
Science of Computer Programming 119 (2016) 3–30
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Effect capabilities for Haskell: Taming effect interference in

monadic programming

Ismael Figueroa a,∗, Nicolas Tabareau b, Éric Tanter c

a Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
b Ascola group, INRIA, Nantes, France
c PLEIAD Laboratory, Computer Science Department (DCC), University of Chile, Santiago, Chile

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 March 2015
Received in revised form 19 November 2015
Accepted 22 November 2015
Available online 28 November 2015

Keywords:
Monads
Capabilities
Computational effects
Tagged monads

Computational effects complicate the tasks of reasoning about and maintaining software,
due to the many kinds of interferences that can occur. While different proposals have
been formulated to alleviate the fragility and burden of dealing with specific effects,
such as state or exceptions, there is no prevalent robust mechanism that addresses the
general interference issue. Building upon the idea of capability-based security, we propose
effect capabilities as an effective and flexible manner to control monadic effects and their
interferences. Capabilities can be selectively shared between modules to establish secure
effect-centric coordination. We further refine capabilities with type-based permission
lattices to allow fine-grained decomposition of authority. We provide an implementation
of effect capabilities in Haskell, using type classes to establish a way to statically share
capabilities between modules, as well as to check proper access permissions to effects at
compile time. We first exemplify how to tame effect interferences using effect capabilities
by treating state and exceptions. Then we focus on taming I/O by proposing a fine-grained
lattice of I/O permissions based on the current classification of its operations. Finally,
we show that integrating effect capabilities with modern tag-based monadic mechanisms
provides a practical, modular and safe mechanism for monadic programming in Haskell.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Computational effects (e.g. state, I/O, and exceptions) complicate reasoning about, maintaining, and evolving software.
Even though imperative languages embrace side effects, they generally provide linguistic means to control the potential
for effect interference by enforcing some forms of encapsulation. For instance, the private attributes of a mutable object
are only accessible to the object itself or its closely-related peers. Similarly, the stack discipline of exception handling
makes it possible for a procedure to hide exceptions raised by internal computation, and thereby protect it from unwanted
interference from parties that are not directly involved in the computation.

We observe that all these approaches are hierarchical, using module/package nesting, class/object nesting, inheritance, or
the call stack as the basis for confining the overall scope of effects. This hierarchical discipline is sometimes inappropriate,
either too loose or too rigid. Consequently, a number of mechanisms that make it possible to either cut across or refine hier-
archical boundaries have been devised. A typical example mechanism for loosening the hierarchical constraints is friendship

* Corresponding author.
E-mail addresses: ismael.figueroa@pucv.cl (I. Figueroa), nicolas.tabareau@inria.fr (N. Tabareau), etanter@dcc.uchile.cl (É. Tanter).
http://dx.doi.org/10.1016/j.scico.2015.11.010
0167-6423/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2015.11.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:ismael.figueroa@pucv.cl
mailto:nicolas.tabareau@inria.fr
mailto:etanter@dcc.uchile.cl
http://dx.doi.org/10.1016/j.scico.2015.11.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2015.11.010&domain=pdf

4 I. Figueroa et al. / Science of Computer Programming 119 (2016) 3–30
declarations in C++. Exception handling in Standard ML — with the use of dynamic classification [8] to prevent unintended
access to exception values — is an example of a mechanism that strengthens the protection offered by the hierarchical stack
discipline.

Exploiting the intuitive affinity between encapsulation mechanisms and access control security, we can see classical
approaches to side effect encapsulation as corresponding to hierarchical protection domains. The effective alternative in the
security community to transcend hierarchical barriers is capability-based security, in which authority is granted selectively
by communicating unforgeable tokens named capabilities [13,16]. Seen in this light, the destructor of an exception value
type in Standard ML is a capability that grants authority to inspect the internals of values of this type [7]. The destructor,
as a first-class value itself, can be flexibly passed around to the intended parties. Friendship declarations in C++ can also be
seen as a static capability-passing mechanism.

Following this intuition we propose effect capabilities, in the context of Haskell, for flexibly and securely handling com-
putational effects. The prime focus of effect capabilities is to statically guarantee, through the type system, that there is no
unauthorized access to a given effectful operation. The approach combines capabilities at the type level as static restrictions
on operation, and capabilities at runtime as first-class unforgeable tokens that must be presented to run a protected opera-
tion and that can be passed around in order to establish secure effect-related interaction channels. Authorization is initially
granted through static channel sharing at the module level, allowing detection of violations at compile time. We do not
focus on dynamic sharing of capabilities, as this can only be done by modules that were already trusted at compile time.
The implementation of effect capabilities in the GHC compiler is available online at http :/ /pleiad .cl /effectcaps.

1.1. Contributions

This work features two main contributions: the first is a generic framework for capabilities and permissions, which can
be statically shared between modules. The second, is the application of this framework in the context of monadic program-
ming in order to provide protected effectful computations. More specifically, we present several technical contributions:

• The definition of capabilities and protected computations as a computational effect based on the capability transformer
CapT . A computation of type CapT c m a can only be evaluated by presenting a runtime value of capability type c. Hence,
the type system, without any modification, ensures that there is no unauthorized access to protected computations.

• A user-definable and user-extensible encoding of permission lattices to be used alongside capabilities. This encoding
uses type classes and closed type families, a recent feature of the GHC Haskell compiler.

• A static secret sharing mechanism implemented using type classes and mutually recursive modules. Any module can
declare a channel that can be used by other modules to send values specifically to that channel. A value is sent by
declaring an instance of the Send type class on the proper channel, while receiving a value requires calling the receive
function, the only operation of the Send class. All calls to receive must be backed by a Send instance declaration, other-
wise type checking fails.

• A set of capability- and permission-observing monad transformers and related type classes, based on the design of the
standard monad transformers, which can be flexibly composed together without effect interference. In particular we
implement state, exceptions and I/O effects.

• Regarding I/O, we propose a fine-grained lattice of permissions based on the current classification given in the Haskell
documentation. This is a first step towards a practical lattice for permission-based I/O in Haskell.

• The integration of effect capabilities with the recent approach of tagged monads. Specifically, we combine the benefits of
monad views, a mechanism that is robust to layout changes in the composition of monad transformers, with the security
guarantees of effect capabilities. We show how this mechanism allows developers to implement generic imperative
abstract data types.

1.2. Effect capabilities by example

Before delving into all the technical developments of this work we present a simplified example of what is like to
program using effect capabilities. The example consists of the implementation of a queue data structure using an internal
state which is made private using an effect capability. Then, we implement a priority queue to which is granted read-only
access to the internal state of the queue, using the static sharing mechanism. At this point the goal is to provide an overall
intuition of how capabilities are declared, used, and shared rather than a fully detailed example. The full example with all
the technical details is shown in Section 4.3.

A higher-level overview of the situation is depicted in Fig. 1. There are two modules: Queue and PriorityQueue. Module
Queue sends a capability value QState ReadPerm to the PriorityQueue module. The capability is sent on a channel PQChan.
The diagram also shows that both modules are mutually dependent. The Queue needs to import the PriorityQueue to use the
PQChan channel defined on that module, and conversely, the PriorityQueue needs to import Queue to receive the message.

Fig. 2 shows snippets of the implementation of both modules. In module Queue we see that QState is a regular datatype
with a single constructor which takes a permission p as argument. QState is registered as a capability by declaring an
instance of the Capability type class. Crucially, notice that the QState data constructor is not exported by the module, otherwise
every other module would have access to the state of the queue. The module imports PriorityQueue, thus having access

http://pleiad.cl/effectcaps

I. Figueroa et al. / Science of Computer Programming 119 (2016) 3–30 5
Fig. 1. Communication and mutual dependency of Queue and PriorityQueue modules.

module Queue (QState (), ...) where -- QState constructor is private
import PriorityQueue

-- capability for queue state
data QState p = QState p

instance Capability QState ⊃RW

-- send read-only permission to priority queue module
instance Send PQChan QState ReadPerm

enqueue s = do queue ← getp ‘withCapability‘ (QState ReadPerm)

putp (queue ++ [s]) ‘withCapability‘ (QState WritePerm)

...

module PriorityQueue (...) where
import Queue

data PQChan = PQChan

-- receive read-only permission from queue module
queueCap :: QState ReadPerm
queueCap = fromChannel PQChan $ receive ReadPerm

peekBy comp = do queue ← getp ‘withCapability‘ queueCap
if null queue then return Nothing

else return (Just $ maximumBy comp queue)
...

Fig. 2. Code snippets for modules Queue and PriorityQueue.

to the channel PQChan. The instance declaration instance Send PQChan QState ReadPerm denotes that capability QState with
permission ReadPerm is send over channel PQChan. The figure also shows the implementation of the enqueue operation,
which uses the protected operations getp and putp to read and write to the protected state, respectively. Both operations
need to provide the proper QState capability, and this is done using the withCapability function.

On the other hand, the PriorityQueue module declares the PQChan type, which serves as the name of the communica-
tion channel with Queue. By importing Queue the declared instance of Send is put into the scope of this module. Using
fromChannel PQChan $ receive ReadPerm retrieves the capability sent by the Queue module. The capability is assigned to the
queueCap identifier, and is then used in the implementation of the peekBy operation. This function also uses getp and
presents the corresponding capability using withCapability.

This example illustrates the fundamental concepts, design and usage of effect capabilities. Capabilities are defined as
simple datatypes with a single constructor — that must be kept private — and the capability type must be declared as in-
stance of the Capability type class. Capabilities are shared by declaring instances of the Send type class. A module desiring to
receive a capability must export a channel, which will be used in the Send instances, thus introducing a mutual dependency
between the involved modules. Finally, protected operations, like getp and putp, are similar to standard monadic operations
such as get or put, but must present a capability using withCapability.

1.3. Outline

The rest of this article is structured as follows: first, we briefly review the essential concepts of monadic programming
in Haskell, including plain monads and monad transformers (Section 2). Then, we illustrate the main problem addressed by
effect capabilities in Haskell: the issue of effect interference in the monad stack (Section 3). After that we present the main
technical development: a generic framework for capabilities and permissions and their static sharing mechanism (Section 4).
Then, effect capabilities are implemented using this framework in the particular case of monadic operations (Section 5).
We first illustrate the use of effect capabilities to implement private and shared state (Section 5.1 and Section 5.2), as
well as protected exceptions (Section 5.3). In addition, we illustrate how to tame I/O access using a fine-grained lattice
of permissions (Section 5.4). Finally, we show that integrating effect capabilities with modern tag-based monadic libraries
produces a practical, modular, and secure mechanism for monadic programming in Haskell (Section 6).

6 I. Figueroa et al. / Science of Computer Programming 119 (2016) 3–30
2. Monadic programming in a nutshell

Monads [17,31] are a denotational approach to embed and reason about computational effects such as state, I/O or
exception handling, in purely functional languages like Haskell. The purpose of this section is to serve as a brief background
for readers that are familiar with Haskell but may not be experts in monadic programming. For a general introduction to
Haskell we recommend the Gentle Introduction to Haskell,1 the Try Haskell2 website, and the excellent Learn You a Haskell book
and website.3 Readers already proficient in monadic programming in Haskell can safely skip this section.

