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a b s t r a c t

Support Vector Clustering (SVC) is an important density-based clustering algorithm which

can be applied in many real world applications given its ability to handle arbitrary clus-

ter silhouettes and detect the number of classes without any prior knowledge. However, if

outliers are present in the data, the algorithm leaves them unclassified, assigning a zero

membership degree which leads to all these objects being treated in the same way, thus

losing important information about the data set. In order to overcome these limitations, we

present a novel extension of this clustering algorithm, called Rough–Fuzzy Support Vector

Clustering (RFSVC), that obtains rough–fuzzy clusters using the support vectors as cluster

representatives. The cluster structure is characterized by two main components: a lower

approximation, and a fuzzy boundary. The membership degrees of the elements in the

fuzzy boundary are calculated based on their closeness to the support vectors that rep-

resent a specific cluster, while the lower approximation is built by the data points which

lie inside the hyper-sphere obtained in the training phase of the SVC algorithm. Our com-

putational experiments verify the strength of the proposed approach compared to alterna-

tive soft clustering techniques, showing its potential for detecting outliers and computing

membership degrees for clusters with any silhouette.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Clustering is one of the most important data mining tasks. Its objective is to find natural groups in a given data set in

which the observations would be homogeneous within each group and heterogeneous between groups. Many clustering al-

gorithms have been proposed in the literature [10,14,27,34,36,37], which can be grouped into two categories: hard clustering,

and soft clustering. Their main difference is that in hard clustering an object has to belong exactly to one cluster while this

constraint is relaxed in soft approaches. In certain applications, the hard clustering approach may not be adequate given the

nature of the problem. Consequently, soft clustering could grant more flexibility in deriving adequate solutions.

Since their introduction, fuzzy sets [40] and rough sets [26] have shown their particular advantages when ambiguity and

uncertainty have to be dealt with [27]. Fuzzy C-Means [5] and Rough C-Means [20] are very common representatives of

soft clustering algorithms, and their derivatives have been applied in many areas. However, their use is still limited by some

characteristics, such as clusters with spherical shapes, the fact that the sum of the membership values of an object has to

be equal to 1 (Fuzzy C-Means), the need to know the number of clusters beforehand, and that the data points identified as

outliers are not classified accordingly.
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On the other hand, Support Vector Clustering [4], an important density-based clustering algorithm, uses the support

vector machines philosophy to find the clusters’ cores, gaining the capability of detecting classes of any shape without

having to know in advance the number of clusters. However, this algorithm treats all data points that do not belong to one

of the clusters found in the same way, indicating them just as outliers. Especially, in the presence of scattered data this

turns out to be a major drawback since important information could be lost by not differentiating among outliers.

To overcome these deficiencies, we propose a novel clustering algorithm called Rough–Fuzzy Support Vector Clustering,

a generalization of Support Vector Clustering, that as will be shown, has the following advantages: similar to traditional

SVC, any cluster shape can be detected and it is not necessary to know the number of clusters in advance, since the ba-

sic idea relies on the concept of density of data points. Additionally, those data points that are not clearly assigned to

one of the clusters (here considered as outliers) get membership values to all clusters according to their distances in the

higher-dimensional feature space. These membership values provide important information about the outliers, which in

many applications could be the most critical cases.

The remainder of this paper is arranged as follows: Section 2 presents the traditional Support Vector Clustering algorithm

and provides an overview of the state-of-the-art of its soft computing variations. Section 3 introduces the proposed method

called Rough–Fuzzy Support Vector Clustering and explains its basic ideas in detail. Experimental results using RFSVC, and

alternative methods, are presented in Section 4. Finally, Section 5 contains a summary of this paper, provides its main

conclusions, and indicates future developments.

2. Literature overview on Support Vector Clustering

In this section, we present a general introduction to Support Vector Clustering. Then, we provide the respective algo-

rithm’s mathematical description in order to have the basis for developing our rough–fuzzy clustering method. Finally, we

comment on recent studies related to our approach to emphasize its importance.

2.1. General introduction to Support Vector Clustering

Let X = {xi ∈ Rd/i = 1, 2, . . . , N} be the set of N data points and Rd be the data space. The traditional Support Vector

Clustering algorithm groups the elements in set X into clusters, interpreting the solution of the Support Vector Domain

Description [33] as cluster cores, and assigns each individual point to its nearest core to generate the final clusters [9]. This

is achieved using a two-phase algorithm consisting of a training phase and a labeling phase.

During the training phase, following the ideas proposed by Tax and Duin [33], data points are projected from the original

data space to some higher-dimensional space looking for the hyper-sphere with a minimal radius that encloses most of the

data points, as shown in Fig. 1(a). When the enclosing sphere is found, three kinds of data points can be identified: support

vectors (SV), bounded support vectors (BSV), and inside data points (ID). Support vectors are data points whose images lie

on the surface of the enclosing sphere, while bounded support vectors lie outside the hyper-sphere, and inside data points

belong to its interior.

After that, the images of data points are projected back from the higher-dimensional space to the original data space

where support vectors now define a set of contours that enclose data points. This completes the training phase (Fig. 1(b).

