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Abstract: In this study, the economic benefits of using a probabilistic-dynamic approach (PDA) in the quantification of
operating reserves are investigated and compared with more traditional quantification rules in power systems with
high penetration levels of wind power. To do this, a comprehensive methodology to quantify different operating
reserves categories within the real-time system operation is proposed. The quantification is based on an iterative
process where the total costs of the system are minimised, that is the sum of the operating costs (including the
additional costs of partially loading generating units due to operating reserves) and the costs of the expected energy
not supplied. The PDA considers conventional generation outages; load and wind forecast uncertainty on an hourly
basis as well as load and wind variability in a 10 min time frame. The authors use the Chilean power system to
demonstrate the efficiency and advantages of the proposed reserve quantification approach.
1 Introduction

The international experience during the last years has shown that an
increased use of wind energy leads to various challenges in power
system operation. This is especially true when defining operation
policies to be adopted by transmission system operators (TSOs) in
which wind’s variability and uncertainty are properly taken into
account. In this context, different methodologies to quantify the
additional operating reserves due to increased use of wind power
have been presented during the last years [1–12].

Statistical methods based on the use of the standard deviation (σ)
like the n-sigma criterion are one of the most widely used to quantify
the effects of wind generation on operating reserves due to its
simplicity. Nevertheless, power systems on which this criterion has
been applied are usually assumed to have a wind power capacity
installed throughout a relatively wide area with different wind flow
regimes. Consequently, the variability of the total wind power
injections is smoothed, even more with increasing number of wind
turbines (WTs) installed at different locations [13–16]. Under
these circumstances, the central limit theory is usually used to
justify Gaussian distribution of both wind power variability [2–4]
and wind forecast error (WFE) [2–4, 6, 11, 17, 18]. However,
wind variability and forecast errors do not necessary follow a
Gaussian distribution [1, 4, 6, 7, 11, 15]. On the other hand, the
n-sigma criterion quantifies the additional operating reserves due
to wind power by considering a reference confidence level (CL)
defined a priori. However, no consensus is found about the
optimal value of the CL to use in each case. For instance,
regarding the load following reserves, it should be 2σ as in [19],
3σ as used in [17] or maybe 4σ as proposed in [2]. In principle,
this factor should be different for each particular power system and
type of operating reserve. Indeed, the optimal CL to use should be
determined based on a cost–benefit analysis in which the
operational costs of the system and some reliability criterion are
properly taken into account.

In this paper, a probabilistic methodology to quantify different
kinds of operating reserves in the presence of wind power is
proposed. The methodology quantifies the operating reserves
within the real-time system operation considering a day-ahead unit
commitment (UC) defined a priori. The quantification is based on
an iterative process where the total costs of the system including
the costs of the expected energy not supplied (E[ENS]) are
minimised. The probabilistic–dynamic approach (PDA) considers
conventional generation (CG) outages; load and wind forecast
uncertainty on an hourly basis; and load and wind variability in a
10 min time frame. The proposed methodology is especially
suitable for power systems with cost-based economic dispatch like
those in most Latin American countries and cannot be directly
applied in power systems with bid-based dispatch.

The remaining of this paper is organised as follows: Section 2
summarised the impacts of wind energy on different operating
reserves categories. In Section 3 some methods to quantify
additional operating reserves due to increased wind power
generation are presented. The methodology to quantify operating
reserves in presence of wind power is exposed in Section 4. The
case study is presented in Section 5. The obtained results and
conclusions are summarised in Sections 6 and 7, respectively.
2 Impacts of wind power on system reserves

Wind generation is a variable energy resource with changing
availability level over the time (variability), which cannot be
predicted with perfect accuracy (uncertainty) [20]. As wind power
increases, the additional variability and uncertainty introduced in
the system will cause an increase of operating reserves in the
system [12, 21, 22].

Depending on the time scale, different impacts of wind power on
operating reserve requirements can be expected [3]. As general rule it
is widely accepted that primary power reserves – from a contingency
event viewpoint – remains unaffected as wind power increases [4,
12, 19, 23–25]. This is because wind power plants do not change
the largest single severe contingency (largest generation unit) if
fault ride through capability is assumed [4, 25, 26]. Moreover, due
to the spatial variations of wind from turbine to turbine in a wind
farm, the sudden and simultaneous trip-off of all WTs due to a
decrease of wind speed is not a credible event [26].

