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This paper presents the analysis of three classes of fractional differential equations appearing in the field
of fractional adaptive systems, for the case when the fractional order is in the interval αA 0;1ð � and the
Caputo definition for fractional derivatives is used. The boundedness of the solutions is proved for all
three cases, and the convergence to zero of the mean value of one of the variables is also proved.
Applications of the obtained results to fractional adaptive schemes in the context of identification and
control problems are presented at the end of the paper, including numerical simulations which support
the analytical results.

& 2015 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Fractional calculus relates to the calculus of integrals and
derivatives of orders that may be real or complex, and it has
become very popular due to its demonstrated applications in
numerous fields of science and engineering [1].

We can mention the control field, where innumerable control
strategies [2] including adaptive control schemes [3–7] have been
generalized using fractional operators. The success of fractional
operators in the control field is because they allow increased
flexibility in the design and adjustment of the controller, obtaining
in that way controlled systems with better performance as com-
pared with integer order schemes.

Regarding the identification field, the nature of many complex
systems makes that they can be more accurately modeled using
fractional differential equations. Among many examples, we can
mention several systems that have been modeled using fractional
differential equations with the Caputo definition, see for instance
[8–10]. In that sense, the systems to be controlled/identified can
now be described for fractional differential equations as well.
rights reserved.
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We can find in the literature many excellent books and works
related to the analysis of fractional differential equations, such as
[11,1,12], and many others that address the fractional differential
equations in a more applied way [13,14]. However, still there are
many specific fractional differential equations that have not been
analyzed. Since there are real problems which are in the form of
this specific fractional differential equations, these are open pro-
blems that need to be eventually solved.

This paper presents the analysis of three specific fractional
differential equations, when the order of the fractional derivatives
α is in the interval ð0;1Þ and the Caputo definition for fractional
derivatives is used. The boundedness of the solutions is analyti-
cally proved, as well as the convergence to zero of the mean value
of the squared norm of one of the variables. The application of the
presented results to adaptive schemes in the context of identifi-
cation and control is presented, and numerical simulations are
given, which support the analytical results.

The paper is organized as follows: Section 2 presents some
basic concepts about fractional calculus. A new lemma is pre-
sented in this section as well, which proves the convergence to
zero of the mean value of a non-negative function, based on the
boundedness of its fractional integral. Section 3 introduces the
three fractional differential equations analyzed in this study, with
the corresponding proof of the boundedness of the variables and
conclusions about the evolution along the time of some of them.
Section 4 introduces the application of the results in Section 3 to
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adaptive schemes, together with some illustrative numerical
simulations, which support the analytical results. Finally, Section 5
presents the main conclusions of the work.
2. Basic concepts

This section presents some basic concepts of fractional calculus
and some properties of fractional operators that are used along
the paper.
2.1. Fractional calculus

Fractional calculus studies integrals and derivatives of orders
that can be any real or complex numbers [1]. The Riemann–
Liouville fractional integral is one of the main concepts of frac-
tional calculus, and is presented in Definition 1.

Definition 1 (Riemann–Liouville fractional integral [1]).

Iαaþ xðtÞ ¼
1

ΓðαÞ
Z t

a

xðτÞ
ðt�τÞ1�α dτ; t4a; RðαÞ40 ð1Þ

where ΓðαÞ corresponds to the Gamma Function [1].

There are some alternative definitions regarding fractional deri-
vatives. Definition 2 corresponds to the fractional derivative
according to Caputo, which is the one most frequently used in
engineering problems and the one used in this paper.

Definition 2 (Caputo fractional derivative [1]).

CDα
a xðtÞ ¼

1
Γðn�αÞ

Z t

a

xðnÞðτÞ
ðt�τÞα�nþ1 dτ ð2Þ

where t4a, n�1oαon, nAZþ .

The following lemma will be useful for proving the boundedness
of solutions of fractional differential equations in Section 3, and
was reported in [15,16].

Lemma 3 (Duarte-Mermoud et al. [15]). Let xðtÞARn be a vector of
differentiable functions. Then, for any time instant tZt0, the fol-
lowing relationship holds:

1
2
CDα

t0 xT ðtÞPxðtÞ� �
rxT ðtÞP CDα

t0xðtÞ; 8αA 0;1ð � ð3Þ

where PARn�n is a constant, square, symmetric and positive definite
matrix.
2.2. Evolution of a function with bounded fractional integral of order
αAð0;1Þ

In what follows, a new lemma is proposed and proved, which
will be useful in establishing conclusions on the evolution of some
solutions of fractional differential equations in Section 3.

