of this type of noise coincides with
the assumptions considered in the image observation model and in the MAP approach. This
fact justifies the suitability of multi-frame super-resolution reconstruction techniques for the
case of astronomical images. However, the utilization of a set of low-resolution images helps to
deal with the presence of shot and read-out noise, since the combination of the information
contained in each low-resolution image reduces the presence of both types of noise in the
reconstructed image. Besides, the utilization of the Laplacian and the gradient prior terms
in the cost function also permits to diminish the noise effecs.

4.1.4 Distortions

There are many sources of distortion in the process of astronomical image acquisition. Some
of them have already been mentioned, but now they will be reviewed in more detail and
context. Distortions are mainly a consequence of technical issues with the CCD detector,
but sometimes they can be caused by natural and random events that can not be controlled.

39



Below, four of the main distortion sources that affect astronomical images are listed:

1. Dark current: Dark current is caused by thermally generated electrons which, when the
voltage is measured, are confused with electrons generated by actual photon arrivals to
the CCD pixels. The rate of dark current aggregation depends on the temperature of
the CCD during the image acquisition process; this is why, in telescopes, liquid nitrogen
is used to cool down the CCDs and decrease the effects of dark current. Fortunately, as
was previously mentioned, the noise introduced to an image by dark current is removed
in the image reduction process.

2. Non-uniform sensitivity in pixels: The pixels of a CCD often show different sensitivities
to light, which represents a problem in order to acquire an image in the most accurate
way possible. Each pixel will have a different conversion rate of photons into electrons.
This distortion effect can be reduced, as was previously mentioned, by dividing the
astronomical image by a flat-field image, in order to normalize the light sensitivity
scale of the pixels.

3. Bad pixels: Sometimes, there are pixels on the CCD that do not work properly; other
times, an operative pixel stops working properly due to saturation (after receiving a
limit amount of photons, the pixel’s behavior stops being linear, which means that
the photon value established for that pixel is not reliable). Thus, it is important
to accurately detect the location of defective pixels on the CCD, in order to remove
them from the final image. Usually, these pixels are replaced considering some sort of
interpolation based on the values of the surrounding pixels, such as a mean or a median
interpolation.

4. Hot pixels: When a high energy particle hits one pixel in the CCD, it loses its energy by
colliding with the atoms of the circuit. In this collision, many electrons are liberated,
which causes a high electron count and thus a bright spot on the image (a pixel with
a very high intensity value). These high energy particles can be genuine cosmic rays
(exotic particle produced by exploding supernovae, black holes, etc), or can be also
produced by the decay of some radioactive atoms present in the lenses just above the
CCD. Cosmic rays are usually easy to recognize, because they appear much sharper
than stars: the high energy particle hits just one or a couple of pixels. The removal of
these pixels can be tricky but it is usually based, as the previous case, on interpolation
procedures.

In regards to multi-frame super-resolution, dark current and non-uniform sensitivity in
pixels are not a problem, since the low-resolution images that are considered in this thesis
have already been reduced. Eventually, images with bad or hot pixels can be considered
in some cases, but the presence of these outlier pixels is handled by the super-resolution
algorithms themselves, due to their regularized approach. If there is an outlier in one of the
low-resolution images, its presence is compensated by the correct data contained in the other
low-resolution images. In case this is not enough, the penalization introduced by the prior
term in the cost function helps to remove the outlier value.
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4.2 Survey images

As was previously mentioned, survey images represent one of the most interesting set of
images where multi-frame super-resolution techniques can be applied. In this specific type of
astronomical images, all the descriptions presented above are also valid. Nevertheless, there
are characteristics particular to these images wich will now be addressed.

Since the main idea of surveys is to observe wide areas of the sky and to not concentrate
the observation in one specific astronomical object, in each survey image a great number of
astronomical objects can be found. These objects, considering the simple source characteriza-
tion previously introduced, can mostly have circular and sharp shapes (corresponding mainly
to stars, but also to other types of objects located very far), or elliptical and smooth shapes
(corresponding mainly to galaxies). Also, since no object has a predominance in this kind of
images, there is a large amount of background pixels in each survey image. Then, and due
to the background subtraction employed to enable the proper identification of astronomical
objects, these background pixels will have an intensity value of zero if the image is properly
calibrated. This means that survey images, when understood as matrices, will have a high
degree of sparsity.

Figure 4.2 shows an example of the images that are expected to be obtained using the
LSST. This image was generated by the LSST team considering all the real circumstances that
affect the process of image acquisition. Also, in this image, two main characteristics of survey
images that were mentioned above can be noted: the presence of a big number of objects,
with both sharp circle and smooth elliptical shapes, and a large amount of background pixels.

Figure 4.2: This simulated image, generated by the LSST team, represents an example of
the type of images that will be obtained by the LSST.

4.3 Relevant characteristics in the context of multi-

frame super-resolution

In the context of multi-frame super-resolution, there are two main elements used to describe
some characteristics of astronomical images that need to be considered. These elements are
the Point-Spread Function (PSF) and the Signal-to-Noise Ratio (SNR), which are typically
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employed to measure, or have a notion, of the quality of the information contained in an
astronomical image.

The importance of both elements comes from the fact that they are used for describing, in
mathematical terms, two relevant characteristics of astronomical images and which are part
of the conceptualization introduced for multi-frame super-resolution: the blur and the noise.
For astronomers, the blur that affects the quality of an image is modeled by the PSF, while
the amount of noise that corrupts an image is quantified employing the SNR.

4.3.1 Point-Spread Function (PSF)

In the context of optical astronomical imaging, the PSF represents the atmospheric effects
that disturb the quality of an image during acquisition as a convolution kernel. In practice,
however, there are other elements that should be considered in order to have a detailed
description of the PSF, such as the light dispersion on the detector and tracking errors. There
is no way to know the PSF exactly, since it changes in time and space as the turbulences of
the atmosphere move around and change (the PSF can be different for two different pixels
in the same time and can be also different for the same pixel in two different moments).
Therefore, in practice, astronomers work with approximations of the PSF.

A simple approach for PSF modeling is considering it as a 2D Gaussian kernel. The
parameters of this kernel are estimated through the following process:

1. Selection of a set of suitable stars in an astronomical image, which means that the
shape of these stars should be well defined in such image (for example, they should not
present diffraction spikes2).

2. Estimation of the FWHM3 and the ellipticity for every selected star in the image after
fitting a 2D Gaussian.

3. The average of the obtained values actually represents the FWHM and the ellipticity
of the PSF in the image (since stars should be point sources).

Then, using the estimated values for the FWHM and the ellipticity of the PSF, the 2D
Gaussian kernel can be constructed. This procedure can be performed employing two com-
putational tools developed for processing and analyzing astronomical images: SExtractor [5]
and PSFEx [4]. The first one is used to select the required set of stars, while the second one
uses this set of stars to estimate the FWHM and the ellipticity of the PSF according to the
procedure previously described.

As ellipticy values are usally close to zero, the 2D Gaussian approximation of the PSF can
be generated using the same standard deviation for the Gaussian in both axes. This stan-

2Diffraction spikes are lines radiating from bright light sources in reflecting telescope images. They are
artifacts caused by light diffracting around the support vanes of the secondary mirror of the telescope.

3The Full Width at Half Maximum (FWHM) is a parameter commonly used to describe the width of a
bump on a curve or function. It is given by the distance between the points on the function at which it
reaches the half of its maximum value. In an astronomical context, the FWHM is used to have an estimation
of the width of the kernel that represents the PSF.
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dard deviation is obtained from the existing relation between the FWHM and the standard
deviation in Gaussian functions. This relation, which is depicted in Figure 4.3, is given by:

FWHM = 2
√

2 ln(2) σ ≈ 2.355 σ (4.1)

Figure 4.3: Relation between the FWHM and the standard deviation in a Gaussian function.

Therefore, this 2D Gaussian approximation of the PSF is useful to estimate the quality
of an astronomical image. For larger values of the FWHM or, equivalently, the standard
deviation, the blur will affect the image more severely, but for smaller values, the blur will
not affect the image quality in such a drastic way. This relation can be appreciated in Figure
4.4, where we can see some examples of how the quality of an astronomical image is blurred
when it is convolved with a 2D Gaussian kernel for some set of FWHM values.

(a) (b) (c) (d)

Figure 4.4: Results obtained from the convolution of an astronomical image (a) with 2D
Gaussian kernels with FWHM values corresponding to 2.5 pixels, 5 pixels and 10 pixels are
presented in (b), (c) and (d) respectively.
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4.3.2 Signal-to-Noise Ratio (SNR)

The SNR relates the amount of useful information (signal coming from the actual astronom-
ical objects) with the noise contained in an image. There are many different definitions for
the SNR but, in this thesis, the following one will be used:

SNR =
Avg(signal)

σnoise
(4.2)

where Avg(signal) represents the average between the values of the pixels that contain signal,
and σnoise represents the standard deviation of the noise contained by the image considered.
Every pixel whose intensity value is bigger than a threshold is considered as a pixel containing
signal. This threshold value, which allows to separate the signal from the background pixels,
can be computed using SExtractor.

The SNR then can be regarded as a measure of the quality of the image, since its value
indicates the amount of noise present in an astronomical image. For example, a value close
to 1 for the SNR means that there is a similar amount of noise and signal in the image, which
precludes the proper identification and analysis of that signal. But a large value for the SNR
means that there is a large amount of signal contained in the image compared to the amount
of noise, and then this noise is not an impediment to identificate the signal. All this can be
seen in Figure 4.5, where some examples of astronomical images with different SNR values
are shown.

(a) (b) (c) (d)

Figure 4.5: Results obtained from adding Gaussian noise to an astronomical image (a) until
reaching SNR values corresponding to 100, 10 and 1, are presented in (b), (c) and (d)
respectively.
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Chapter 5

Experimental setting

In this chapter we describe, in a detailed manner, all the experiments that were carried out for
analyzing the performance of the four multi-frame super-resolution algorithms, as function
of the Signal-to-Noise Ratio (SNR), in order to achive the different goals of this thesis. It is
important to remember that these goals correspond to the following four points: (i) to find out
the relation between the performance of each algorithm and the SNR, (ii) to determine which
algorithm has the best performance, (iii) to analyze the reduction in the performance results
of the algorithms when the estimation of the blur and registration parameters is not accurate,
and (iv) to check if the employment of quadratic registration instead of affine registration for
motion estimation implies an improvement in the performance of the algorithms.

In first place, we present a description of each one of the four multi-frame super-resolution
algorithms in terms of te expressions, previously obtained for the cost functions and their
corresponding gradients. After that, we discuss the relevant details about image simulation,
since the experiments performed for this thesis are based on the utilization of simulated
images generated with the Image Observation Model (IOM) and PhoSim. We also introduce
the two metrics employed for measuring the algorithms’ performance: the Peak Signal-to-
Noise Ratio (PSNR) and the Reduced χ2.

With these concepts, we later discuss the details about each one of the experiments de-
signed for studying the performance of the multi-frame super-resolution algorithms. These
experiments are organized in two experimental frameworks, where the aim of each one is to
analyze the algorithms’ performance under different circumstances. In the first experimental
framework (1EF), the algorithms employ the simulation parameters as input for recovering
high-resolution images. This means that the blur and registration information of the sim-
ulated low-resolution images is known beforehand. Moreover, in the second experimental
framework (2EF), the blur and registration parameters are estimated without knowing any
prior information, as it should be done in practice. As consequence, the results obtained in
the 2EF will be more realistic than the ones obtained in the 1EF, since, in this case, the
performance of the algorithms will be affected by the errors introduced in the parameter esti-
mation stage. In fact, the purpose of having these two frameworks is to be able of measuring
the reduction, that should manifest the algorithms’ performance, when the results obtained
under an ideal setting, corresponding to the 1EF, are compared with the results obtained in
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a more realistic context, such as the one established in the 2EF.

Finally, after introducing all the details concerning to both experimental frameworks,
we present a brief discussion about some relevant technical aspects that are also required
to have a comprehensive understanding about the different experiments performed in this
thesis. Among these technical aspects we can mention the implementation details of the
different algorithms considered in this thesis, such as the two registration procedures and
the four multi-frame super-resolution algorithms, and the description of the computational
infraestructure employed to carry out each one of the experiments.

5.1 Selected algorithms

In this thesis, the performance of four multi-frame super-resolution algorithms is analyzed
as a function of the SNR value that describes the low-resolution images employed as input.
These four algorithms, which were previously introduced and denoted as LA, LZ, GA and
GZ, are defined as it follows:

LA: Selection of Laplacian prior for the cost function, according to Eq. (3.17), and employ-
ment of the analytical expression for computing the corresponding gradient, which is
specified by Eq. (3.18).

LZ: Selection of Laplacian prior for the cost function, according to Eq. (3.17), and em-
ployment of Zomet’s approximation for computing the corresponding gradient, which
is specified by Eq. (3.23).

GA: Selection of gradient prior for the cost function, according to Eq. (3.19), and employ-
ment of the analytical expression for computing the corresponding gradient, which is
specified by Eq. (3.20).

GZ: Selection of gradient prior for the cost function, according to Eq. (3.19), and employ-
ment of Zomet’s approximation for computing the corresponding gradient, which is
specified by Eq. (3.24).

Each one of these algorithms corresponds to one of the four possible combinations be-
tween the two priors (Laplacian and gradient) and the two expressions used for computing
the gradient of the cost function (analytical expression and Zomet’s approximation), which
have already been presented in this thesis. The idea behind the selection of these algorithms
is to combine all the available tools to approach the ill-posed nature of the super-resolution
problem, as well as to deal with the noise which affects the set of low-resolution images (since
this distortion element can severely affect the results of the super-resolution reconstruction
procedure). Therefore, the evaluation of the algorithms’ performance will allow us to deter-
mine which one of these tools turns out to be more effective in the context of multi-frame
super-resolution.

It is important to mention explicitly what the expected utility, or reason of selection, is
for each one of the considered tools. In first place, the use of prior terms intends to regularize
the super-resolution problem, allowing algorithms to recover a high-resolution image in spite
of the noise and the lack of complementary information in the set of low-resolution images.
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Zomet’s approximation offers a robust mechanism for computing the data term in the gradient
and improve the optimization process, which represents another technique to deal with the
presence of noise.

5.2 Image simulation

In order to evaluate the performance of the diferent multi-frame super-resolution algorithms
as function of the SNR, multiple sets of low-resolution images were generated considering a
range of values for the SNR. First, a set of 100 astronomical images was built, which were
used as high-resolution image templates. Then, for each SNR value in the relevant range and
for each one of the 100 high-resolution image templates, a set of 10 low-resolution images was
generated, each one of these images having the corresponding SNR. This means that every
high-resolution image template was degraded 10 times, considering random translations (ver-
tical and horizontal shifts) with sub-pixel accuracy (satisfaying the main condition required
to use of multi-frame super-resolution procedures), and a given value for the SNR.

The simulation process, by which low-resolution images are obtained from the high-
resolution image templates, was performed considering two different schemes which are de-
scribed in later sections. In general terms, this simulation process can be summarized in the
three following steps:

1. Selection of an astronomical image from the template set.

2. Degradation of that image 10 times, considering a random translations and a given
value for the SNR.

3. Grouping these 10 simulated images, each one with the same SNR value, in one low-
resolution set characterized by this SNR value and associated to the original image
from the template set.

There are two more relevant parameters on the simulation process, which have not been
mentioned: the downsampling factor and the PSF. The downsampling factor was established
with a fixed value of 2 in all the simulations. This means that every simulated low-resolution
image has a half of the resolution in each axis with respect to the high-resolution image
template from which it was generated (then, the number of pixels in a low-resolution image
is a quarter of the number of pixels in a high-resolution image template). The aspects
related to the parametrization of the PSF effects are presented later, since each one of the
two schemes considered employs a different approach for modeling the influence of the PSF
in the simulation process.

The details concerning the construction of the set with high-resolution image templates are
now discussed, which represents the main input for the simulation process. Then, each one
of the two schemes used to carry out the simulation process are described. This description
includes an explanation of how each one of these schemes handles the modeling of the PSF
effects in the simulated images.
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5.2.1 Construction of the template set

The set of high-resolution image templates was constructed with 100 cutouts obtained from
astronomical images. Each cutout was manually obtained from a different astronomical
image, since these cutouts must satisfy a special condition in order to be used in simulations
of the low-resolution images to be employed as input for the multi-frame super-resolution
algorithms. This condition is that each cutout must include at least one star, since the
process used to estimate the value of the FWHM of the Gaussian approximation of the PSF,
which was presented in Section 4.3.1, uses the stars contained in an image to operate.