2.1. A primer on monads

A monad is defined by a type constructor m and functions >>= (called bind) and return. At the type level a monad is a
regular type constructor, although conceptually we distinguish a value of type a from a computation in monad m of type m a.
Monads provide a uniform interface for computational effects, as specified in the Monad type class:

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b) → m b

Here return promotes a value of type a into a computation of type m a, and >>= is a pipeline operator that takes a
computation, extracts its value, and applies an action to produce a new computation. The precise meanings for return and
>>= are specific to each monad. The computational effect of a monad is “hidden” in the definition of >>=, which imposes a
sequential evaluation where the effect is performed at each step. To avoid cluttering caused by using >>= Haskell provides
the do-notation, which directly translates to chained applications of >>=. The x ← k expression binds identifier x with the
value extracted from performing computation k for the rest of a do block. The simplest monad is the identity monad, which
has no computational effect:

newtype Identity a = Identity a
instance Monad Identity where

return a = Identity a
(Identity a) >>= f = f a

Perhaps the second simplest monad is the Maybe monad, which represents computations that may not yield a value:

newtype Maybe a = Just a | Nothing
instance Monad Maybe where

return a = Just a
m >>= f = case m of

Just x → f x
Nothing → Nothing

A computation of type Maybe a is either Just a value, or Nothing. Although this monad is very similar to Identity, the
main difference lies in the >>= operation: the initial computation m is examined to see whether it contains a value or not.
If it does, the operation f is then applied, otherwise the result keeps being Nothing. In other words, once a non-value is
produced it is transparently kept until the end of the computation. This allows developers to write programs focusing in
the successful control flow, leaving the propagation of non-values to the internal mechanisms of this monad.

Another prevalent monad is the state monad, whose computational effect is to thread a value with read-write ac-
cess.

newtype State s a = State (s → State (a, s))
instance Monad (State s) where

return a = State $λs → (a, s)
(State h) >>= f = State $λs → let (a, s′) = h s

(State g) = f a
in g s′

1 http :/ /www.haskell .org /tutorial.
2 http :/ /tryhaskell .org.
3 http :/ /learnyouahaskell .com.

http://www.haskell.org/tutorial
http://tryhaskell.org
http://learnyouahaskell.com

I. Figueroa et al. / Science of Computer Programming 119 (2016) 3–30 7
A State computation is a function that requires an initial state s and yields a pair with a resulting value a and a potentially
modified state, also of type s. To promote a value to a computation return creates a function that keeps whatever state s
preceded the operation. Similar to the Maybe monad, the state threading happens in >>= where the initial function h is
evaluated in the current state s. This yields a value a and a new state s′ . By evaluating f a, we get a new state computation
whose function is g. The final value/state pair results from applying g to the new state s′ . Based on this definition, more
abstract operations like get and put can be defined:

-- gets current state as a value
get :: State s s
get = State $ λs → (s, s)

-- puts new state s′
put :: s → State s a → State s ()

put s′ = State $λ → ((), s′)

To illustrate the usage of the state monad and the do notation, let us represent a simple queue of integers with operations
to enqueue and dequeue its elements. For this we define type Queue s = State [s] a state monad holding a list of values. The
queue operations are defined as follows:

enqueue :: Int → Queue Int ()

enqueue n = do queue ← get
put (queue ++ [n])
return ()

dequeue :: Queue Int Int
dequeue = do queue ← get

put (tail queue)
return (head queue)

Other common monads include the Error monad for handling exceptions and the Reader and Writer monads, which can
be seen as specific read-only or write-only versions of a state monad. The main issue regarding programming with plain
monads is the complexity of combining several computational effects. For instance, having a monad with both state and
error handling effects requires tangling both concerns into the definitions of return and >>=. The traditional solution for
modular monadic programming is to use monad transformers.

2.2. Programming with monad transformers

Using monad transformers [14] it is possible to modularly create a monad that combines several effects. A monad
transformer is a type constructor used to create a monad stack where each layer represents an effect. More specifically, a
monad transformer is defined by a type constructor t and the lift operation, as specified in the MonadTrans type class:

class MonadTrans t where
lift :: m a → t m a

Monadic programming in Haskell revolves around the standard mtl library, which provides a set of monad transformers
that can flexibly be composed together. Typically a monad stack has either the Identity, or the IO monad at its bottom.
When using monad transformers it is necessary to establish a mechanism to access the effects of each layer. We now briefly
describe current mechanisms; for a detailed description see [22].

Explicit lifting A monad transformer t must define the lift operation, which takes a computation from the underlying monad
m, with type m a, into a computation in the transformed monad, with type t m a. Explicit uses of lift directly determine
which layer of the stack is being used.

Implicit lifting To avoid explicit uses of lift, one can associate a type class with each particular effect, defining a public
interface for effect-related operations. Using the type class resolution mechanism, the monadic operations are routed to the
first layer of the monad stack that satisfies a given class constraint. This is the mechanism used in the transformers from
mtl, where the implicit liftings between them are predefined.

Tagged monads In this mechanism the layers of the monad stack are marked using type-level tags. The tags are used to
improve implicit lifting, in order to route operations to specifically-tagged layers, rather than the first layer that satisfies a
constraint [19,24,22].

To illustrate the standard usage of monad transformers with implicit lifting let us consider again the dequeue operation.
One issue of this function is that it cannot return a value when the internal list is empty; an exception is raised at runtime
when this occurs. However, we can handle the situation by combining the State and the Maybe effects. Just as before, the
State effect is required to keep the internal state of the queue, and additionally the Maybe effect is required to signal that
some operations may not yield values. Using monad transformers the code is as follows:

8 I. Figueroa et al. / Science of Computer Programming 119 (2016) 3–30
type MaybeQueue s = MaybeT (StateT [s] Identity)
-- A value of type MaybeQueue s a is either:
-- a computation (StateT [s] Identity) (Just a), or
-- a computation (StateT [s] Identity) Nothing.

dequeue :: MaybeQueue Int Int
dequeue = do queue ← get -- with explicit lifting: lift get

if (null queue)
then fail Nothing -- returns a Nothing
else do put (tail queue)

return (head queue)

First we define a type synonym MaybeQueue to denote the monad stack that combines both effects. The stack has the
Identity monad at the bottom, upon which the StateT transformer is applied. The application StateT [s] Identity denotes
a new monad that is equivalent to the Queue type defined in Section 2.1. Under this monad, all computations have type
(StateT [s] Identity) a. To add the option for computations that do not yield values we apply the MaybeT monad transformer,4

which completes the definition of MaybeQueue. All computations in MaybeQueue s a have type (StateT [s] Identity) (Maybe a).
Using MaybeQueue it is straightforward to implement the new version of dequeue: we just need to check if the inner state
is an empty list, in which case we fail the computation — thus returning Nothing — or we return the value just as before.

Because the implementation of MaybeT specifies how to perform implicit lifting of state operations, such as get, to inner
state monads, we do not need to use explicit lift operations in the code. However, this flexibility does not comes for free, as
we discuss in Section 3.2.

From now on we focus our development of effect capabilities in the setting of explicit and implicit lifting. Later in Sec-
tion 6 we address the issue of integrating capabilities with tagged monads.

3. Effect interference in monadic programming

In this section we illustrate the problem of effect interference in monadic programming. We first illustrate the particular
issue of state interference (Section 3.1), also showing that the currently accepted workaround is not scalable (Section 3.2).
Then we illustrate the issue of exception interference (Section 3.3).

3.1. State interference

As a running example to illustrate the issue of effect interference as well as its solution using effect capabilities, we
consider the implementation of two monadic abstract data types (ADTs). These are a queue of integer values, with operations
enqueue and dequeue; and a stack, also of integer values, with operations push and pop.

Regarding state, ideally each ADT should have a private state that cannot be modified by components external to the
module. Before we describe the implementation, let us recall the standard state transformer and its associated type class:

newtype StateT s m a = StateT (s → m (a, s))

class Monad m ⇒ MonadState s m | m → s where
get :: m s
put :: s → m ()

A typical and reusable implementation of these ADTs is defined using implicit lifting. A straightforward implementation of
the operations is:

enqueue1 :: MonadState [Int] m ⇒ Int → m ()

enqueue1 n = do queue ← get
put $ (queue ++ [n])

dequeue1 :: MonadState [Int] m ⇒ m Int
dequeue1 = do queue ← get

put $ tail queue
return $ head queue

push1 :: MonadState [Int] m ⇒ Int → m ()

push1 n = do stack ← get
put (n : stack)

pop1 :: MonadState [Int] m ⇒ m Int

4 Note that MaybeT is not a standard mtl transformer, but is relatively well-known, e.g. in https :/ /wiki .haskell .org /New _monads /MaybeT

https://wiki.haskell.org/New_monads/MaybeT

I. Figueroa et al. / Science of Computer Programming 119 (2016) 3–30 9
pop1 = do stack ← get
put $ tail stack
return $ head stack

Thanks to implicit lifting, the functions can be evaluated in any monad stack m that fulfills the MonadState [Int] constraint.
With the intent of giving each ADT its own private state, we define a monad stack M with two state layers.

type M = StateT [Int] (StateT [Int] Identity)

However, using both ADTs in the same program leads to state interference. The problem is that implicit lifting will route
both enqueue and push operations to the first layer of M. For example, evaluating:

client1 :: M Int
client1 = do push1 1

enqueue1 2 -- value is put into the state layer used by the stack
x ← pop1 -- removes first element in stack
y ← pop1 -- should raise error because stack should be empty
return (x + y) -- yields 3 due to state interference

yields instead of throwing an error when attempting to pop1 the empty stack. To address this issue, one of the ADTs must
use explicit lifting to use the second state layer, for instance we can modify the queue operations:

enqueue′
1 n = do queue ← lift get

(lift ◦ put) (queue ++ [n])
dequeue′

1 n = do queue ← lift get
(lift ◦ put) (tail queue)
return (head queue)

Importantly, the type of these new operations will reflect the expected structure of the monad stack. For example, the
type of enqueue′

1 is:

enqueue′
1 :: (

Monad m, -- A ’bottom’ monad m ...
MonadTrans t, -- A ’top’ transformer t ...
Monad (t m), -- A decomposed monad (t m), with top t and bottom m
MonadState [Int] m -- Accessible m which can be constrained

) ⇒ Int → (t m) ()

which means that it requires a monad stack that can be decomposed into a top transformer t and a base state monad m.
However, as discussed by Schrijvers and Oliveira [22], this solution is still unsatisfactory. First, the approach is fragile

because the number of lift operations is tightly coupled to the particular monad stack used, thus hampering modu-
larity and reusability. And second, because the monad stack is transparent, meaning that nothing prevents enqueue′

1 or
dequeue′

1 to use get and put operations that are performed on the first state layer. Conversely, nothing prevents push1 or
pop1 from accessing the second state layer. In fact, any monadic component can modify the internal state of these struc-
tures.

3.2. State encapsulation pattern

To the best of our knowledge, the current practice to implement private state in Haskell — in order to avoid issues like
the one above — is to define a custom state-like monad transformer and hide its data constructor using module encapsula-
tion. For instance, a polymorphic queue ADT can be implemented based on a new QueueT monad transformer, which reuses
the implementation of StateT to represent the queue as a list of values:

newtype QueueT s m a = QueueT (StateT [s] m a) deriving ...

In general we do not show most of the type class instances after a deriving clause; the implementation uses
GeneralizedNewtypeDeriving extension of GHC to automatically derive the necessary instances of the Monad, MonadTrans
and other type classes as required.

10 I. Figueroa et al. / Science of Computer Programming 119 (2016) 3–30
The definitions of enqueue and dequeue are similar to those already presented, but let us consider their types:

enqueue2 :: s → QueueT s m ()

dequeue2 :: QueueT s m s

Because these definitions are tied specifically to a monad stack where QueueT (resp. StackT) is on top, another require-
ment to integrate with implicit lifting is to declare a new type class MonadQueue (resp. MonadStack), whose canonical
instance is given by QueueT (resp. StackT).

In short, a Queue module that encapsulates its state can be defined as:

module Queue (QueueT (),MonadQueue (. .), enqueue,dequeue) where

newtype QueueT s m a = QueueT (StateT [s] m a) deriving ...

class Monad m ⇒ MonadQueue s m where
enq :: s → m ()

deq :: m s

instance Monad m ⇒ MonadQueue s (QueueT s m) where
enq s = QueueT $ StateT $λq → return ((),q ++ [s])
deq = QueueT $ StateT $λq → return (head q, tail q)

enqueue :: (MonadQueue [Int] m) ⇒ Int → m ()

enqueue = enq

dequeue :: (MonadQueue [Int] m) ⇒ m Int
dequeue = deq

Declaring QueueT as instance of MonadQueue requires the implementation of enq and deq. As QueueT relies on the
standard state transformer StateT , the implementation is straightforward. The crucial point to ensure proper encapsulation
is that the module does not export the QueueT data constructor. This is explicit in the module signature as QueueT (), which
means that only the type QueueT is exported, but its data constructors remain private.