During normal operation, the impacts of wind generation on
operating reserves are usually separated into two main categories:
those impacts that arise because of the natural variability of the
wind (short term, inside an hour), and those that are caused by the
uncertainty of wind injections (forecasting error) [3].
1



Table 1 Summary of works using n-sigma criteria for different kind of
operating reserves

Operating reserve nσ-criteria used

2σ 2–3σ 3σ 4σ 5σ 4–6σ

load following reserves –
tertiary reserves

[19, 24] [3]a [17] [2]

regulation reserves –
secondary reserves

[23, 24] [19] [3]a

aReferring other works.
2.1 Variability of wind power

‘Variability’ of wind power refers to the natural output fluctuation
derived from the natural resource availability, even if the forecast
is accurate [27]. The variability of wind power can be reduced due
to the well-known smoothing effect [3, 13, 15, 16, 21, 26]. The
smoothing effect becomes stronger the more WTs and wind power
plants are connected to the grid and the wider their geographical
distribution [13, 14]. Nevertheless, at some stage, the smoothing
effect will saturate and adding more turbines or sites will not
result in a variability attenuation [2, 3, 13].

The variability of wind power also decreases as the time scale in
question decreases [13, 26]. For instance, in the time frame of
primary reserves (very short term), wind power variability is
strongly smoothed [14, 25, 26]. As a consequence, the effect of
wind power on primary reserves can be neglected [25]. Indeed,
various studies and practical experience have shown that the
impacts of wind variability on operating reserves are mainly
observable in the time range of 10–15 min, thus strongly affecting
secondary power reserves [25, 26]. Variability in longer time
scales than the dispatch period is captured by the dispatch, so
reserves need to cover only the variability within the dispatch
period.
2.2 Uncertainty of wind power

‘Uncertainty’ of wind power refers to the difference between a perfect
forecast and the actual forecast [27]. Accuracy of wind power
production forecasts depends on several factors such as the forecast
horizon, the size of the wind power plants and their geographical
distribution, experience with wind power generation and the
accuracy of the forecasts for individual wind power plants [5].
Large-scale shut down of WTs due to storm events can lead to
large forecast errors [4]. Wind power forecast errors increase as the
forecast horizon gets longer [5, 8, 10, 22]. Large geographical
spreading of wind power will also increase predictability [2, 3, 13, 15].

WFEs have a large impact on power system reserves in the time
range of 1 h [27], that is in the time frame of tertiary power reserves.
3 Methods to determine additional operating
reserves due to wind power

During the last years, different methods have been proposed to
quantify additional operating reserves required by power systems
due to increased wind power generation.
3.1 Statistical approaches

In statistical methods, historical data from wind generation and load
is analysed to study its statistical properties [8]. A well-known
example of statistical approach is the n-sigma criterion. The
n-sigma criterion is based on a comparison of the load and net
load time series, where the latter is defined as load minus wind
power production [2, 8]. The probability distribution function
(pdf) of the net load is used to quantify additional operating
reserves due to wind power at different time scales. If load and
wind power are assumed to be uncorrelated, the standard deviation
of the net load time series will be [2–5, 9, 10, 18, 22]

sNL =
����������
s2
L + s2

W

√
(1)

where σL and σW are the standard deviations of the load and wind
power time series, respectively. The time series of load and wind
power can represent either variability or forecast error depending
on the type of reserve [4]. The additional operating reserves ΔRes
due to wind power integration are then quantified according to [3, 4]

DRes = n(sNL − sL) (2)
2

Equation (2) shows that the additional reserves are a multiple of the
difference between the standard deviation of the net load and load.
The multiple n is defined a priori and represents the CL used.
Typically, a value of three is used (the so-called 3σ method) [3, 8,
17, 23, 24] meaning a CL of 99.7% when Gaussian distribution is
assumed. Nevertheless, other values between 2σ and 7σ have also
been proposed [2, 8, 9, 19, 20, 24] depending on the type of
reserve. However, as seen in Table 1, no consensus regarding this
factor has been established until now.