Lemma 4. Let xð�Þ : Rþ-R be a bounded nonnegative function. If
there exists some αA 0;1ð � such that

1
ΓðαÞ

Z t

t0

xðτÞ
ðt�τÞ1�α dτoM; 8 tZt0; with MA ð0;1Þ ð4Þ
then

lim
t-1

tα�ε

R t
t0
xðτÞ dτ
t

" #
¼ 0; 8ε40 ð5Þ

Proof. Let us start with the fact that the fractional integral is
bounded 8 tZt0, then it can be written asZ t

t0

xðτÞ
ðt�τÞ1�α dτoMΓðαÞ; 8 tZt0 ð6Þ

Multiplying expression (6) by t�ε; ε40 and applying limit
algebra

lim
t-1

1
tε

Z t

t0

xðτÞ
ðt�τÞ1�α dτ

" #
o lim

t-1
MΓðαÞ

tε

� �
¼ 0 ð7Þ

Since xðtÞ is nonnegative we can state that

lim
t-1

1
tε

Z t

t0

xðτÞ
t1�α dτ

� �
r lim

t-1
1
tε

Z t

t0

xðτÞ
ðt�τÞ1�α dτ

" #
ð8Þ

and from (7) and (8) we can write

lim
t-1

1
tε

Z t

t0

xðτÞ
t1�α dτ

� �
¼ 0 ð9Þ

Expression (9) can be rewritten as

lim
t-1

tα�ε

R t
t0
xðτÞ dτ
t

" #
¼ 0 ð10Þ

and this completes the proof.□

As can be seen, Lemma 4 does not allow concluding that
function xðtÞ converges to zero, although it assures that its mean
value do converge to zero, with a convergence rate greater than
t�ðα�εÞ.
3. Analysis of certain classes of fractional differential
equations

In what follows, three kinds of fractional order differential
equations (FODE) will be analyzed. The boundedness of the solu-
tions is proved in all three cases, as well as certain characteristics
of the evolution along the time for some of them.

3.1. Fractional order differential equations of Class 1

One of the parametrization that appears very often in many
real problems has the form

yðtÞ ¼ kpηT ðtÞuðtÞþξðtÞu1ðtÞ
CDα

t0ηðtÞ ¼ �γ sgnðkpÞyðtÞuðtÞ αA 0;1ð �
CDα

t0ξðtÞ ¼ �γ1yðtÞu1ðtÞ αA 0;1ð � ð11Þ

where kpAR is an unknown constant with known sign, γ; γ1ARþ ,
yðtÞ : Rþ-R, ηðtÞ : Rþ-Rn, uðtÞ : Rþ-Rn are assumed to be
bounded, ξðtÞ : Rþ-R and u1ðtÞ : Rþ-R are assumed to be
bounded.

Boundedness of the solution ηðtÞ; ξðtÞ and also of yðtÞ is always
required in these problems, and that is why the analysis of (11) is
so attractive.
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Lemma 5 (Boundedness of solutions for FODE of Class 1). Let us
consider the FODE defined in (11) with the assumption that ηðtÞ; ξðtÞ
are differentiable. Then it can be assured that

� ηðtÞ; ξðtÞ; yðtÞ remain bounded 8 tZt0.
� The mean value of y2ðtÞ converges to zero as t-1.

Proof. Before starting the demonstration, we would like to men-
tion that although the case α¼ 1 is included in this proof, it was
already solved in [17].