Finally, the labeling phase identifies the different clusters found during training and allows building a {0, 1}-membership

matrix which indicates to which cluster each data point belongs.

2.2. Mathematical description of Support Vector Clustering

In this section, following Ben-Hur’s work, we present the mathematical description of the training phase and the labeling

phase of Support Vector Clustering algorithm. For more details and proofs, see [4].

2.2.1. Training phase

In the training phase, a quadratic optimization problem is solved in order to find the hyper-sphere with minimal radius

in a higher-dimensional space that encloses the images of the available data points from the original space. The model is

formulated as follows:

Min R2 + C

N∑
i=1

ξi (1)

s.t. ‖ φ(xi) − a ‖2≤ R2 + ξi ∀i = 1, . . . , N (2)

ξi ≥ 0 ∀i = 1, . . . , N (3)

where ‖·‖ is the Euclidean norm, a is the center of the hyper-sphere, φ is the non-linear function that projects data from

the original space to the higher-dimensional space, ξ i are slack variables that relax the constraints to allow some data points

to lie outside the sphere, R is the sphere’s radius, and C ∈ [0, 1] is a constant penalty parameter.
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Fig. 1. General idea of SVC (+: inside data points, ⊕: support vectors, x: bounded support vectors).
The solution of the primal problem can be obtained by solving its Wolfe dual form that is a function of variables β i:

Max

N∑
i=1

βiK(xi, xi) −
N∑

i=1

N∑
j=1

βiβ jK(xi, x j) (4)

s.t.

N∑
i=1

βi = 1 (5)

0 ≤ βi ≤ C ∀i = 1, . . . , N (6)

where β i are Lagrange multipliers and K(xi, x j) = φ(xi) · φ(x j) is the kernel function. It can be shown [4] that only those

points with 0 < β i < C lie on the surface of the hyper-sphere, and are called support vectors (SV) which define the contours

that enclose the points in the data space. Data points with βi = C lie outside the sphere and are called bounded support

vectors (BSV); the corresponding data points in the original space do not belong to any cluster found. Points with βi = 0 lie

inside the hyper-sphere and are called inside data points (ID). These are the objects that belong to one of the clusters built.

One widely used kernel function is the Gaussian kernel, which has the following form:

K(xi, x j) = e−q‖xi−x j‖2

(7)

with width parameter q. As the value of q increases, the numbers of SVs and clusters increase as has been shown in [4].

For each data point x, the distance of its image in the higher-dimensional space from the center of the hyper-sphere is

given by:

R2(x) = ‖ φ(x) − a ‖2

= K(x, x) − 2

N∑
i=1

βiK(xi, x) +
N∑

i=1

N∑
j=1

βiβ jK(xi, x j) (8)

Then, the radius of the hyper-sphere that encloses data points in feature space can be calculated as follows:

RS = 1

|SV |
∑

xi∈SV

R(xi) (9)
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Finally, the contours that enclose the points in data space are defined by the set:

{x/R(x) = RS} (10)

The contours are interpreted as forming cluster boundaries as is shown in Fig. 1(b) [4]. In view of this, support vectors

lie on cluster boundaries; bounded support vectors are outside; and all other points lie inside the clusters.

In the training phase, the Support Vector Data Description model is used to obtain the support vectors and many efficient

algorithms exist to solve the quadratic optimization problem involved [21]. For example, the Generalized Sequential Minimal

Optimization (GSMO) algorithm, proposed by Keerthi and Gilbert [13], is widely used to solve optimization problems related

to Support Vector Machines.

The training phase is governed by two parameters: q, the scale parameter of the Gaussian kernel, and C, the soft margin

constant. Both affect the shape of the enclosing contours in data space. A complete computational study of their effects had

been given in [4].

2.2.2. Labeling phase

Although the training phase of the SVC algorithm provides the set of support vectors, bounded support vectors, and

inside data points, it does not differentiate between two points that belong to two different clusters. To do so, Ben-Hur

et al. [4] propose the following strategy: given a pair of data points, xi and xj, which belong to different clusters, any

path that connects them must exit from the sphere in feature space, i.e., ∃λ ∈ [0, 1], such that R(yi, j) > RS, where yi, j =
λxi + (1 − λ)x j .

This leads to the definition of the adjacency matrix A with elements ai, j between pairs of points xi and xj whose images

lie in or on the sphere in the higher-dimensional space:

ai, j =
{

1 if ∀λ ∈ [0, 1], R(yi, j) ≤ RS

0 otherwise
(11)

Clusters are now defined as the connected components of the graph induced by A. Note that bounded support vectors are

unclassified by this procedure since the higher-dimensional space images lie outside the enclosing sphere. We can decide

either to leave them unclassified, or to assign them to any clusters using some criteria.

The labeling rule introduced by Ben-Hur is called Support Vector Graph [4]. Due to its high computational time [28],

other labeling methods have been proposed in the literature such as Proximity Graph Modeling [38], Stable Equilibrium

Point [15], Cone Clustering Labeling [16,17], Fast and Stable Labeling [18], among others.

