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water equations
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Abstract. The present work is focused on the numerical approximation of the shallow
water equations. When studying this problem, one faces at least two important issues,
namely the ability of the scheme to preserve the positiveness of the water depth, along
with the ability to capture the stationary states. We propose here a Godunov-type method
that fully satisfies the previous conditions, meaning that the method is in particular able
to preserve the steady states with non-zero velocity.
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1 Introduction

The present work is dedicated to the derivation of a numerical scheme for the
well-known shallow water equations, given by{

∂t h + ∂x(hu) = 0

∂t (hu) + ∂x

(
hu2 + g h2

2

)
= −gh∂x z

(1)

where z(x) denotes a given smooth topography and g > 0 is the gravity constant.
The primitive variables are the water depth h and its velocity u, which both
depend on the space and time variables, respectively x ∈ R and t ∈ [0, ∞). At
time t = 0, we assume that the initial water depth h(x , t = 0) = h0(x) and
velocity u(x , t = 0) = u0(x) are given.
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The term “shallow water” comes from the idea that, if we consider a space
domain of length L > 0 and if we assume that the water depth h(x , t) is very
small compared to L for all x ∈ [0, L] and all t > 0, then it is reasonable to
assume that the velocity u(x , t) does not depend on the water depth. Under this
hypothesis, the previous model is obtained from the conservation of mass and
momentum with no friction, viscosity and Coriolis forces (see [13]).

To shorten the notations, let us rewrite (1) as follows:

∂t U + ∂x F(U) = S(U, z) (2)

where U =
(

h
hu

)
, F(U) =

(
hu

hu2 + gh2/2

)
, S(U, z) =

(
0

−gh∂x z

)
.

From now on, let us emphasize we do not consider dry areas (i.e. where
h = 0). The method should then satisfy h(x , t) > 0 for all (x , t). We will
also pay a particular attention to the steady states, governed by ∂x(hu) = 0

and ∂x

(
hu2 + g h2

2

)
= −gh∂x z. Therefore, the smooth steady states under con-

sideration are given by ⎧⎨
⎩

hu = constant
u2

2
+ g(h + z) = constant.

(3)

There have been a huge amount of works on this topic since the last two decades,
most of them focusing on the design of numerical schemes satisfying the so-
called lake at rest equilibrium. Much less indeed considered the moving water
equilibria. Without any attempt to be exhaustive, on can first quote the following
series of works, [1], [3], [5], [6], [10], [11], [12], [14], [16], [18], and then
the following papers which are more specifically interested in moving water
equilibria, namely [7], [8], [14], [20], [21], [22], [23]. We also refer the reader to
the recent book [15] where a more complete list of references can be found, and
to the recent papers [4] and [2] where similar techniques to the ones proposed in
the present contribution are used to derive entropy-satisfying and/or fully well-
balanced schemes based on simple approximate Riemann solvers (see also [9] for
related issues). In the present work, we will indeed describe an easy to implement
Godunov-type scheme which is positive (i.e. that preserves the positiveness of
h), fully well-balanced (i.e. able to restore all the steady states) and based on the
derivation of a simple approximate Riemann solver. Interestingly, this solver is
however derived from a suitable linearization of a positive, entropy-satisfying
and fully well-balanced scheme described in [4], which makes it far easier to
implement. Numerical experiments are then proposed to illustrate the behavior
of this Godunov-type method.
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2 Numerical method

2.1 Godunov-type methods

We introduce a space step �x and a time step �t . We define the mesh interfaces
x j+1/2 = j�x , the cells Cj = [x j−1/2, x j+1/2), the cell centers x j and the
intermediate times t n+1 = t n + �t . For all j ∈ Z and n ∈ N, we compute a
piecewise constant approximation of the exact solution U(x , tn) and denote it
Un

j , namely Un
j ≈ U(x , t n), if x ∈ [x j−1/2, x j+1/2). At t = 0, we take U0

j =
1

�x

∫ x j+1/2

x j−1/2
U0(x)dx . Now, assuming (Un

j ) j∈Z to be known, we make it evolve to

the next time level t n+1 by considering a Godunov-type scheme. This is achieved
through two steps, the first one being the computation of the evolution from
the initial data (Un

j ) j∈Z to time t n+1 according to the model, and the second
one being a projection to ensure that (Un+1

j ) j∈Z remains piecewise constant on
each Cj .