Let us start the proof with the fact that, since it is assumed that
ηðtÞ; ξðtÞ are differentiable, then using Lemma 3 with P ¼ In�n, we
can write the following inequality:

CDα
t0

jkp j
2γ

ηT ðtÞηðtÞþ 1
2γ1

ξ2ðtÞ
� �

r jkp j
γ

ηT ðtÞCDα
t0ηðtÞþ

1
γ1
ξðtÞCDα

t0ξðtÞ

ð12Þ

Using expressions (11) in the right hand side of inequality (12),
then it can be written that

CDα
t0

jkp j
2γ

ηT ðtÞηðtÞþ 1
2γ1

ξ2ðtÞ
� �

r�y2ðtÞ ð13Þ

Applying the fractional integral of order α to expression (13) it
follows that

jkp j
2γ

ηT ðtÞηðtÞþ 1
2γ1

ξ2ðtÞ� jkp j
2γ

ηT ðt0Þηðt0Þ�
1
2γ1

ξ2ðt0Þr� Iαt0y
2ðtÞ

ð14Þ

Since Iαt0y
2ðtÞZ0; 8 tZt0, and γ; γ1; jkp j40, then

jkp j
2γ

ηT ðtÞηðtÞþ 1
2γ1

ξ2ðtÞr jkp j
2γ

ηT ðt0Þηðt0Þþ
1
2γ1

ξ2ðt0Þ ð15Þ

Considering bounded initial values for ηðt0Þ, ξðt0Þ, then
expression (15) implies that ηðtÞ; ξðtÞ remain bounded 8 tZt0.

Since uðtÞ;u1ðtÞ are assumed to be bounded in this problem,
then using the equation of yðtÞ in (11), it can be concluded that yðtÞ
remains bounded too.

Regarding the convergence to zero of the mean value of y2ðtÞ,
the following analysis can be made. From expression (14), using
the fact that ηðtÞ;ξðtÞ are bounded, then it can be concluded that
Iαt0y

2ðtÞo1. Then we can apply Lemma 4 and conclude that

lim
t-1

tα�ε

R t
t0
y2ðτÞ dτ
t

" #
¼ 0; 8ε40 ð16Þ

that is to say, we can assure that the mean value of y2ðtÞ converges
to zero when t-1, and this concludes the proof.□

3.2. Fractional order differential equations of Class 2

In the case of FODE (11), yðtÞ is a linear combination of ηðtÞ; ξðtÞ;
uðtÞ and u1ðtÞ. However, very often the evolution of yðtÞ is described
not by the class of equation in (11), but for a fractional differential
equation using the Caputo fractional derivative as well. This is pre-
cisely the case we study in this subsection, as can be seen from (17),

CDα
t0yðtÞ ¼ AyðtÞþkp b ηT ðtÞuðtÞ

CDα
t0ηðtÞ ¼ �γ sgnðkpÞyT ðtÞP b uðtÞ αA 0;1ð � ð17Þ

where AARn�n is an asymptotically stable matrix, bARn,
ηðtÞ : Rþ-Rm, yðtÞ : Rþ-Rn, uðtÞ : Rþ-Rm and is assumed to be
bounded, PARn�n is a symmetric, positive definite matrix that
satisfies the equation ATPþPA¼ �Qo0 (with QARn�n being
positive definite), kpAR is an unknown constant, whose sign is
known, and γARþ .

In what follows, the boundedness of ηðtÞ; yðtÞ is proved in
Lemma 6, as well as the convergence to zero of the mean value of
JyðtÞJ2.

Lemma 6 (Boundedness of solutions for FODE of Class 2). Let us
consider the FODE defined in (17) with the assumption that ηðtÞ; yðtÞ
are differentiable. Then it can be assured that

� ηðtÞ; yðtÞ remain bounded 8 tZt0.
� The mean value of JyðtÞJ2 converges to zero when t-1.

Proof. As it was mentioned in the case of the fractional differ-
ential equations of Class 1, we would like to mention that although
the case α¼ 1 is included in this proof, it was already solved in
[17].

Let us start the proof with the fact that, since yðtÞ;ηðtÞ are
assumed to be differentiable, then we can use Lemma 3 and write
the following inequality:

CDα
t0 yT ðtÞPyðtÞþ jkp j

γ
ηT ðtÞηðtÞ

� �
r2yT ðtÞP CDα

t0yðtÞ

þ2jkp j
γ

ηT ðtÞCDα
t0ηðtÞ ð18Þ

Using (17) in (18), using also the fact that ATPþPA¼ �Qo0
and applying the fractional integral of order α to the resulting
expression we obtain

yT ðtÞPyðtÞþ jkp j
γ

ηT ðtÞηðtÞryT ðt0ÞPyðt0Þþ
jkp j
γ

ηT ðt0Þηðt0Þ ð19Þ

Considering bounded initial values for yðt0Þ;ηðt0Þ, expression
(19) implies that yðtÞ;ηðtÞ remain bounded 8 tZt0.