Avoiding interference Using the QueueT and StackT transformers, as well as the MonadQueue and MonadStack type classes
defined using this pattern,we can rephrase our previous example in order to avoid state interference:

import Queue
import Stack

type M = QueueT Int (StackT Int Identity)

client2 = do push 1
enqueue 2
x ← pop
y ← pop -- error: popping from empty stack
return (x + y)

Scalability issues The main issue of the state encapsulation pattern is that it is not scalable. To properly integrate
MonadQueue and MonadStack with implicit lifting, we would need to declare QueueT and StackT as an instance of every
other effect-related type class, and to make every other monad transformer an instance of MonadQueue and MonadStack as
well. Fig. 3 depicts this situation using a UML-like diagram. Class nodes represent type class definitions, stacked rectangles
represent monad stacks and edges denote the “is-instance-of” relationship. In the left, the integration of the new trans-
formers with existing monad classes; in the right, the integration of existing transformers with the new MonadQueue and
MonadStack classes.

If we consider only the 7 standard transformers in the mtl, this effort amounts to 28 instance declarations! (14 instances
for each encapsulated state) Moreover, when using non-standard transformers, it may not be possible to anticipate all
the required combinations; therefore the burden lies on the user of such libraries to fill in the gaps. As an illustration,
consider the implementation of the non-standard MaybeT monad transformer,5 which defines 4 instances for the MonadIO,
MonadState, MonadReader and MonadWriter type classes. Even worse, as some instance declarations may require access to
private data constructors, the only way to implement them would be by altering the source code of the monad transformers
involved. We are not the first to note the quadratic growth of instance declarations with this approach, e.g. Hughes dismisses
monads as an option to implement global variables in Haskell for this very reason [9].

5 Found at https :/ /wiki .haskell .org /New _monads /MaybeT.

https://wiki.haskell.org/New_monads/MaybeT

I. Figueroa et al. / Science of Computer Programming 119 (2016) 3–30 11
Fig. 3. Scalability issues with standard composition of monad transformers.

3.3. Exception interference

Another form of effect interference can occur in a program that uses exceptions and exception handlers. The problem
is that due to the dynamic nature of exceptions and handlers, it is possible for exceptions to be inadvertently caught by
unintended handlers — for instance, by “catch-all” handlers. As an illustration, consider an application where the queue is
used by a consume function.

consume :: (MonadQueue Int m,MonadError String m) ⇒ m Int
consume = do x ← dequeue

if (x < 0) then throwError“Process error′′
else return x

This function checks an invariant that values should be positive, and throws an exception otherwise. Further assume that
another process function relies on consume.

process :: (MonadQueue Int m,MonadError String m) ⇒ Int → m Int
process val = consume ‘catchError‘ (λe → return val)

Here process uses an exception handler, catchError, to get a default value val whenever consume’s invariant does not hold.
Consider now a variant of dequeue, dequeueEx , that raises an exception when trying to retrieve a value from an empty queue.
Consider the type of dequeueEx and let us update consume accordingly:

dequeueEx :: (MonadQueue s m,MonadError String m) ⇒ m s

consume = do x ← dequeueEx
-- ... same as before ...

In this scenario, exception interference will occur because the same exception effect is used to signal two different issues.
Consider the following program:

program1 = do enqueue (−10)

process 23 -- exception in consume, return default

When evaluated, program1 yields 23 because the value in the queue breaks the invariant of consume, triggering the handler
of process. Now, consider a second program:

program2 = process 23 -- empty queue exception in process, return default

which will also yield 23, but because the queue was empty — not because the invariant of consume was broken. In this
setting, it is not possible to assert non-emptiness of the queue, because exceptions get “swallowed” by another handler. In
other words, exception interference arises whenever it is possible to have “catch-all” handlers, regardless of the represen-
tation of exception values as strings or other more complex types. Similar to state interference, current solutions rely on
custom exception transformers and explicit lifting.

As argued by Harper [7], the standard semantics of exceptions hinders the modular composition of programs because
of the potentially modified exception flows. Indeed, issues like this have been identified in the context of aspect-oriented
programming [5]. In Section 5.3 we show how effect capabilities allows us to define exceptions that, like in Standard ML,
can be protected from unwanted interception.

12 I. Figueroa et al. / Science of Computer Programming 119 (2016) 3–30
4. A generic static framework for capabilities and permissions

At the type level a capability declares a static restriction on the usage of a protected operation. Such operation can only
be performed at runtime by presenting a token — an unforgeable value or witness of the required capability type. The fact
that a token of the proper type is presented for each protected operation is verified statically by the type checker, using the
standard mechanism to verify that functions are called with arguments of the correct types. Therefore the essential issue
to address regarding capabilities is how are the tokens created and shared. Our approach is in part similar to abstract data
types, where the abstract type is public but the implementation is kept hidden. This means the capability type is publicly
exported, while the corresponding data constructor is kept private. Unlike abstract data types, data constructors can be
statically shared using a mechanism based on type classes.

This section presents the main technical development of this work: a generic framework for capabilities, upon which
effect capabilities are built, in the next section. First, we define capability-based access as a computational effect (Sec-
tion 4.1). Then, we refine simple capabilities with type-based and user-definable permission lattices (Section 4.2). Finally we
show how capabilities can be shared between modules (Section 4.3) while providing two key features of capabilities-based
mechanisms: delegation and attenuation (Section 4.4).

4.1. Capabilities as a computational effect

A capability is a singleton type whose type is public but whose constructor is private. We refer to both the type and the
constructor as capability, because the distinction is always clear from context: capability types appear only on type signa-
tures and annotations, and capability tokens appear only in function implementations. For instance, consider the capability
for read/write access to some state:

data RWCap = RWCap

We turn this capability into a notion of protected computations by using a specific reader monad transformer for capa-
bilities, CapT . Using the reader transformer allows us to embed the actual capability used to run a computation into the
read-only environment bound to a reader monad. Similar to state encapsulation, CapT is defined in terms of the canonical
reader monad transformer ReaderT .

newtype CapT c m a = CapT (ReaderT c m a) deriving ...

fromCapT :: c → CapT c m a → m a
fromCapT !c (CapT ma) = runReaderT ma c

-- syntactic sugar for infix operation
withCapability m c = fromCapT c m

As an example of a protected computation, consider a module A that uses RWCap to restrict access to a state monad
holding a value of type s.

module A (getp,putp,RWCap ()) where

data RWCap = RWCap

getp :: CapT RWCap (State s) s
putp :: s → CapT RWCap (State s) ()

A module B that imports A will get access to both operations — and will be able to construct and pass around computa-
tions of type CapT — but will not be able to perform any of them because it will lack the RWCap value, which can only be
constructed in the context of module A.

Unforgeability The soundness of capability-based systems relies on the unforgeability of tokens. In our context this means
that only the capability data constructor should be able to produce access tokens to perform operations protected by the
corresponding capability type. However, Haskell has two features with which it is always possible to forge a capability. The
first is undefined, represented as ⊥, which is an expression that pertains to all types, and directly fails with an error if
evaluated. The second is lazy evaluation itself, meaning that an unused argument is never evaluated. Hence, a malicious
module can use ⊥ to pass as any capability, fulfilling the expected type of fromCapT , while not triggering any errors if, due
to lazy evaluation, the given capability value is never evaluated! Following the previous example, a module B could forge
its access to protected operations like getp:

module B where
import A

malicious_get = getp (⊥ :: RWCap)

I. Figueroa et al. / Science of Computer Programming 119 (2016) 3–30 13
To avoid this situation, we use a strictness annotation ! in the implementation of fromCapT . In a setting with strict
evaluation this runtime check would also be necessary if there exists a bottom value like null in typical imperative or
object-oriented. Nevertheless, effect capabilities still are a mechanism for static verification of access. Effect capabilities
guarantee that in a well-typed program protected operations will either: (i) be performed by authorized entities only, or
(ii) they will crash the program due to the forced evaluation of ⊥.

4.2. Private lattice of permissions

Capabilities are unforgeable authority tokens that unlock specific operations. Ideally, a system should follow the principle
of least privilege [20], which in our context means that it should not be necessary to have write permissions just to read the
value of a state monad; and conversely, reading access is not necessary to update such a state.

We now refine the model of capabilities with the possibility to attach permissions to a capability, in order to allow a
finer-grained decomposition of authority. A permission denotes the subset of operations that the capability permits. Now
capabilities are defined as type constructors with a single argument, the permission; permissions are also defined as single-
ton types.

Permission lattices Permissions can be organized in a lattice specified by a ⊃ type class. ⊃ is a simple reflexive and transi-
tive relation on types defined as follows. Unlike logic programming, transitivity cannot be deduced from a generic instance,
due to an ambiguity issue during type class resolution; hence all pairs of the relation must be explicit.

class a ⊃ b
instance a ⊃ a -- generic instance for reflexivity

However, we cannot make ⊃ be public because it would allow a malicious user to add a new undesirable relation in
the lattice to effectively bypass permission checking altogether. Still, we want to be able to impose constraints based on the
private lattice in other modules. A first solution to this issue is to define a private lattice � such that being an instance of
⊃ requires also an instance of �. If the private lattice is not exported then ⊃ will not be updatable from outside of the
module, because extending it always requires to define an instance on the private lattice. The code for this is simply:

class a � b -- private lattice
instance a � a -- reflexivity

class a � b ⇒ a ⊃ b -- public lattice
instance a � b ⇒ a ⊃ b

We use a solution that is more sophisticated but that allows us to implement general abstract data types (Section 6.3).
In short, the problem is that using regular type classes it is not possible to be parametric on both the capabilities and the
permissions bound to a specific lattice; the typechecker will demand an instance of �, which cannot possibly be provided
unless � is publicly exported.

The solution is to implement � as a closed type family [4,3] that can also be used as a constraint in the declaration of ⊃.
In essence, type families can be used to define “overloaded” type constructors whose concrete type will depend on the type
of its arguments (which are also types); e.g. type families are to types as type classes are to regular functions. In a closed
type family, all the overloading equations are defined only once and cannot be modified externally.

The code is similar to the previous one:

type family (a � b) :: Constraint where
-- particular instances

a � a = () -- reflexivity

class a � b ⇒ a ⊃ b

To implement this we require the TypeFamilies and ConstraintKinds extensions of GHC. The former allows us to define type
families while the latter allows us to use instances of the type family as a constraint in the definition of ⊃.

The difference between implementing the private lattice as a type class or as a closed type family is that in Haskell type
classes are open, that is, instances of publicly exported type classes can be added in any part of the system. Private type
classes are confined to the module that defines them and no instances can be added from outside, but such classes cannot
be used in any external type signature.

Permission lattices in practice Going back to the previous example, we now define the RWCap capability, as well as the
ReadPerm, WritePerm and RWPerm permissions, denoting read-only, write-only and read-write access, respectively. We also
define the private and public permission lattices �RW and ⊃RW , for state access permissions:

14 I. Figueroa et al. / Science of Computer Programming 119 (2016) 3–30
module RWLattice (⊃RW ,RWCap (),ReadPerm,WritePerm,RWPerm) where

data RWCap p = RWCap p
data ReadPerm = ReadPerm
data WritePerm = WritePerm
data RWPerm = RWPerm

-- private lattice
type family (a �RW b) :: Constraint where

RWPerm �RW ReadPerm = () -- we do not use the actual type,
RWPerm �RW WritePer = () -- just the fact that the instance exists
a �RW a = () -- which then satisfies a given constraint.