2.3. Extensions of Support Vector Clustering

In this section, we review and comment on the extensions of the Support Vector Clustering algorithm relevant to our

work. First, we show soft computing variations and then more recent crisp approaches.

Fuzzy versions of Support Vector Clustering have been presented by Chiang and Hao [6], Zheng et al. [41] and García

et al. [11]. In [6], multiple spheres were used to represent each cluster in the higher-dimensional space and a cell-growing

method was employed to calculate membership degrees for the data, and to obtain a prototype of each cluster.

In García et al. [11], subtractive clustering [7] was used to obtain the class center of each cluster; then support vector ma-

chines (SVM) for density estimation were used; support vectors were found; and the membership degrees for the elements

in the clusters were calculated based on the idea of Fuzzy C-Means, i.e. in an iterative fashion. These approaches provide

a membership degree matrix, i.e. a fuzzy partition of the data. Finally, Zheng et al. [41] proposed assigning a membership

degree to each data point in order to weigh its relevance for classifier construction, i.e. fuzzy information was used at the

input level. Despite the fact that Zheng et al. use such membership values, the partition of the data set obtained by their

work, i.e. the respective output, is not fuzzy.

One important rough variation of the Support Vector Clustering algorithm was introduced in 2005 by Asharaf et al. [2].

Its key idea is to look for two hyper-spheres that enclose all data points in the higher-dimensional space instead of just one.

The data points enclosed by the smaller hyper-sphere are supposed to be elements of the lower approximation of a cluster,

while the data points enclosed by the larger hyper-sphere and not enclosed by the smaller one are assumed to be elements

of the boundary of the same cluster. Labeling is partially performed by a modification of Ben-Hur’s labeling algorithm. With

this approach, a soft partition of the data set is obtained, but no membership matrix for the elements in the boundary of

the clusters is provided, as will be the case in our approach. Table 1 summarizes the state of the art and main characteristics

of these extensions.

More recent studies [8,9,18,28–30] deal primarily with the main two disadvantages of the traditional Support Vector

Clustering algorithm, i.e. the computational times used in the training phase and in the labeling phase. Table 2 shows which

issue is addressed and whether the respective approach finds a crisp, fuzzy, or rough partition of the data set.

Clearly, major efforts are being dedicated to the labeling phase since this is still a critical issue of SVC. And Table 2 reveals

that recent studies do not consider soft computing approaches; another indication of the importance of the work presented

in this paper. Finally, Li and Ping [19] presented a complete survey of the literature related to Support Vector Clustering

recently, highlighting the benefits, drawbacks, improvements, variations, and research directions of Ben-Hur’s algorithm.
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Table 1

Soft computing variations of Support Vector Clustering.

Author Year Partition Membership matrix Prototype description

Chiang and Hao [6] 2003 Fuzzy Yes Centers of the spheres in feature space

Asharaf et al. [2] 2005 Rough No No prototype

Zheng et al. [41] 2006 Crisp No No prototype

García et al. [11] 2006 Fuzzy Yes Centers found by substractive clustering

Table 2

Recent improvements for SVC.

Author Year Partition Training phase Labeling phase

Ping et al. [28] 2010 Crisp Yes Yes

Chonghui and Fang [8] 2011 Crisp Yes Yes

Ping et al. [30] 2012 Crisp No Yes

Ping et al. [29] 2013 Crisp Yes Yes

D’Orangeville et al. [9] 2013 Crisp No Yes

Li [18] 2013 Crisp No Yes

Fig. 2. Data points outside the sphere in the higher-dimensional space.
3. A Rough–Fuzzy approach for Support Vector Clustering

In this section, we present a general overview of our Rough–Fuzzy Support Vector Clustering method first. Subsequently,

we explain its details in Section 3.2, putting special emphasis on the fuzzy boundary which is our main contribution. Finally,

Section 3.3 shows how the proposed method works via a comprehensible two-dimensional data set which allows visual

inspection of each of its steps.

3.1. Overview of the proposed method

During the training phase of traditional SVC, we solve the model defined by Eqs. (1)–(3) as described in Section 2.2.1.

If we select C = 1 in this model, no data point lies outside the hyper-sphere, so the boundary will be empty and a crisp

partition of the data set will be found (Fig. 1). On the other hand, if C < 1, some of the data points (BSV) will lie outside

the hyper-sphere and will belong to the surroundings of the clusters (Fig. 2). Data points that lie inside the sphere will be

elements of the clusters built by the labeling rule used.

The crisp cluster structure generated by traditional SVC will be replaced by rough–fuzzy clusters, characterized by two

main components: a lower approximation formed by the elements inside the hyper-sphere and a fuzzy boundary containing

the bounded support vectors, i.e., those data points that lie outside the hyper-sphere.

As mentioned in Section 2.2, existing methods for Support Vector Clustering do not classify bounded support vectors

(BSV). To do so, we propose a fuzzy boundary for these BSVs, which allows extracting additional knowledge about the data.

This is motivated by the following two ideas:

• Some bounded support vectors are closer to one cluster in data space than to others. As a consequence, they should be

treated differently.
• Fuzzy set theory provides a mathematical framework for obtaining numerical membership values of the data points that

belong to cluster boundaries.