Regarding the convergence to zero of JyðtÞJ2, using the fact
that ηðtÞ; yðtÞ remain bounded, in a similar way to that used in the
case of fractional differential equations of Class 1, it can be con-
cluded here that Iαt0 JyðtÞJ

2o1.
Then using Lemma 4 we can assure that

lim
t-1

tα�ε

R t
t0
JyðτÞJ2 dτ

t

" #
¼ 0; 8ε40 ð20Þ

that is to say, for the FODE of Class 2 (17), the mean value of
JyðtÞJ2 converges to zero as t-1, and this concludes the proof.□

3.3. Fractional order differential equations of Class 3

Fractional differential equations of Class 3 have the same
structure as fractional differential equations of Class 2, with the
difference that the entire vector yðtÞ : Rþ-Rn is not used in the
fractional differential equation of ηðtÞ, but an algebraic combina-
tion of their components y1ðtÞ : Rþ-R is used instead. The
structure of FODE of Class 3 is presented in the following:

CDα
t0yðtÞ ¼ AyðtÞþbηT ðtÞuðtÞ

y1ðtÞ ¼ kp cTyðtÞ
CDα

t0ηðtÞ ¼ �γ sgnðkpÞy1ðtÞuðtÞ; αA 0;1ð � ð21Þ

where AARn�n is an asymptotically stable matrix, bARn, cARn,
ηðtÞ : Rþ-Rm, yðtÞ : Rþ-Rn, uðtÞ : Rþ-Rm are assumed to be
bounded, y1ðtÞ : Rþ-R, kpAR is an unknown constant but with
known sign and γARþ . Besides, positive definite matrices P ¼ PT

ARn�n and Q ¼QT ARn�n exist such that

ATPþPA¼ �QPb¼ c ð22Þ
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Let us now analyze the boundedness of ηðtÞ; yðtÞ, as well as the
convergence to zero of the mean value of JyðtÞJ2.

Lemma 7 (Boundedness of solutions for FODE of Class 3). Let us
consider the FODE defined in (21) with the assumption that ηðtÞ; yðtÞ
are differentiable. Then it can be assured that

� ηðtÞ; yðtÞ remain bounded 8 tZt0.
� The mean value of JyðtÞJ2 converges to zero when t-1.

Proof. As in the two previous classes of fractional differential
equations, the following proof is valid for αA 0;1ð �. However, we
must mention that the particular case α¼ 1 was already analyzed
in [17].

Let us start the proof using the assumption that yðtÞ;ηðtÞ are
differentiable functions. Then Lemma 3 allows writing the fol-
lowing inequality:

CDα
t0 yT ðtÞPyðtÞþ 1

γ jkp j
ηT ðtÞηðtÞ

� �
r2yT ðtÞP CDα

t0yðtÞ

þ 2
γ jkp j

ηT ðtÞCDα
t0ηðtÞ ð23Þ

Using (21) in (23), using also the expression for y1ðtÞ and the
expressions in (22), and applying the fractional integral of order α
to the resulting expression, it follows that

yT ðtÞPyðtÞþ 1
γ jkp j

ηT ðtÞηðtÞryT ðt0ÞPyðt0Þþ
1

γ jkp j
ηT ðt0Þηðt0Þ ð24Þ

Considering bounded initial values ηðt0Þ; yðt0Þ, expression (24)
implies that yðtÞ;ηðtÞ remain bounded 8 tZt0.

Now, in the same way we made for the two previous fractional
differential equations, it can be proved here that Iαt0 JyðtÞJ

2o1,
using the fact that yðtÞ;ηðtÞ are bounded. Then using Lemma 4 we
can assure that

lim
t-1

tα�ε

R t
t0
JyðτÞJ2 dτ

t

" #
¼ 0; 8ε40 ð25Þ

that is to say, for the FODE of Class 3 (21), the mean value of Jyð
tÞJ2 converges to zero as t-1, and this concludes the proof.□

As the reader can note, only the convergence to zero of the
mean value of y2ðtÞ was proved in Lemma 5, and the convergence
to zero of the mean value of JyðtÞJ2 was proved in the cases of
Lemmas 6 and 7. However, the convergence to zero of the signal
y2ðtÞ or JyðtÞJ2 was not mentioned in any of the cases. Currently,
this is a topic under investigation.