The n-sigma method has been usually applied based on a static
approach. In this case, load and wind data are used to estimate a
single pdf for each type of reserve under consideration. Thus, a
constant reserve level regardless power system operating point is
obtained for every hour of the planning horizon. Nevertheless, this
criterion can also be used considering a dynamic approach where
the reserve requirements are modified each hour of the day based
on hourly pdf.
3.2 Probabilistic approaches

Another way to quantify operating reserves by integrating different
sources of uncertainties is using reliability theory of power systems
[28]. The basis of probabilistic approaches is the so-called system
generation margin defined as the difference between the total
available generation and load. This function represents the amount
that the available generating capacity exceeds the system load [1, 7].
Since this function is a function of two random variables, it is
also a random variable [1, 7]. In order to compute the system
generation margin distribution (fMargin), the probability distributions
of CG, wind power generation (W ) and load (L) must be taken into
account (M = CG+W− L) [1, 7, 11]. For a specific level of reserve
R, the distribution of M + R describes the probability that R is
sufficient to cover the shortage of generation.

Classical reliability indices such as the loss of load probability, the
loss of load expectation or the E[ENS] can be calculated based on
this distribution fMargin [1, 7, 11, 28]. Usually, the operating
reserves are computed in order to meet a specific reliability target.
The authors of [5, 10] present a probabilistic-based methodology
in which generator outage rates, system load forecast errors and
wind power forecast errors are taken into consideration in an
hourly basis. The reserve levels in the power system are related to
the maximum number of load shedding incidents tolerated per
year. Nevertheless, the reliability target is set a priori without any
kind of economic consideration.

The authors in [6] propose a methodology to calculate the optimal
amount of spinning reserves (SRs) considering generation outages
and the forecast errors of load and wind power generation. The
methodology determines the amount of SR by minimising the total
cost of operating the system, that is, the sum of the operating cost
and the socioeconomic cost associated with load shedding events.
Only the time frame within the tertiary regulation is considered in
the study. In [9], the same authors present a comparison between
the traditional n− 1 criterion and two probabilistic approaches to
estimate the optimal amount of SR requirements. Similar as in [6],
the optimal amount of reserves is such that the marginal cost of
providing SR matches the marginal benefit derived from the
availability of SR. Liu and Tomsovic [18] propose an approach to
IET Gener. Transm. Distrib., pp. 1–8
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Fig. 1 Methodology to quantify operating reserves in presence of wind power
quantify additional SR required due to wind power generation. A
security-constrained UC model, which minimises the cost of
energy, SR and E[ENS] is proposed. The formulation takes into
account the probability distributions of forecast errors for wind
and load, as well as outage replacement rates of conventional
generators. Two main disadvantages can be mentioned about the
aforementioned works: (i) wind power forecast errors are assumed
to follow a Gaussian distribution and (ii) SRs are considered in a
general way without distinguishing among different reserve
categories.

A work where Gaussian distribution is not assumed can be found
in [7]. The authors address the problem of defining operating
reserves in a market environment by presenting a reserve
management tool (RMT). The system generation margin function
is calculated through convolution of the probability distributions
for generation outages and forecast errors for load and wind.
Possible outages of wind power plants are also taken into account.
In [11], the same authors present a comparison of probabilistic and
deterministic approaches for setting operating reserves. The
considered probabilistic approach is based on the already
mentioned RMT of [7]. Nevertheless, in both works no details are
given regarding the kind of operating reserves considered in the
studies or the time scale involved.

None of the aforementioned studies carries out a comprehensive
analysis including the different operating reserves categories
involved. Indeed, the problem is usually addressed from an hourly
basis without distinguishing intra hour time frames. However,
distinguishing between different operating reserves in power
systems is essential to determine the kind of resources needed to
deploy in each case, especially in case of isolated power systems
with poor frequency control capabilities and high penetration
levels of wind power.
IET Gener. Transm. Distrib., pp. 1–8
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4 Proposed methodology PDA

The proposed methodology to quantify the amount of different kinds
of operating reserves in presence of wind power is shown in Fig. 1.
The algorithm calculates the operating reserves for the next hour
within the real-time system operation based on an iterative process
where the total costs of the system are minimised. The overall
structure resembles the cost-based economic dispatch carried out
in most Latin American countries including the traditional
day-ahead UC and the real-time redispatch performed every hour
of the day. Although the proposal has been conceived in an hourly
basis, it can be easily adapted in accordance with the time
resolution of the particular system.