-- public lattice
class a �RW b ⇒ a ⊃RW b
instance a �RW b ⇒ a ⊃RW b

Using the public permission lattice allows developers to safely impose fine-grained access constraints using the public
type class ⊃RW . For instance, the functions getp and putp can be refined as:

getp :: perm ⊃RW ReadPerm ⇒ CapT (RWCap perm) (State s) s
putp :: perm ⊃RW WritePerm ⇒ s → CapT (RWCap perm) (State s) ()

As a final remark, recall from Section 4.1 that type class resolution statically checks for proper permissions when a compu-
tation is evaluated using fromCapT .

Capabilities as permission namespaces Capability constructors, like RWCap, may appear superfluous because we are interested
in the permissions for protected operations. However, such constructors serve the crucial role of serving as namespaces for
permissions. This allows a module to have restricted read-only access to some state layer, while still having full read-write
access to another state layer.

4.3. Static sharing of capabilities

We now describe how to go beyond private capabilities and support the ability to allow specific modules to have access
to capabilities. The issue addressed here is that most module systems, including that of Haskell, do not make it possible to
expose bindings to explicitly-designated modules. For example, as we illustrate in Section 5.2, for efficiency reasons a Queue
module can provide read-only access to its internal state to a PriorityQueue module, which simply acts as another interface
on top of the queue.

Conceptually, the idea of static sharing is to use public accessors to selectively share capabilities. However this requires
a trusted mechanism by which modules can be identified properly by the accessors. The development of this idea yields
a mechanism for static value passing, using type classes, loosely inspired by the π -calculus notion of messages and chan-
nels [21].

Capability sending as type class instances In analogy with capabilities, a channel is just a singleton type whose type is public,
but whose (unique) data constructor or value is private. Channels are governed by the Channel monad reader which prevents
from the use of ⊥:

newtype Channel ch a = Channel (Reader ch a) deriving ...

fromChannel :: ch → Channel ch a → a
fromChannel ! ch (Channel ma) = runReader ma ch

We define a type class Send for sending capabilities over channels:

class Send ch c p where
receive :: p → Channel ch (c p)

This type class requires three types: a channel ch, a capability c, and a permission p; and it provides the receive method.
Sending a value of type c p on channel ch amounts to declaring an instance Send ch c p. Conversely, receiving a value of type
c p on ch amounts to applying the function receive to p and getting the value back using fromChannel. The expected result
type c p has to be provided explicitly, because messages of different types can be sent on the same channel. Furthermore,
only one value of type c p can be sent on a specific channel — but this is sufficient for our purposes since capabilities are
singleton types.

I. Figueroa et al. / Science of Computer Programming 119 (2016) 3–30 15
Fig. 4. Static delegation and attenuation of capabilities. Module A sends a capability with read-write access to B. B sends a read-only capability to C.

Observe that the messaging protocol is rather asymmetric, because capabilities are sent statically by declaring type class
instances, whereas they are received dynamically by calling receive. This is not problematic because type class resolution
will check that all calls to receive are backed up by a proper instance of Send, or else type checking will fail. Therefore, the
protocol ensures that one module can only receive a message that has been sent to it.

Inter-module communication requires that both sender and receiver modules have knowledge of each other, thus they
are both mutually dependent. We rely on GHC’s support for mutually recursive modules for inter-module communication.6

Although technically sound this requirement reduces the independent evolution and composition of modules, and is a
challenge for further work.

For instance, following the motivating example, the Queue module can send the RWCap capability with read permission
to the PQChan channel provided by the PriorityQueue module (full example in Section 5.2):

instance
Send -- send...
PQChan -- ... on channel PQChan
RWCap -- ... capability RWCap
ReadPerm -- ... with ReadPerm permission
where

-- receiving ReadPerm from channel PQChan yields a RWCap
-- capability with ReadPerm permission

receive ReadPerm = return $ RWCap ReadPerm

and dually, the PriorityQueue module requests the capability RWCap ReadPerm from the channel PQChan:

cap :: RWCap ReadPerm
cap = fromChannel PQChan $ receive ReadPerm

4.4. Delegation and attenuation

Capabilities-based mechanisms feature two characteristics called delegation and attenuation [13]. In combination, these
characteristics allow an entity to transmit (a restricted version of) its capabilities to another entity in the system. We
describe how these characteristics are supported in the framework and show a simple scenario as example, depicted con-
ceptually in Fig. 4 and in actual code in Fig. 5. The scenario consists of a module A that sends a capability with read/write
permission to module B, which in turn sends a restricted read-only capability to module C. Note the mutual dependency
between modules is also reflected in Fig. 4 (dotted arrows denote module imports).

Delegation The sharing mechanism allows for static delegation of capabilities. A module B that receives a capability from
other module A, can in turn transmit the capability to another module C. This is sound because B cannot transmit more
capabilities than those it receives from A.

Attenuation A capability with a high permission in a permission lattice can be attenuated into another capability with a
lower permission implied by the former. To support attenuation of capabilities, we force capabilities to define a function
attenuate using the type class:

class Capability c ⊃ | c → ⊃ where
attenuate :: p1 ⊃ p2 ⇒ c p1 → p2 → c p2

Here attenuate degrades the permission if it respects the lattice structure of ⊃. If module A needs to provide a limited
version of a capability to module B it can provide a sub-permission based on the existing permission lattice using the

6 http :/ /www.haskell .org /ghc /docs /latest /html /users _guide /separate-compilation .html.

http://www.haskell.org/ghc/docs/latest/html/users_guide/separate-compilation.html

16 I. Figueroa et al. / Science of Computer Programming 119 (2016) 3–30
module A where
import B -- to send capability on BChannel

instance Send BChannel RWCap RWPerm where
receive RWPerm = return $ RWCap RWPerm

module B where
import A -- to get the capability sent by A
import C -- to send capability on CChannel

data BChannel = BChannel |
-- send attenuated version of the capability to C, only with read permission

instance Send CChannel RWCap ReadPerm where
receive ReadPerm = return (attenuate rwCap ReadPerm)

where rwCap = fromChannel BChannel $ receive RWPerm

module C where
import B -- to get the capability sent on B
data CChannel = CChannel
cap :: RWCap ReadPerm
cap = fromChannel CChannel $ receive ReadPerm

Fig. 5. Code for the inter-module sharing depicted in Fig. 4.

class Monad m ⇒ MonadStateP c s m | m → s where
getp :: (Capability c ⊃RW ,p ⊃RW ReadPerm) ⇒ CapT (c p) m s
putp :: (Capability c ⊃RW ,p ⊃RW WritePerm) ⇒ s → CapT (c p) m ()

newtype StateTP c s m a = StateTP (StateT s m a) deriving ...

instance Monad m ⇒ MonadStateP c s (StateTP (c ()) s m) where
getp = lift ◦ StateTP $ get
putp = lift ◦ StateTP ◦ put

Fig. 6. Protected versions of the monad state type class and state monad transformer.

function attenuate. Note that ⊃ is a parameter of the class because different capabilities may be defined on different lattices,
but the functional dependency c → ⊃ imposes that only one lattice is attached to a capability. If the required permission is
not already provided by the existing lattice, one can always define a refined lattice (and redefine associated functions).

5. Effect capabilities: upgrading monads with capabilities

We now develop the core subject of this work: how to use capabilities to control monadic effects and their interferences
in an effective and flexible manner. Building upon the generic capabilities framework, which can be used to restrict access
to arbitrary operations, the essential idea of effect capabilities is to secure the operations of the layers in the monad stack
using capabilities.

Concretely, this means that we define protected versions of monad transformers, and of the type classes associated to
their effects, in which all the monadic operations are wrapped by the CapT monad transformer. This way, while an external
component can still access any layer of the monad stack using explicit lifting, it will not be able to perform computations
on them unless it can present the required capability.

In particular, we define protected versions of the state and exception mtl transformers and their associated type classes.
As a naming convention we append the P suffix to the name of the protected monad transformers and type classes. We start
illustrating how to implement private and shared state (Section 5.1 and Section 5.2) and protected exceptions (Section 5.3).
Finally, we show how to control access to the IO monad, which provides access to a variety of operations (file operations,
network communication, etc.), by providing a fine-grained lattice of permissions (Section 5.4).

5.1. Private persistent state

Based on the state permission lattice (Section 4.2), we define the protected versions of the state monad transformer and
corresponding type class (Fig. 6). To use the getp function, one needs to have a capability c that implies the ReadPerm per-
mission; and dually to use the putp function, one needs the capability that implies the WritePerm permission. Abstracting
state operations on capability c results in the use of capabilities as namespaces for permissions, as mentioned before in Sec-
tion 4.2. Notice that the left-hand side in the declaration of StateTP uses the capability type c as a phantom type variable [12]
used solely to index the layer of the monad stack with the respective capability. In Section 6 we exploit this type index to
combine effect capabilities with the mechanism of tagged monads. To illustrate, consider the following polymorphic Queue
using private state:

I. Figueroa et al. / Science of Computer Programming 119 (2016) 3–30 17
module Queue (enqueue,dequeue,QState ()) where

import EffectCapabilities
import Control.Monad.MonadStateP

data QState p = QState p

instance Capability QState ⊃RW where
attenuate (QState) perm = QState perm

type QStateLayer m s =
MonadStateP -- given a monad m with a protected state layer

QState -- protected by capability QState
[s] -- holding a list of values of type s.
m

enqueue :: QStateLayer m s ⇒ s → m ()

enqueue s = do queue ← getp ‘withCapability‘ (QState ReadPerm)

putp (queue ++ [s]) ‘withCapability‘ (QState WritePerm)

dequeue :: QStateLayer m s ⇒ m s
dequeue = do queue ← getp ‘withCapability‘ (QState ReadPerm)

putp (tail queue) ‘withCapability‘ (QState WritePerm)

return (head queue)

Thanks to the use of the QState capability and the secure MonadStateP class, the internal state of the queue is private to
the Queue module. For convenience we define the QStateLayer type synonym, which can be used as a class constraint thanks
to the ConstraintKinds extension of GHC. Since the QState data constructor is not exported, external access is prevented —
even if explicit lifting can be used to access the respective instance of MonadStateP, it cannot be used to perform any
monadic operation on it because the proper capability is required. We still require to export QState as a type, in order to
create a suitable monad stack, e.g. to instantiate an integer queue:

type M = StateTP (QState ()) [Int] Identity

To construct a monad stack we are only interested in the capability type, but not in any particular permission — however
permissions will still be checked statically as required for each operation — hence we use () as the permission type in the
definition of M.

5.2. Shared persistent state

We now illustrate capability sharing with shared persistent state. We define a PriorityQueue module that adds a notion
of priority on top of Queue. In a priority queue one can access directly the most recent element having a high priority, using
the peekBy function. For efficiency, the PriorityQueue module needs direct access to the internal state of the queue. As we
do not want to do this by publicly exposing the capability QState, we send the capability on the channel PQChan provided
by PriorityQueue.

module Queue (enqueue,dequeue,QState ()) where

import PriorityQueue -- to get PQChan channel

newtype QState p = QState p

instance Capability QState ⊃RW where
attenuate (QState) perm = QState perm

instance Send PQChan QState ReadPerm where
receive perm = return $ QState perm

-- enqueue and dequeue operations as before

The implementation of PriorityQueue is as follows:

module PriorityQueue (PQChan (),peekBy) where

import Queue -- to get QState capability type

data PQChan = PQChan

queueState :: QState ReadPerm
queueState = fromChannel PQChan $ receive ReadPerm

peekBy :: (Ord s,QStateLayer m s) -- QStateLayer for an ordered type s

18 I. Figueroa et al. / Science of Computer Programming 119 (2016) 3–30
data ThrowPerm = ThrowPerm
data CatchPerm = CatchPerm
data TCPerm = TCPerm

-- private lattice
type family (a �Ex b) :: Constraint where

TCPerm �Ex ThrowPerm
TCPerm �Ex CatchPerm
a �Ex a

-- public lattice
class a �Ex b ⇒ a ⊃Ex b
instance a �Ex b ⇒ a ⊃Ex b

class (Monad m,Error e) ⇒ MonadErrorP c e m | c m → e where
throwErrorp :: p ⊃Ex ThrowPerm ⇒ e → CapT (c p) m a
catchErrorp :: p ⊃Ex CatchPerm ⇒ m a → (e → m a) → CapT (c p) m a

newtype ErrorTP c e m a = ErrorTP { runETP :: ErrorT e m a } deriving ...

instance (Monad m,Error e) ⇒ MonadErrorP c e (ErrorTP (c ()) e m) where
throwErrorp = lift ◦ ErrorTP ◦ throwError
catchErrorp m h = lift ◦ ErrorTP $ catchError (runETP m) (runETP ◦ h)

Fig. 7. Implementing protected exceptions: permission lattice and protected versions of the monad error type class and error monad transformer.