Step 1: Evolution in time. The aim of this first step is to compute an ap-
proximate solution of the model at time �t with initial condition given by
x → U(x , tn). We build an approximate solution of the Riemann problem that
appears at each interface x j+1/2 and associated with the initial data

(U(x , 0), z(x)) =
{

(UL, zL ) if x < x j+1/2

(UR, zR) if x > x j+1/2
,

where we introduced the notations UL = Un
j , UR = Un

j+1, zL = z j , zR = z j+1.
The proposed approximate Riemann solver is made of three waves propagating
with velocities λL = λL(uL, hL) < 0, λ0 = 0, λR = λR(u R, h R) > 0 and
separating four constant states UL, U∗

L, U∗
R and UR . Let us note that the stationary

wave is introduced in order to make the scheme able to preserve the moving
water equilibria. This Riemann solver will be described in details in the next
section. It can be already represented in the phase space (x , t) as follows:

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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and setting ξ j+1/2 = x−x j+1/2

t is thus given by

U(x , t) =

⎧⎪⎪⎨
⎪⎪⎩

UL if ξ j+1/2 ≤ λL

U∗
L if λL < ξ j+1/2 ≤ 0

U∗
R if 0 < ξ j+1/2 ≤ λR

UR if λR < ξ j+1/2.

The approximate solution of the model at time �t and with initial condition
x → U(x , t n) is denoted x → Un+1(x) and then defined as the juxtaposition
of the approximate Riemann solutions set at each interface x j+1/2 with �t such
that the waves created at each interface do not meet with each other, namely such
that

�t ≤ 1

2
min

j

[
min

(
�x

|λL j | ,
�x

λR j

)]
. (4)

Step 2: Projection. The solution x → Un+1(x) is piecewise constant but not
on the cells of the mesh. As it is customary, a piecewise constant approximate
solution on each cell of the mesh is obtained by averaging x → Un+1(x) on the
Cj , j ∈ Z. This is expressed with the following update formula:

Un+1
j = 1

�x

∫ x j+1/2

x j−1/2

Un+1(x)dx , j ∈ Z. (5)

To conclude this section, note that x → Un+1(x) being piecewise constant, it
can be easily proved that the exact value of (5) is also given by the formulas

Un+1
j = Un

j − �t

�x

(
(� j+1/2 − � j−1/2) − g�x

s j+1/2 + s j−1/2

2

)
, j ∈ Z,

�(UL, UR) = FL + FR

2
− |λL |(U∗

L − UL) + |λR|(UR − U∗
R)

2
.

Here � j+1/2 = �(U j , U j+1) for all j and s j+1/2 = s(U j , U j+1) denotes an
approximation of the source term −{h∂x z} designed in such a way that the well-
balanced property is satisfied. It will be specified in the next section.

2.2 Definition of the approximate Riemann solver

The intermediate states

U∗
L =

(
h∗

L

h∗
L u∗

L

)
, U∗

R =
(

h∗
R

h∗
Ru∗

R

)

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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are defined in such a way that some consistency properties in the integral sense
are satisfied (see [11], [12], [9], [4] for more details), which are given by the
relation

F(UR) − F(UL) − �x S(UL, UR) = λL(U∗
L − UL) + λR(UR − U∗

L), (6)

with S(UL, UR) = (0, gs(UL, UR))T , together with two equilibrium relations
across the stationary wave which write as follows:

h∗
Lu∗

L = h∗
Ru∗

R (7)

h∗
L

u2
L

2hL
+ g(h∗

L + zL ) = h∗
R

u2
R

2h R
+ g(h∗

R + zR). (8)

These two relations can be understood as a natural h-linearization of the fol-
lowing ones which are used in [4] and express the continuity of the Riemann
invariants (3) across the stationary discontinuity:

h∗
Lu∗

L = h∗
Ru∗

R

(h∗
L u∗

L)2

2(h∗
L)2

+ g(h∗
L + zL ) = (h∗

Ru∗
R)2

2(h∗
R)2

+ g(h∗
R + zR).