The large amount of memory and processing time required by the algorithms to recover
large images makes the repeated use of these algorithms infeasible if a complete astronomical
image is employed. Since each algorithm needs to be used multiple times, cutouts with a size
of 200× 200 pixels were considered for the template set in order to have faster runtimes and
smaller memory consumption.

Therefore, if we expect to recover an image with a size of 200× 200 pixels from a set of 10
low-resolution images with a size of 100×100 pixels, 10 matrices with a size of 10, 000×40, 000
are needed to be stored in memory (corresponding to each one of the matrices Wk considered
in the IOM). Besides, the multiplication of these matrices is carried out several times during
the optimization process, whenever a computation of the cost function or its gradient is
performed. Consequently, performing the set of experiments considered in this thesis would
not be possible for large images.

Some examples of the cutouts selected for the template set can be seen in Figures 4.4a,
4.5a and 5.1a. In each one of these examples we can notice the presence of the stars required
for obtaining the Gaussian approximation of the PSF, whose FWHM represents a relevant
parameter employed in the multi-frame super-resolution process. Moreover, and according
to the source characterization previously introduced, we can see clear examples of extended
sources in Figures 4.4a and 5.1a, since both images show galaxies, while in Figure 4.5a we
can only see point sources that correspond to stars.

5.2.2 Simulations based in the image observation model

The first scheme used for simulating low-resolution images is based on the replication of
the degration process specified by the IOM. This means that each low-resolution image is
generated by successively applying a random translation, a convolution with a Gaussian
kernel (which, as previously mentioned, represents the approximation of the PSF), and a
downsampling factor of two (meaning that every low-resolution pixel is obtained by averaging
four high-resolution pixels) over the high-resolution image template, to finally add Gaussian
noise in order to obtain a specific value for the SNR.

In this case, the PSF is parametrized in terms of the FWHM of its Gaussian approximation.
The value used for the FWHM in all the simulations was 3.52 pixels, which is the value
estimated for the FWHM of the Gaussian approximation of the PSF of the LSST. The
mechanism used for the obtention of this value and the reasons for its use in this simulation
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scheme based in the IOM are detailed in the next section.

5.2.3 PhoSim simulations

The second scheme used to simulate low-resolution images is based on the utilization of a new
simulation tool called PhoSim [53], short for Photon Simulator. This tool, recently developed
by the LSST team, uses a Monte Carlo approach to generate images by sampling photons
from models of astronomical sources, and then simulating those photons through the system
as they interact with the atmosphere, the telescope, and the camera. All the physical effects
for optical light that determine the shapes, locations, and brightnesses of stars and galaxies
are accurately represented by this image simulation tool.

Since PhoSim can use an image as input for the simulation process, this tool was employed
using the images of the template set as input, considering the default configuration provided
in PhoSim (that attempts to replicate the physical conditions under which the LSST will
operate), in order to obtain their low-resolution versions. These simulated low-resolution
images consider a wider range of distortions than the ones that can be modeled with the
IOM.

In regards to the utilization of PhoSim, it is important to mention that we only had
explicit control over the downsampling factor, which value was set to 2. A downsampling
factor of 2 means the size of a pixel in a low-resolution image is twice the size (on both
axes) of a pixel in a high-resolution image, thus, the area spanned by a pixel on a low-
resolution image is 4 times the area spanned by a pixel on a high-resolution image. Although
in theory the position of the simulated low-resolution images can also be defined, to then
include the required translations that allow using multi-frame super-resolution algorithms,
the athmospheric turbulence induced by PhoSim severely affects the final position of the
images. This is not an impediment for using multi-frame super-resolution procedures, but it
means that the registration parameters are not known beforehand for the simulated images.

The same situation happens with the SNR. While it is possible to simulate images con-
sidering a specific amount of photons, two images simulated according to the same sets of
parameters will not have the exact same SNR, due to atmospheric turbulences and the Monte
Carlo approach used by PhoSim, where each photon is generated by an individual process.

In this case, we do not have a mechanism for controlling the PSF, since its specific form
is defined by a great deal of parameters and also by the random processes derived from the
Monte Carlo approach. Because of this, an estimation of the FWHM of the PSF of the LSST
is used, which corresponds to 3.52 pixels, in the first simulation scheme (that is based on
the replication of the IOM). This will allow to compare the results obtained after performing
multi-frame super-resolution reconstruction in sets of images generated with both simulation
schemes.

The procedure employed to obtain this estimation of the value of the FWHM of the
Gaussian approximation of the PSF of the LSST was the same that was presented in Section
4.3.1. In this case, a set of 100 simulated images, each one containing 10 stars in random
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positions, was generated using PhoSim. Then, using SExtractor and PSFEx, the value for
the FWHM of the PSF was calculated, obtaining an average value of 3.52 pixels (with an
associated average value for the ellipticity of 0.02 pixels).

(a) (b) (c)

Figure 5.1: An example of the images of the template set is presented in (a), while the
simulated low-resolution versions obtained using the IOM and PhoSim are presented in (b)
and (c) respectively.

5.3 Performance metrics

The evaluation of the four multi-frame super-resolution algorithms was carried out consid-
ering two perfomance metrics. These metrics correspond to the Peak Signal-to-Noise Ratio
(PSNR) and the Reduced χ2, and they were employed in the different experiments for mea-
suring the performance achieved by each one of the algorithms. The purpose of the first
metric is to compare the reconstructed high-resolution image with the template image used
in the simulation process, while the idea behind the second metric is to compare how well
the reconstructed image reflects the information contained in the set of low-resolution images
used as input for the super-resolution process.

5.3.1 Peak Signal-to-Noise Ratio (PSNR)

Since the performance of multi-frame super-resolution using simulations is to be analized,
it is of interest to compare the image reconstructed using one of the algorithms with the
original image, used as template in the simulation process. For this comparison, the PSNR
was used, which is defined as:

PSNR(T, I) = 10 log10

(
Max(T)2

MSE(T, I)

)
= 20 log10

(
Max(T)

)
− 10 log10

(
MSE(T, I)

) (5.1)
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where T, I, Max(T) and MSE(T, I) represent the template image, the reconstructed image,
the maximum value in the pixels of the template image, and the Mean Squared Error (MSE)
of the template and the reconstructed image, respectively. The MSE of images T and I,
considering a size of m× n for these images, is defined as:

MSE(T, I) =
1

mn

∑
(x,y)

(
T(x, y))− I(x, y)

)2

(5.2)

where the sum is perfomed over all the possible pixel coordinates (x, y), which means that x
runs between 1 and m, and y between 1 and n. The value of the MSE is then equivalent to
the division between the SSD of these two images, defined by Eq. (3.25), and their respective
number of pixels.

The PSNR compares the maximum possible value of a signal, which is usually referred
as signal’s power, with the intensity of the distorting noise that affects the quality of its
representation. In the context of multi-frame super-resolution, the template image represents
this signal while the reconstructed image, obtained with the algorithms, corresponds to the
representation of such signal and that is affected by many distorting effects where the noise
is the main one. From the definition introduced for the PSNR in Eq. (5.1), it is important
to notice that small PSNR values are consequence of large MSE values which indicate the
presence of high levels of noise in the reconstructed image. In an inverse manner, large PSNR
values are consequence of small MSE values which indicate the presence of small noise levels
in the reconstructed image.

5.3.2 Reduced χ2

The reconstructed image, obtained after using a regularized multi-frame super-resolution
algorithm over a set of low-resolution images, is basically a fit respect to the information
contained in that set of low-resolution images. The effectiveness of the model can represented
as the reconstructed high resolution image. Thus, this efectiveness can be measured against
the available observations (represented by the set of low-resolution images). For this, the
reduced χ2 can be used.

The expression defining this perfomance metric is given by the following formula:

Reduced χ2 =
1

ν

N∑
k=1

∑
(x,y)

(
Mk(x, y)−Ok(x, y)

)2

σ2
k

(5.3)

where Ok is the k-th image in the set of N low-resolution images (observations), Mk is the
degraded version of the reconstructed high-resolution image (model) degradated according
to the parameters estimated for Ok, and σk corresponds to the variance in Ok which is, in
this case, the variance of the noise contained in the low-resolution image represented by Ok.
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The inner sum is performed over all the possible pixel coordinates (x, y) in the space of low-
resolution pixels, while the outer sum is performed over the set of N low-resolution images,
in order to compare the pixel values between each low-resolution image and its corresponding
degraded version of the reconstructed high-resolution image. Finally, ν represents the number
of degrees of freedom involved in the problem, given by:

ν =
(

Number of
observations

)
−
(

Number of fitted
parameters

)
− 1

=
(

Total number of
low-resolution pixels

)
−
(

Total number of
high-resolution pixels

)
− 1

(5.4)

Therefore, a high-resolution image of size 2L× 2L is to be reconstructed using a set of N
low-resolution images of size L× L, then the value of ν will be:

ν = (N · L · L)− (2L · 2L)− 1

= L2(N − 4)− 1
(5.5)

which means that, for N = 10 and L = 100 (corresponding to the case where a set of 10 low-
resolution images, each one with a size of 100×100 pixels, is used to recover a high-resolution
with a size of 200× 200 pixels), the value of ν corresponds to 59,999.

In general terms, a value close to 1 for the reduced χ2 indicates that the degree of match be-
tween the observations (low-resolution images) and the model (reconstructed high-resolution
images) is in accordance with the variance (noise). A value bigger than 1 indicates that
the model has not fully represented the data (or that the error variance has been underes-
timated), while a value smaller than 1 indicates that the model is over-fitting the data (or
that the error variance has been overestimated).

5.4 Experimental frameworks

Two experimental frameworks were considered for the organization of the different exper-
iments of this thesis. In the first experimental framework (1EF), the performance of the
four multi-frame super-resolution algorithms was analized considering a wide range of SNR
values, and using only low-resolution images obtained with the IOM. In the second experi-
mental framework (2EF), the algorithms’ performance was analized in a range of SNR values
similar to the one employed in the 1EF, but using low-resolution images obtained with both
simulation schemes (PhoSim and IOM). Ideally, all the algorithms would have been tested
with both simulations schemes and considering exactly the same range of SNR values, but
this was not possible due to the nature of the mechanims employed by PhoSim for simulating
images. Since PhoSim bases its operation in a Monte Carlo approach, it is not feasible to
obtain simulated images with an exact and predetermined value for the SNR. Nevertheless,
the final range of SNR values obtained after simulating images with PhoSim is very similar
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to the one used in the 1EF, since the parameter values employed for these simulations were
selected with this purpose.

The idea behind these two different experimental frameworks is to test the four multi-
frame super-resolution algorithms under different circumstances. In the 1EF an ideal case
is considered, since the reconstructions are performed employing the parameters used in the
simulation process carried out with the IOM. Moreover, a real case is considered in the 2EF,
since before performing the multi-frame super-resolution reconstruction, a stage where the
different parameters required are estimated is carried out. Therefore, in this 2EF all the
parameters needed for the operation of the four multi-frame super-resolution algorithms, and
which correspond to the blur and registration parameters, are estimated as should be done
in practice.

5.4.1 First experimental framework (1EF)

The aim of the 1EF is to validate the proper operation of the four multi-frame super-resolution
algorithms, LA, LZ, GA and GZ, in a wide range of SNR values. In order to do that, the sets of
low-resolution images were generated using the first simulation scheme, which is based on the
IOM, to then perform multi-frame super-resolution reconstruction employing the parameters
that were used during the simulation process.

Only simulations based on the IOM were considered, because we did not have explicit
control over all the relevant parameters with PhoSim. Since it is not possible to simulate
low-resolution images with PhoSim according to a specific set of values for all these relevant
parameters related to the super-resolution procedure, the reconstruction of high-resolution
images considering an ideal case is not feasible due to the necessity of estimating all these
parameters, which supposes the introduction of a degree of error in the reconstruction process.

This experimental framework has three main stages. The first one consists in the sim-
ulation of the different sets of low-resolution images, using as input the template set of
high-resolution images and the selected simulation parameters. The second stage is given by
the reconstruction of high-resolution images with all the algorithms, employing the sets of
simulated low-resolution images and the already known simulation parameters. The third
and final stage consists in the computation of the two metrics used to characterize the per-
formance of the algorithms. The PSNR is computed for each one of the algorithms using
the template image, employed to generate the input set of low-resolution images, and the
image reconstructed from that set. Finally, the reduced χ2 is also computed for each one
the algorithms, employing the set of low-resolution images, their SNR values (obtained from
the simulation parameters) and the high-resolution image that was reconstructed from that
set. A flow chart describing this experimental framework, its three stages and the relations
between them is presented in Figure 5.2.
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Figure 5.2: This flow chart presents the three successive stages of the 1EF: simulation of low-
resolution images (orange), multi-frame super-resolution (red) and computation of metrics
(blue).

First stage: simulation of low-resolution images

For the simulation process performed in the first stage of this experimental framework, an
equispaced and wide set of seven SNR values, between 1 and 100, considering a logarithmic
scale, was used. The considered set of SNR values was {1, 2.15, 4.64, 10, 21.54, 46.42, 100},
which was obtained from the computation of the values of the expression 10

i
3 for i in

{0, 1, 2, 3, 4, 5, 6}. A fixed value of 2 was considered for the downsampling factor, which
means that the area of a low-resolution pixel is four times the area of a high-resolution
pixel. For the FWHM of the Gaussian approximation of the PSF, a value of 3.52 pixels was
employed.
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Table 5.1: Parameters employed in the simulation stage of the first experimental framework.

Parameter Value specification

Set of SNR values {1.0, 2.15, 4.64, 10.0, 21.54, 46.42, 100.0}
Number of sets of LR images for each SNR value 100

Number of LR images in each set 10

Downsampling Factor 2

FWHM of the considered PSF (pixels) 3.52

Coordinates of translations with sub-pixel accuracy Randomly selected in {0, 0.05, 0.1, ..., 0.95}

Using the parameter values previously specified, 100 sets of 10 low-resolution images each
were generated for each SNR value in the considered range, where each one of these im-
ages was obtained with the simulation scheme based on the IOM. In the simulation process,
translations with sub-pixel accuracy were considered in order to allow the utilization of the
multi-frame super-resolution algorithms. Each one of the two values that define these trans-
lations (one by each coordinate) were randomly selected from the set {0, 0.05, 0.1, ..., 0.95}.

Since a range of 7 values was considered for the SNR, 7 different sets of low-resolution
images, each one containing 10 frames, were generated from each high-resolution image tem-
plate. This means that a total amount of 7000 low-resolution images were simulated in this
first stage of the 1EF. A summary with all the parameters employed in these simulations is
presented in Table 5.1.

Second stage: reconstruction of high-resolution images

Using the simulation parameters previosly introduced, four high-resolution images were re-
constructed, employing each one of the four multi-frame super-resolution algorithms, from
each one of the 700 available sets of simulated low-resolution images. This means that a total
of 2800 reconstructions were performed during this stage of the first experimental framework.

Third stage: computation of performance metrics

In order to measure the performance of the four multi-frame super-resolution algorithms,
the two metrics previously presented were computed. The PSNR was computed using the
image reconstructed by each one of the algorithms from an input set, and the high-resolution
image template that was employed to simulate that set. The reduced χ2 was computed using
the image reconstructed by each one of the algorithms and the set of low-resolution images
employed to reconstruct that image. Also, the value of the SNR considered for the simulation
of this input set was used to obtain the standard deviation of the noise contained in each
one of the simulated low-resolution images, a parameter required in the computation of the
reduced χ2.

Therefore, for each one of the four multi-frame super-resolution algorithms and each one
of the seven SNR values contemplated in this framework, there are 100 computed values
for the PSNR and the reduced χ2. Then, employing this information, the average and the
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standard deviation of both metrics were calculated, in order to construct two performance
curves by algorithm (one for each metric). These curves are presented in Section 6.1.

5.4.2 Second experimental framework (2EF)

The purpose of the 2EF is to study the performance of the four multi-frame super-resolution
algorithms under more realistic circumstances. In order to do this, the estimation of the two
parameters needed for employing the four multi-frame super-resolution algorithms, which
are the PSF and the registration, is incorporated as another requirement of the experiments
considered in this second framework. For all these experiments, whose details are presented
later, the PSF is estimated using the procedure previously introduced (see Section 4.3.1),
while the registration parameters are estimated employing affine and quadratic registration.