The iterative process for hour t starts 1 h ahead of the real dispatch
with the solution of the day-ahead UC for this hour (block ‘1’ in
Fig. 1). The UC is obtained assuming a fixed amount of operating
reserves based on the operating experience of TSOs. Starting from
this dispatch solution, the algorithm performs a ‘fine tuning’ of the
amounts of (short-term) operating reserves by using fast starting
generation units. We assume that the day-ahead UC process is
solved in a proper manner regarding the schedule of slow-starting
thermal units through a stochastic model. Although CG units and
wind power can contribute to frequency regulation, we assume that
only synchronous generators can provide operating reserves. Wind
power injections and system demand are assumed to be
re-forecasted every hour of the day (block ‘5’ in Fig. 1).

On the basis of the initial dispatch solution obtained from the
day-ahead UC, the system generation margin distributions
(SGMDs) are determined for hour t (block ‘2’ in Fig. 1). Using
these SGMDs, each kind of operating reserves is quantified for a
specific confidence level (CLk). These reserve requirements are
then used as input data to a modified economic dispatch program
3



(block ‘4’ in Fig. 1). If the dispatch of the generators obtained in this
part differs from the dispatch initially considered in the calculation of
the SGMDs, the process is carried out again but now considering the
dispatch obtained from the modified economic dispatch. This
iterative process runs until no major mismatches between both
dispatches exist. The results of this stage (‘Process 1’ in Fig. 1)
are the amount of operating reserves and the E[ENS] for hour t
when considering a confidence level CLk.

The process described above for hour t is performed for different
values of CLs (block ‘6’ in Fig. 1). The algorithm only considers a
set of allowable CL defined a priori from a TSO perspective. This is
done in order to ensure the practicability of the obtained solutions.
By this way, CLs that could not be acceptable due to security/
economic aspects are discarded at the beginning of the
optimisation. The final amount of operating reserves for hour t will
be the amount related to the CL that minimises the total costs of
the system (block ‘8’ in Fig. 1), that is the costs of the E[ENS]
and the operating costs.

In the following subsections we present further details about the
key steps of the proposed methodology.
Fig. 2 Breakdown of total operating reserves into primary, secondary and
tertiary reserves
4.1 Determination of (hourly) SGMDs

The SGMDs for hour t (block ‘2’ in Fig. 1) are calculated based on
the pdf of the uncertainties and variations in the system within this
hour. In this work, the following phenomena affecting the SGMD
are considered:

† WFEs in this work are defined as the difference between the
hourly average of the real wind power injection and the forecasted
value in the time frame of 1 h [27]. Wind power injections are
assumed to be re-forecasted every hour of the day. If historical
(real) wind power operation data is not available for several years,
the pdf of the WFE can be constructed using hourly wind power
generation series obtained through simulated (‘synthetic’) wind
speed data [29]. WFE series are then calculated as the difference
between these synthetic wind power generation series and the
forecasted wind power generation series. Since the wind
production 1 h ahead can be reasonably well forecasted by
persistence [3, 5, 30], to generate the forecasted wind production
series, persistence method can be used on the same synthetic wind
power generation series. Nevertheless, more sophisticated
forecasting methods can also be applied [31–35]. The pdf’s of the
(hourly) WFE are then determined by fitting probability
distributions to the empirical distributions of the WFE.
† Load forecast error is defined as the difference between forecasted
demand and average of real demand in an hourly time frame [3, 27].
The pdf of the load forecast error in hour t is modelled as a Gaussian
distribution with a given standard deviation and zero mean [1, 5–7,
10, 11, 18, 22]. The load is also assumed to be re-forecasted every
hour of the day.
† Wind variability in this work is defined as the difference between
10 min average wind power generation series and the pertinent
hourly average [27]. To generate the pdf’s of the wind variability,
the same process based on synthetic wind power generation series
explained for the WFE can be followed. Nevertheless, additional
wind power generation series with 10 min resolution are also
required in this case. The pdf’s are then determined by fitting
probability distributions to the empirical distributions of the wind
variability. It is important to note that depending on wind/load
patterns as well as the ramp capabilities of the CG units, other
requirements related to wind variability may be necessary, for
instance, within the time frames of 5 or 15 min. In these cases,
additional pdf’s related to wind variability should also be considered.
† Load variability: Defined as the difference between 10 min
average load series and the average of the corresponding hour
[27]. An empirical distribution is fitted for the load variability
series for hour t.
† Generation outages: The discrete probability distribution for
outages of CG units is calculated based on the capacity outage
probability table (COPT) [28]. The COPT allows calculating the
4