Remark 8. It is important to point out that for the case of α¼ 1,
Eqs. (11), (17) and (21) correspond to the well known Error Models
1, 2 and 3, respectively [17]. Therefore, for the case of αAð0;1Þ
these equations could be understood as the fractional order ver-
sions of Error Models 1, 2 and 3, respectively. That is the reason
why results are important to analyze these types of FODE. When
presenting the applications in Section 4 we will elaborate a little
bit more about these concepts.
4. Applications to adaptive schemes in the context of identi-
fication and control problems

Generally speaking, adaptive systems refer to the identification/
control of partially known systems. Several adaptive algorithms
have been developed in the past for stable identification/control of
integer order systems with unknown parameters [17–20], using
adaptive laws described by integer order differential equations
as well.

The introduction of fractional operators has also reached the
adaptive schemes [3–7], describing the systems to be controlled/
identified and using adaptive laws also described by fractional
differential equations. The analytical proof of the boundedness of
the signals in the schemes, however, is not solved in most of the
cases, due to the lack of tools and/or methodologies. Using the
results proposed in this paper, the boundedness of the signals in
many fractional adaptive schemes can now be proved, as we will
see in the following.

4.1. An identification scheme

Let us assume that a plant to be identified has the following
algebraic form:

xpðtÞ ¼ θnTωðtÞ ð26Þ
where xpAR, the vector of constant parameters θnARn, is
unknown and ωðtÞARn is a vector of available signals, and is
assumed to be bounded. The aim in this problem is to estimate the
unknown parameter vector θn.

To that extent, let us construct an estimator of the form

x̂pðtÞ ¼ θT ðtÞωðtÞ ð27Þ
where θðtÞARn is the vector of the estimated parameters.

Let us define the identification error as eðtÞ ¼ x̂pðtÞ�xpðtÞ and
the parameter error as ϕðtÞ ¼ θðtÞ�θn. Then, subtracting (27) and
(26) we obtain the following equation for the identification error:

eðtÞ ¼ϕT ðtÞωðtÞ ð28Þ
From (11) we can select

CDα
t0ϕðtÞ ¼ CDα

t0θðtÞ ¼ �eðtÞωðtÞ ð29Þ

then the pair of Eqs. (28) and (29) has the same structure than the
FODE of Class 1 studied in this paper, for the particular case when
e2; ξ¼ 0.

In that way, since ωðtÞ is assumed to be bounded, under the
assumption that ϕðtÞ is differentiable, it can be assured that eðtÞ;
ϕðtÞ remain bounded 8 tZ0, and that the mean value of the
squared identification error e2ðtÞ converges asymptotically to zero.

Let us briefly consider a particular example, where θn ¼ ½5 2�T ,
ωðtÞ ¼ ½ sin xp cosuðtÞ�T and uðtÞ is a unit step. Initial values for the
estimated parameters are θð0Þ ¼ ½4 4�T and the fractional order
used for the adaptive law is α¼ 0:7. Simulations were performed
using the NID block of the Ninteger toolbox [21], developed for
Matlab/Simulink. The Crone approximation of order 10 was used
to implement the fractional operator, with a frequency interval of
[0.01,1000].

Fig. 1 shows the evolution of the identification error eðtÞ and
the norm of the parameter error JϕðtÞJ . As can be seen, the output
error and the norm of the parameter error remain bounded, as it
was expected from the analytical results. Besides, it can be seen
that the output error converges to zero, as well as the norm of the
parameter error, although it was not analytically proved. Addi-
tional comments about the convergence of the parameter error
will be given at the end of this section.

We may note that in this particular example, the value of α¼
0:7 was selected only for illustrative purposes. In a real application,
this is a design parameter, that is to say, the selection of the order
to be used is a decision of the designer. This decision of course will
depend of the specific application, the control goals, etc. One
option to choose this parameter could be an optimization problem,
if it is possible to apply, as it was done in [3] using genetic
algorithms.