This experimental framework is made up of four stages. In the first one, two different
groups of sets of low-resolution images were generated, each one obtained with one of the
two simulation schemes available, PhoSim and the IOM. In the second stage, the FWHM
of the Gaussian approximation of the PSF and the registration parameters are estimated
using the procedures mentioned above. In the third stage, multi-frame super-resolution is
performed by each algorithm in the two groups of input sets (each one obtained with one
simulation scheme) and considering the parameters estimated in the previous step. Since
there are two estimations for the registration parameters (affine and quadratic), and also two
groups of low-resolution image sets (obtained with PhoSim and the IOM), four PSNR and
reduced χ2 values are then computed, in the final stage, for each algorithm and each value
in the SNR range considered. A flow chart describing this second experimental framework,
its three stages and the relations between them is presented in Figure 5.3.
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Figure 5.3: This flow chart presents the four successive stages of the 2EF: simulation of
low-resolution images (orange), estimation of the parameters (green), multi-frame super-
resolution reconstruction (red) and computation of metrics (blue).
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Table 5.2: The values employed for the exposure time in the PhoSim simulations of the 2EF
are displayed in the first column. In second column we can see the average SNR computed
for the images obtained from these simulations with their corresponding errors (standard
deviation). In the third column the percentages that represent these errors respect to the
average SNR values are displayed.

Exposure time (s) Estimated SNR SNR percentage error

3.5 1.43± 1.02 71.32 %
5.0 2.68± 1.42 52.99 %
6.5 5.37± 2.21 41.16 %
9.0 10.32± 3.88 37.60 %
30.0 25.87± 6.31 24.39 %
90.0 52.12± 9.85 18.90 %
240.0 96.56± 13.98 14.48 %

First stage: simulation of low-resolution images

In the first stage of the 2EF, two groups of sets of low-resolution images were simulated,
using the high-resolution image templates and both simulation schemes. First, images were
simulated employing PhoSim considering a set of 7 exposure times for a fixed magnitude1

value. With these two parameters we were able of having certain degree of control over the
SNR of the simulated images generated by PhoSim, since the exposure time corresponds to
the amount of time employed in the observation of a source during the acquisition of an
astronomical image, while the magnitude is a measure of the brightness of that source or, in
other words, the amount of that photons are emitted by unit of time from such source.

The image simulation was then performed considering the values corresponding to 3.5,
5.0, 6.5, 9.0, 30.0, 90.0 and 240.0 seconds for the exposure time and fixed magnitude of 16.
These values were selected in order to obtain a SNR range as similar as possible to the one
considered in the 1EF. Unfortunately, due to the Monte Carlo approach of PhoSim, the use
of an specific exposure time value in two different simulations of the same image does not
imply the obtention of the same SNR value. Because of this, the 100 sets of low-resolution
images, generated for each one of the 7 exposure times considered, were characterized in
terms of the average of the SNR values computed for each one of these sets. The details with
the relation between these 7 values employed for the exposure time and the average SNR
values estimated for the simulated low-resolution images are presented in Table 5.2.

Later, using the sequence of SNR values obtained for each one of these 7 exposure times
(and that correspond to 1.43, 2.68, 5.37, 10.32, 25.87, 52.12 and 96.56), the second group of
low-resolution images were generated, employing the first simulation scheme that corresponds
to the IOM. The idea behind this is to enable the later comparison between the reconstruction
results obtained with both groups of simulated low-resolution images, by considering the
same range of SNR values. Also, in order to allow this comparison, the same downsampling
factor (corresponding to 2) was considered for both groups of low-resolution images, and the

1In astronomy, the magnitude is the logarithmic measure of the flux of photons emitted by a source,
considering a specific wavelength or band.
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FWHM of the Gaussian approximation obtained for the LSST (corresponding to 3.52 pixels)
was employed in the simulations performed with the second scheme.

For both groups of simulated low-resolution images, the inclusion of random translations
was considered, where the values of the two coordinates of these translations were randomly
selected from the set {0, 0.05, 0.1, ..., 0.95}. In practice, the inclusion of these translations
in the low-resolution images generated with PhoSim was not really relevant, since the final
position of an image is very variable due to the atmospheric turbulences included in the de-
fault setting of this simulation tool. This means that the registration parameters are always
unknown for the simulations obtained using PhoSim, as a consequence, the utilization of a
registration procedure is required. To understand how atmospheric turbulences affect the
simulated images, introducing spontaneous motions and modifying the shape of the astro-
nomical objects contained in these images, Figure 5.4 presents three simulations of a star
(point source) where these effects can be observed. These three simulations were obtained
with PhoSim and employing, in each one, the same set of parameter values (without consid-
ering any motion). Also, since a point source is considered as an input for the simulations
presented in Figure 5.4, these three images allow to have a notion of the FWHM of the
Gaussian approximation of PSF of the LSST.

The parameter values employed for both groups of simulations are presentend in Table 5.3
and Table 5.4. In the first one, the parameter values considered for the simulations generated
with Phosim are shown, while the second table shows the values employed in the simulations
performed with the scheme based in the IOM.

(a) (b) (c) (d)

Figure 5.4: The simulated result of observing a point source without the presence of the
atmosphere is presented in (a). Images (b), (c) and (d) are simulations obtained with the
same set of parameter values for the observation of that point source but considering the
presence of the atmosphere. All these simulations were generated with PhoSim.

Second stage: Estimation of parameters

In the second stage of the 2EF, different procedures are employed to estimate the FWHM
of the PSF and the registration parameters. The estimation of the FWHM is performed
using SExtractor and PSFEx, in the same manner that has been previously mentioned.
The estimation of registration parameters is carried out using the two approaches presented
in this thesis, where the SSD between images is minimized considering affine or quadratic
transformations to model the motion.
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Table 5.3: Parameters employed in the simulations performed with PhoSim in the first stage
of the 2EF.

Parameter Value specification

Set of exposure time values (s) {3.5, 5.0, 6.5, 9.0, 30.0, 90.0, 240.0}
Magnitude 16

Number of sets of LR images for each exp. time value 100

Number of LR images in each set 10

Downsampling Factor 2

Coordinates of translations with sub-pixel accuracy Randomly selected in {0, 0.05, 0.1, ..., 0.95}

Table 5.4: Parameters employed in the simulations performed with the IOM in the first stage
of the 2EF.

Parameter Value specification

Set of SNR values {2.04, 3.46, 5.18, 6.45, 8.29, 10.86, 12.30, 14.62}
Number of sets of LR images for each SNR value 100

Number of LR images in each set 10

Downsampling Factor 2

FWHM of the considered PSF (pixels) 3.52

Coordinates of translations with sub-pixel accuracy Randomly selected in {0, 0.05, 0.1, ..., 0.95}

Therefore, since there are two different groups of simulated low-resolution images (each
one generated with a different simulation scheme) and two approaches for computing the reg-
istration parameters (affine and quadratic), there is a total number of four different scenarios
where the performance of the four multi-frame super-resolution algorithms can be tested.
This also means that each registration procedure is employed 1,400 times, because each one
of the two groups of simulated low-resolution images is made up of 700 sets (since 7 SNR
values and 100 high-resolution image templates are considered).

Third stage: Reconstruction of high-resolution images

The reconstruction of high-resolution images, using each one of the algorithms in the four
considered scenarios, is the purpose of the third stage of this experimental framework. In
this case there are, for each SNR value (from a total number of seven), two groups of 100
sets of low-resolution images (with each set composed by 10 frames), where each set has two
associated registration estimates. These four scenarios mentioned, each one defined by the
simulation scheme and the registration approach employed, are given by:

• Case 1: PhoSim and affine registration

• Case 2: IOM and affine registration

• Case 3: PhoSim and quadratic registration

• Case 4: IOM and quadratic registration

According to this, each one of the four algorithms performs 700 reconstructions in each
scenario (100 sets of simulated low-resolution images for each one of the seven SNR values).
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Since four different algorithms (LA, LZ, GA and GZ) and four different scenarios are consid-
ered, in this third stage of this experimental framework 11,200 reconstructions are performed
in total (2,800 by each algorithm).

Fourth stage: computation of performance metrics

In fourth and final stage of this experimental framework, the performance metrics are calcu-
lated for each algorithm in each one of the four scenarios considered. The PSNR is computed
as usual, using the reconstructed image and the high-resolution image template. In the case
of the scenarios where the simulated low-resolution images were obtained employing PhoSim,
the computation of the PSNR will be affected by the registration errors. This means that,
for these cases, the PSNR is a biased metric of the performance. This problem does not
affect the results of the reconstructions performed with low-resolution sets obtained using
the IOM, because in these cases the registration parameters used for a propper computation
of the PSNR are known beforehand.

The reduced χ2 is also computed as usual, employing the reconstructed image, the set
of low-resolution images used as input in the reconstruction process of that image, and the
SNR value associated to this set (used to obtain the standard deviation of the noise, which
is known from the first stage). Also, for the scenarios where simulated low-resolution images,
generated with PhoSim, are used as input of the reconstruction process, the errors introduced
during the registration and the SNR estimation process affect the suitable computation of the
reduced χ2. Then, for these cases, this metric is a also a biased estimator of the performance
of the algorithms. This is not a problem for the cases where simulated low-resolution images
were generated using the IOM, since all the parameters required for an exact computation
of the reduced χ2 are known beforehand.

5.5 Relevant technical aspects

A review about some relevant technical aspects, concerning to the implementation and ex-
ecution of the different multi-frame super-resolution algorithms and registration procedures
mentioned along this thesis, is now presented. The idea behind the discussion of these aspects
is to provide all the details needed to have a comprehensive understanding of the experiments
considered in this thesis.

5.5.1 Implementation of multi-frame super-resolution algorithms

The multi-frame super-resolution problem was posed as an optimization problem, where
a cost function should be minimized. Each one of the four super-resolution algorithms is
consequently defined in terms of a specific cost function and its gradient. The expressions
for these cost functions and their gradients, considering the mathematical derivation of each
expression, were presented in Chapter 3.
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The implementation of the algorithms was then carried out considering a gradient-based
approach where these expressions are employed. As was previously mentioned, the most
straighforward implementation is given by the employment of the gradient descent method.
However, this option was discarded, since this method, due to its simplicity, usually shows a
relatively slow convergence and difficulties when finding the global minimum if the problem
is not convex enough.

The method finally selected for the implementation of the multi-frame super-resolution
algorithms was the non-linear conjugate gradient. This selection can be considered as a design
decision, since there is no specific recipe for the selection of optimization procedures, although
theory suggests that this method has a better perfomance than, for example, gradient descent
or Gauss-Newton methods. Besides, this method only requires the gradient’s expression to
operate, which is an advantage since many optimization procedures also need an expression
for the Hessian matrix. The algorithms’ implementation relied in the utilization of the non-
linear conjugate gradient implementation provided by Scipy2, a Python package for scientific
computing, in its module optimize.

Another aspect that should be mentioned about the implementation of the four multi-
frame super-resolution algorithms is that a limit value was defined for the maximum number
of iterations during the minimization process. The reason for establishing this limit is to
avoid unnecessary oscillations around a minimum when the available precision is not enough
for reaching such minimum in an exact manner. In practice this limit did not have any
relevant impact over the results obtained in the different experiments, since in most cases the
algorithms required less than 50 iterations to converge to a minimum of their corresponding
cost functions.

5.5.2 Implementation of image registration

The image registration problem was also posed as an optimization problem where a cost
function should be minimized. Two different strategies for image registration were considered:
the first one, known as affine registration, employs affine transformations for motion modeling,
while the second one, known as quadratic registration, uses quadratic transformations for the
same. For these two strategies there are also expressions for the corresponding cost function
and its gradient, which were presented in Chapter 3. Therefore, both image registration
procedures were implemented also employing the non-linear conjugate gradient, in exactly
the same manner considered in the section above.

It is important to notice that the general expressions for the cost function and its gradient,
which are given by Eq. (3.25) and Eq. (3.27), are the same for both registration procedures.
The differences appear when the motion models considered by each procedure are replaced
into this pair of expressions, yielding to different formulas for the cost function and its
gradient in each case. The motion model based on affine transformations, which has 6
degrees of freedom, is specified by Eq. (3.29), while the motion model based on quadratic
transformation, which has 12 degrees of freedom, is specified by Eq. (3.31).

2http://scipy.org/
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Another relevant aspect about image registration is the employment of interpolation tech-
niques. The obtention of an image after applying a transformation requires the utilization
of an interpolation procedure, since the coordinates of the new pixels generated by a trans-
formation are usually not-integer, meaning that the information in-between pixels should
be estimated in order to generate the transformed image. For this task we employed the
implementation of the interpolation technique known as cubic splines provided by Scipy.

5.5.3 Implementation of the prior terms

Two prior terms, Laplacian and gradient, are considered for the different cost functions
associated with each one of the multi-frame super-resolution algorithms. The Laplacian prior,
specified in Eq. (3.14), and which was employed in the implementation of the algorithms,
corresponds to the following kernel:

Γl =


1 1 1 1 1
1 1 1 1 1
1 1 −24 1 1
1 1 1 1 1
1 1 1 1 1

 (5.6)

On the other hand, the gradient prior, specified in Eq. (3.15), was computed using central
differences for each one of the pixels along each direction. Later, using the results obtained
for both directions, the magnitude of the gradient is computed for the image considered to
then obtain the kernel required for the cost function (and its gradient) by matrix inversion.

5.5.4 Utilization of the NLHPC’s cluster

All the experiments decribed for this thesis were performed employing the supercomputing
infrastructure provided by the Leftraru cluster of the National Laboratory for High Perfor-
mance Computing3 (NLHPC). The utilization of this cluster was a key element for carrying
out these experiments, since many of the processes involved have significant requirements of
memory and computing capacity. The obtention of the results presented in this thesis would
have not been possible if the only available resources had been those of a personal computer.

For example, the purpose of the experiments described here is to study the performance
of the four multi-frame super-resolution algorithms when they are employed to recover a
high-resolution image, with a size of 200 × 200 pixels, from a set of 10 low-resolution images,
each one with a size of 100 × 100 pixels. In order to do this, each algorithm needs to
compute 10 degradation matrices (denoted by Wi in the equations previously reviewed),
where each one of these matrices has a size of 10,000 × 40,000. Considering that each one of
the values contained in these matrices is stored in memory using 8 bytes, then the memory
space employed by each one of these 10 matrices is 3.2 GB. The minimization process needs

3http://www.nlhpc.cl

63

http://www.nlhpc.cl


to have simultaneous access to these 10 matrices for computing the value of the cost function
and its gradient, thus the utilization of the algorithms in the different experiments requires
of at least 32 GB in order to store the 10 degradation matrices into RAM memory.

The NLHPC’s cluster is made up of 128 nodes that can be employed by the users for
running their programs according to a system of prioritization whose aim is to guarantee a
balanced use of resources. Each one of these 128 nodes is made up of 20 cores (each one
with an speed of 2.2 GHz) and it has a maximum availability of 48 GB of RAM memory.
Therefore, by using the NLHPC’s nodes considering a parallel scheme, it was possible to
fulfill all the requirements (especially those corresponding to memory consumption), run the
experiments, and then obtain all the results.
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Chapter 6

Experimental results

In this chapter, the results obtained after conducting all the experiments previously detailed
are presented. In these experiments, the performance of the four multi-frame super-resolution
algorithms was characterized by measuring two metrics, the PSNR and the reduced χ2, as
functions of a range of SNR values. First we present the results obtained for the First
Experimental Framework (1EF), which represents an ideal setting in the context of the
analysis performed in this thesis. Then we present the results obtained for the four cases
that made up the Second Experimental Framework (2EF), which represents a real setting to
study the algorithms’ performance, since all the relevant parameters for the reconstruction
process, and that correspond to the registration information and the PSF, are estimated with
some degree of error.

A comparison between the outcomes achieved by the four multi-frame super-resolution
algorithms in both experimental frameworks is also presented, which was carried out by
computing the PSNR and the (Reduced χ2 - 1) ratios between the results obtained in the
1EF and each one the four cases of the 2EF. The purpose of this comparison is to have a
notion of how much worse the performance of the algorithms is under real circumstances,
compared to that obtained considering the ideal setting.