probability that a certain amount of load cannot be served because
the capacity on outage exceeds the operating reserves. The COPT
for hour t takes into account the dispatched generating units, the
probability of forced outage of each generating unit, the amount of
operating reserve that each unit can provide, and the load.

The proposed methodology quantifies both, secondary and tertiary
reserves separately for each hour of the day. Following the n− 1
criterion, primary reserves are assumed to be a constant amount
given by the capacity of the largest scheduled generation unit in
each period. In order to distinguish between primary, secondary
and tertiary reserves, two hourly SGMDs are considered for hour t:

† System generation margin in the time frame of 1 h (f Margin,t
1 h ):

Represents the probability of power imbalances in the time frame
of 1 h within hour t, which have to be compensated by primary,
secondary and tertiary reserves. The function f Margin,t

1 h results from
the convolution of the pdf’s of all sources of uncertainties in the
system, that is wind variability fWVar,t, load variability fLVar,t, WFE
fWFE,t, load forecast error fLFE,t and CG outages fGOut,t according
to [Where * represent the mathematical operator for convolution]

f Margin,t
1 h = f WVar,t∗ f LVar,t∗ f WFE,t∗ f LFE,t∗ f GOut,t (3)

† System generation margin for the time frame of 10 min (f Margin,t
10min ):

Represents the probability of power imbalances in the time frame of
10 min within hour t, which have to be compensated by primary and
secondary reserves. The function f Margin,t

10min results from the
convolution of the pdf’s of wind variability f WVar,t, load
variability f LVar,t and CG outages f GOut,t according to

f Margin,t
10min = f WVar,t∗ f LVar,t∗ f GOut,t (4)

The aforementioned SGMDs are both calculated assuming
independence between all the stochastic variables involved. The
independence between the pertinent stochastic variables should be
always checked for each particular case through a correlation
analysis before the proposed methodology is applied.

4.2 Determination of operating reserves

The quantification of the operating reserves (block ‘3’ in Fig. 1) is
done through the SGMDs presented in Section 4.1. For a specific
confidence level CLk, the total amount of operating reserves
during hour t, (P + S + T )t, can be calculated based on f Margin,t

1 h .
This total amount includes primary-plus-secondary-plus-tertiary
reserves. Similarly, primary-plus-secondary reserve requirements
for hour t (P + S)t are calculated from f Margin,t

10min . The (P + S)t reserve
IET Gener. Transm. Distrib., pp. 1–8
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requirements for hour t are then subtracted from the total operating
reserves in the same hour. The obtained reserve amount is the
required tertiary reserves for hour t, TRt. Since primary reserve
requirements are defined as the largest scheduled generation unit,
secondary reserves SRt are then obtained by subtracting the largest
on line generation unit (G*,t) from the (P + S)t reserves. Fig. 2
shows how the total amount of operating reserves (P + S + T )t
obtained from f Margin,t

1 h is broken down into primary, secondary and
tertiary reserves. The CL indicated in Fig. 2 is only there for
illustrative reasons and is not related with the optimal solution.
Indeed, as already mentioned in the introduction of this section,
the whole process is carried out for different values of CLs. The
final amount of operating reserves for hour t will be the amount
that minimises the total costs of the system (related to a specific CL).
Table 2 Generation data