Fig. 1. Evolution of the identification error and the norm of the parameter error in the identification scheme, when the input signal corresponds to a unit step.
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Remark 9 (Fractional Error Model 1). Although the example pre-
sented here is for an identification scheme, we can assure, based
on the analysis from Section 3, that for any adaptive scheme with
the structure (28), (29), the output error eðtÞ and the parameter
error ϕðtÞ will remain bounded 8 tZt0, under the hypothesis that
ϕðtÞ is differentiable and ωðtÞ is bounded. Besides, the mean value
of the squared output error will converge asymptotically to zero.

The pair of Eqs. (28) and (29) could be seen as a Fractional
Order Error Model 1 (FOEM-1).

Note that error models have been completely studied in the
integer order case [17,22–25]. They are particularly attractive
because they provide a common framework for the analysis of
many adaptive schemes.

4.2. A fractional order model reference adaptive control
scheme (FOMRAC)

Let us consider a fractional order linear time-invariant plant to
be controlled, given by
CDα

t0xpðtÞ ¼ ApxpðtÞþbpuðtÞ ð30Þ
where ApARn�n is an unknown constant matrix, bpARn is a
known constant vector, the pair ðAp; bpÞ is controllable, xpðtÞARn is
assumed to be accessible, uðtÞAR is the control input to be defined
and the fractional order αA ð0;1Þ.

Let a reference model be given by
CDα

t0xmðtÞ ¼ AmxmðtÞþbmrðtÞ ð31Þ
where AmARn�n is a known Hurwitz constant matrix, bmARn is a
known constant vector which satisfies bmk¼ bp for some kAR,
and rðtÞAR is a given uniformly bounded piecewise-continuous
reference input. It is assumed that xmðtÞ, for all tZt0, represents
the desired trajectory for xpðtÞ. The aim here is to control the
plant so that all the signals remain bounded and ideally
limt-1 JxpðtÞ�xmðtÞJ ¼ 0.

Let us choose the control input as

uðtÞ ¼ θT ðtÞxpðtÞþk rðtÞ ð32Þ
where θðtÞARn is a vector consisting of adjustable parameters and
it is further assumed that a constant vector θn exists such that

Apþbpθ
nT ¼ Am ð33Þ

Defining the control error as eðtÞ ¼ xpðtÞ�xmðtÞ, the fractional
differential equation describing the evolution of the output error
can be expressed as

CDα
t0eðtÞ ¼ AmeðtÞþbpϕ

T ðtÞxpðtÞ; αAð0;1Þ ð34Þ

where ϕðtÞ ¼ θðtÞ�θn.
From (17) we can select

CDα
t0ϕðtÞ ¼ CDα

t0θðtÞ ¼ �eT ðtÞPbpxpðtÞ ð35Þ

then we can see that the pair of Eqs. (34) and (35) has the same
structure than the FODE of Class 2 analyzed in Section 3. For that
reason, we can assure that the output error eðtÞ and the parameter
error ϕðtÞ remain bounded 8 tZt0. We can also assure that the
mean value of the squared norm of the output error JeðtÞJ2 will
converge to zero when t-1. Note that in this problem kp is
considered known, and that is why it does not appear in the
equations.

Let us show a particular example, considering

Ap ¼
�4 1
�3 �1

� �
; bp ¼ bm ¼ 1

1

� �
; Am ¼ �1 0

0 �2

� �

For this case, matrices P ¼ I2�2 and Q ¼ 2
0

0
4

� �
exist such that

AT
mPþPAm ¼ �Q . Also, a vector θn ¼ ½3 �1�T exists such that (33)

holds and k¼1 in (32).
Fig. 2 shows the evolution of the norm of the output error Jeð

tÞJ and the norm of the parameter error JϕðtÞJ , when the refer-
ence signal rðtÞ corresponds to a unit step. The initial values used
in the simulations correspond to θð0Þ ¼ ½2 0�T , xpð0Þ ¼ ½0 1�T and
xmð0Þ ¼ ½1 2�T , and the fractional order used is α¼ 0:8.

As can be seen from Fig. 2, the norm of the output error JeðtÞJ
and the norm of the parameter error JϕðtÞJ remain bounded
8 tZ0, as it was expected from the analysis above. Although the



Fig. 2. Evolution of the norm of the output error and the norm of the parameter error in the FOMRAC scheme, when the reference signal corresponds to a unit step.
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numerical example presented here uses α¼ 0:8, the same results
were observed for any other fractional order αA ð0;1Þ used.