⇒ (s → s → Ordering) -- comparator to order s values
→ m (Maybe s) -- computation that maybe has a value s

peekBy comp = do queue ← getp ‘withCapability‘ queueState
if null queue then return Nothing

else return (Just $ maximumBy comp queue)

To use the internal state of the queue, the PriorityQueue module imports Queue, defines and exports its channel PQChan,
and retrieves the capability QState with the read-only permission, as sent by Queue. Then peekBy can access the internal
state of the queue as usual in the capabilities framework.

5.3. Protected exceptions

Exception handling may be seen as a communication between two modules, one that raises an exception, and one that
handles it. For correctness or security reasons, we may wish to ensure that a raised exception can only be handled by
specific modules. Protecting exception handling can also be implemented using exception capabilities, similarly to the im-
plementation of protected state (Fig. 7). First, we define the private and public lattices, �Ex and ⊃Ex , as well as permissions
ThrowPerm, CatchPerm and TCPerm for throw-only, catch-only, and throw-catch permissions. Then we define the protected
versions of the standard ErrorT monad transformer and MonadError type class.

Recall from Section 3.3 the example of exception interference, involving the consume and process functions:

program2 = process 23 -- empty queue exception caught by process, return 23

We can address exception interference using a QError exception capability in the implementation of dequeueEx . This
allows the Queue module to control which other modules are allowed to define their own handlers. To this end, let us
consider a QueueEx module, similar to Queue but where the dequeue operation, now dequeueEx , raises an exception if the
queue is empty.

module QueueEx (enqueue,dequeueEx,QState ()) where
-- ... QState definition, type class instances and enqueue as before ...

Similarly to protected state, we define the QErrorLayer type synonym which represents an error monad protected by the
QError capability:

data QError p = QError p

instance Capability QError ⊃Ex where
attenuate (QError) perm = QError perm

type QErrorLayer m =
MonadErrorP -- given a monad m with protected exception layer
QError -- protected by capability QError
String -- bound to String as the error representation
m

I. Figueroa et al. / Science of Computer Programming 119 (2016) 3–30 19
We focus on the implementation of dequeueEx . This function requires access to both effects: the state of the queue,
QStateLayer, and the exception mechanism, QErrorLayer.

dequeueEx :: (QStateLayer m s -- Access to QState-protected state layer
,QErrorLayer m -- Access to QError-protected error layer
) ⇒ m s

dequeueEx =
do queue ← getp ‘withCapability‘ (QState ReadPerm)

if null queue
then throwErrorp "Empty..." ‘withCapability‘ (QError ThrowPerm)

else do putp (tail queue) ‘withCapability‘ (QState WritePerm)

return (head queue)

By implementing consume in terms of dequeueEx we can distinguish between errors due to an empty stack, or errors due to
the invariant in consume:

consume :: (QStateLayer m Int -- Access to protected state layer
, QErrorLayer m -- Access to protected exception layer
, MonadError String -- Access to unprotected exception layer
) ⇒ m Int

consume = do x ← dequeueEx
if (x < 0) then throwError“Process error”

else return x

This code assumes a monad stack m with two error layers: one layer uses the regular MonadError class, while the second
one uses the protected MonadErrorP class. Then we adapt the type of process based on the new definition of consume:

process :: (QStateLayer m Int,
QErrorLayer m,

MonadError String m) ⇒ Int → m Int
process val = consume ‘catchError‘ (λe → return val)

Crucially, the new type signature of process makes explicit the fact that process cannot catch or throw exceptions bound
to QError, unless it has the proper capability. Furthermore, since the implementation uses catchError, which refers to the
regular MonadError layer, process will only handle errors produced by a violation of the invariant in consume. Indeed, the
following programs yield the expected results:

program1 = do enqueue (−10)

produce 23 -- returns the default value

program2 = produce 23 -- returns an exception due to empty queue

Now consider a debug function in a module that has access to the QError capability with permission implying CatchPerm.
In practice this means that debug can define a custom exception handler:

debug val = process val ‘catchErrorp‘ (λe → error "...")

‘withCapability‘ (QError CatchPerm)

Finally, for cases where the client is not trusted and cannot catch the exception, we can export a function dequeueErr ,
that reraises the exception using Haskell’s built-in error function:

dequeueErr :: (QStateLayer m s,QErrorLayer m) ⇒ m s
dequeueErr = dequeueEx ‘catchErrorp‘ error

‘withCapability‘ (QError CatchPerm)

Notice that the implementation of consume and process is asymmetric: we use a protected error layer and also a regular
non-protected error layer. This design is rather arbitrary and considers a general “for-all-purposes” error layer and a specific
layer for communicating queue exceptions. This is not a restriction nor an imposition of effect capabilities, in fact, the precise
design and specification of how many exception layers depends on the particular requirements of a software component.

20 I. Figueroa et al. / Science of Computer Programming 119 (2016) 3–30
5.4. Taming the IO monad

Monadic I/O is a defining characteristic of Haskell as a purely functional language, in contrast to e.g. ML or Scheme where
I/O is performed through direct side-effecting operations. The IO monad is special in that it interacts with the real world;
it is also unique because there exists no IO monad transformer, and as such it can only be used at the bottom of a monad
stack [32]. Because of its interaction with the real world, a misbehaving module that uses IO is particularly problematic and
could have severe consequences to the user of a program (e.g. it could delete all files in the user directory). Components
evaluated on a stack with IO at the bottom can access its effects even when using effect capabilities due to the implicit
instances of the MonadIO class that provide access to the liftIO :: IO a → m a operation. To address this situation we define
the protected IOP monad as a replacement for IO; and MonadIOP as a replacement for the unprotected MonadIO class.
Performing protected I/O operations now requires the IOPC capability. The definitions for protected IO are as follows:

module IOP (IOP (), IOPC (), liftIOP, runIOP) where

data IOPC p = IOPC p

instance Capability IOPC ⊃IO where
attenuate (IOPC) = IOPC perm

newtype IOP a = IOP {unIOP :: IO a } deriving ...

-- lattices �IO and ⊃IO to be defined...

runIOP :: IOP a → IO a
runIOP pio = unIOP pio

class Monad m ⇒ MonadIOP m where
liftIOP :: IOPC perm → IO a → m a

instance MonadIOP IOP where
liftIOP ! c io = IOP io

To use protected I/O a client program still needs to use IO at the bottom of the monad stack, however, the fundamental
idea is that IO operations should only be performed by trusted parts of the system, and only from IOP computations
constructed elsewhere. The �IO permission lattice is specified similarly to the previous lattices, and is described later in this
section.

Existing IO-based libraries can be reused thanks to the function liftIOP, which is the only operation defined by MonadIOP.
Using liftIOP one can construct protected I/O computations by wrapping existing IO computations, provided that the proper
IOPC capability is presented. For example, the protected version of readFile is implemented as follows (note we keep the
same name as its IO counterpart):

readFile :: (Capability IOPC ⊃IO -- capability to use protected IO
, perm ⊃IO FileInputPerm -- actual permission for file input operations
) ⇒ IOPC perm → FilePath → IOP String

readFile c path = liftIOP c $ IO.readFile path

Finally, to actually perform IOP effects, runIOP unwraps IOP computations. Note that this function is not protected as it
just runs computations that have already exhibited their capability to perform IO effects. As an illustration consider a trusted
module Config, which manages configuration files. Trusted means that IOP passes it the IOPC permissions for reading and
writing files on channel ConfigChan — but no other permissions. To avoid the direct dependency of IOP to each trusted
module, it should be possible to use a compile-time flag that specifies which modules receive IOPC on which channels.
This would be similar to how Safe Haskell [30] manages the trust relationship between modules. Then, Config can export
functionality to access configuration files to external modules.

module Config (readConfig,writeConfig, ...) where
import IOP as IOP

data ConfigChan deriving Generic
instance Channel ConfigChan

fileInputPerm :: IOPC FileInputPerm
fileInputPerm = fromChannel ConfigChan $ receive ConfigChan

fileOutputPerm :: IOPC FileOutputPerm
fileOutputPerm = fromChannel ConfigChan $ receive ConfigChan

readConfig f = IOP.readFile fileInputPerm f
writeConfig f = IOP.writeFile fileOutputPerm f

main = runIOP $ readConfig "config.txt"

I. Figueroa et al. / Science of Computer Programming 119 (2016) 3–30 21
Fig. 8. Lattice of permissions for the IO monad, and association to monadic operations.

Note that external modules still have no access to I/O operations, except through the Config module. In Haskell the main
function is the entry point to the real world where the I/O operations declared in the IO monad are actually performed.
Therefore, in this program I/O effects are only evaluated from trusted and protected computations by using IOP.

The lattice of IO permissions A particularly interesting application of effect capabilities with permissions is the IO monad. The
IO monad in Haskell provides 76 portable operations, suggesting that a single capability for the whole IO monad is clearly
too coarse-grained. Providing a module with the ability to use stdin and stdout should not necessarily imply granting it the
ability to use any of these 76 operations, such as that for altering the content of files. Similarly, one may want to grant a
module with the ability to write text to a file, while ensuring that the module does not use this ability to write arbitrary
binary data. Another example at the file level is to grant permission to open only temporary files — which comes with the
guarantee that existing files cannot be overwritten.

We studied the 76 portable operations of the IO monad, and propose a lattice of permissions that allows fine-grained
control over these operations (Fig. 8). Based on this lattice of permissions, we have redefined the IOP monad such that
the type of each operation specifies the required permission. Note that the lattice we propose is directly based on the
documentation of the IO monad in GHC,7 with few refinements. It should be considered as a first step towards a practical
lattice for permission-based I/O in Haskell.

6. The marriage of tags and capabilities

In this section we show how to leverage the benefits of tagged monads (Section 2), namely the robustness with respect to
layout changes to the monad stack, with the security guarantees of effect capabilities. We use monad views [22] as a specific
implementation of tagged monads, although integrating effect capabilities in other mechanisms should be very similar.
Before developing the technical contribution of this section, we go back to the motivating example of effect interference
(Section 3.1), where we wanted to implement a stack and a queue ADT using two state layers:

type M = StateT [Int] (StateT [Int] Identity)

client = do push 1
enqueue 2 -- value is put into the state layer used by the stack
x ← pop
y ← pop -- should raise error because stack should be empty
return (x + y) -- yields 3 due to state interference

7 http :/ /hackage .haskell .org /package /base /docs /System-IO .html.

http://hackage.haskell.org/package/base/docs/System-IO.html

22 I. Figueroa et al. / Science of Computer Programming 119 (2016) 3–30
In the combined approach with effect capabilities and monad views, the correct implementation — without effect inter-
ference — is as straightforward:

type M = TStateTP (QState ()) [Int] (TStateTP (SState ()) [Int] Identity)

client1 = do enqueue vq 1
push vs 2
x ← pop vs
y ← pop vs
return (x + y)

where vq = structure (tag :: (QState ()))

vs = structure (tag :: (SState ())))

The main differences between these two versions are:

• the use of a tagged monad stack, with tags QState and SState for the state of the queue and the stack, respectively, using
the TStateTP monad transformer,

• the new implementation of enqueue, pop and other operations, which take an additional argument vs or vq, and
• the definition of vq and vs that correspond to the views associated to the QState and the SState tag, respectively. These

views are created using structure and tag operations and represent the specific parts of the monad stack on which the
operations will work — effectively separating the states of the queue and the stack.