Combining these ideas, we developed a methodology which allows data analysts to have more insights regarding

bounded support vectors; e.g., a BSV could be identified as an outlier if it is far away from all the clusters [31].

This provides more information on the nature of bounded support vectors. For example, a BSV with degrees of mem-

bership close to 0 to all clusters could be considered to be an outlier while other BSVs could be treated in a different way.
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Fig. 3. Support vector and its zone of influence.
This is possible because our approach does not require that the membership degrees must sum up to 1 as in other fuzzy

clustering algorithms. This is one of the most important and powerful characteristics of our proposal. Another important

advantage of our algorithm is that it is not necessary to assume any prior knowledge about the silhouette and the number

of clusters in the data set; i.e. the flexibility of the SVC algorithm is not affected. Additionally, the use of our procedure,

after having run the SVC algorithm, is not expensive computationally.

3.2. Development of the proposed method

The outputs of the traditional SVC algorithm are: the set of support vectors (SV), bounded support vectors (BSV), and

inside data points (ID), together with the number of clusters and the {0, 1}-membership matrix of the data set in each

cluster found. Note that bounded support vectors are unclassified so their membership in each cluster is zero.

As mentioned in Section 2.1, all inside data points lie in the hyper-sphere and will be classified in one of the clusters

built by the SVC algorithm. Since the membership of these elements in a specific cluster is not dubious, we postulate that

they define the lower approximation of their respective cluster.

The SVC algorithm, however, does not classify the BSV, thus leaving the membership of these elements in any cluster

dubious. In order to overcome this issue, we propose that the BSV data form new fuzzy sets.

The construction of the fuzzy boundary is based on the idea that each clusters support vectors could be seen as the

centers of ball-shaped clusters with the respective SV as its prototype. The main advantage of this idea is that some BSV

will be under the influence of such SV (Fig. 3), which is the best representative of the data close to it.

Using this idea and the distance of a BSV from all SVs in the cluster, we can calculate the respective membership degrees.

Given that the cluster structure formed by the SVC algorithm is based on SVs, we must decide which strategy to use to

calculate the membership degree of a BSV: considering the distance to the nearest SV, or the average distance to all SVs in

the same cluster.

We propose calculating the membership degree μi, j of bounded support vector i to support vector j using the Gaussian

kernel function as the membership function (Eq. 12) because this kernel maps to (0, 1]. It gets close to 1 when the data

points are close to the respective SV and tends to 0 when they are far away.

μi, j = μ(xi, SVj) = K(xi, SVj) = e−q‖xi−SVj‖2

(12)

We use this kernel function as a membership function because it maintains the same order of the data space in the

higher-dimensional space, i.e., support vectors that are close in the data space will be close on the surface of the hyper-

sphere in the higher-dimensional space as has been shown in the following theorem:

Theorem 1. Let xi, xj and xk be elements of a data space Rd. Let ‖·‖ be the Euclidean norm and d(·, ·) be the Euclidean distance.

Let φ be a non-linear transformation from Rd to some higher-dimensional space and K(xi, x j) = φ(xi) · φ(x j) = e−q‖xi−x j‖2
be

the Gaussian kernel function with width parameter q > 0. Then:

d(xi, x j) ≤ d(xi, xk) ⇔ d(φ(xi), φ(x j)) ≤ d(φ(xi), φ(xk))

Proof. See Appendix A. �
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This important fact allows us using the kernel function as a membership function which is a more natural way to com-

pute the membership degrees than using arbitrary membership functions.

According to the criterion to calculate the membership matrix, the steps to obtain the final membership degree of each

BSV are as follows:

• If we consider the nearest SV criterion, the membership degree of BSVi to cluster j is the value of K(BSVi, SVj) where SVj

is the nearest support vector in the cluster j to BSVi.
• If we consider the average distance to all SVs in the same cluster, we must use Eq. 13.

μi, j = 1

|SVj|
∑

xk∈SVj

K(BSVi, xk) (13)

where SVj is the set of support vectors of the cluster j.

Once the idea explained above is applied, we obtain the membership matrix U where the element μi, j is the membership

degree of bounded support vector i to cluster j. One advantage of this matrix over the matrix provided by Fuzzy C-Means is

that the sum of the membership degrees in each row of the former is not necessarily 1. This fact enables our approach to

detect outliers. For example, as we will explain in Section 4.2, an outlier will have a membership degree close to zero in all

clusters while this value will be significantly different from zero for non-outlier data points.

To complete our rough–fuzzy clustering method, we structure all ideas mentioned in Section 2.2 together with the ideas

explained in this section in an algorithm that allows computing the final rough–fuzzy clusters and the membership matrix.

This algorithm has been called Rough–Fuzzy Support Vector Clustering (RFSVC) and is shown in Algorithm 1.

Algorithm 1: Rough–Fuzzy Support Vector Clustering.