Generator Total rated power,
MW

Number of
units

Outages
probability

fuel oil 220 6 0.01%
coal 2900 12 0.10%
combine
cycle

1650 11 0.04%

diesel 130 13 0.14%
wind 1800 — —
total 6700 42 —
4.3 Economic optimisation (dispatch)

The next step of the methodology is a modified (deterministic)
economic dispatch. The algorithm in this part determines the
optimal scheduling for the conventional generating units by
considering a set of technical constraints. The constraints are
related to the operational limits of the generation units such as
ramp rates, minimum and maximum power, and load/generation
balance, among others. Particularly, the minimisation includes a
minimum requirement for the operating reserves in order to ensure
the amount of reserves determined in Section 4.2 for hour t.
Although the results obtained through the methodology could be
improved by using a stochastic dispatch model, the computational
burdens of such models are still a challenge and therefore we
simplify the problem by using a deterministic model. Nevertheless,
the methodology can be directly applied by considering other
dispatch methods such as those based on stochastic models [36–
38]. This solution can be considered as a first approach still valid
to get meaningful conclusions.

The objective function minimises the total operating costs of the
system for hour t according to

min
∑N
i=1

ci si,t , Pi,t

( )
(5)

where ci(si,t, Pi,t) is the cost function of generator i at hour t; N is the
amount of generation units; and si,t is the state of generation unit i at
period t (on/off).

The optimal scheduling obtained through this optimisation is
compared with the dispatch initially used to calculate the SGMDs.

† If the mean squared error between both dispatches is major than a
predefined threshold �1, ‘Process 1’ of Fig. 1 is carried out again, but
now considering the current dispatch for hour t and the operating
reserves quantified in Section 4.2.
† If the mean squared error between both dispatches is less than or
equal to �1, the operating reserves quantified in Section 4.2 are saved
as solution for hour t when considering the current confidence level
CLk. After that, ‘Process 1’ of Fig. 1 is performed again but now
considering the next confidence level, CLk+1.

4.4 Operating reserves and E[ENS] considering CLk

Once the dispatch for hour t has been determined, the socioeconomic
costs of the E[ENS] are calculated using the value of lost load
(VOLL). The VOLL is the value that the customers place on each
MWh of unserved energy. Its value depends on the economic
activities carried out by customers of the power system [9]. The E
[ENS] for a particular CLk is calculated based on the SGMDs.
Details about its calculation are given in [28].
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4.5 Search of the optimal CL

The process described above for hour t (‘Process 2’ in Fig. 1) runs
iteratively until all CLk in the set of allowable CL have been
considered. Once this iterative process is finished, the amount of
operating reserves for hour t will be that related to the CL that
minimises the total costs of the system, that is, the costs of the E
[ENS] and the operating costs (including the cost of committing
additional capacity). This part of the methodology is indicated as
block ‘8’ in Fig. 1.
5 Case study

The power system considered in the case study is the Northern
Interconnected System (NIS) of Chile at year 2020. A wind power
penetration level of 27% with respect to the total installed capacity
of the system is assumed. The wind parks are installed at 11
locations throughout the system.

The NIS has a pure thermal generation matrix with a current total
installed capacity of 4500 MW based on coal, oil and natural gas.
The current peak load of the system is around 2000 MW. The lack
of a utility interconnection and the presence of synchronous
generators with low inertia, slow reaction times and limited ramp
rates, are key factors affecting the system’s ability to recover from
power system imbalances and thus limiting the network integration
of wind power from a frequency control viewpoint.

The model of the system at year 2020 has 42 CG units with a total
installed capacity of 4900 MW (see Table 2 for details).

In this work, the VOLL in the time frame of 10 min is set to be
23.787 USD/MWh while in the time frame of 1 h its value is set
to be 9.913 USD/MWh. Since the VOLL depends on the duration
of the power outage, the E[ENS] is calculated separately for both
time frames: 10 min and 1 h. Outages probabilities of generation
units are taken from historical data available in [39].