The same mechanism also solves the issue of exception interference (Section 3.3). We first define a tagged monad stack
with two layers for exceptions, which are defined with the TErrorTP transformer:

type M = TErrorTP (QError ()) String
(TErrorTP (EError ()) String (TStateTP (QState ()) [Int] Identity))

then, using the updated implementations of consume and process, we get the expected behavior — without exception inter-
ference — in the following two programs:

-- uses default value 23, catches invariant-related exception in process
program1 = do enqueue vq (−10)

process 23
where vq = structure (tag :: QState ())

-- raises "Queue is empty" exception, queue exception not caught by process
program2 = process 23

In the rest of this section we briefly summarize monad views (Section 6.1) and then describe how to implement protected
tagged monads using effect capabilities (Section 6.2). Finally, we show how to use this mechanism to program with abstract
data types in a quite imperative-like fashion (Section 6.3).

6.1. Monad views in a nutshell

Monad views were introduced by Schrijvers and Oliveira [22] as a mechanism to address the lack of robustness of
monadic components with respect to specific monad stack layouts. Theoretically, monad views are considered as monad
morphisms in a category with monads as objects and monad morphisms as arrows. Views are denoted using �, and are
instance of the View type class. All views support the from operation:

from :: (Monad m,Monad n,View (�)) ⇒ n � m → n a → m a

Additionally, bidirectional views, denoted as
�, also support the to operation:

to :: (Monad m,Monad n) ⇒ n
� m → m a → n a

To summarize the intuition behind monad views, given monads m and n a view allows us to transform computations in n
to computations in m. A bidirectional view additionally supports the inverse to transformation.

View-specific operations Monadic operations can be parameterized by views, which are first-class values. For instance con-
sider getv and putv defined in [22], where getv:

I. Figueroa et al. / Science of Computer Programming 119 (2016) 3–30 23
getv :: (Monad m,MonadState s n,View (�)) ⇒ (n � m) → m s
getv v = from v $ get

returns a computation m s from an arbitrary state layer n. Conversely, putv puts a new value into the state layer n:

putv :: (Monad m,MonadState s n,View (�)) ⇒ (n � m) → s → m ()

putv v = from v ◦ put

Views and tagged monads Under the monad views mechanism a tagged monad is created using nominal masks [22]. A nom-
inal mask refers to layers of the stack using names instead of relative positions. This is done with the tag monad transformer
TagT (tag), which labels a particular position of the monad stack with an arbitrary type tag. For inspecting tagged monad
stacks the type class n �tag m exposes a monad n representing the layer of the stack m tagged with type tag. That is, we
have the property:

n �tag m ⇒ ∃t. m = t (TagT (tag) n).

To obtain the view associated to tag that relates n and m we must use the structure operation:

class (Monad m,Monad n) ⇒ n �tag m where
structure :: View (�) ⇒ tag → (n � m)

In practice programmers use the tagged variants of the regular monad transformers, which are implemented in terms
of TagT . For instance, the tagged state and exception transformers are defined as follows:

type TStateT tag s m = TagT tag (StateT s m)

type TErrorT tag e m = TagT tag (ErrorT s m)

6.2. Protected tagged monads

In all tagged monad approaches [19,24,22], we are left with the issue that explicit lifting can still be used to access a
layer in the monad stack without holding the tag. For instance, the state interference example using tagged monads, but
without effect capabilities is defined as:

type M = TStateT (SState ()) [Int] (TStateT (QState ()) [Int] Identity)

client1 :: M Int
client1 = do enqueue vq 1

push vs 2
x ← pop vs
y ← pop vs -- error empty list, as expected
return (x + y)

where vq = structure (QState ())

vs = structure (SState ())

However, as views do not preclude the use of explicit lifting a function like evil_pop could deduce the specific layout of the
monad stack used to run a computation and then access the internal state of the queue:

evil_pop tag = do stack ← lift ◦ lift $ get
lift ◦ lift ◦ put $ (tail stack)
return $ head stack

Indeed, in the following example the state of the queue is altered by evil_pop, yielding 3 as a result:

client2 :: M Int
client2 = do enqueue vq 1

push vs 2
x ← evil_pop vs -- gets the 1 from the queue
y ← pop vs -- gets the 2 from the stack
return (x + y) -- returns 3

where vq = structure (QState ())

vs = structure (SState ())

24 I. Figueroa et al. / Science of Computer Programming 119 (2016) 3–30
We therefore propose to use tags as capabilities to perform the operations of a stack layer, thus benefiting both from
the robustness provided by tagged monads and the access discipline of effect capabilities. As a naming convention, we
append the PV suffix to the name of the transformers and type classes, e.g. MonadStatePV is the tagged protected version of
MonadState.

Previously we mentioned that to build a concrete monad stack we use the capability type constructor along the () type
as the permission (Section 5.1). Here we follow the same design, because to use a capability as a tag, we need to get rid
of the permission to get a tag that does only depend on the capability type. For that, we can assume that the lattice of
permissions of the capability as the unit type () as bottom element. This is done for instance for the ⊃RW lattice by defining
the parametric instance, and by defining the corresponding instance in the closed type family �RW :

type family (�RW a b) :: Constraint where
-- ... other instances�RW a ()

Then, any capability with permissions can be turned into a tag by using attenuate. However, this mechanism requires
access to a capability value, which may not be available in the case of private capabilities! To address this situation we add
the tag method to the Capability type class, which simply returns a witness of the capability with an empty permission:

class Capability c ⊃ | c → ⊃ where
attenuate :: p1 ⊃ p2 ⇒ c p1 → p2 → c p2
tag :: c ()

We start by describing the implementation of MonadStatePV , which leverages the protected type class MonadStateP. Es-
sentially, we require a monad stack m, that has a layer n tagged with capability c, and where n is an instance of MonadStateP.
The class defines two operations, getpv and putpv, that return protected computations that alter the specific state layer n.
The implementation of MonadStatePV is:

class (n �(c ()) m -- in m there is a monad view n tagged with c ()

, Capability c ⊃RW -- capability c and its R/W permission lattice
, MonadStateP c s n -- n must be a state layer protected by c for state s
) ⇒ MonadStatePV c s n m where

getpv :: (p ⊃RW ReadPerm,View (�)) ⇒ n � m → CapT (c p) m s
getpv tag = mapCapT (from tag) getp

putpv :: (p ⊃RW WritePerm,View (�)) ⇒ n � m → s → CapT (c p) m ()

putpv tag s = mapCapT (from tag)$ putp s

The marriage of tags and capabilities is reflected in the constraints of the class definition. The n �(c ()) m constraint
imposes that m exposes a layer n labeled with capability c. At the same time, MonadStateP c s n requires that n is a state
layer protected by the same capability c. Class operations are straightforwardly defined based on the regular protected
operations, using the machinery of monad views, that is, getpv and putpv take views as arguments. Finally, because the
protected operations getp and putp yield computations in monad n, we use mapCapT to apply the from tag transformation,
that turns computations in n to computations in m, to obtain protected computations in m, as is expected for each operation.
The definition of mapCapT is:

mapCapT :: (m a → n b) → CapT c m a → CapT c n b
mapCapT f (CapT c) = CapT (mapReaderT f c)

For the exception effect we define the MonadErrorPV class in a similar way:

class (n �(c ()) m -- in m there is a monad view n tagged with c ()

, Capability c ⊃Ex -- capability c and its throw/catch permission lattice
, MonadErrorP c e n -- n must be an error layer protected by c for error e
) ⇒ MonadErrorPV c e n m where

throwErrorpv :: (p ⊃Ex ThrowPerm,View (�)) ⇒ n � m →
e → CapT (c p) m a

throwErrorpv tag e = mapCapT (from tag)$ throwErrorp e

catchErrorpv :: (p ⊃Ex CatchPerm) ⇒ n
� m →
m a → (e → m a) → CapT (c p) m a

catchErrorpv tag ma hnd = mapCapT (from tag)$
catchErrorp (to tag ma) (to tag ◦ hnd)

I. Figueroa et al. / Science of Computer Programming 119 (2016) 3–30 25
A notable asymmetry in this class is that catchErrorpv specifically requires a bidirectional view (denoted as
�). This is
because throwing an exception at layer n means only to put a computation into the corresponding part of m, which is
exactly the functionality provided by from. However when using catchErrorpv it is necessary to inspect a computation in m
to detect whether an exception is present in layer n, which can be done only in bidirectional views using to.

6.3. Programming with abstract data types

A critical limitation of the methodology to program using abstract data types (ADTs) using effect capabilities, as presented
so far, is that each queue or stack module represents a single and standalone instance of either a queue or a stack. In contrast,
imperative programming languages like C allow developers to define an abstract set of operations — the ADT interface —
which are parametrized by a handle, that holds the specific information of each instance. Indeed, since the queue and stack
operations are implemented specifically in terms of the QState or SState capability, having more than one ADT would require
error-prone duplication of modules. In this section we show that by parametrizing over the capability type it is possible to
implement a generic stack abstract data type, just like in other imperative languages.

To start, we define a StackHandle as a structure that holds both the required tags — for accessing the proper layers in a
monad stack — and the required capabilities.

data StackHandle m ns ne cs ce ps pe = StackHandle {
tags :: ns � m, -- view to access state layer
tage :: ne
� m, -- view to access exception layer
caps :: cs ps, -- capability to perform state computations
cape :: ce pe -- capability to perform exception computations

}

To enforce the proper type constraints in the types of a StackHandle, we define the mkStackHandle function:

mkStackHandle :: (Monad m,Monad n, ...)

⇒ ns
� m → ne
� m → cs perms → ce perme
→ StackHandle m ns ne cs ce perms perme

mkStackHandle = StackHandle

Having access to a value of type StackHandle means having access to a particular instance of the stack ADT. The number
of instances is only constrained by the size and layout of the monad stack used in a given program. The push and pop
operations are defined as before, but are parametric on capability c:

push :: (Capability cs ⊃RW
, perms ⊃RW ReadPerm
, perms ⊃RW WritePerm
, ...) ⇒ StackHandle m ns ne cs ce perms perme → s → m ()

push (StackHandle tags tage caps cape) x = do
stack ← getpv tags ‘withCapability‘ caps
putpv tags (x : stack) ‘withCapability‘ caps
return ()

pop :: (Capability ce ⊃Ex,perme ⊃Ex ThrowPerm, ...)

⇒ StackHandle m ns ne cs ce ps pe → m s
pop (StackHandle tags tage caps cape) = do

stack ← getpv tags ‘withCapability‘ caps
if null stack

then throwErrorpv tage "Stack is empty" ‘withCapability‘ cape
else do putpv tags (tail stack) ‘withCapability‘ caps

return $ head stack

One of the technical challenges to define such a generic abstract data type is that we need to constrain both operations
with respect to the permission lattices ⊃RW and ⊃Ex . Indeed, this is not possible if the private lattices �RW and �Ex were
implemented as a “secret” (i.e. not exported) type class. Recall from Section 4.2 the definition of ⊃RW :

class a �RW b ⇒ a ⊃RW b -- public lattice
instance a �RW b ⇒ a ⊃RW b

This definition requires that for every instance a ⊃RW b there must exists another instance a �RW b. When we use a specific
capability, like QState, the typechecker can inspect the existing type class instances and verify that this condition holds.