Besides the boundedness of the signals, it can be seen from
Fig. 2 that the norm of the output error converges to zero.
Although only the convergence of the mean value of JeðtÞJ2 was
analytically proved, the convergence of JeðtÞJ was observed as
well, for every simulation study we made in the FOMRAC problem.
The analytical proof of this fact is currently under investigation.

Regarding the convergence of the norm of the parameter error
JϕðtÞJ , it can be seen from Fig. 2 that it does not converge to zero.
Since this is a control scheme, only the convergence to zero of eðtÞ
is required. Nevertheless, some facts regarding the convergence of
the parameter error are presented at the end of this section.

Remark 10 (Fractional Error Model 2). Although the example
presented here is for a specific FOMRAC scheme, we can assure,
based on the analysis from Section 3, that for any adaptive scheme
with the structure (34), (35), the output error eðtÞ and the para-
meter error ϕðtÞ will remain bounded 8 tZt0, under the hypoth-
esis that ϕðtÞ; eðtÞ are differentiable. Besides, the mean value of the
squared norm of the output error will converge asymptotically
to zero.

The pair of Eqs. (34), (35) could be seen as a Fractional Order
Error Model 2 (FOEM-2).

4.3. Other structures in fractional adaptive schemes

In previous subsections we referred to what could be seen as
FOEM-1 and FOEM-2, stating the fact that they allow representing
many adaptive schemes. Besides FOEM-1 and FOEM-2, we can
identify at least two more structures in the context of adaptive
schemes, which could be seen as two more fractional error
models.

Remark 11 (Fractional Error Model 3). Fractional Error Model 3
(FOEM-3) has the same structure than FOEM-2, with the differ-
ence that the entire error vector eðtÞ : Rþ-Rn is not accessible,
but only an algebraic combination of their components e1ðtÞ :
Rþ-R is available. This error model usually arises when we can
only measure the output of the plant to be controlled or identified,
and for that reason FOEM-3 is applicable to a much wider class of
problems than FOEM-2. Structure of FOEM-3 has the form in (36):

CDβ
t0eðtÞ ¼ AeðtÞþbϕT ðtÞωðtÞ; βAð0;1Þ

e1ðtÞ ¼ kp hTeðtÞ
CDα

t0ϕðtÞ ¼ �γ sgnðkpÞe1ðtÞωðtÞ; αAð0;1Þ ð36Þ

where AARn�n is an asymptotically stable matrix, bARn, the pair ðA;
bÞ is controllable, hARn and the pair ðhT ;AÞ is observable. Besides,
θnARm is the ideal (true) parameter, which is assumed to be
unknown, θðtÞ : Rþ-Rm is the adjustable parameter that estimates
θn and ϕðtÞ ¼ θðtÞ�θn

: Rþ-Rm is the parametric error. eðtÞ : Rþ-
Rn is the error vector, ωðtÞ : Rþ-Rm is the input signal to the error
model, and e1ðtÞ : Rþ-R is the output error, which is accessible. kp
AR is an unknown constant but with known sign and γARþ is the
adaptive gain, which is assumed to be scalar and constant in this
study. However, it is possible to use either scalar or matrix adaptive
gains which are constant or time varying (see [17]).

As might be expected, having no access to eðtÞ implies that
more stringent conditions must be imposed on the transfer func-
tion between ϕT ðtÞωðtÞ and e1ðtÞ. In that sense, we assume that
positive definite matrices P ¼ PT ARn�n and Q ¼QT ARn�n [17]
exist such that

ATPþPA¼ �QPb¼ h ð37Þ

As can be seen from (36), the structure of FOEM-3 coincides
with the FODE of Class 3 studied in this paper. In that way, under
the hypothesis that eðtÞ;ϕðtÞ are differentiable, we can assure that
eðtÞ;ϕðtÞ remain bounded 8 tZt0, and also that the mean value of
JeðtÞJ2 converges asymptotically to zero.

In many adaptive schemes, the parametrization of the identifi-
cation/control models do not lead to any of the three fractional
error models presented previously. One case we can mention is
when we want to implement a model reference adaptive controller
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for a plant with relative degree nnZ2. In this case, additional sig-
nals must be included in the scheme (filtering the control input and
the plant output) and auxiliary and augmented errors must be
included as well (see [17] for details). In that way, the equation
representing the augmented error has the form of the first equation
in (11), and Lemma 5 allows the use of fractional adaptive laws to
adjust the parameters.