Input: Data set X , parameters q > 0 and υ ∈ ( 1
N , 1)

Output: Rough–fuzzy clusters with [0, 1]-membership matrix and the number of clusters c

1 Calculate penalty constant C = 1
Nυ

2 Run the training phase of the SVC algorithm and obtain the set of support vectors (SV), bounded support vectors

(BSV) and inside data points (ID).

3 Run the labeling phase of the SVC algorithm and obtain the crisp cluster partition of the data set.

4 Assign support vectors and inside data points to the lower approximation of their respective cluster based on the

solution obtained in the labeling phase.

5 Assign bounded support vectors to the fuzzy boundaries of the clusters generated by SVC algorithm.

6 Generate the distance matrix BSV vs. SV to obtain the distance of each data point that is outside of the sphere to each

support vector.

7 Partition the distance matrix by columns according to the labeling phase.

8 for each cluster do

9 for each xi ∈ BSV do

10 Get the closest x j ∈ SV considering those which define the same cluster.

11 Calculate the final membership degree using Eq. 12;

Note that steps 1–3 are the Support Vector Clustering algorithm, while steps 4–11 are our proposal. Finally, if the penalty

parameter C described in Section 3.1 is set to 1, the set of bounded support vectors will be empty and the fuzzy boundary

will not exist because all data points will be classified in a specific cluster becoming elements of the lower approximations

of the clusters, and a crisp partition of the data set will be obtained.

3.3. Comprehensible application on example data set

In order to show the main contributions of our algorithm easily, we introduce the Motivation Data Set, an artificially

generated data set with 316 instances, 16 of which are located outside the main masses of the two clusters. Fig. 4 displays

the raw data of this example.

For this sample data set, we set, by trial and error, the parameters of the Support Vector Clustering algorithm q = 12

and υ = 0.074. After the training phase, support vectors, bounded support vectors, and inside data points are identified as

is shown in Fig. 5, where red points are SV, orange points are BSV, and the remaining ones are inside data.

Then, using the Support Vector Graph labeling rule proposed by Ben-Hur et al. [4], the crisp clusters can be found, and

the {0, 1}-membership matrix for the data is obtained. Fig. 6 shows the labeling results. For visualization purposes, only the

support vectors have different colors with each color representing a different cluster.

As mentioned in Section 2.2.2, given that images of bounded support vectors are outside the sphere in the higher-

dimensional space, well-known labeling rules have left them unclassified with zero membership degree to all the clusters

found. In order to overcome this issue, we extend the crisp nature of the current clusters to a rough–fuzzy one, and as-

sign the classified data to the respective lower approximations of the new rough–fuzzy clusters, and the bounded support
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Fig. 4. Motivation data set.

Fig. 5. Results of the training phase of RFSVC algorithm for motivation data set. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article).
vectors to the fuzzy boundaries. After that, we compute the membership degrees of unclassified data using steps 6–11 of

Algorithm 1. The results are displayed in Table 3.

From the graphical point of view, nothing changes in the current clusters, however, now we have additional information

about bounded support vectors, and with this new knowledge we can detect outliers, given that the membership degrees

of BSV are not constrained to sum 1. Looking again at Table 3, if the maximum membership degree for a BSV is very close

to zero, we can consider this BSV to be an outlier. For the Motivation Data Set, all BSVs can be considered outliers, but, as

we will see in Section 4, this fact is not always true for all data sets.
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Fig. 6. Results of the labeling phase of RFSVC algorithm for Motivation Data Set.

Table 3

Membership matrix for bounded support vectors

BSV Id X Y μi, 1 μi, 2

301 4 4 9.61657E−58 2.60884E−20

302 2.5 3 4.23234E−17 0.000140085

303 3.5 3 4.91802E−26 0.000309468

304 3 3 2.60884E−20 0.002783015

305 2.5 3.5 2.90258E−27 1.56361E−09

306 4 2 7.18629E−21 0.001749415

307 1.2 0.6 0.011077595 1.25507E−21

308 1.5 2 0.000140085 1.97424E−08

309 2 2 0.002783015 0.00208785

310 1.5 2.5 1.56361E−09 1.34497E−09

311 3 1 0.001749415 0.002697496

312 1.5 0 9.63812E−05 4.90062E−27

313 2 0 0.002697496 2.55448E−21

314 3 -1 1.65352E−20 9.11978E−39

315 1 -1 2.55448E−21 1.60114E−59

316 0.5 4 1.94621E−50 2.08462E−45
4. Experiments and discussion

In this section we introduce the data sets we used to test our procedure first, and explain how we calibrated the initial

parameters. Then, in Section 4.2, we present the results obtained using Rough–Fuzzy Support Vector Clustering, Rough–

Fuzzy C-Means, and Rough–Possibilistic C-Means. At the same time, we discuss the results, show how our algorithm can

detect outliers, and highlight the important advantages of our proposal.

4.1. Description of data sets and experimental set-up

To test our methodology, we used several data sets of different natures, such as benchmark, real world, and artificially

generated, with different cluster silhouettes and densities. The main characteristics of the data sets used are summarized in

Table 4.