Finally, another group of performance comparisons results is introduced, this time be-
tween the different cases considered in the 2EF. First, the results obtained for the cases with
a different registration approach and a common simulation scheme are compared, and later
the results for the cases with a common registration approach and a different simulation
scheme are also compared. The idea behind these second group of comparisons is to un-
derstand the influence of the two registration procedures, affine and quadratic, and the two
simulation schemes, PhoSim and the Image Observation Model (IOM), in the performance
results achieved by the algorithms in the four cases of the 2EF.
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6.1 Results of the first experimental framework

In the 1EF, the performance of the four multi-frame super-resolution algorithms under ideal
circumstances was analized. In this case, all the parameters required for image reconstruction
were known beforehand. The performance was measured employing the PSNR and the
reduced χ2 as metrics. The results obtained for both metrics are presented, as a function of
the SNR value, in Figure 6.1a for the case of the PSNR, and in Figure 6.1b for the case of
the reduced χ2. All the values presented in both plots are detailed in Table A.1.

For the case of the PSNR, the trend in the results shows an increase in the value of this
metric as the SNR grows. This means that the algorithms are working as expected, since the
quality of the reconstructed image should be proportional to the amount of noise present in
the low-resolution images of the input set.

Regarding the specific behaviour of the algorithms it is important to note that, when the
same prior is considered, the algorithm that uses Zomet’s approximation for computing the
gradient has a better performance for small SNR values (high levels of noise). However, for
high SNR values, the approach based on the analytical computation of the gradient has a
better perfomance. This difference is more evident between GA and GZ than between LA
and LZ (LA only has a slightly better performance than LZ for high SNR values). These
results also indicate the existence of a critical point for the SNR, located between 21.54 and
46.42, which divides the SNR range between small and large values. These results also prove
that Zomet’s approximation is indeed an appropriate tool to deal with the presence of noise,
since the algorithms that employ Zomet’s approximation for computing the gradient achieve
better perfomances than their counterparts, which use the analytical expression, for SNR
values smaller than said critical point.

For the case of prior selection, the PSNR results suggest that a Laplacian prior is the
best choice for small SNR values, while the gradient prior presents better results if high SNR
values are considered. The performance differences for small SNR values between LA and GA
(both algortihms employ the analytical expression of the gradient) show a clear improvement
in the outcome if the Laplacian prior is used instead of the gradient prior. Besides, in the
four PSNR curves, the ratio between the size of the error bars (that represents the standard
deviation) and the value of the metric decreases when the SNR grows. Therefore, all the
algorithms work in a more stable manner if the presence of noise is diminished in the group
of images of the input set.

The values obtained for the reduced χ2 of GA and GZ are very stable, and have only
a small tendency to increase as the SNR grows. Moreover, in the case of LA and LZ, this
trend is only valid for SNR values equal or smaller than 10.0, since both algorithms present
a significative increment of the reduced χ2 for higher SNR values. This means that the
smoothing process, introduced by the utilization of the Laplacian prior, is actually removing
signal instead of noise (which is to be expected, due to the low levels of noise considered).
Besides, this small increasing tendency in the reduced χ2 values indicates that the quality of
the reconstruction worsens when the SNR grows. This is a logical consequence derived from
the design of the algorithms, since they all are a combination of different tools used to deal
with noise. Because of this, performance is not the best when the input images have low
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(a) PSNR vs SNR

(b) Reduced χ2 vs SNR

Figure 6.1: Results obtained in the 1EF using the PSNR and the reduced χ2 as performance
metrics. In this case the blur and registration parameters are known beforehand.
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levels of noise (in fact, the employment of the ML approach would be better for this case).

At first glance, values around 1.6 for the reduced χ2 are not ideal, since the optimal value
for this metric is 1 (which represents a perfect fit), and they suggest that the reconstructed
image is not properly reflecting the information contained in the set of low-resolution images.
However, this interpretation is not appropriate for the analysis of these specific results, since
the reconstruction process carried out by the algorithms employed only 10 low-resolution
images as input. This amount of images is not enough to perform a perfect reconstruction,
this being the main reason for having values not close to 1, even for high SNR values. In fact,
since all the reconstructions performed in the 1EF used the correct value for the different
parameters required, the values obtained for the reduced χ2 can be considered as a limit for
algorithm performance when only 10 low-resolution images are available. Then, to the extent
that more images are considered in the input set, these limit values should progressively get
closer to 1.

6.2 Results of the second experimental framework

The results obtained for the four cases considered in the 2EF are now presented. Each case
is defined in terms of the approach used for the registration process (affine or quadratic)
and the simulation scheme employed to obtain the different sets of simulated low-resolution
images (PhoSim or the IOM). In the four cases the performance was measured using the
PSNR and the reduced χ2 as metrics.

6.2.1 Case 1: PhoSim and affine registration

Performance results obtained for each one of the four multi-frame super-resolution algorithms
in case 1 of the 2EF, where simulations were obtained using PhoSim and affine registration
was employed for image alignment, are presented in Figure 6.2a for the case of the PSNR,
and in Figure 6.2b for the case of the reduced χ2. All values presented in the curves of both
plots are detailed in Table A.2.

For the case of PSNR, all curves show an increase in the value of this metric as the SNR
grows. The ratio between the size of the error bars and the corresponding PSNR values also
decreases as the SNR increases, which means that the stability of the algorithms improves if
the noise levels in the input images are smaller. Also, a better performance of the methods
that employ Zomet’s approximation for computing the gradient, instead of the analytical
expression, can be noticed when high levels of noise are present. For SNR values smaller
or equal than 10.32, LZ presents a better performance than LA, while LA achieves results
slightly better than LZ for higher SNR values. In the case of the other two algorithms, we
can notice that GZ has a better performance than GA for SNR values equal or smaller than
25.87, while this relation is reversed for higher SNR values. Regarding to the prior selection
it can be noticed that, for small SNR values, the algorithms with Laplacian priors have better
performances than their counterparts with gradient priors, while for higher SNR values the
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(a) PSNR vs SNR

(b) Reduced χ2 vs SNR

Figure 6.2: Results obtained in case 1 of the 2EF considering the PSNR and the reduced χ2

as performance metrics. In this case the simulations are obtained using PhoSim and affine
registration is employed for image alignment.
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algorithms that employ gradient priors present better results, this being clearly evident for
the highest SNR value of the considered range.

The results obtained for the reduced χ2 should be divided into two groups for their analysis
since, according to the prior selected, the curves present different behaviors. In the first place,
we can notice that the reduced χ2 values corresponding to GA and GZ oscillate between 2.104
and 2.344 with a slight tendency to decrease as the SNR grows. Moreover, the reduced χ2

values obtained for LA and LZ oscillate between 2.129 and 2.305, a range very similar to the
one previously mentioned, but only for SNR values equal or smaller than 25.87. For higher
SNR values, the reduced χ2 has a subtantial growth for both algorithms, reaching values for
the highest SNR corresponding to 3.086 in the case of LA and 4.324 in the case of LZ. It can
be also noticed that the size of the error bars increases as the SNR grows in each one of the
four curves.

The behavior of the curves obtained for both performance metrics is consistent, in terms
of the trends, with the results obtained in the 1EF. However, the results obtained in this first
case of the 2EF framework are worse than the ones obtained in the 1EF, since the PSNR and
reduced χ2 values achieved by the algorithms are, respectively, smaller and larger than the
ones achieved in the 1EF. This difference, which proves the existence of a reduction in the
algorithms’ performance in comparison with the results obtained in the 1EF, is a consequence
of the errors associated to the process of estimating the blur and registration parameters.
The details about this performance reduction will be later analyzed and discussed.

6.2.2 Case 2: Image observation model and affine registration

Performance results obtained for each one of the four multi-frame super-resolution algorithms
in case 1 of the 2EF, where simulations were obtained using the IOM and affine registration
was employed for image alignment, are presented in Figure 6.3a for the case of the PSNR,
and in Figure 6.3b for the case of the reduced χ2. All values presented in the curves of both
plots are detailed in Table A.3.

In the second case of the 2EF, all the PSNR curves show an increase in the value of
this metric as the SNR grows, while the ratio between the size of the error bar and the
corresponding PSNR value decreases as the SNR increases, since the error is relatively stable
regardless of the SNR. Here it can be also noticed that the algorithms that use Zomet’s
approximation have better results, in a range of small SNR values, than their counterparts
that employ the analytical expression of the gradient. In fact, LZ has a better performance
than LA for SNR values equal or smaller than 5.37; then, both algorithms perform almost
the same way for a SNR value of 10.32, while LA achieves better results than LZ for SNR
values higher than 10.32. For SNR values equal or smaller than 25.87 we can see that GZ
has a better performance than GA, but this relation is reversed for higher SNR values, where
GA achieves better results than GZ.

In the curves obtained for the reduced χ2 we can notice the same global trends that have
been observed in the results corresponding to the 1EF and the first case of the 2EF. For the
algorithms that use the gradient prior, GA and GZ, it can be noticed that their reduced χ2
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(a) PSNR vs SNR

(b) Reduced χ2 vs SNR

Figure 6.3: Results obtained in case 2 of the 2EF considering the PSNR and the reduced χ2

as performance metrics. In this case the simulations are obtained using the IOM and affine
registration is employed for image alignment.
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values oscillate between 1.852 and 2.235, without any clear tendency in the case of GZ and
with a slight tendency to decrease in the case of GA. Moreover, the values corresponding to
LA and LZ oscillate between 1.855 and 2.121 for SNR values equal or smaller than 25.87,
while both algorithms present a significant growth for higher SNR values. In fact, for the
highest value of the SNR range, corresponding to 96.56, the reduced χ2 values achived by
LA and LZ are 3.004 and 4.095 respectively. Finally, in all these curves we can notice that
the size of the error bars increases as the SNR grows.

The results obtained in this second case of the 2EF are consistent with those obtained in
the 1EF, since we can observe the same general trends in the curves analyzed in both cases.
Nevertheless, a reduction on the algorithms’ performance can also be noticed here, since the
results presented are worse than those obtained in the 1EF. A more detailed analysis about
this performance reduction will be later presented.

6.2.3 Case 3: Phosim and quadratic registration

Performance results obtained for each one of the four multi-frame super-resolution algorithms
in case 3 of the 2EF, where simulations were obtained using PhoSim and quadratic regis-
tration was employed for image alignment, are presented in Figure 6.4a for the case of the
PSNR, and in Figure 6.4b for the case of the reduced χ2. All values presented in the curves
of both plots are detailed in Table A.4.

In the third case of the 2EF, the PSNR curves present the same tendencies observed in
previous case: an increase in the PSNR value and a decrease in the ratio between the size of
the error bars and the corresponding PSNR value as the SNR grows. Also, Zomet’s approxi-
mation presents better results than the analytical expression for computing the gradient in a
range of small SNR values. For SNR values equal or smaller than 25.87, GZ achieves better
results than GA, while for higher SNR values this relation is reversed. In the case of LA
and LZ we can notice that both algorithms have almost an identical performance for a SNR
value corresponding to 25.87, while for smaller SNR values LZ achieves better results than
LA and for higher SNR values LA performs better than LZ. Here it can be also noticed that
the algorithms that use the Laplacian prior are the best choices for reconstructing images if
the levels of noise are high, while the algorithms that employ the gradient prior offer better
results when the levels of noise are low.

Regarding the results corresponding to reduced χ2, all the curves show the same general
behavior that has been observed in previous cases. The values of the curves of GA and GZ
oscillate between 2.064 and 2.443 without any specific tendency. For LA and LZ it can be
noticed that the reduced χ2 values oscillate between 2.061 and 2.403 for SNR values smaller
or equal than 25.87. Also, as in previous cases, for the two highest SNR values the curves
corresponding to LA and LZ present an important growth. For a SNR value of 96.56, which
corresponds to the highest value of the SNR range, 3.296 and 4.274 are the reduced χ2 values
achieved respectively by LA and LZ. Moreover, the size of the error bars increases as the
SNR grows for each one of the four curves analyzed.

The behavior of the PSNR and reduced χ2 curves is consistent with the results previ-

72



(a) PSNR vs SNR

(b) Reduced χ2 vs SNR

Figure 6.4: Results obtained in case 3 of the 2EF considering the PSNR and the reduced χ2 as
performance metrics. In this case the simulations are obtained using PhoSim and quadratic
registration is employed for image alignment.
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ously presented. The comparison between these curves and those corresponding to the 1EF
also proves the existence of a reduction in the performance of the four multi-frame super-
resolution algorithms. All details about this performance reduction will be discussed in depth
in following sections.

6.2.4 Case 4: Image observation model and quadratic registration

Performance results obtained for each one of the four multi-frame super-resolution algorithms
in case 4 of the 2EF, where simulations were obtained using the IOM and quadratic regis-
tration was employed for image alignment, are presented in Figure 6.5a for the case of the
PSNR, and in Figure 6.5b for the case of the reduced χ2. All values presented in the curves
of both plots are detailed in Table A.5.

In the fourth and final case of the 2EF, the same general tendencies previously described
can be noticed for both performance metrics. For the PSNR, all the curves show an increase
in the value of this metric as the SNR grows. Also, the ratio between the size of the error
bars and the corresponding PSNR value decreases as the SNR increases, which is associated
to an improvement in the stability of the algorithms when the noise level is lower in the
input images. In the case of the algorithms that use the gradient prior, we can notice that
GZ presents a better performance than GA for SNR values equal or smaller than 25.87,
while GA achieves better results than GZ for higher SNR values. In the case of the other
two algorithms, the performance of LZ is better than the performance of LA for the three
smallest values of the considered SNR range, while LA performs better than LZ for SNR
values higher or equal than 10.32. It can be also noticed in these PSNR curves that the
algorithms that use the Laplacian prior achieve better results when high levels of noise are
considered.

For the reduced χ2 curves we can also notice the same general behavior described in
previous cases. The values corresponding to the curves of GA and GZ oscillate between
1.851 and 2.180, with an slight tendency to increase in the case of GZ and with an slight
tendency to decrease in the case of GA. Moreover, the reduced χ2 values corresponding to
LA and LZ oscillate between 1.886 and 2.113 for SNR values equal or smaller than 25.87.
For the two highest values of the SNR range, the curves of LA and LZ present the same
considereable growth observed in previous cases. Here, LA and LZ reach reduced χ2 values
corresponding to 2.736 and 4.352 for the highest SNR value. Finally, it can be noticed that
in each one of the four curves the size of the error bars increases as the SNR grows.

Again, the comparison between these results and those obtained in the 1EF, considering
both metrics, indicates a reduction in the performances achieved by the four multi-frame
super-resolution algorithms. An estimation of this performance reduction, considering each
one of the four cases of the 2EF, is later presented, along with a discussion about the reasons
that explain such situation.
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(a) PSNR vs SNR

(b) Reduced χ2 vs SNR

Figure 6.5: Results obtained in case 4 of the 2EF considering the PSNR and the reduced
χ2 as performance metrics. In this case the simulations are obtained using the IOM and
quadratic registration is employed for image alignment.
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6.3 Comparison between results of both frameworks

A major concern of this thesis, according to what has been mentioned in the goals, is to
understand how the performance results change when we compare both experimental frame-
works, since they represent different circumstances under which the algorithms were tested.
In the 1EF, the registration and blur parameters were provided to each one of the algorithms,
since these parameters were known from the simulation process, in order to obtain a measure
of their performances under ideal circumstances. On the other hand, in each one of the four
cases of the 2EF, such parameters were estimated using two registration procedures, affine
and quadratic, along with the PSF-approximation process that was previously presented.
The values obtained from these estimation mechanims always present some degree of error,
since their operation can be affected by many distorting effects, noise being the most relevant
one. Therefore, the performance curves obtained for both metrics in the 2EF correspond to
a more realistic setting, since these performance results are affected by the errors introduced
during the estimation of the registration and blur parameters, as it happens in practice.

Ideally, the comparison between the results of both experimental frameworks should be
made considering exactly the same range of SNR values. As we mentioned before, due to
technical limitations associated to the employment of PhoSim, we were not able to obtain
simulations with this tool for the exact same SNR range selected in the 1EF. Nevertheless, the
SNR range of the 2EF is close enough to the SNR range of the 1EF, in terms of the sampling
and the magnitude of the values, so the comparison is still possible but not optimal.

As it was previously mentioned, during the analysis of the results obtained in the 2EF,
there is a reduction in the algorithms’ performance that we want to estimate by comparing
the results of both experimental frameworks. In order to do this, the ratio of the PSNR
and the (Reduced χ2 - 1) was computed between the values obtained in each one of the
cases of the 2EF and the corresponding values of the 1EF. It is important to remember that
the optimal value expected for the Reduced χ2 is 1 and, as consequence, the ratio for this
performance metric should be computed using the deviations from the optimal value instead
of the actual value obtained for the metric.