For cases like this one, the Fractional Error Model 4 arises.

Remark 12 (Fractional Error Model 4). Fractional Error Model 4
(FOEM-4) arises when vector eðtÞ is not accessible, and condition
(37) does not hold neither. This occurs mainly in those cases in
which, to achieve the identification or control, additional signals
must be introduced in the adaptive scheme. The equations
describing FOEM-4 are stated in (38):

ε1ðtÞ ¼ e1ðtÞþkðtÞe2ðtÞ
e1ðtÞ ¼ kp WðsÞϕT ðtÞωðtÞ; βAð0;1Þ
e2ðtÞ ¼ θT ðtÞWðsÞIωðtÞ�WðsÞθT ðtÞωðtÞ
CDα

t0ϕðtÞ ¼ �γ1 sgnðkpÞε1ðtÞζðtÞ; αA ð0;1Þ
CDα

t0ψ ðtÞ ¼ �γ2ε1ðtÞe2ðtÞ; αA ð0;1Þ
ζðtÞ ¼WðsÞImωðtÞ ð38Þ
where e1ðtÞ : Rþ-R is the output error, e2ðtÞ : Rþ-R is the
auxiliary error, kpAR is an unknown constant, with known sign,
ε1ðtÞ : Rþ-R is the augmented error, kðtÞ : Rþ-R is an adjus-
table parameter that estimates 1

kp
, the transfer function WðsÞ is

asymptotically stable, θnARm is the ideal (true) parameter, which
is assumed to be unknown, θðtÞ : Rþ-Rm is the adjustable para-
meter that estimates θn, ϕðtÞ ¼ θðtÞ�θn

: Rþ-Rm is the para-
meter error, ψ ðtÞ ¼ kðtÞ� 1

kp
: Rþ-R and ωðtÞ : Rþ-Rm is the

input signal to the error model. ζðtÞ : Rþ-Rm is assumed to be
bounded and γ1; γ2AR correspond to the adaptive gains, which
are assumed to be constant in this study. Either scalar or matrix, as
well as constant or time varying adaptive gains can also be used.

Equations in (38) can be put in the form of FODE of Class
1 studied in this paper (see [17] for the equivalent integer order
case). In that way, under the assumption that ϕðtÞ;ψ ðtÞ are dif-
ferentiable and ωðtÞ is bounded, it can be assured that in FOEM-4
ϕðtÞ;ψ ðtÞ remain bounded, as well as the rest of the signals in the
scheme. In the same way, it can be assured that the mean value of
the squared augmented error ε12 converges asymptotically to zero.

Remark 13. In most of the adaptive schemes we analyzed, we
assumed that ωðtÞ is bounded. When this condition cannot be
assured, then a normalized version of the information signal

ωðtÞ
1þωT ðtÞωðtÞ can be used instead in adaptive laws, and the corre-

sponding boundedness of the solutions can be proved in the
same way.

Remark 14. In the study of the classic error models, the con-
vergence to zero of the parameter error ϕðtÞ was shown to be
dependent of a property of the information signal ωðtÞ. This
property is referred to as persistent excitation, and it has been
thoroughly studied for classic error models [17,24].

In general, it was observed from simulation studies performed
in this work that in Fractional Error Models the persistent excita-
tion condition is related to the spectral density of the information
signal ωðtÞ, same as in the integer order case. However, for some
particular cases of ωðtÞ, no conclusive results can be observed from
simulations.

The concept of fractional order persistent excitation condition
has not been addressed yet in the published literature. Given the
importance of this concept in adaptive schemes, this is a topic
currently under investigation.
5. Conclusions

In this paper, the analysis of three classes of fractional order
differential equations using the Caputo definition when αAð0;1Þ
has been presented. The analysis allows proving boundedness of
the solutions and also the convergence to zero of the mean value
of the squared norm of some variables of the FODE.

The application of these theoretical results to adaptive schemes
was addressed, introducing the concept of fractional order error
models. The results presented in this paper allow proving
boundedness of signals in many different adaptive schemes,
appearing in adaptive control and system identification fields.
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