It is necessary to run the Support Vector Clustering algorithm to apply our method for obtaining the set of support

vectors, bounded support vectors, and inside data points. The main parameters of SVC are the Gaussian kernel width q

which affects the number of support vectors, and the penalty constant C = 1
Nυ which determines the percentage of data

that will be left outside the hyper-sphere in the higher-dimensional space. Many studies have been undertaken in order



362 R. Saltos, R. Weber / Information Sciences 339 (2016) 353–368

Table 4

Data sets characteristics.

Name Type Instances Classes Attributes

Two Circles Artificial 4500 2 2

Three Circles Artificial 6750 3 2

Two Squares Artificial 4500 2 2

Four Squares Artificial 9000 4 2

XO Benchmark 3600 2 2

XOOut Benchmark 3603 2 2

S1-Gaussian Benchmark 5000 15 2

Unbalance Benchmark 6500 8 2

BankNote Real World 1374 2 4

Glass Real World 214 6 9

Cancer Real World 569 2 30

Quake Real World 2178 NA 4

Table 5

Algorithms’ parameters.

Name RFSVC RFCM RPCM

q υ c m w c m w w̃

Two Circles 5.7 1
3

2 2 0.66 2 2 0.66 0.34

Three Circles 5.7 1
3

3 2 0.4 3 2 0.6 0.4

Two Squares 5.44 1
3

2 2 0.7 2 2 0.7 0.3

Four Squares 8 1
3

4 2 0.7 4 2 0.75 0.25

XO 7 1
6

2 2 0.45 2 2 0.75 0.25

XOOut 7 1
6

2 2 0.45 2 2 0.75 0.25

S1-Gaussian 20 0.4 15 2 NA 15 2 NA NA

Unbalance 10 0.05 8 2 NA 8 2 NA NA

BankNote 0.25 0.1 2 2 0.6 2 2 0.6 0.4

Glass 0.1 0.1 6 2 0.7 6 2 0.7 0.3

Cancer 0.1 0.37 2 2 0.6 2 2 0.6 0.4

Quake 1 0.2 3 2 0.6 3 2 0.6 0.4
to calibrate these parameters accurately [35,39]. We calibrated them by simple trial and error because the calibration of

parameters would be beyond the scope of this paper. For more details we refer you to [4,35,39].

On the other hand, Rough–Fuzzy C-Means (RFCM) and Rough–Possibilistic C-Means (RPCM) algorithms developed by Maji

and Pal [22–24], and Maji and Paul [25] were run in order to compare their results with those of our proposal. The main

parameters of these algorithms are the number of clusters c, the fuzzifier m, and the relative weight of lower approximation

w.

We set the parameters for Rough–Fuzzy Support Vector Clustering following Ben-Hur’s suggestions [4], and similarly, for

Rough–Fuzzy C-Means and Rough–Possibilistic C-Means, we used the ideas reported by Maji and Pal [23]. Table 5 shows the

parameters set for each one of the methods used in this paper. In some cases, the respective algorithm did not converge,

which is indicated by NA.

All data sets used in this paper and the respective results of the algorithms can be downloaded from the following

link: https://goo.gl/baeUpt. Benchmark and Real World data sets can also be downloaded from the major well-known data

repositories [1,3,32].

4.2. Results and discussion

In this section, we present first the graphical results of Rough–Fuzzy Support Vector Clustering, Rough–Fuzzy C-Means,

and Rough–Possibilistic C-Means for a sample of the two-dimensional data sets tested. Then, quantitative indices proposed

by Maji and Pal [23] are computed to compare the results of the algorithms used in this section. Finally, a sample of the

membership matrix of the XO Outlier data set is presented to show how our method detects outliers.

For Figs. 7, 8, and 9, orange points belong to fuzzy boundaries, color highlighted points are the prototypes of each cluster,

while the remaining gray data points are elements of the lower approximations of their respective classes.

Fig. 7 shows the results graphically for Two Squares, XO Outlier, S1 Gaussian and Unbalance data sets using the RFSVC

algorithm. These data sets have different numbers of clusters, shapes and densities, and in all cases the correct number of

clusters was found. Additionally, given that support vectors act as cluster prototypes, the shapes of the clusters found can

be observed.

Similarly, Fig. 8 shows the results graphically for the same data sets using the RFCM algorithm. In each scenario, the

correct number of clusters was provided to the algorithm. In this case, only Two Squares and XO Outlier data sets are

https://goo.gl/baeUpt
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(a) Two Squares (b) XO Outlier

(c) S1 Gaussian (d) Unbalance

Fig. 7. RFSVC results for 2D data sets. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article).
displayed, given that the algorithm was unable to converge and find a solution for S1 Gaussian and Unbalance data sets.

On the other hand, for the XO Outlier data set, the method returned a data point that was introduced as an outlier in the

center of the “O” class as the center of the “O” cluster.

Finally, Fig. 9 shows the results graphically for the same data sets using the RPCM algorithm. Similar to the RFCM, only

the Two Squares and XO Outlier data sets are displayed given that the algorithm was unable to converge using S1 Gaussian

and Unbalance data sets. Despite this fact, it found perfect circles inside the two squares and the “X” cluster of the XO data

set. Furthermore, RPCM assigned the introduced outlier in the center of the “O” cluster to its lower approximation.