The existence of the performance reduction was in evidence because the PSNR values
obtained in the 2EF were smaller than those obtained in the 1EF, while the Reduced χ2

values obtained in the 2EF were larger than those obtained in the 1EF. As a consequence,
and since the ratios were computed as percentages, the PSNR ratio and the (Reduced χ2 -
1) ratio will be smaller and larger than 100%, respectively, in all the analyzed cases.

Below we introduce eight plots with the results obtained after computing the ratios ac-
cording to what was previously mentioned. For each one of the four comparisons, between
the results of each one of the four cases of the 2EF and the results of the 1EF, we present
two plots, where the first one shows the curves obtained for the PSNR ratio and the second
one shows the curves obtained for the (Reduced χ2 - 1) ratio. All these curves are presented
as a function of the SNR. The SNR values employed in the x-axis correspond to the average
between the SNR values of both experimental frameworks, since we do not have a perfect
coincidence between the SNR ranges of the 1EF and the 2EF.
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6.3.1 Comparison between results of the 1EF and the case 1 of the
2EF

The ratio percentages computed from the comparison between the results obtained in the
case 1 of the 2EF and those obtained in the 1EF are presented in Figure 6.6a for the PSNR
ratio percentage, and in Figure 6.6b for the (Reduced χ2 - 1) ratio percentage. All the values
used to obtain these plots are detailed in Table A.6. It is important to remember that, in case
1 of the 2EF, the low-resolution images were simulated using PhoSim, while the registration
parameters were estimated using affine registration.

(a) PSNR ratio vs SNR (b) (Reduced χ2 - 1) ratio vs SNR

Figure 6.6: Ratios computed between the results obtained for the PSNR and the (Reduced
χ2 - 1) in the 1EF and in case 1 of the 2EF.

The four curves in the PSNR ratio plot present a steady growth as the SNR increases.
For the smallest SNR value, which corresponds to 1.22, the curves are around 50%, while
for the highest SNR value, which corresponds to 98.28, the curves are around 71%. This
means that the performance reduction of the algorithms decreases as the SNR grows, which
is an expected behavior since the accuracy achieved by the registration methods and the
PSF-approximation procedure should be improved if lower levels of noise are considered.

On the other hand, the (Reduced χ2 - 1) ratio remains relatively stable and oscillates
around 200% in the four curves without any specific tendency, regardless of the SNR value.
For the highest value of the SNR range, the curves corresponding to LA and LZ present a
subtantial decrease, reaching values around 144%. This behavior seems to be related with
the growth observed in the reduced χ2 for the highests SNR values in the four cases of the
2EF and, also, in the 1EF. Therefore, this decrease in the (Reduced χ2 - 1) ratio does not
necessarily mean that the performance reduction corresponding to LA and LZ is smaller for
a SNR value of 98.28, since the results obtained for the reduced χ2 were not optimal in both
cases.

77



6.3.2 Comparison between results of the 1EF and the case 2 of the
2EF

The ratio percentages computed from the comparison between the results obtained in the
case 2 of the 2EF and those obtained in the 1EF are presented in Figure 6.7a for the PSNR
ratio percentage, and in Figure 6.7b for the (Reduced χ2 - 1) ratio percentage. All the values
used to obtain these plots are detailed in Table A.7. It is important to remember that, in case
2 of the 2EF, the low-resolution images were simulated using the IOM while the registration
parameters were estimated using affine registration.

(a) PSNR ratio vs SNR (b) (Reduced χ2 - 1) ratio vs SNR

Figure 6.7: Ratios computed between the results obtained for the PSNR and the (Reduced
χ2 - 1) in the 1EF and in case 2 of the 2EF.

The four curves in the PSNR ratio plot present an steady growth as the SNR increases.
For the smallest SNR value, which corresponds to 1.22, the curves are around 53%, while
for the highest SNR value, which corresponds to 98.28, the curves are around 77%. This
means that the performance reduction of the algorithms decreases as the SNR grows, which
is an expected behavior since the accuracy achieved by the registration methods and the
PSF-approximation procedure should be improved if lower levels of noise are considered.

On the other hand, the (Reduced χ2 - 1) ratio remains relatively stable and oscillates
around 165% in the four curves without any specific tendency, regardless of the SNR value.
For the highest value of the SNR range, the curves corresponding to LA and LZ present a
subtantial decrease, reaching values around 136%. This behavior seems to be related with
the growth observed in the reduced χ2 for the highests SNR values in the four cases of the
2EF and, also, in the 1EF. Therefore, this decrease in the (Reduced χ2 - 1) ratio does not
necessarily mean that the performance reduction corresponding to LA and LZ is smaller for
a SNR value of 98.28, since the results obtained for the reduced χ2 were not optimal in both
cases.
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6.3.3 Comparison between results of the 1EF and the case 3 of the
2EF

The ratio percentages computed from the comparison between the results obtained in the
case 3 of the 2EF and those obtained in the 1EF are presented in Figure 6.8a for the PSNR
ratio percentage, and in Figure 6.8b for the (Reduced χ2 - 1) ratio percentage. All the values
used to obtain these plots are detailed in Table A.8. It is important to remember that, in case
3 of the 2EF, the low-resolution images were simulated using PhoSim while the registration
parameters were estimated using quadratic registration.

(a) PSNR ratio vs SNR (b) (Reduced χ2 - 1) ratio vs SNR

Figure 6.8: Ratios computed between the results obtained for the PSNR and the (Reduced
χ2 - 1) in the 1EF and in case 3 of the 2EF.

The four curves in the PSNR ratio plot present an steady growth as the SNR increases.
For the smallest SNR value, which corresponds to 1.22, the curves are around 49%, while
for the highest SNR value, which corresponds to 98.28, the curves are around 70%. This
means that the performance reduction of the algorithms decreases as the SNR grows, which
is an expected behavior since the accuracy achieved by the registration methods and the
PSF-approximation procedure should be improved if lower levels of noise are considered.

On the other hand, the (Reduced χ2 - 1) ratio remains relatively stable and oscillates
around 200% in the four curves without any specific tendency, regardless of the SNR value.
For the highest value of the SNR range, the curves corresponding to LA and LZ present a
subtantial decrease, reaching values around 150%. This behavior seems to be related with
the growth observed in the reduced χ2 for the highests SNR values in the four cases of the
2EF and, also, in the 1EF. Therefore, this decrease in the (Reduced χ2 - 1) ratio does not
necessarily mean that the performance reduction corresponding to LA and LZ is smaller for
a SNR value of 98.28, since the results obtained for the reduced χ2 were not optimal in both
cases.
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6.3.4 Comparison between results of the 1EF and the case 4 of the
2EF

The ratio percentages computed from the comparison between the results obtained in the
case 1 of the 2EF and those obtained in the 1EF are presented in Figure 6.9a for the PSNR
ratio percentage, and in Figure 6.9b for the (Reduced χ2 - 1) ratio percentage. All the values
used to obtain these plots are detailed in Table A.9. It is important to remember that, in case
4 of the 2EF, the low-resolution images were simulated using the IOM while the registration
parameters were estimated using quadratic registration.

(a) PSNR ratio vs SNR (b) (Reduced χ2 - 1) ratio vs SNR

Figure 6.9: Ratios computed between the results obtained for the PSNR and the (Reduced
χ2 - 1) in the 1EF and in case 4 of the 2EF.

The four curves in the PSNR ratio plot present an steady growth as the SNR increases.
For the smallest SNR value, which corresponds to 1.22, the curves are around 53%, while
for the highest SNR value, which corresponds to 98.28, the curves are around 77%. This
means that the performance reduction of the algorithms decreases as the SNR grows, which
is an expected behavior since the accuracy achieved by the registration methods and the
PSF-approximation procedure should be improved if lower levels of noise are considered.

On the other hand, the (Reduced χ2 - 1) ratio remains relatively stable and oscillates
around 165% in the four curves without any specific tendency, regardless of the SNR value.
For the highest value of the SNR range, only the curve corresponding to LA presents a
subtantial decrease reaching a value of 119% (in the three previous comparisons such decrease
is observed in the curves of LA and LZ). Nevertheless, this behavior, now only for LA, seems
to be also related with the growth observed in the reduced χ2 for the highests SNR values
in the four cases of the 2EF and, also, in the 1EF. Therefore, this decrease in the (Reduced
χ2 - 1) ratio does not necessarily mean that the performance reduction corresponding to LA
is smaller for a SNR value of 98.28, since the results obtained for the reduced χ2 were not
optimal.
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6.4 Comparison between results of the second experi-

mental framework

In previous sections the results obtained in the 1EF and in the four cases of the 2EF were
presented. The results obtained in each one of these four cases were compared against the one
obtained in 1EF by computing the ratios of the PSNR and the (Reduced χ2 - 1), in order to
estimate the magnitude of the performance reduction. The ranges of values obtained in each
one of these four comparisons indicate that the magnitude of the performance reduction is
highly influenced by the mechanism employed for simulating the low-resolution images. This
explains why the results obtained in the first and the third comparison, where the ratios are
computed between the results of the cases 1 and 3 of the 2EF and the results of the 1EF, are
very similar, since in both cases PhoSim was used for the simulation of images. The same
happens with the second and the four comparison, where the ratios are computed between
the results of the cases 2 and 4 of the 2EF and the results of the 1EF, since in both cases
the IOM was used for image simulation.

The results corresponding to the comparison between the four cases that made up the 2EF
are now introduced. This comparison is also performed considering the ratios for the PSNR
and the (Reduced χ2 - 1) for the cases with the same simulation scheme (PhoSim or IOM)
and for the cases with the same simulation approach (affine or quadratic). This, besides
enabling us to check the validity of the hypothesis that the simulation tool employed has a
strong influence over the magnitude of the reduction in the algorithms’ performance, allows
us to analyze the influence of the different registration procedures in the obtained results.

6.4.1 Comparison of results with the same simulation scheme

Here, the results obtained by computing the ratios between the values of the PSNR and
(Reduced χ2 - 1) are introduced, corresponding to cases 1 and 3 of the 2EF, to then review
the same ratios for cases 2 and 4. In both cases, the compared results were obtained using the
same simulation scheme, PhoSim in the first case (cases 1 and 3) and the IOM in the second
one (cases 2 and 4). Therefore, this means that different registration approaches are actually
being compared, since the simulation scheme is common between the considered cases.

The results corresponding to the ratios between cases 1 and 3 are presented in Figure
6.10a for the PSNR, and in Figure 6.10b for the (Reduced χ2 - 1). In both cases, PhoSim
was the scheme employed to simulate the low-resolution images. These results represent the
comparison between the performances achieved by the algorithms using different registration
approaches, since affine registration was employed for case 1 and quadratic registration was
employed for case 3.

The values obtained for both ratios oscillate around 100% without any specific tendency,
which means that the algorithms’ performance is not affected by the registration method
employed. Since a clear tendency cannot be established in these results, the only possible
interpretation corresponds to consider that both registration procedures achieve similar ac-
curacies, which implies that the errors they introduce in the reconstruction process have
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the same magnitude for the same image simulation scheme, regardless of the SNR value
considered.

(a) PSNR ratio vs SNR (b) (Reduced χ2 - 1) ratio vs SNR

Figure 6.10: Ratios computed between the results obtained for the PSNR and the (Reduced
χ2 - 1) in cases 1 and 3 of the 2EF.

The results corresponding to the ratios between cases 2 and 4 are presented in Figure
6.11a for the PSNR, and in Figure 6.11b for the (Reduced χ2 - 1). In both cases, IOM
was the scheme employed to simulate the low-resolution images. These results represent the
comparison between the performances achieved by the algorithms using different registration
approaches, since affine registration was employed for case 2 and quadratic registration was
employed for case 4.

(a) PSNR ratio vs SNR (b) (Reduced χ2 - 1) ratio vs SNR

Figure 6.11: Ratios computed between the results obtained for the PSNR and the (Reduced
χ2 - 1) in cases 2 and 4 of the 2EF.

Here, as in the previous comparison, the values obtained for both ratios oscillate around
100% without any specific trend. Then, it can be concluded again that the registration
method used does not affect the performance of the different algorithms, since the errors
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introduced by affine and quadratic registration have similar values if the same simulation
scheme was considered, regardless of the SNR values considered.

In summary, the results of the two comparisons presented here indicate that the registra-
tion procedure employed for motion estimation does not have a significative influence over
the performance results achieved by the different algorithms. In fact, these results suggest
that both registration mechanisms have similar performances, since no evidence indicating
that one of the algorithms yields better results was obtained.

6.4.2 Comparison of results with the same registration procedure

The same comparison is now presented between cases where the same registration approach is
employed. This allows us to compare the influence of the two simulation schemes considered,
when the same registration procedure is used. These results were also obtained by computing
the ratios between the values of the PSNR and (Reduced χ2 - 1) corresponding, in this
opportunity, to cases 2 and 1 of the 2EF, to then review the same ratios for cases 4 and 3.
In the first comparison, both cases employed affine registration (cases 2 and 1), while in the
second one both cases employed quadratic registration (cases 4 and 3). It is important to
notice that the ratio is comparing the performance achieved by the algorithms when the IOM
is used in the simulation process, against the performance achieved when PhoSim is used to
obtain the low-resolution images.

(a) PSNR ratio vs SNR (b) (Reduced χ2 - 1) ratio vs SNR

Figure 6.12: Ratios computed between the results obtained for the PSNR and the (Reduced
χ2 - 1) in cases 2 and 1 of the 2EF.

The results corresponding to the ratios between cases 2 and 1 are presented in Figure 6.12a
for the PSNR, and in Figure 6.12b for the (Reduced χ2 - 1). Here we can notice that almost
all the values of the PSNR ratio are larger than 100%, which means that the performance of
the algorithms is better when the images are simulated using the IOM instead of PhoSim.
This is totally expected, since the algorithms are based in the IOM and, as a consequence,
they should work better with low-resolution images generated with such simulation scheme.
It is interesting to note that, for the PSNR ratio, the algorithms present better performances
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for middle SNR values (such as 10.32 and 25.87) than they do for the extreme values of the
considered SNR range.

On the other hand, the values obtained for the (Reduced χ2 - 1) ratios are stable and
they oscillate, without any specific tendency, around 80%. This means that the multi-frame
super-resolution algorithms achieve better performances when IOM is employed to simulate
images, which is consistent with what was observed for the PSNR ratios. Therefore, in
terms of the deviation of the reduced χ2 from 1, the algorithms are working 20% worse when
PhoSim is employed to simulate images that what they do when the IOM is used.

(a) PSNR ratio vs SNR (b) (Reduced χ2 - 1) ratio vs SNR

Figure 6.13: Ratios computed between the results obtained for the PSNR and the (Reduced
χ2 - 1) in cases 4 and 3 of the 2EF.

The results corresponding to the ratios between cases 4 and 3 are presented in Figure
6.13a for the PSNR, and in Figure 6.13b for the (Reduced χ2 - 1). In this second comparison
of the cases where the same registration procedure was empoyed we can notice again that
almost all the PSNR ratio values are larger than 100%, which means that the performance
of the algorithms is again better when the images are simulated with the IOM instead of
PhoSim. In this case we can notice a steady increase in the values of the PSNR ratios as the
SNR grows, from around 100% for the smallest SNR values to around 110% for the highest
SNR values of the range. Unlike the previous comparison, a significant growth of the PSNR
ratios for middle SNR values is not observed here.

For the values obtained for the (Reduced χ2 - 1) ratios we can notice the same behavior
observed in the previous comparison, where the curves of each one of the four multi-frame
super-resolution algorithms oscillate, without any specific tendency, around 80%. Therefore,
we can notice again that the algorithms are working 20% worse when PhoSim is employed
to simulate images than when the IOM is used.

The two sets of results reviewed for both comparisons are totally consistent between them,
and they are also consistent with the results obtained from the comparisons between cases
where the same simulation tool was employed and that were presented previously. The reason
to conclude this comes from the fact that the same behavior was noticed in the curves obtained
in both comparisons for almost an identical range of values, where we observed an increase
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of the PSNR ratio from percentages around 100% to precentages around 110% as the SNR
grows, and (Reduced χ2 - 1) ratio values oscillating around 80%. This common behavior was
observed in spite of the fact that different registration procedures where employed in the two
cases of the 2EF considered in each comparison, which means that the registration procedure
does not have a significative influence over the results achieved by the algorithms. Such
conclusion was also obtained from the analysis of the ratios obtained for the comparisons
previously reviewed, where cases with the same simulation scheme but different simulation
tools were considered.