26 I. Figueroa et al. / Science of Computer Programming 119 (2016) 3–30
However, this is not true in general for an arbitrary capability c. As the type checker cannot verify it, it prompt us to include
a constraint a �RW b in the definition of push — but the type class �RW is secret and we cannot make it public without
completely breaking permissions! Fortunately, one way out of this problem is to use a closed type family to represent the
private lattice of permissions. Other encodings that would allows us to have type classes with closed instances, but with
public visibility should also work.

Finally, the following example shows how to use two different instances of a stack, based on the generic implementation:

type M = TStateTP (QState1 ()) [Int] (TStateTP (QState2 ()) [Bool]
(TErrorTP (QError1 ()) String (TErrorTP (QError2 ()) String Identity)))

program :: M (Int,Bool)
program =

do push s1 10
x ← pop s1
push s2 True
y ← pop s2
return (x,y)

where
s1 = mkStackHandle tagQS1 tagQE1 (QState1 RWPerm) (QError1 TCPerm)

s2 = mkStackHandle tagQS2 tagQE2 (QState2 RWPerm) (QError2 TCPerm)

tagQS1 = structure (tag :: QState1 ())

tagQS2 = structure (tag :: QState2 ())

tagQE1 = structure (tag :: QError1 ())

tagQE2 = structure (tag :: QError2 ())

In this program there are two state layers, QState1 and QState2, and two exception layers, QError1 and QError2. Assuming
that these types are also declared elsewhere as capabilities, the program defines two stack handles, s1 and s2, and performs
some operations on them. The final result of program is the pair (10, true).

7. Related work

There exists an extensive literature regarding side-effects and interference control. Two main approaches based on types
are monads [17,31], type-and-effect systems [26], and their connections, like [33]. We believe that an expanded discussion
and comparison is beyond the scope of this work, hence we limit ourselves to selected and recent related works, particu-
larly in the context of Haskell and functional languages. In addition we review a few other approaches to control I/O and
exception effects.

7.1. Alternatives to classic monads and monad transformers

Extensible effects (EE) [11] proposes an alternative representation of effects, in Haskell, that is not based on monads
or monad transformers, and which can subsume the mtl library by providing a similar API. EE presents a client-server
architecture where an effectful operation is requested by client code and is then performed by a corresponding handler.
The internal implementation of EE uses a continuation monad, Eff , to implement coroutines, along with a novel mechanism
for extensible union types. An effectful value has type Eff r where r is a type-level representation, based on the novel
union types, of the effects currently available; thus defining a type-and-effect system for Haskell. EE does not describe
any mechanism for restricting access to effects. Any effect available in the type-level tracking of effects is available to any
component. To add two copies of the same effect while avoiding interference, the user is required to define a wrapper using
a newtype declaration. This means that each effect can be uniquely identified by its type.

The Effects [1] library is an effect system implemented in the dependently-typed language Idris, based on algebraic effect
handlers, and also designed as an alternative to monads and monad transformers. Similar to EE, Effects keeps track of the
available effects that can be used in a heterogeneous list. Performing an effectful operation requires a proof that the given
effect is indeed available, but such proof is automatically generated if the effect is available. As with EE, the Effects library
does not address the issue of controlling the access to effects. Any available effect can be used by any part of the system.
References to copies of a same effect (e.g. two integer states) are disambiguated using labels in the effect-tracking list.

In a recent development, Orchard and Petricek describe how to embed user-defined effect systems in Haskell [18] using
parametric effect monads. A parametric effect monad uses effect indices to give a more detailed description of the effects of
a computation. The annotations have a monoid structure (F, •, I) with the pure effect I, the set of effect indices F and the
effect composition operator •. Adapting the code from [18], the usual monadic operations return and >>= are augmented
with annotations as follows:

return :: a → MI a
(>>=) :: MG a → (a → MH b) → MG•H b

I. Figueroa et al. / Science of Computer Programming 119 (2016) 3–30 27
for effect sets G and H. This definitions state that lifting a value to a computation incurs no computational effect, hence its
type is indexed by I, and that the actual effects performed by >>= are described by the composition of the effects G used
by its first argument, and the effects H used by the function argument.

Effect capabilities are orthogonal to the mechanism used to implement effects, because they protect specific effectful
operations. Recent mechanisms like EE and Effects focus on how to enable flexible composition of effects — which is a
well-known drawback of monad transformers — rather than on controlling access to them. We have shown how to apply
effect capabilities to control access to effects in the context of “classic” monad transformers, mainly as a solution to known
interference issues. We believe that the same approach should be applicable to other effect mechanisms.

7.2. Controlling I/O operations

Perhaps the most well-known approach for fine-grained I/O access in Haskell is the work of Wouter Swierstra: Data
Types à la Carte (DLC) [25]. This work is proposed as a solution to the expression problem posed by Philip Wadler, which
is related to the modular extensibility of a language regarding type extensions and new functions over an existing data
type. The solution in DLC is based on the use of open expressions — which are not fixed to any specific type constructor —
and the composition of coproducts to expand the possible types of valid expressions. For instance, an expression of type
Expr (Val :+: Add) is either a value or the sum of two such expressions. Here, :+: is the coproduct composition whereas Val
and Add are independent definitions of different kinds of expressions. This technique is applied to split the IO monad,
regarded as a “sin bin” [25] of effectful operations, into specific classes of operations. The article provides an example of the
cat program, which is defined over expressions that only use the putChar, getChar, readFile and writeFile I/O operations.

In general, our work is not based on the ideas of DLC, although the results are similar. The main difference is that DLC
can be used to effectively split I/O effects into several classes of operations, but once these classes are defined, a programmer
can still use all available effects. On the other hand, the protected IOP monad makes all operations visible, but restricted by
the permission-lattice specified in Fig. 8.

7.3. Controlling exception interference

As we mentioned in 3.3, the conflicts of exception interference have been identified before in the context of aspect-
oriented programming [5]. Two solutions to this issue, in the field of aspect-oriented programming, rely on the same
essential idea: the need to establish different communication channels for exceptions. This idea is implemented in [2] with
a sophisticated pointcut and advice mechanism; in other approaches, exceptions raised at a certain execution level [29,28] —
a dynamically-scoped runtime parameter — can only be caught by handlers at the same level.

Protected exceptions use the same essential idea: a monad stack can be defined with several independent exception
layers, which can only be accessed with the proper capability.

8. Discussion

8.1. Technology summary

The implementation of effect capabilities in Haskell relies on several important language mechanisms that allow us to
enforce static type-based properties without custom modifications to the underlying type system. The fundamental mech-
anism for embedding type-level computation is provided by Haskell type classes. Indeed, as reported by McBride [15],
the introduction of multi-parameter type classes with functional dependencies opens the door to using Haskell to fake
part of the expressive power of dependently-typed languages. Since then further improvements to the language bring the
expressiveness of type-level guarantees in Haskell closer to that given by dependently-typed languages. In particular, we
fundamentally rely on four main mechanisms: multi-parameter type classes, functional dependencies, type families and
constraint kinds.

Multi-parameter type classes and functional dependencies A multi-parameter type class R t1 ... tn can be seen as a relation
R on types t1 ... tn , and instance declarations as ways to inductively define this relation, in a manner very similar to
logic programming. This technology enables the encoding of arbitrary relations at the type-level, which are then checked
statically by the type system. Furthermore, a functional dependency [10] (like in database theory), denoted as expression
m → s, expresses that the type of m uniquely determines the type of s. This avoids type ambiguity issues because it can be
used as a constraint to provide more precise control of type inference.

We are forced to use this technology because the implementation of the standard monad transformers and monad classes
already use it. In addition, the definition of type classes Capability, Send and the permission lattices rely on multi-parameter
type classes. More specifically, the Capability class also uses functional dependencies. Recall the definition (Section 4.4):

class Capability c ⊃ | c → ⊃

meaning that each capability is uniquely bound to a permission lattice, and therefore the capability type directly determines
that permission lattice.

28 I. Figueroa et al. / Science of Computer Programming 119 (2016) 3–30
Closed type families and constraint kinds Closed type families and constraint kinds are crucial to implement user-definable
permission lattices that cannot be bypassed by external modules and that can be used as an abstract constraint, as explained
in Section 6.3. Let us recall that a permission lattice is encoded as follows:

type family (a � b) :: Constraint where
-- particular instances

a � a = () -- reflexivity

class a � b ⇒ a ⊃ b

Here, the closed family � defines the specific relation describing the permission lattice. However, as a type family cannot
normally be used as a class constraint, this is not enough for our purposes. Therefore we add the Constraint kind annotation
to �, which enables the definition of ⊃. This definition states that a ⊃ b holds only when a � b holds. The advantage is
that ⊃ can be exported without fear because no external module can add instances to the closed type family, meaning that
no further instances of ⊃ can be externally defined.

If either of these extensions were not available, the implementation of permission lattices would require a private type
class �. However, this restricts the usage of ⊃ as a class constraint, as explained in Section 6.3, meaning that it would not
be possible to implement generic abstract data types. Only “concrete” abstract data types, bound to a specific capability, can
be defined in this setting.

8.2. Limitations

We identify several drawbacks or limitations of effect capabilities. For instance, we have not considered the unsafe
mechanisms that break proper module boundaries in Haskell, e.g. the use of unsafePerformIO or generic programming to
access private data constructors. Another drawback is that the current usage of capabilities is very verbose, as it requires
several type and instance declarations to be coherently defined. Similarly, the sharing mechanism requires mutually recursive
modules, thus hampering modularity and independent development of software components. Finally, using effect capabilities
requires explicit type signatures in the protected operations and in calls to receive, slightly hampering the benefits of type
inference.

As a more general reflection, we need to recall that type-level programming in Haskell is only an approximation to the
expressive power of dependent types. In such a type system, regular values can be used to index types, similar to how
type families are indexed by type constructors. However, Haskell is not a dependently-typed language, meaning that there
is a strict distinction between the type-level and the value-level. In practice, this means that access policies to protected
operations are limited to the capabilities of Haskell’s type system. Nevertheless, the design principles of effect capabilities
should apply also in the context of dependently-typed languages.

8.3. Effect capabilities beyond Haskell

Despite the Haskell-specific technologies used in the implementation of effect capabilities, we believe that the conceptual
mechanism is more broadly applicable: access to a protected operation depends on presenting a proper access token. This
mechanism can be applied either to dynamically- or statically-typed languages and is orthogonal to a specific programming
paradigm. The essence of the problem is the creation and sharing of those tokens. Crucially, the fundamental requirement in
any language with capability-based security is the unforgeability of capabilities. Given this requirement, sharing capabilities
is only a matter of (inter-module) scoping, that is, of controlling the visibility of tokens or token constructors.

9. Future work

We identify several directions for future work, mainly with the focus on overcoming the aforementioned limita-
tions. A first one, regarding safety, arises from the fact that we have ignored a number of Haskell features that de-
feat the integrity of the type system. For instance, module boundaries can be violated using Template Haskell or the
GeneralizedNewtypeDeriving language extension, or generic programming. Even worse, arbitrary I/O operations can be posed
as “pure” by using the highly controversial unsafePerformIO operation. Recently, Safe Haskell [30] has been proposed as an
extension to Haskell, implemented in GHC (as of version 7.2), which protects referential transparency and module bound-
aries by disabling the use of these unsafe features. Because the privacy and unforgeability of capabilities relies on effective
module boundaries, we plan to integrate the effect capabilities library as an extension of Safe Haskell.

A second line of work aims to lower the amount of boilerplate code that is required, like the instances of Capability and
Channel classes. This situation can be improved using generic programming (e.g.using the GHC.Generics library), to provide
default implementations for the receive and attenuate functions. Indeed, an initial application of generic programming is
already used in the downloadable implementation. A complementary approach is using Template Haskell [23], a template
meta-programming facility for Haskell. Note this does not conflict with the usage of Safe Haskell, because specific modules
can be explicitly marked as trustworthy.