Since historical (real) wind power operation data in Chile was still
unavailable at the time of this study, hourly wind power generation
series were constructed using wind speed synthetic data obtained
from [40]. Multiple wind speed series reports were thus obtained
for each wind farm considered in the case study to generate
suitable statistics. Then, the methodology explained in Section 4.1
was used to generate the pdf’s for WFE by fitting Gaussian
probability distributions to the empirical distributions. However, it
is important to note that the methodology does not depend on this
particular distribution. In our practical exercise, we used Gaussian
distribution to simplify the calculations and because there was no
additional information for the Chilean system to fit an improved
distribution. To increase the resolution of the 1 h series to 10 min,
the methodology proposed in [41] was used. The pdf’s for wind
variability were calculated like the pdf’s for the WFE.
6 Optimisation results

This section summarises the results obtained after applying the
methodology proposed in Section 4 to a single bus model of the
NIS. To do this, we simulate the operation of the NIS at year
2020. The methodology was systematically applied during each
day of year assuming that the UC is carried out 1 day-ahead every
5



Fig. 3 Evolution of total annual costs of the power system assuming a WFE
of 10%
day of the year and that load and wind are re-forecasted every hour of
the optimisation horizon. To compare the proposed PDA with
traditional operating reserves rules, we applied our methodology
by considering the PDA as well as two versions of the n-sigma
criterion: static and dynamic. In case of the n-sigma criteria, the
reserves are quantified based on the probability distributions of the
net load as summarised in Section 3. The (traditional) static
n-sigma method is based on a single pdf for the whole year while
the dynamic sigma approach uses hourly pdf’s similar as the
proposed PDA.

Fig. 3 presents the evolution of the total annual costs of the power
system for different CLs. The total costs include costs of generation
and costs of E[ENS] for a WFE of 10%. The breakdown of the total
costs for each criterion is presented in Fig. 4. It is important to
highlight that the numerical results presented below, are illustrative
Fig. 4 Breakdown of total annual costs of the system for each criterion
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and valid for the Chilean case. To conclude about other power
systems (with different characteristics) independent studies should
be carried out.

Fig. 3 shows that independent of the CL, the total costs with the
static sigma criterion are always significantly higher than those
obtained when considering the dynamic sigma criterion or the
PDA. These higher costs are either because the costs of E[ENS]
are very high for low values of the CL, or because the reserve
costs rise substantially as the CL increases. Taking into account
that with the static sigma approach increasing the CL leads to
higher reserve capacities for each hour of the year, it is not
surprising that the reserve costs escalate when the CL tend to
values close to unity. By this way, the economic advantages of
dynamic approaches over static ones are fully confirmed.
Comparing the dynamic sigma with the PDA, the differences
during the optimisation process are less significant. For low values
of the CL, the total costs with the dynamic sigma approach are
marginally lower than the costs with the PDA while for CLs
higher than 0.95, the economic gap between both approaches
increases considerable and the PDA outperforms the dynamic
sigma criterion. Nonetheless, minimum costs are finally reached
with the PDA.

Table 3 shows the break-even points for each criterion. The CL at
which the marginal benefit of providing an additional MW of reserve
(i.e. marginal benefit of avoided E[ENS]) matches the marginal cost
of providing an additional MW of reserve, represents the economical
break-even point (CL*).

Results shown in Table 3 confirm the need of a dynamic
determination of operating reserves since it provides considerable
cost savings. Comparing all criteria, Table 3 shows that the
proposed PDA is cheaper than both versions of the sigma criterion
to setting operating reserve requirements. The total costs of the
power system are minimised when considering the PDA in which
case the optimal confidence level CL* is equal to 99%. Although
the economic gap between the PDA and the dynamic sigma is not
significant, when compared with the static sigma the total costs
with the PDA are 55% lower thus making an important difference.
IET Gener. Transm. Distrib., pp. 1–8
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Table 3 Break-even point

Criterion Optimal CL*, % Total costs (Mill. USD)/year

PDA 99.0 106.59
dynamic sigma 97.5 (2.24σ) 122.23
static sigma 99.7 (3σ) 190.35

Fig. 6 Annual duration curves for the operating reserves
Interestingly, Table 3 also shows that the optimal CL for the static
sigma is 3σ of the Gaussian probability distribution. Although this
criterion does not provide the best results from an economic point
of view, its basic assumption regarding the CL is found to be
consistent in this particular case. Nevertheless, this does not
necessarily hold in other power systems since the optimal value of
the CL depends on the power system itself.