The common behavior observed for both cases also validates the fact that the simulation
scheme employed has a strong influence over the results obtained, which was also a conclusion
derived from the analysis of the comparisons presented for the cases with different registration
procedures. The behavior observed for the PSNR ratios indicates that the algorithms work
with similar accuracies when there are high levels of noise in the images but, when the
noise is low, the algorithms achieve better results with images simulated using the IOM than
what they achieve with images simulated with PhoSim. Thus, although the influence of the
simulation tool employed is very relevant, such influence depends on the SNR and it can be
noticed only if the amount of noise contained in the low-resolution images is not that high.
Moreover, in terms of the (Reduced χ2 - 1) ratios, the strong influence of the simulation
scheme is also noticeable but, in this case, it does not present a dependency on the SNR,
since the values corresponding to these ratios oscillate around a stable value regardless of the
SNR value considered.

6.5 Examples of reconstructed images

Here we present some examples of high-resolution images reconstructed by each one of the
four multi-frame super-resolution algorithms in order to have a graphical notion of how these
algorithms work. In Figures 6.14, 6.15, and 6.16 we can see three examples of reconstruc-
tions performed in case 3 of the 2EF, for SNR values corresponding to 5.37, 25.87 and 96.56,
respectively. In each one of these examples, all images involved in the reconstruction process
are presented, including the high-resolution image employed as template, one example of the
simulated low-resolution images used as input, and the four images reconstructed by each
one of the algorithms. Also, the differences obtained from subtracting the high-resolution
template with the four reconstructed images are presented, along with the differences ob-
tained from subtracting the low-resolution image, showed as an example, with the degraded
versions of the four reconstructed images. Each one of these eight differences was obtained
after registering and normalizing the pair of images required for computing such differences
and, as consequence, the errors associated with the operation of the registration process also
affect all these differences.

In Figure 6.14 we can see the images reconstructed by each algorithm for a relatively
small SNR value corresponding to 5.37, which means that the low-resolution images used for
the obtention of these reconstructed images were affected by important levels of noise. As a
consequence, the presence of multiple artifacts can be noticed in each one of the reconstructed
images, these artifacts being introduced into the reconstructed images by the regularized
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approach employed by the algorithms. For the SNR value considered, the image reconstructed
by GA (see Figure 6.14e) is the worst one between the set of four reconstructed images, since
the presence of artifacts severely affects its quality. This is consistent with the PSNR results
previously presented for case 3 of the 2EF (see 6.4a), where it can be observed that GA has
the worst performance of the four multi-frame super-resolution algorithms for small SNR
values. In fact, this situation can be also observed in the results obtained in the 1EF and in
all the other cases of the 2EF.

In the comparison between the images obtained with algorithms that use the same prior
term, it can be noticed that the images reconstructed by the algorithms that employ Zomet’s
approximation are less corrupted by artifacts than the images reconstructed by their coun-
terparts that use the analytical expression for computing the gradient. Therefore, the results
presented in Figure 6.14 are consistent with the fact that Zomet’s approximation is the best
choice for reconstructing images when high levels of noise affect the low-resolution images
used as input by the algorithms.

Moreover, the eight differences obtained show that Laplacian prior represents the best
option for processing sets of low-resolution images with high levels of noise. This can be
observed in the fact that the differences computed using the images reconstructed by LA and
LZ have a higher degree of smoothness than what happens with the differences computed em-
ploying the images reconstructed by GA and GZ. The degree of smoothness can be observed
in these images considering the contrast of the noise that is present on the background, which
is more intense in the case of the differences corresponding to GA and GZ than what it is in
the case of the differences obtained using LA and LZ.

In Figure 6.15 we can see the images reconstructed by each algorithm for a middle SNR
value corresponding to 25.87. In each one of the four reconstructed images it can be noticed
that the noise was removed by all the algorithms, since now there are not artifacts like the
ones observed in the group of images previously reviewed. This is completely expected since
the amounts of noise considered in this example are smaller than those considered in the
previous one (where the SNR value describing the amount of noise in the images was 5.37).

A relevant aspect that can be clearly observed in this second set of images is that the
levels of blur that are present in the reconstructed images are still significant. In each one of
the differences the presence of rings around the location of each point source (star) can be
noticed, which shows that the PSF estimated for this reconstruction process was not optimal.
Since we can observe rings of similar sizes in both groups of differences, those obtained using
the high-resolution template and those obtained using the low-resolution image example, it
can be concluded that the FWHM of the PSF in the reconstructed images is smaller than the
FWHM of the PSF in the low-resolution image example but larger than the FWHM of the
PSF in the high-resolution template. This situation shows how the errors in the estimation
of the blur parameters affect the quality of the reconstructed images, even if the amount of
noise that corrupts the set of low-resolution images is not substantially high.

In Figure 6.16 we can see the images reconstructed by each algorithm for the highest value
in the SNR range corresponding to 96.56. In this case we can notice that the size of the rings
observed in the differences computed using the high-resolution template is clearly smaller
than the size of the rings observed in the differences obtained employing the low-resolution
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image example. This indicates that the degree of error associated to the estimation of the
FWHM of the PSF is lower here than in the previous case, which is totally expected since
the accuracy of the estimation of the FWHM of the PSF should be better as the SNR grows.

With this third group of reconstructed images we can have a graphical notion of the de-
gree of blur that corrupts the reconstructed images by observing the spiral galaxy (extended
source) that is contained in such images. The arms of the galaxy can be seen in the recon-
structed images with more detail than it can be done in the low-resolution image example,
although such level of detail is still lower than the one of the high-resolution template. Never-
theless, the comparison between the two groups of differences indicates that a great amount
of information is actually recovered by the reconstruction process, since in the differences
obtained using the low-resolution image example we can identify multiple structural details
of the galaxy that can not be observed in the other group of differences computed employing
the high-resolution template. This entails that there is a great degree of similarity between
the high-resolution images and their corresponding common high-resolution template, which
is completely expected since the amount of noise that corrupts the low-resolution images and
affects the operation of the multi-frame super-resolution algorithms is negligible.
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(a) HR (b) LR

(c) LA (d) LZ (e) GA (f) GZ

(g) HR - LA (h) HR - LZ (i) HR - GA (j) HR - GZ

(k) LR - LALR (l) LR - LZLR (m) LR - GALR (n) LR - GZLR

Figure 6.14: Images involved in one example of the reconstruction processes of the case
3 of the 2EF for a SNR value of 5.37. The high-resolution (HR) template employed for
simulating low-resolution images with PhoSim is showed in (a), while an example of these
simulated low-resolution (LR) images is presented in (b). In (c), (d), (e) and (f) the images
reconstructed by LA, LZ, GA and GZ are respectively displayed. The differences obtained
from subtracting the high-resolution template (a) with the images reconstructed by LA, LZ,
GA and GZ, after registering each pair of images, are respectively showed in (g), (h), (i) and
(j). The differences obtained from subtracting the low-resolution image example (b) with the
degraded versions of the the images reconstructed by LA, LZ, GA and GZ, after registering
each pair of images, are respectively presented in (k), (l), (m) and (n).
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(a) HR (b) LR

(c) LA (d) LZ (e) GA (f) GZ

(g) HR - LA (h) HR - LZ (i) HR - GA (j) HR - GZ

(k) LR - LALR (l) LR - LZLR (m) LR - GALR (n) LR - GZLR

Figure 6.15: Images involved in one example of the reconstruction processes of the case
3 of the 2EF for a SNR value of 25.87. The high-resolution (HR) template employed for
simulating low-resolution images with PhoSim is showed in (a), while an example of these
simulated low-resolution (LR) images is presented in (b). In (c), (d), (e) and (f) the images
reconstructed by LA, LZ, GA and GZ are respectively displayed. The differences obtained
from subtracting the high-resolution template (a) with the images reconstructed by LA, LZ,
GA and GZ, after registering each pair of images, are respectively showed in (g), (h), (i) and
(j). The differences obtained from subtracting the low-resolution image example (b) with the
degraded versions of the the images reconstructed by LA, LZ, GA and GZ, after registering
each pair of images, are respectively presented in (k), (l), (m) and (n).
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(a) HR (b) LR

(c) LA (d) LZ (e) GA (f) GZ

(g) HR - LA (h) HR - LZ (i) HR - GA (j) HR - GZ

(k) LR - LALR (l) LR - LZLR (m) LR - GALR (n) LR - GZLR

Figure 6.16: Images involved in one example of the reconstruction processes of the case
3 of the 2EF for a SNR value of 96.56. The high-resolution (HR) template employed for
simulating low-resolution images with PhoSim is showed in (a), while an example of these
simulated low-resolution (LR) images is presented in (b). In (c), (d), (e) and (f) the images
reconstructed by LA, LZ, GA and GZ are respectively displayed. The differences obtained
from subtracting the high-resolution template (a) with the images reconstructed by LA, LZ,
GA and GZ, after registering each pair of images, are respectively showed in (g), (h), (i) and
(j). The differences obtained from subtracting the low-resolution image example (b) with the
degraded versions of the the images reconstructed by LA, LZ, GA and GZ, after registering
each pair of images, are respectively presented in (k), (l), (m) and (n).
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Chapter 7

Conclusions

In this final chapter we introduce the conclusions derived from the analysis of the multiple
results obtained from the experiments of the First Experimental Framework (1EF) and each
one of the four cases that made up the Second Experimental Framework (2EF). The purpose
of these conclusions is to discuss the the validity of the hypotheses that were posed for the
different research questions associated to the goals of this thesis, and also summarize the
most relevant ideas drawn from all the experiments that were carried out. Among the topics
that are addressed in these conclusions we can mention the relation that exists between
the algorithms’ performance and the SNR, the best choice between the four algorithms for
reconstructing high-resolution images as function of the SNR, the magnitude and the behavior
of the performance reduction that can be observed in each one of the cases of the 2EF, and the
comparison between the results achieved in the experiments considering different registration
procedures.

We also present a comprehensive discussion about the main research directions that can
be considered in future works, in order to expand the scope of the conclusions obtained in this
thesis for the problem of studying the performance of the four multi-frame super-resolution
algorithms when they are employed to reconstruct astronomical high-resolution images. In
general, the ideas considered for these research directions suggest exploring the influence
of the different procedures that participate, sometimes not in an explicit manner, in the
reconstruction process.

7.1 Relation between performance and SNR

The first goal of this thesis consisted in figuring out the relation that exists between the
performance of the four multi-frame super-resolution algorithms and the SNR value of the
low-resolution images used as input in the reconstruction process. The hypothesis proposed
suggests that the algorithms’ performance should improve as the SNR grows, which means
that the results achieved by the algorithms should enhance to the extent that the amount
of noise that corrupts the images decreases. This was actually verified in each one of the
experiments carried out in this thesis, but only in terms of the PSNR (see Figures 6.1a, 6.2a,
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6.3a, 6.4a and 6.5a). Therefore, we can indeed conclude that every algorithm achieves better
PSNR results as the SNR grows.

In terms of the reduced χ2 we can not draw the same conclusion, since the results obtained
in each experiment indicate that the values corresponding to this metric remain relatively
stable regardless of the SNR value (see Figures 6.1b, 6.2b, 6.3b, 6.4b and 6.5b). This does
not imply that the reconstruction process is not working properly, since the purpose of the
reduced χ2 is to reflect how well the reconstructed image reflects the information contained in
the low-resolution images. Nevertheless, the behavior of the reduced χ2 curves indicates that
there is a limit in the degree of similarity that can exist between the reconstructed image and
the low-resolution images, which seems to be counterintuitive since a growth in the degree
of similarity would be expected if the SNR value increases.

To consider that the errors associated to the estimation of the blur and registration pa-
rameters explain the behavior of the reduced χ2 would be a naive interpretation, since such
behavior is also observed in the results corresponding to the 1EF, where these parameters
were known beforehand. Therefore, according to the results obtained here, it can only be
concluded that the performance of the four multi-frame super-resolution algorithms is stable
and does not depend on the SNR value when such performance is measured using the reduced
χ2. The only case where this conclusion is not valid is for LA and LZ when high SNR values
are considered, since both algorithms show a significant growth in the reduced χ2 for the
two highest values of the SNR range. More experiments are required to fully understand the
reasons behind this fact, but the most probable explanation is that the smoothing process de-
rived from the usage of the Laplacian prior, whose aim is to remove noise, is excessively strict.
Because of this, when only small amounts of noise are corrupting the low-resolution images,
the Laplacian prior removes part of the signal that should be included in the reconstructed
image in order to guarantee some degree of smoothness.

7.2 Best algorithms according to SNR values

Finding out which one of the four algorithms offers the best results as a function of the SNR
values is the second goal stated in this thesis. The proposed hypothesis suggests that the
algorithms that employ Zomet’s approximation should have better performances than their
counterparts, that use the analytical expression for computing the gradient, when small SNR
values are considered. Besides, this hypothesis indicates that this relation is reversed for
high SNR values, which means that the algorithms that use the analytical expression should
achieve better results than those that employ Zomet’s approximation if the noise corrupting
the low-resolution images is small.

As it happened in the previous case, only the PSNR results obtained in the experiments
validate, at least in a partial manner, the hypothesis corresponding to this second goal, since
the expected behavior can be observed in the results of the 1EF and also in each one of the
four cases that made up the 2EF. Moreover, the results corresponding to the reduced χ2

do not coincide with what is stated in the hypothesis, since all the algorithms have similar
performances according to the curves obtained for this metric. However, considering what
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has been previously mentioned about what is actually being quantified by the reduced χ2,
the particular behavior of this metric does not represent an invalidation of the conclussions
derived from the hypothesis.

It is important to remember that Zomet’s approximation represents, according to theory,
an alternative mechanism to compute an approximation of the gradient and that is supposed
to be robust against the presence of noise. As a consequence of this, the results obtained using
Zomet’s approximation should be better than those obatined using the analytical expression
of the gradient when significant levels of noise are present in the set of low-resolution images.
This is actually clearly observed in all the reviewed results (see Figures 6.1a, 6.2a, 6.3a, 6.4a
and 6.5a), since LZ always achieves better PSNR results than LA, at least for the three
smallest values in the SNR range considered in the 2EF (and that correspond to 1.43, 2.68
and 5.37) and also in the 1EF (and that correspond to 1.0, 2.15 and 4.64). The same happens
with the algorithms that use the gradient prior but in a wider range, since GZ always presents
better PSNR results than GA for the five smallest values in the SNR range considered in the
2EF (and that correspond to 1.43, 2.68, 5.37, 10.32, 25.87) and also in the 1EF (and that
correspond to 1.0, 2.15, 4.64, 10.0 and 21.54). Therefore, we can conclude that the first part
of the hypothesis, which refers to the behavior of the algorithms for small SNR values, is
totally valid along with being completely consistent with theory.

The second part of the hypothesis, which refers to the behavior of the algorithms for
high SNR values, can also be validated from the analysis of the PSNR results but without
the same degree of certainty. The reason for this comes from the fact that the differences
observed between the algorithms’ performances are larger for small SNR values than for
high SNR values, which is completely expected because the operation of the algorithms
should be close to the optimum if small amounts of noise are corrupting the low-resolution
images. Therefore, it can be concluded that for high SNR values the algorithms that use the
analytical expression of the gradient have a slightly better performance than the algorithms
that use Zomet’s approximation. The main implication of this conclusion is the fact that
Zomet’s approximation represents a very useful tool for recovering high-resolution images,
since it has excelent results for small SNR values and because the lost of accuracy that can
be observed for high SNR values, due to the approximation process, is not very significative
in comparison with the PSNR results achieved by the algorithms that employ the analytical
expression for computing the gradient.

In order to expand the conclusions presented here, we now discuss which algorithm presents
the best performance according to the prior term selected for the cost function. It is important
to mention again that this discussion is based only on the analysis of the PSNR results, since
the curves obtained for the reduced χ2 remain relatively stable around some specific value
regardless of the SNR (expect in the case of LA and LZ for two highest SNR values), and
then they do not provide any information that can be used to determine which algorithm
has the best performance (see Figures 6.1b, 6.2b, 6.3b, 6.4b and 6.5b).