In order to evaluate the performance of our algorithm numerically, we calculated Maji’s validity measures [23]. These

indices are well suited for this purpose given that they need only the membership matrix and the parameters used by the
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(a) Two Squares

1 2 3 4

1.5

2.0

2.5

(b) XO Outlier

Fig. 8. RFCM results for 2D data sets. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article).

(a) Two Squares (b) XO Outlier

Fig. 9. RPCM results for 2D data sets. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article).
algorithm. Other classical quality indices are usually center-based [12]. As a consequence, they cannot be used to evalu-

ate the performance of our algorithm because it uses the support vectors as prototypes instead of the centers like other

approaches.

We briefly present Maji’s quantitative indices. In the equations presented below, Lw j and FBj are the lower approximation

and fuzzy boundary of cluster j, respectively.
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Table 6

Validity measures for artificial data sets.

Name Indice RFSVC RFCM RPCM

Two Circles α 0.9383 0.8344 0.9612

α∗ 0.9382 0.8344 0.9612

Three Circles α 0.9237 0.6329 0.9500

α∗ 0.9237 0.6327 0.9504

Two Squares α 0.8968 0.8592 0.9740

α∗ 0.8966 0.8592 0.9740

Four Squares α 0.9427 0.8694 0.2428

α∗ 0.9425 0.8702 0.9046

Table 7

Validity measures for benchmark data sets.

Name Indice RFSVC RFCM RPCM

XO α 0.9785 0.5379 0.9689

α∗ 0.9787 0.5300 0.9839

XO Outlier α 0.9802 0.5390 0.9688

α∗ 0.9803 0.5311 0.9839

S1 Gaussian α 0.8906 NA NA

α∗ 0.8890 NA NA

Unbalance α 0.9945 NA NA

α∗ 0.9992 NA NA

Table 8

Validity measures for Real World data sets.

Name Indice RFSVC RFCM RPCM

BankNote α 0.9827 0.7823 0.8174

α∗ 0.9928 0.7977 0.9064

Glass α 0.9448 0.8596 0.1629

α∗ 0.9953 0.8961 0.8920

Cancer α 0.8117 0.7093 0.4483

α∗ 0.8117 0.8086 0.7889

Quake α 0.7191 0.8060 0.3111

α∗ 0.9677 0.8138 0.8484
• α index: It represents the average accuracy of the c clusters. It is the average of the ratio of the number of objects

in the lower approximation to the ratio in the upper approximation of each cluster. It captures the average degree of

completeness of knowledge about all clusters. A higher value of α indicates a better cluster solution. This index is given

by:

α = 1

c

(
c∑

j=1

∑
xi∈Lw j

w(μi, j)
m∑

xi∈Lw j
w(μi, j)m + ∑

xi∈FBj
(1 − w)(μi, j)m

)

• ρ index: It represents the average roughness of the c clusters and is defined by:

ρ = 1 − α

Given this fact, we do not report its values in Tables 6, 7, and 8.
• α∗ index: It represents the accuracy of the approximation of all the clusters. It captures the exactness of approximate

clustering. A higher value of α∗ indicates a better cluster solution. This index is given by:

α∗ =
∑c

j=1

∑
xi∈Lw j

w(μi, j)
m∑c

j=1

(∑
xi∈Lw j

w(μi, j)m + ∑
xi∈FBj

(1 − w)(μi, j)m
)

Returning to the focus of this paper, Tables 6, 7, and 8 present the values of the indices mentioned above using Rough–

Fuzzy Support Vector Clustering (RFSVC), Rough–Fuzzy C-Means (RFCM), and Rough–Possibilistic C-Means (RPCM). We high-

lighted the best values with italic-bold font for each data set tested.

Table 6 presents the quality indices for artificially generated data sets. It can be observed that the RPCM algorithm

obtains the best values for the Two Circles, Three Circles, and Two Squares data sets, followed by RFSVC and RFCM. This

occurs because these data sets are well-suited for circular center-based algorithms, together with the fact that membership

degrees of RPCM are not constrained to sum 1, giving additional flexibility to the method over RFCM which is more sensitive
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Table 9

Sample of the membership matrix for XO data set.

Data ID X Y RFSVC RFCM RPCM

CX CO CX CO CX CO

3599 4.2850 2.1713 0.0000 0.5425 0 1 0 1

3600 4.3303 1.9614 0.0000 0.9002 0 1 0 1

3601 4 2 0.0000 0.4426 0 1 0 1

3602 2.6 2 0.0576 0.0104 0.6309 0.3691 0.0417 0.1254

3603 2.6 1.1 0.0077 0.0003 0.5873 0.4127 0.0272 0.0899
to noise. On the other hand, RFSVC outperforms RFCM and RPCM on the Four Squares data set because the shape structure

is more complicated, while RPCM finds coincident centers.