Fig. 5 shows the amount of operating reserves obtained after the
optimisation of both versions of the sigma criterion and the PDA
over the course of 2 days. The days are chosen in order to have a
representative pattern of the wind generation behaviour in Chile:
more wind during the night than during the day. The reserve
requirements are obtained by considering a WFE of 10%.

According to its traditional definition, the reserve requirements
obtained with static sigma criterion have the same value during the
whole day. Fig. 5 also shows that the shape of the operating
reserves curves obtained with the dynamic sigma criterion and the
PDA are very similar. Both curves follow the shape of wind
power daily pattern in similar degrees. Thus, both approaches
seem to be appropriate criteria to quantify operating reserve
requirements if wind and load patterns are ‘stable’. Nevertheless, if
wind power generation or load deviate from normal behaviour,
only the PDA will be able to adapt the reserve requirements to the
present risks of imbalances correspondingly. This is because not
only the statistics of system behaviour are used to determine
reserve requirements, but also the present conditions of the power
system (wind power, load and CG). The sigma criteria, however,
perform poorly under such conditions because operating reserve
requirements are independent from the present conditions of the
power system (load, wind power and scheduled generation units).
Instead it is implicitly assumed that present and future behaviour
of the power system resembles observations of the past. If this
assumption is not valid, the sigma criterion – or any statistical
approaches – will fail.

Fig. 6 shows the annual duration curves for the operating reserves
considering a WFE of 10%.
Fig. 5 Amount of operating reserves over the course of two days
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As expected, Fig. 6 shows that the static sigma criterion leads to an
oversizing of operating reserves most of the year. According to the
PDA, only around 6% of the time during the year (∼500 h), the
risk of a power deficit is high enough to justify larger amounts of
operating reserves than those determined by the static sigma
approach. The rest of the time the amount of operating reserves
quantified by the static sigma should not be necessary. Fig. 6 also
shows that the dynamic sigma criterion always lead to larger
amounts of operating reserves than the PDA. When comparing the
static and dynamic versions of the sigma criterion, it is evident
that the dynamic version of the sigma criterion represents a
significant improvement over its static version.

Since variability and uncertainty of wind power vary over the
time, the amount of operating reserves that are induced by wind
power is not constant during all hours of the year. As a
consequence, using constant reserve requirements such as those
obtained by the static sigma criterion will necessary lead to an
oversizing of operating reserves most of the time. To avoid the
need to hold back large amounts of reserves at every instant and
thus the pertinent additional costs, a dynamic reserve allocation
should be always considered. Several works have begun to
recognise this fact and develop methodologies to quantify
operating reserves in a dynamic way depending on current system
operation conditions.
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7 Conclusions

This paper presents a new methodology to quantify different kind of
operating reserves in the presence of wind power. The methodology
takes into account CG outages; load and wind forecast uncertainty as
well as load and wind variability. The methodology determines the
amount of operating reserves for the next hour that minimises the
total cost of the power system, that is, the sum of the operating
costs and the socioeconomic costs related to the E[ENS]. The
methodology is applied on the NIS of Chile by considering a PDA
and two versions of the n-sigma criterion: static and dynamic.

Obtained results have shown that the PDA and the dynamic sigma
criterion outperform the static sigma criterion under any given
scenario. The main advantage of these both approaches compared
with the static sigma results from the dynamic adjustment of
power reserves, that is when reserve levels are not constant for all
hours of the year but in fact a function of system operation
conditions. This result gives an insight of how the quantification
of operating reserves should be handled in power systems with
high levels of wind power.

The optimisation process has shown that the proposed PDA is
cheaper than both versions of the sigma criterion to setting
operating reserve requirements in which case the optimal
confidence level CL* is equal to 99%. Interestingly, in case of the
traditional static sigma criterion, the optimal CL* obtained was 3σ
of the Gaussian probability distribution. Although this criterion
does not provide convincing results from an economic viewpoint,
its basic assumption regarding the CL used is found to be
consistent in this particular case. Nevertheless, this does not
necessarily hold in other power systems since the optimal CL
should depend on the power system itself.
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