In the 1EF, and practically in all the cases of the 2EF, it can be observed that the
algorithms that use the Laplacian prior have better performances that their counterparts
that use the gradient prior for the four smallest values of the SNR range. This relation is
reversed, but with smaller differences between the performances, for the two highest SNR
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values considered in both frameworks (which means that the gradient prior works better than
the Laplacian one for high SNR values). For the SNR value located between the four smallest
and the two highest values of the SNR ranges, which corresponds to 21.54 in the 1EF and to
25.87 in the 2EF, all the algorithms present similar PSNR results, thus it is not possible to
clearly establish an order relation between their performances.

Finally, from a more specific analysis of the PSNR results, it can be concluded that LZ is
the best choice for the four smallest values of the SNR ranges of both frameworks, while GA
is the best choice for the two highest SNR values (being this completely clear in the results
of the 1EF but less clear in the results obtained in the four cases of the 2EF). This is totally
consistent with what has been previously concluded regarding the selection, as function of the
SNR, of a mechanism for computing the gradient and a prior term for the cost function. In
fact, LZ is the combination between the best option for computing the gradient and the best
prior term that can be selected for small SNR values (Zomet’s approximation and Laplacian
prior), while GA is the combination between the best option for computing the gradient and
the best prior term that can be selected for high SNR values (analytical expression of the
gradient and gradient prior).

7.3 Performance reduction of the algorithms

The third goal posed in this thesis consisted in analyzing if the performance of the four
multi-frame super-resolution algorithms decreases with the presence of errors in the values
estimated for the blur and registration parameters. In order to accomplish such goal, the
results obtained in the 1EF, which are not affected by the errors since the all the parameters
are known beforehand, were compared with the results obtained in the four cases that made
up the 2EF which are actually affected by the errors derived from the estimation process, since
the blur and registration parameters were estimated using the PSF-approximation mechanism
and both registration procedures.

The comparison mentioned was performed by computing the ratios between the values
obtained for the PSNR and the (Reduced χ2) in the four cases of the 2EF and in the 1EF.
In each one of the four pairs of ratios that were yielded from this comparison, it can be
observed that percentages corresponding to the PSNR ratios and the (Reduced χ2 - 1) ratios
are respectively smaller and larger than 100%. This implies that there is indeed a reduction
in the performance of the algorithms, since the PSNR values achieved in the 2EF are smaller
than those achieved in the 1EF and the deviations of the reduced χ2 from 1 are larger in
the 2EF than what they are in the 1EF. Therefore, the first conclusion that can be drawn
from the analysis of the ratios corresponds to acknowledging that the errors derived from
the process of estimating the blur and registration parameters entails a reduction in the
performance of the four multi-frame super-resolution algorithms.

Although the performance reduction can be noticed in the ratios computed for both met-
rics, the dependency on the SNR observed in the PSNR ratios is different than the one
observed in the (Reduced χ2 - 1) ratios. In the case of the PSNR ratios, the performance
reduction presents an explicit dependency on the SNR values since its magnitude decreases
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as the SNR grows, while, in the case of the (Reduced χ2 - 1) ratios, the reduction observed
remains relatively stable regardless of the SNR.

The curves obtained for the PSNR ratios of case 1 of the 2EF show a steady increase,
which seems to be linear, from percentages around 50% for a SNR value corresponding to
1.22, to percentages around 71% for a SNR value corresponding to 98.28, which means that
the magnitude of the performance reductions decreases from 50% to 29% as the SNR grows
between these pair of SNR values (see Figure 6.6a). The curves obtained for the PSNR
ratios of case 3 of the 2EF also show a steady increase, which also seems to be linear, from
percentages around 49% to percentages around 70% for the same pair of the SNR values
previously mentioned (see Figure 6.8a). Therefore, for cases 1 and 3, the magnitude of the
performance reduction computed in terms of the PSNR is very similar and behaves practically
in the same manner in both cases. This can be noticed in the fact that the PSNR ratios
obtained from the comparison of these two cases oscillate around 100% for all the values in
the SNR range (see Figure 6.10a).

Something similar happens with the PSNR ratio curves obtained for cases 2 and 4 of the
2EF. A steady increase, which does not seem to be linear, can be observed in the PSNR
ratio curves corresponding to case 2. This increase goes from percentages around 53% to
percentages around 77% for the same pair of SNR values previously mentioned and which
correspond to 1.22 and 98.28 (see Figure 6.7a). This means that the magnitude of the
performance reduction decreases from 47% to 23% as the SNR grows between these two SNR
values. Practically the same general behavior can be observed in the PSNR ratio curves
obtained for case 4, since the growth of these curves goes also from percentages around 53%
to percentages around 77% for the same pair of SNR values (see Figure 6.9a). Therefore, we
again have very similar behaviors between two cases of the 2EF, which can be also observed
in the fact that the percentages obtained for the PSNR ratios computed from the comparison
of cases 2 and 4 oscillate around 100% (see Figure 6.11a).

The same correspondence between the results obtained for the two pairs of cases of the
2EF previously mentioned can be noticed in the (Reduced χ2 - 1) ratios. For cases 1 and
3, the ratios oscillate around 200% without any specific tendency and regardless of the SNR
(see Figures 6.6b and 6.8b), which means that the performance reduction, measured in terms
of the deviation of the reduced χ2 values from 1, has a magnitude of 100% for these two
cases. For cases 2 and 3, the ratios oscillate around 165% without any particular behavior
and regardless of the SNR (see Figures 6.7b and 6.9b), which means that the performance
reduction for these two cases has a magnitude of 65% according to the ratios computed. The
similarities between the behavior of the (Reduced χ2 - 1) for cases 1 and 3 are consistent with
the fact that the ratios computed from the comparison between these two cases correspond,
essentially, to percentages that oscillate around 100% (see Figure 6.10b) The same situation
can be observed for the ratios computed from the comparison between cases 2 and 4, since
they also correspond to percentages that oscillate around 100% without any clear trend (see
Figure 6.11b).

It can be concluded, in accordance with the foregoing, that the performance reduc-
tion, which affects the algorithms when the blur and registration parameters are estimated,
presents a strong dependency on the simulation scheme employed for simulating the low-
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resolution images of the input set. This is inferred from the fact that similar behaviors for
the performance reduction are observed in the cases of the 2EF where the same simulation
tool was employed. In cases 1 and 3 the low-resolution images were obtained using PhoSim,
while in cases 2 and 4 the IOM was used for such task. Therefore, the magnitude of the
performance reduction, when PhoSim is employed, decreases from 50% to 29% for the PSNR
as the SNR grows from 1.22 to 98.28, while, in terms of the (Reduced χ2 - 1), the magnitude
of this reduction remains relatively stable around a value of 100% regardless of the SNR.
Moreover, the magnitude of the performance reduction, when the IOM is used for image
simulation, decreases from 47% to 23% for the PSNR as the SNR grows from 1.22 to 98.28,
while, in terms of the (Reduced χ2 - 1), the magnitude of this reduction remains relatively
stable around a value of 65% regardless of the SNR.

The main implication derived from what has just been mentioned is given by the fact
that the magnitude of the performance reduction, in terms of both metrics, is clearly smaller
when the IOM is employed instead of PhoSim. These differences between the magnitude
in peformance reduction can be observed in PSNR and (Reduced χ2 - 1) ratios computed
between cases of the 2EF where the same registration procedure but different simulation
tools were employed (see Figures 6.12 and 6.13). This conclusion is totally expected since
the operation of the four multi-frame super-resolution algorithms is based on the IOM and, as
a consequence, their performances should be better if the low-resolution images are obtained
using this simulation scheme instead of PhoSim. Besides, multiple distortions, which are
not even considered in the IOM, are included in the simulation process of PhoSim, thus the
performance achieved by a reconstruction process using this simulation scheme is affected by
the presence of these distortions.

7.4 Influence of the registration procedures

The purpose of the fourth and last goal of this thesis was to verify if the employment of
quadratic registration yields to better performance results than those achieved by the al-
gorithms when affine registration is used for image alignment. The hypothesis stated for
this research question indicates that the results obtained with quadratic registration should
indeed be better that the ones obtained using affine registration. The justification of this
supposition comes from the fact that a motion model based on quadratic transformations
is more flexible than one based on affine transformations. Such flexibility should represent
an advantage for registering astronomical images, since the multiple distorting effects that
diminish the quality of this sort of images also affect the accuracy achieved by any algorithm
used to perform this task. Thus, since the usage of quadratic registration represents a more
sophisticated way for dealing with these distortions, it is expected to obtain more precise
results than those obtained by using affine registration.

In order to verify the validity of this hypothesis, the results obtained in the four cases that
made up the 2EF were compared considering two pairs of cases, where each pair is conformed
by the two cases where the same simulation tool but different registration procedures are
employed. First, we computed the PSNR and (Reduced χ2 - 1) ratios between the results
obtained in cases 2 and 1 of the 2EF, which means that we compared the performances
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achieved by affine and quadratic registration when PhoSim is employed for image simulation
(see Figure 6.10). We computed the same ratios between cases 4 and 3 of the 2EF, which
means that we compared the performances achieved by both registration procedures when
the low-resolution images are obtained using the IOM (see Figure 6.11).

The curves obtained for the PSNR and the (Reduced χ2 - 1) ratios present the same
general behavior in both comparisons, where it can be osberved that the values of these curves
oscillate around 100% without any specific tendency and regardless of the SNR. This means
that affine and quadratic registration achieve similar results regardless of the simulation
scheme employed. Therefore, it can be concluded that the proposed hypothesis is not valid,
since there is no evidence of the achievement of better results when quadratic registration is
employed instead of affine registration.

7.5 Future research directions

The work presented in this thesis is mainly focused on studying how the performance of four
multi-frame super-resolution algorithms is related to the SNR when astronomical images are
considered. Since there are many parameters that affect the performance achieved by the
algorithms and there are also many parameters that affect the quality of the astronomical
images, the number of questions that can be made respect to the relations that exist between
all these parameters is huge. Now we present some interesting examples of these questions
that can be used as base for future research that would extend the conclusions presented in
this work.

7.5.1 Testing new parameters

In this thesis, a fixed value was used through all the experiments for the FWHM of the PSF,
the number of low-resolution images that made up each input set, and the downsampling fac-
tor used to generate the low-resolution images from the high-resolution template. Although
the results obtained from experiments using such values provide a basis to draw conclu-
sions and general guidelines about the behaviour of the four multi-frame super-resolution
algorithms for astronomical images, this still poses a very limited approach.

The FWHM of the PSF corresponds to a crucial value when describing astronomical im-
ages. Using a fixed value for this element does not allow us to draw conclusions about how
this parameter can affect the performance results obtained. A more general description of
the performance of multi-frame super-resolution algorithms for astronomical images could
be obtained by repeating the same experiments carried out in this thesis but over a range
of values for the FWHM of the PSF. Besides, the modeling of this element in each simu-
lation scheme is very different, thus we can expect to obtain different dependencies for the
algorithms’ performance as function of this parameter according to the simulation scheme
employed.

It would also be interesting to see how the amount of low-resolution images contained on
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each input set affects the outcome of the algorithms. A bigger number of images given as
input could supply more information for the multi-frame super-resolution algorithms to use,
allowing better results for the image reconstruction process. The same happens with the
downsampling factor, since this number relates the resolution of the original high-resolution
image with the resolution of the simulated low-resolution images. Thus, a variation on the
downsampling factor will generate a variation on the amount of information contained in
each one of the pixels of the simulated low-resolution images. This could also spawn changes
on the results obtained for the reconstruction of the astronomical images.

7.5.2 ML vs MAP

The four algorithms presented and analyzed in this thesis were developed considering the
Maximum a Posteriori (MAP) approach for the multi-frame super-resolution problem. Using
regularization, this approach offers a mechanism to find a solution of this problem even
though not enough low-resolution images are available. On the other hand, the Maximum
Likelihood (ML) approach bases its operation on the exclusive utilization of the information
contained in each low-resolution image contained in the input set. Because of this, when
there is a lack of available low-resolution images, algorithms based in the ML approach are
not useful to recover high-resolution images.

Therefore, it would be very interesting to analyze the performance achieved by MAP and
ML algorithms considering input sets made up with differents amounts of low-resolution
images. The purpose of performing this experiment would be to find the critical number of
images that is required in an input set to have a better performance of methods based in the
ML approach than those based in the MAP approach.

7.5.3 Different registration methods

One of the conclusions presented in this thesis suggests that there is no significant difference
in using quadratic or affine registration for aligning the set of low-resolution images. This
conclusion is very limited since it is restricted to only two specific registration methods, and it
does not provide any information for figuring out how the errors associated to the estimation
of the registration parameters are related with the performance results achieved by the multi-
frame super-resolution algorithms. In any case, to find such relation it is necessary to design
new experiments, more sophisticated that those performed in this thesis.

However, the two registration methods considered are not the only ones existing and
applicable in the context of astronomical images. This means that the results obtained in
this thesis can be extended, in order to obtain more compelling conclusions, if the experiments
are repeated including other registration algorithms.

Both registration methods used on this thesis are based on the minimization of the SSD
between images. It would be interesting, for example, to consider registration methods based
on the optimization of other similarity or disimilarity measures, such as mutual information
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or cross correlation. Only after accomplishing the same experiments of this thesis using more
and different registration mechanisms, the real influence of this process over the performance
of multi-frame super-resolution image reconstruction can be determined.

7.5.4 Influence of optimization methods

The implementation of each one of the four multi-frame super-resolution algorithms is based
on the use of an optimization procedure. Although many different optimization techniques
exist, the work presented on this thesis was restricted to using only the method known as
non-linear conjugate gradient.

Different optimization methods could yield variations on the results obtained in the dif-
ferent experiments considered in this thesis. It would be interesting to analyze how the
performance of the four multi-frame super-resolution algorithms changes when a different
optimization procedure is used, since this could affect the algorithms’ outcomes in terms of
the accuracy of the results, but it could also affect performance in terms ofthe convergence
time required for the reconstruction process. Besides, an optimization procedure is also re-
quired to perform image alignment with affine and quadratic registration, thus it would be
also interesting to study how the performance of the two registration approaches is deter-
mined by the optimization method employed.

7.5.5 Influence of interpolation methods

The work developed in this thesis was not only resricted to the use of one optimization
technique, the same can be said about the interpolation method employed. The optimization
procedure by which image registration is performed, based on the minimization of the SSD,
requires the utilization of multiple and sucessive interpolations in order to find the best values
for the registration parameters.

In this thesis, the interpolation method used within the registration process was limited
only to cubic spline. Nevertheless, many different interpolations methods exist and could be
used in both registration procedures studied in this thesis. Just as the case with optimization
methods mentioned above, performing the experiments carried out on this thesis considering
different interpolation mechanisms could yield variations of the results, in terms of accuracy
of the reconstructed high-resolution image and also in terms of the convergence time needed
for estimating the registration parameters required by each one of the four multi-frame super-
resolution algorithms.
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Appendix A

Detailed results

In this appendix, all the results obtained for the four multi-frame super-resolution algorithms,
LA, LZ, GA and GZ, are introduced. These results were obtained in the different experiments
considered in the First Experimental Framework (1EF) and in the four cases that make up
the Second Experimental Framework (2EF), and they were employed to generate all the plots
displayed along the pages of this thesis. They are here presented in a series of tables where
the average values obtained for the PSNR and the reduced χ2, along with their corresponding
errors (standard deviation), are specified in different columns according to the range of SNR
values considered in each experiment.

The details of the comparisons carried out between the performance results obtained in
the 1EF and those obtained in each one of the four cases of the 2EF are also introduced. For
each comparison one table is presented, where the PSNR and the (Reduced χ2 - 1) ratios
computed are presented as percetanges for each one of the four algorithms considering each
one of the values of the SNR range.
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A.1 Detailed results of the 1EF

Table A.1: Results of the 1EF considering the PSNR and the reduced χ2 as performance
metrics.