I. Figueroa et al. / Science of Computer Programming 119 (2016) 3–30 29
Another important line of work is related to modularity. The main impact of effect capabilities on modularity is the
use of mutually dependent modules due to the static secret sharing mechanism. All involved modules must have access
to the communication channels and to instances of the Send type class. The issue is specially complex for the case of
protected I/O, because many different modules may require access to I/O permissions. Definitely it is not practical to have
a big monolithic module that grants those permissions. As a solution we envision the development of a compiler plugin or
some other external tool that combines code generation with an external registry of shared capabilities and permissions.
Perhaps this can be similar to how Safe Haskell manually manages the trustworthiness of modules using a command-line
tool.

Regarding the expressive power of effect capabilities, it would be interesting to study how to leverage the features of
dependently-typed languages in order to define more expressive access policies. This also paves the road for a rigorous
formalization of effect capabilities, for example in the context of recent developments on monadic meta-theory [6]. In addi-
tion, we consider the application of effect capabilities for other kinds of computations, like non-determinism, concurrency
or continuations. Finally, it remains to be studied how effect capabilities can be provided in programming languages with
imperative features but without explicit effects. An important insight to accomplish this goal is that capability-based access
is essentially a matter of scoping, which can be addressed with modern solutions such as scoping strategies [27].

Acknowledgements

This work was supported by the Inria Associated Team REAL. We thank the anonymous reviewers of SBLP and SCP for
their insightful and constructive comments.

References

[1] E. Brady, Programming and reasoning with algebraic effects and dependent types, in: Proceedings of the 18th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’13, ACM, New York, NY, USA, 2013, pp. 133–144.

[2] N. Cacho, F.C. Filho, A. Garcia, E. Figueiredo, EJFlow: taming exceptional control flows in aspect-oriented programming, in: Proceedings of the 7th ACM
International Conference on Aspect-Oriented Software Development, AOSD 2008, ACM Press, Brussels, Belgium, Apr. 2008, pp. 72–83.

[3] M.M.T. Chakravarty, G. Keller, S.P. Jones, Associated type synonyms, in: Proceedings of the Tenth ACM SIGPLAN International Conference on Functional
Programming, ICFP ’05, ACM, New York, NY, USA, 2005, pp. 241–253.

[4] M.M.T. Chakravarty, G. Keller, S.P. Jones, S. Marlow, Associated types with class, in: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’05, ACM, New York, NY, USA, 2005, pp. 1–13.

[5] R. Coelho, A. Rashid, A. Garcia, N. Cacho, U. Kulesza, A. Staa, C. Lucena, Assessing the impact of aspects on exception flows: an exploratory study,
in: J. Vitek (Ed.), Proceedings of the 22nd European Conference on Object-oriented Programming, ECOOP 2008, Paphos, Cyprus, July 2008, in: Lecture
Notes in Computer Science, vol. 5142, Springer-Verlag, 2008, pp. 207–234.

[6] B. Delaware, S. Keuchel, T. Schrijvers, B.C.d.S. Oliveira, Modular monadic meta-theory, in: Proceedings of the 18th ACM SIGPLAN Conference on Func-
tional Programming (ICFP 2013), ACM Press, Boston, MA, USA, Sept. 2013.

[7] R. Harper, Exceptions are shared secrets, http://existentialtype.wordpress.com/, Dec. 2012.
[8] R. Harper, Practical Foundations for Programming Languages, Cambridge University Press, 2012.
[9] J. Hughes, Global variables in Haskell, J. Funct. Program. 14 (5) (Sept. 2004) 489–502.

[10] M.P. Jones, Type classes with functional dependencies, in: Proceedings of the 9th European Symposium on Programming Languages and Systems, in:
Lecture Notes in Computer Science, vol. 1782, Springer-Verlag, 2000, pp. 230–244.

[11] O. Kiselyov, A. Sabry, C. Swords, Extensible effects: an alternative to monad transformers, in: Proceedings of the 2013 ACM SIGPLAN Symposium on
Haskell, Haskell ’13, ACM, New York, NY, USA, 2013, pp. 59–70.

[12] D. Leijen, E. Meijer, Domain specific embedded compilers, in: T. Ball (Ed.), Proceedings of the 2nd USENIX Conference on Domain-Specific Languages,
1999, pp. 109–122.

[13] H.M. Levy, Capability-Based Computer Systems, vol. 12, Digital Press, Bedford, Massachusetts, 1984.
[14] S. Liang, P. Hudak, M. Jones, Monad transformers and modular interpreters, in: Proceedings of the 22nd ACM Symposium on Principles of Programming

Languages, POPL 95, San Francisco, California, Jan. 1995, ACM Press, 1995, pp. 333–343.
[15] C. McBride, Faking it simulating dependent types in Haskell, J. Funct. Program. 12 (5) (July 2002) 375–392.
[16] M.S. Miller, Robust composition: towards a unified approach to access control and concurrency control, PhD thesis, John Hopkins University, Baltimore,

Maryland, USA, May 2006.
[17] E. Moggi, Notions of computation and monads, Inf. Comput. 93 (1) (July 1991) 55–92.
[18] D. Orchard, T. Petricek, Embedding effect systems in Haskell, in: Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell, Haskell ’14, ACM, New

York, NY, USA, 2014, pp. 13–24.
[19] D. Piponi, Tagging monad transformer layers, http://blog.sigfpe.com/2010/02/tagging-monad-transformer-layers.html, 2010.
[20] J.H. Saltzer, M.D. Schroeder, The protection of information in computer systems, 1975.
[21] D. Sangiorgi, D. Walker, The Pi-Calculus: A Theory of Mobile Processes, Cambridge University Press, 2003.
[22] T. Schrijvers, B.C. Oliveira, Monads, zippers and views: virtualizing the monad stack, in: Proceedings of the 16th ACM SIGPLAN Conference on Functional

Programming, ICFP 2011, Tokyo, Japan, Sept. 2011, ACM Press, 2011, pp. 32–44.
[23] T. Sheard, S.P. Jones, Template meta-programming for Haskell, SIGPLAN Not. 37 (12) (Dec. 2002) 60–75.
[24] M. Snyder, P. Alexander, Monad factory: type-indexed monads, in: Proceedings of the 11th International Conference on Trends in Functional Program-

ming, 2010, pp. 198–213.
[25] W. Swierstra, Data types á la carte, J. Funct. Program. 18 (4) (July 2008) 423–436.
[26] J.-P. Talpin, P. Jouvelot, The type and effect discipline, Inf. Comput. 111 (2) (June 1994) 245–296.
[27] É. Tanter, Beyond static and dynamic scope, in: Proceedings of the 5th ACM Dynamic Languages Symposium, DLS 2009, Orlando, FL, USA, Oct. 2009,

ACM Press, 2009, pp. 3–14.
[28] É. Tanter, Execution levels for aspect-oriented programming, in: Proceedings of the 9th ACM International Conference on Aspect-Oriented Software

Development, AOSD 2010, Rennes and Saint Malo, France, Mar. 2010, ACM Press, France, 2010, pp. 37–48.
[29] É. Tanter, I. Figueroa, N. Tabareau, Execution levels for aspect-oriented programming: Design, semantics, implementations and applications, Sci. Comput.

Program. 80 (1) (Feb. 2014) 311–342.

http://refhub.elsevier.com/S0167-6423(15)00406-2/bib62726164793A6963667032303133s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib62726164793A6963667032303133s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib636163686F416C3A616F736432303038s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib636163686F416C3A616F736432303038s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib6368616B72617661727479416C3A6963667032303035s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib6368616B72617661727479416C3A6963667032303035s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib6368616B72617661727479416C3A706F706C32303035s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib6368616B72617661727479416C3A706F706C32303035s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib636F656C686F416C3A65636F6F7032303038s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib636F656C686F416C3A65636F6F7032303038s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib636F656C686F416C3A65636F6F7032303038s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib64656C6177617265416C3A6963667032303133s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib64656C6177617265416C3A6963667032303133s1
http://existentialtype.wordpress.com/
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib7066706Cs1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib6875676865733A6A667032303034s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib6A6F6E65733A65736F7032303030s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib6A6F6E65733A65736F7032303030s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib6B6973656C796F76416C3A6861736B656C6C32303133s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib6B6973656C796F76416C3A6861736B656C6C32303133s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib6C65696A656E4D65696A65723A64736C31393939s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib6C65696A656E4D65696A65723A64736C31393939s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib6C657679313938346361706162696C697479s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib6C69616E673A706F706C3935s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib6C69616E673A706F706C3935s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib6D6342726964653A6A667032303032s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib6D696C6C6572s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib6D696C6C6572s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib6D6F6767693A69616331393931s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib6F726368617264506574726963656B3A6861736B656C6C32303134s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib6F726368617264506574726963656B3A6861736B656C6C32303134s1
http://blog.sigfpe.com/2010/02/tagging-monad-transformer-layers.html
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib7069626F6F6Bs1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib73636872696A766572734F6C6976656972613A6963667032303131s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib73636872696A766572734F6C6976656972613A6963667032303131s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib736865617264506579746F6E4A6F6E65733A6861736B656C6C32303032s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib736E79646572416C6578616E6465723A74667032303130s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib736E79646572416C6578616E6465723A74667032303130s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib7377696572737472613A6A667032303038s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib74616C70696E4A6F7576656C6F743A696331393934s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib74616E7465723A646C7332303039s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib74616E7465723A646C7332303039s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib74616E7465723A616F736432303130s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib74616E7465723A616F736432303130s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib74616E746572416C3A73637032303134s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib74616E746572416C3A73637032303134s1

30 I. Figueroa et al. / Science of Computer Programming 119 (2016) 3–30
[30] D. Terei, S. Marlow, S. Peyton Jones, D. Mazières, Safe Haskell, in: Proceedings of the 5th ACM Symposium on Haskell, ACM, 2012, pp. 137–148.
[31] P. Wadler, The essence of functional programming, in: Proceedings of the 19th ACM Symposium on Principles of Programming Languages, POPL 92,

Albuquerque, New Mexico, USA, Jan. 1992, ACM Press, 1992, pp. 1–14.
[32] P. Wadler, How to declare an imperative, ACM Comput. Surv. 29 (3) (Sept. 1997) 240–263.
[33] P. Wadler, The marriage of effects and monads, ACM SIGPLAN Not. 34 (1) (Sept. 1998) 63–74.

http://refhub.elsevier.com/S0167-6423(15)00406-2/bib74657265693A6861736B656C6C32303132s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib7761646C65723A706F706C3932s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib7761646C65723A706F706C3932s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib7761646C65723A6373757231393937s1
http://refhub.elsevier.com/S0167-6423(15)00406-2/bib7761646C65723A736967706C616E31393938s1

	Effect capabilities for Haskell: Taming effect interference in monadic programming
	1 Introduction
	1.1 Contributions
	1.2 Effect capabilities by example
	1.3 Outline

	2 Monadic programming in a nutshell
	2.1 A primer on monads
	2.2 Programming with monad transformers

	3 Effect interference in monadic programming
	3.1 State interference
	3.2 State encapsulation pattern
	3.3 Exception interference

	4 A generic static framework for capabilities and permissions
	4.1 Capabilities as a computational effect
	4.2 Private lattice of permissions
	4.3 Static sharing of capabilities
	4.4 Delegation and attenuation

	5 Effect capabilities: upgrading monads with capabilities
	5.1 Private persistent state
	5.2 Shared persistent state
	5.3 Protected exceptions
	5.4 Taming the IO monad

	6 The marriage of tags and capabilities
	6.1 Monad views in a nutshell
	6.2 Protected tagged monads
	6.3 Programming with abstract data types

	7 Related work
	7.1 Alternatives to classic monads and monad transformers
	7.2 Controlling I/O operations
	7.3 Controlling exception interference

	8 Discussion
	8.1 Technology summary
	8.2 Limitations
	8.3 Effect capabilities beyond Haskell

	9 Future work
	Acknowledgements
	References