Similarly, Table 7 presents quality indices for the benchmark data sets. Contrary to the results of Table 6, our algorithm

obtained the best quality indices in all data sets, except for α∗, the index in the two versions of the XO data set, where

it gave results only slightly worse than RPCM. However, looking at Figs. 7(b)–9(b), we see that RFSVC achieved a better

prototype structure, and assigned outliers correctly to the boundaries of the clusters.

For the Real World data sets, the numbers of clusters found by RFSVC are 2, 2, 1, and 3 for BankNote, Glass, Cancer,

and Quake, respectively. For RFCM and RPCM, the correct numbers of clusters were used if they were known in advance, or

otherwise, the number found by RFSVC was used.

Table 8 presents validity indices for Real World data sets. Again, the RFSVC algorithm scores the best values in all the

data sets except for the Quake data set where RFCM gets a better value for the α index. In these data sets, RPCM leads to

coincident centers except for in BankNote where it scores better than RFCM.

A special case occurs with the Glass data set, which has six classes, but RFSVC considers that there are only two clusters.

In order to compare RFCM against RPCM we ran both algorithms using c = 2 and c = 6, leading to better indices in the

second case, although they were not sufficient to outperform the results of our algorithm. A possible reason could be that

under the unsupervised scenario, two non-ball-shaped clusters fit the data better than the two or six ball-shaped clusters

found by RFCM and RPCM.

To conclude this section, Table 9 presents a sample of the membership matrices obtained by applying RFSVC, RFCM, and

RPCM algorithms to the XO Outlier data set. This data set is the classic XO data set with three introduced outliers, one of

them being the center of the “O” cluster.

As observed, RFCM and RPCM classify the outlier located in the center of the “O” cluster as an element of the lower

approximation. Consequently, the membership degree of this outlier is 1. For the remaining outliers, RFCM calculates mem-

bership degrees very close to 0.5, making it difficult to recognize them, while RPCM obtains membership degrees close to 0

in both cases, allowing their detection.

Since our approach (RFSVC) is density-based, it recognizes the data point introduced in the center of the “O” cluster as

an outlier, and assigns it a membership degree of 0.44 to the fuzzy boundary of the “O” cluster, and 5.02 × 10−17 ∼= 0 to

the fuzzy boundary of the “X” cluster. Although the membership degrees in RPCM are not constrained to sum up to 1, this

algorithm fails to detect the outlier introduced in the center of the “O” cluster because it uses a center-based approach for

obtaining the membership matrix, demonstrating that RPCM does not work effectively in non-spherical clusters.

5. Conclusions and future work

In this paper the novel Rough–Fuzzy Support Vector Clustering algorithm was presented. The numerical and graphical

results indicate the potential this approach has in artificial as well as in Real World data sets. In summary, a list of the main

contributions of our method is presented.

Soft clusters of any silhouette with lower approximations and fuzzy boundaries are provided together with their re-

spective membership matrices. The membership degrees are calculated using the Gram matrix and support vectors as

clusters’ prototypes, which is more natural than using a user-defined membership function. The membership degrees of

each bounded support vector in all clusters do not necessarily sum 1 as, e.g., in Fuzzy C-Means and Rough–Fuzzy C-Means,

so outliers can be detected at the same time. No prior assumption about the number of clusters is necessary. This character-

istic is inherited from Ben-Hur’s algorithm. Computational time for calculating the [0, 1]-membership matrix is negligible.

Since our method is based on the Support Vector Clustering, it inherits the main advantages of Ben-Hur’s algorithm. The

data analyst can have the best of both worlds: the crisp partition of the data set using the SVC, and the flexibility of soft

computing approaches, by running our algorithm with practically no additional computational cost.

More research has to be done in order to better understand the potential provided by combining SVC with soft com-

puting. Currently, we are working on a dynamic version of RFSVC algorithm and an improved approach for the labeling

phase.
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Appendix A.

Proof of Theorem 1. We first proof the following implication: d(xi, xj) ≤ d(xi, xk) ⇒ d(φ(xi), φ(xj)) ≤ d(φ(xi), φ(xk))

d(xi, x j) ≤ d(xi, xk)

[d(xi, x j)]
2 ≤ [d(xi, xk)]2

‖xi − x j‖2 ≤ ‖xi − xk‖2

−q‖xi − x j‖2 ≥ −q‖xi − xk‖2

e−q‖xi−x j‖2 ≥ e−q‖xi−xk‖2

e−q‖xi−x j‖2 − 1 ≥ e−q‖xi−xk‖2 − 1

1 − e−q‖xi−x j‖2 ≤ 1 − e−q‖xi−xk‖2

2(1 − e−q‖xi−x j‖2

) ≤ 2(1 − e−q‖xi−xk‖2

)√
2(1 − e−q‖xi−x j‖2

) ≤
√

2(1 − e−q‖xi−xk‖2 )

Given that:

d(φ(xi), φ(x j)) = ‖φ(xi) − φ(x j)‖
=

√
φ(xi) · φ(xi) − 2φ(xi) · φ(x j) + φ(x j) · φ(x j)

=
√

2(1 − e−q‖xi−x j‖2
)

∴ d(φ(xi), φ(x j)) ≤ d(φ(xi), φ(xk))

The backward implication could be shown similarly. �
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