SNR Algorithm PSNR PSNR error Reduced χ2 Reduced χ2 error

1.0

LA 11.297 5.147 1.570 0.015
LZ 14.374 4.623 1.589 0.016
GA 3.411 5.381 1.553 0.015
GZ 11.089 4.802 1.588 0.016

2.15

LA 17.600 4.591 1.574 0.014
LZ 19.778 3.870 1.593 0.014
GA 10.352 5.378 1.556 0.014
GZ 16.536 4.672 1.591 0.014

4.64

LA 22.342 3.478 1.577 0.016
LZ 23.618 2.998 1.598 0.018
GA 16.096 4.861 1.558 0.014
GZ 21.381 3.632 1.595 0.014

10.0

LA 26.152 2.879 1.583 0.037
LZ 26.412 2.914 1.609 0.045
GA 21.939 4.216 1.554 0.016
GZ 24.894 3.221 1.598 0.022

21.54

LA 28.342 3.254 1.623 0.133
LZ 28.080 3.331 1.659 0.159
GA 26.689 3.533 1.554 0.014
GZ 27.876 3.334 1.605 0.023

46.42

LA 29.136 3.619 1.786 0.334
LZ 28.796 3.530 1.847 0.385
GA 30.129 3.906 1.565 0.021
GZ 29.457 3.623 1.642 0.064

100.0

LA 29.442 3.625 2.458 1.702
LZ 29.139 3.542 3.297 2.061
GA 32.109 4.469 1.593 0.080
GZ 30.749 3.989 1.692 0.125
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A.2 Detailed results of the 2EF

A.2.1 Case 1: PhoSim and affine registration

Table A.2: Results of the 2EF considering the PSNR and the reduced χ2 as performance
metrics, for the case 1 where simulations were obtained using PhoSim and affine registration
was employed.

SNR Algorithm PSNR PSNR Error Reduced χ2 Reduced χ2 Error

1.43

LA 5.475 2.439 2.259 0.016
LZ 7.421 2.191 2.234 0.017
GA 1.793 2.573 2.116 0.016
GZ 5.497 2.248 2.131 0.017

2.68

LA 9.167 2.329 2.228 0.015
LZ 10.558 1.957 2.267 0.015
GA 5.199 2.682 2.104 0.015
GZ 9.113 2.335 2.226 0.015

5.37

LA 13.036 1.856 2.154 0.017
LZ 13.634 1.605 2.129 0.019
GA 9.504 2.629 2.248 0.015
GZ 12.606 1.930 2.317 0.015

10.32

LA 14.935 1.662 2.165 0.039
LZ 15.549 1.652 2.220 0.048
GA 13.595 2.410 2.136 0.017
GZ 14.712 1.841 2.116 0.023

25.87

LA 17.542 1.976 2.266 0.142
LZ 17.286 2.025 2.305 0.168
GA 16.467 2.147 2.145 0.015
GZ 18.042 2.017 2.344 0.025

52.12

LA 20.275 2.391 2.538 0.356
LZ 20.465 2.343 2.751 0.407
GA 20.704 2.604 2.142 0.023
GZ 19.788 2.404 2.290 0.068

96.56

LA 21.044 2.418 3.086 1.807
LZ 20.830 2.363 4.324 2.164
GA 22.674 2.994 2.289 0.085
GZ 22.024 2.692 2.343 0.131
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A.2.2 Case 2: IOM and affine registration

Table A.3: Results of the 2EF considering the PSNR and the reduced χ2 as performance
metrics, for the case 2 where simulations were obtained using the IOM and affine registration
was employed.

SNR Algorithm PSNR PSNR Error Reduced χ2 Reduced χ2 Error

1.43

LA 6.012 2.460 2.011 0.016
LZ 7.894 2.263 1.942 0.016
GA 1.736 2.596 1.866 0.016
GZ 6.132 2.306 1.941 0.016

2.68

LA 9.403 2.326 1.994 0.014
LZ 10.435 1.976 2.051 0.014
GA 5.269 2.754 1.970 0.015
GZ 9.132 2.414 2.036 0.014

5.37

LA 13.559 1.944 1.855 0.016
LZ 14.471 1.694 1.930 0.018
GA 9.594 2.753 1.942 0.015
GZ 12.575 2.045 1.883 0.014

10.32

LA 18.315 1.813 1.935 0.038
LZ 18.200 1.812 1.954 0.046
GA 14.948 2.641 1.900 0.016
GZ 16.175 2.010 1.990 0.022

25.87

LA 20.983 2.199 1.949 0.137
LZ 19.898 2.263 2.121 0.163
GA 19.115 2.412 1.852 0.015
GZ 20.925 2.271 2.025 0.024

52.12

LA 21.942 2.602 2.364 0.342
LZ 20.786 2.526 2.496 0.400
GA 23.020 2.781 1.930 0.022
GZ 21.326 2.598 2.004 0.066

96.56

LA 23.204 2.641 3.004 1.751
LZ 22.141 2.552 4.095 2.107
GA 23.772 3.230 1.901 0.083
GZ 23.269 2.889 2.235 0.128
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A.2.3 Case 3: Phosim and quadratic registration

Table A.4: Results of the 2EF considering the PSNR and the reduced χ2 as performance met-
rics, for the case 3 where simulations were obtained using PhoSim and quadratic registration
was employed.

SNR Algorithm PSNR PSNR Error Reduced χ2 Reduced χ2 Error

1.43

LA 5.852 2.438 2.061 0.016
LZ 6.860 2.167 2.146 0.017
GA 1.670 2.530 2.170 0.016
GZ 5.761 2.249 2.220 0.017

2.68

LA 8.926 2.328 2.086 0.015
LZ 10.287 1.956 2.190 0.014
GA 5.606 2.664 2.132 0.015
GZ 9.138 2.344 2.274 0.015

5.37

LA 12.652 1.859 2.069 0.017
LZ 13.498 1.608 2.162 0.019
GA 9.016 2.635 2.247 0.015
GZ 11.960 1.962 2.186 0.015

10.32

LA 14.973 1.660 2.219 0.039
LZ 16.525 1.685 2.276 0.047
GA 13.196 2.437 2.226 0.017
GZ 14.652 1.846 2.256 0.023

25.87

LA 17.266 1.967 2.301 0.141
LZ 17.353 2.023 2.403 0.169
GA 16.110 2.132 2.064 0.015
GZ 18.276 2.043 2.147 0.025

52.12

LA 20.547 2.399 2.589 0.353
LZ 20.006 2.325 2.869 0.406
GA 21.449 2.578 2.181 0.022
GZ 20.932 2.393 2.443 0.068

96.56

LA 20.740 2.422 3.296 1.790
LZ 20.311 2.381 4.274 2.202
GA 22.478 2.982 2.237 0.084
GZ 21.666 2.681 2.361 0.131
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A.2.4 Case 4: IOM and quadratic registration

Table A.5: Results of the 2EF considering the PSNR and the reduced χ2 as performance met-
rics, for the case 4 where simulations were obtained using the IOM and quadratic registration
was employed.

SNR Algorithm PSNR PSNR Error Reduced χ2 Reduced χ2 Error

1.43

LA 5.911 2.525 1.895 0.016
LZ 7.868 2.252 1.886 0.016
GA 1.667 2.590 1.958 0.016
GZ 5.544 2.332 2.006 0.016

2.68

LA 9.846 2.371 2.017 0.014
LZ 9.976 1.992 1.911 0.014
GA 5.630 2.753 1.857 0.015
GZ 9.237 2.412 1.875 0.014

5.37

LA 13.295 1.952 1.982 0.016
LZ 13.754 1.685 1.896 0.018
GA 9.639 2.750 1.958 0.014
GZ 12.843 2.062 1.923 0.014

10.32

LA 18.171 1.809 1.928 0.038
LZ 17.834 1.839 2.028 0.046
GA 14.292 2.643 1.990 0.016
GZ 15.521 2.026 2.056 0.023

25.87

LA 19.703 2.213 2.113 0.138
LZ 19.516 2.263 2.089 0.164
GA 18.140 2.417 1.886 0.015
GZ 19.844 2.276 2.051 0.024

52.12

LA 22.923 2.598 2.295 0.343
LZ 22.139 2.525 2.480 0.394
GA 22.853 2.809 1.851 0.022
GZ 21.807 2.600 2.140 0.066

96.56

LA 23.129 2.616 2.736 1.760
LZ 22.149 2.562 4.352 2.114
GA 24.403 3.251 1.957 0.083
GZ 23.284 2.890 2.180 0.128
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A.3 Detailed results of the comparison between both

frameworks

A.3.1 Comparison between the 1EF and case 1 of the 2EF

Table A.6: Results obtained from computing the ratio between the performances achieved by
the algorithms in the 1EF and in case 1 of the 2EF. This ratio is presented as a percentage
for the PSNR and the (Reduced χ2 - 1).

SNR Algorithm PSNR Ratio (%) (Reduced χ2 - 1) Ratio (%)

1.22

LA 48.464 220.878
LZ 51.626 209.591
GA 52.582 201.621
GZ 49.570 192.320

2.42

LA 52.087 214.138
LZ 53.385 213.612
GA 50.215 198.430
GZ 55.109 207.214

5.01

LA 58.348 199.839
LZ 57.729 188.772
GA 59.045 223.748
GZ 58.959 221.443

10.16

LA 57.108 199.715
LZ 58.873 200.184
GA 61.965 205.206
GZ 59.098 186.717

23.71

LA 61.894 203.308
LZ 61.562 198.155
GA 61.700 206.665
GZ 64.722 222.147

49.27

LA 69.587 195.707
LZ 71.069 206.624
GA 68.716 202.193
GZ 67.175 200.812

98.28

LA 71.477 143.112
LZ 71.484 144.738
GA 70.614 217.488
GZ 71.624 193.978
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A.3.2 Comparison between the 1EF and case 2 of the 2EF

Table A.7: Results obtained from computing the ratio between the performances achieved by
the algorithms in the 1EF and in case 2 of the 2EF. This ratio is presented as a percentage
for the PSNR and the (Reduced χ2 - 1).

SNR Algorithm PSNR Ratio (%) (Reduced χ2 - 1) Ratio (%)

1.22

LA 53.218 177.228
LZ 54.918 159.877
GA 50.890 156.572
GZ 55.298 160.013

2.42

LA 53.428 173.270
LZ 52.764 177.165
GA 50.899 174.507
GZ 55.227 175.254

5.01

LA 60.686 148.144
LZ 61.272 155.501
GA 59.607 168.916
GZ 58.814 148.428

10.16

LA 70.035 160.222
LZ 68.910 156.643
GA 68.132 162.546
GZ 64.974 165.609

23.71

LA 74.037 152.463
LZ 70.862 170.161
GA 71.622 153.804
GZ 75.066 169.422

49.27

LA 75.309 173.534
LZ 72.182 176.495
GA 76.402 164.563
GZ 72.396 156.223

98.28

LA 78.812 137.479
LZ 75.981 134.773
GA 74.034 151.958
GZ 75.673 178.396
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A.3.3 Comparison between the 1EF and case 3 of the 2EF

Table A.8: Results obtained from computing the ratio between the performances achieved by
the algorithms in the 1EF and in case 3 of the 2EF. This ratio is presented as a percentage
for the PSNR and the (Reduced χ2 - 1).

SNR Algorithm PSNR Ratio (%) (Reduced χ2 - 1) Ratio (%)

1.22

LA 51.799 186.042
LZ 47.728 194.580
GA 48.964 211.489
GZ 51.952 207.488

2.42

LA 50.716 189.279
LZ 52.012 200.499
GA 54.148 203.516
GZ 55.263 215.403

5.01

LA 56.629 185.253
LZ 57.150 194.217
GA 56.017 223.685
GZ 55.935 199.409

10.16

LA 57.254 208.988
LZ 62.565 209.440
GA 60.148 221.366
GZ 58.856 210.199

23.71

LA 60.919 208.976
LZ 61.799 213.093
GA 60.362 191.969
GZ 65.560 189.616

49.27

LA 70.519 202.150
LZ 69.473 220.499
GA 71.189 209.009
GZ 71.059 224.569

98.28

LA 70.445 157.520
LZ 69.703 142.553
GA 70.006 208.617
GZ 70.461 196.548

108



A.3.4 Comparison between the 1EF and case 4 of the 2EF

Table A.9: Results obtained from computing the ratio between the performances achieved by
the algorithms in the 1EF and in case 4 of the 2EF. This ratio is presented as a percentage
for the PSNR and the (Reduced χ2 - 1).

SNR Algorithm PSNR Ratio (%) (Reduced χ2 - 1) Ratio (%)

1.22

LA 52.323 157.028
LZ 54.735 150.505
GA 48.881 173.168
GZ 49.993 171.061

2.42

LA 55.944 177.306
LZ 50.441 153.467
GA 54.381 154.049
GZ 55.862 148.020

5.01

LA 59.505 170.064
LZ 58.233 149.688
GA 59.885 171.774
GZ 60.068 155.152

10.16

LA 69.484 159.148
LZ 67.522 168.757
GA 65.141 178.877
GZ 62.347 176.760

23.71

LA 69.518 178.839
LZ 69.502 165.325
GA 67.970 159.963
GZ 71.186 173.826

49.27

LA 78.677 164.727
LZ 76.882 174.589
GA 75.850 150.689
GZ 74.030 177.432

98.28

LA 78.557 119.093
LZ 76.012 145.965
GA 75.999 161.455
GZ 75.724 170.435

109



Bibliography

[1] JE Baldwin, PJ Warner, and CD Mackay. The point spread function in lucky imaging
and variations in seeing on short timescales. Astronomy & Astrophysics, 480(2):589–597,
2008.

[2] S.P. Belekos, N.P. Galatsanos, and A.K. Katsaggelos. Maximum a Posteriori Video
Super-Resolution Using a New Multichannel Image Prior. In IEEE Transactions on
Image Processing, volume 19(6), pages 1451 – 1464, 2010.

[3] K.P. Bennet and M.J. Embrechts. An optimization perspective on kernel partial least
squares regression. In Nato Science Series sub series III computer and systems sciences,
volume 190, pages 227 – 250, 2003.

[4] E. Bertin. Automated Morphometry with SExtractor and PSFEx. In I. N. Evans,
A. Accomazzi, D. J. Mink, and A. H. Rots, editors, Astronomical Data Analysis Software
and Systems XX, volume 442 of Astronomical Society of the Pacific Conference Series,
page 435, July 2011.

[5] Emmanuel Bertin and S Arnouts. Sextractor: Software for source extraction. Astronomy
and Astrophysics Supplement Series, 117(2):393–404, 1996.

[6] Sean Borman and Robert L Stevenson. Super-resolution from image sequences-a review.
In mwscas, page 374. IEEE, 1998.

[7] N.K. Bose, S.P. Kim, and H.M. Valenzuela. Recursive implementation of total least
squares algorithm for image reconstruction from noisy, undersampled multiframes. In
Proceedings of the IEEE Conference on Acoustics, Speech and Signal Processing, vol-
ume 5, pages 269 – 272, 1993.

[8] N.K. Bose, S. Lertrattanapanich, and M.B. Chappalli. Superresolution with second
generation wavelets. In Signal Processing: Image Communication, volume 19(5), pages
387 – 391, 2004.

[9] Emmanuel J Candès and Carlos Fernandez-Granda. Towards a mathematical theory
of super-resolution. Communications on Pure and Applied Mathematics, 67(6):906–956,
2014.

[10] Tony F Chan, Stanley Osher, and Jianhong Shen. The digital tv filter and nonlinear

110



denoising. Image Processing, IEEE Transactions on, 10(2):231–241, 2001.

[11] G.K. Chantas, N.P. Galatsanos, and N.A. Woods. Super-Resolution Based on Fast
Registration and Maximum a Posteriori Reconstruction. In IEEE Transactions on Image
Processing, volume 16(7), pages 1821 – 1830, 2007.

[12] P. Cheeseman, R. Kanefsky, R. Kraft, J. Stutz, and R. Hanson. Super-resolved surface
reconstruction from multiple images. In Maximum Entropy and Bayesian Methods, pages
293 – 308, 1996.

[13] M.G. Choi, Y. Yang, and N.P. Galatsanos. Multichannel regularized recovery of com-
pressed video sequences. In IEEE Trans. Circuits Syst. II: Analog and Digital Signal
Processing, volume 48(4), pages 376 – 387, 2001.

[14] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep con-
volutional network for image super-resolution. In Computer Vision–ECCV 2014, pages
184–199. Springer, 2014.

[15] Weisheng Dong, Lei Zhang, Guangming Shi, and Xiaolin Wu. Image deblurring and
super-resolution by adaptive sparse domain selection and adaptive regularization. Image
Processing, IEEE Transactions on, 20(7):1838–1857, 2011.

[16] D.L. Donoho. De-noising by soft thresholding. In IEEE Trans. Information Theory,
volume 41, pages 613 – 627, 1995.

[17] Daniel J Eisenstein, David H Weinberg, Eric Agol, Hiroaki Aihara, Carlos Allende Pri-
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