Note that other linearizations could have been considered. The intermediate
states are then uniquely defined by solving explicitly the 4 × 4 linear system
(6)-(7)-(8) through the following relations

h∗
L = (λR − λL)

(
g + u2

R
2h R

)
hH L L + gλR(zR − zL )

λR

(
g + u2

L
2hL

) − λL

(
g + u2

R
2h R

)

h∗
R = (λR − λL)

(
g + u2

L
2hL

)
hH L L − gλL(zL − zR)

λR

(
g + u2

L
2hL

) − λL

(
g + u2

R
2h R

)
u∗

L = 1

h∗
L

(
q H L L + g · �x · s

λR − λL

)
,

u∗
R = 1

h∗
R

(
q H L L + g · �x · s

λR − λL

)

hH L L = λRh R − λLhL

λR − λL
− 1

λR − λL
(h Ru R − hLuL)

q H L L = λRh Ru R − λLhLuL

λR − λL
− 1

λR − λL

(
h Ru2

R + g
h2

R

2
− hL u2

L − g
h2

L

2

)
Bull Braz Math Soc, Vol. 47, N. 1, 2016



�

�

“main” — 2016/2/25 — 18:54 — page 122 — #6
�

�

�

�

�

�

122 C. BERTHON, C. CHALONS, S. CORNET and G. SPERONE

are the values of h and q associated with the HLL Riemann solver [17].

2.3 Fully well-balanced and positivity properties

In order for the approximate Riemann solver to be fully well-balanced, we pro-
pose to define s(UL, UR) at each interface by

�x s(UL, UR) = −hLh R

h
(zR − zL ) + (h R − hL)3

4h
(9)

where h = hL+h R
2 . We have the following fully well-balanced property (see [4]).

Lemma. Let UL and UR such that the following well-balanced relations hold,

hL uL = h Ru R (10)

u2
L

2
+ g(hL + zL ) = u2

R

2
+ g(h R + zR). (11)

Then, the proposed approximate Riemann solver is stationary in the sense that
U∗

L = UL and U∗
R = UR. The proposed Godunov-type method is then fully

well-balanced in the sense that it preserves stationary solutions of the model.

Proof. The approximate Riemann solver is stationary provided that

h∗
L = hL, h∗

L u∗
L = hL uL, h∗

R = h R, h∗
Ru∗

R = h Ru R. (12)

Let us check that such a choice of h∗
L , h∗

R , (hLuL)∗ and (h Ru R)∗ actually satisfies
(6)-(7)-(8). Since (6)-(7)-(8) admits an unique solution, this is indeed sufficient
to prove the fully well-balanced property by uniqueness of the proposed approx-
imate Riemann solution. Let us then assume that h∗

L , h∗
R , (hLuL)∗ and (h Ru R)∗

are defined by (12).
On the first hand, the first equation of (6) then writes hLuL = h Ru R , which is

clearly satisfied by (10). On the other hand, the second equation of (6) writes(
h Ru2

R + g
h2

R

2

)
−

(
hLu2

L + g
h2

L

2

)
− g�x s(UL, UR) = 0,

or

g�x s(UL, UR) = (h Ru R)2

h R
− (hL uL)2

hL
+ g

2
(h R + hL)(h R − hL).

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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Thanks to (10) and setting q = hLuL = h Ru R, we have the following equalities:

g�x s(UL, UR) = q2

(
1

h R
− 1

hL

)
+ g

2
(h R + hL)(h R − hL)

= − q2

hLh R
(h R − hL ) + g

2
(h R + hL)(h R − hL)

= g

2
(h2

R − h2
L ) − q2(h2

R − h2
L)

hL h R(hL + h R)
.

But from (11), we write −g(zR − zL ) = g(h R − hL) − q2

2h2
L h2

R
(h2

R − h2
L), so that

−q2(h2
R − h2

L)

hLh R
= −2ghLh R(zR − zL + h R − hL ).

We finally obtain

g�x s(UL, UR) = g

2
(h2

R − h2
L ) − 2g

hL h R

hL + h R
(zR − zL + h R − hL)

�x s(UL, UR) = −hL h R

h
(zR − zL ) − (h R − hL)

(hLh R

h
− h

)
.

Since hLh R − h
2 = −(h R − hL)2/4, we end up with the relation

�x s(UL, UR) = −hL h R

h
(zR − zL ) + (h R − hL)3

4h
,

which is nothing but the proposed definition of s(UL, UR). The second equation
of (6) is thus also satisfied. At last, it is clear that (7) and (8) hold true thanks to
(10) and (11), which concludes the proof.

Now, observe that while the source term s(UL, UR) is expected to be null when
zL = zR , it is clearly not true since

s(UL, UR)|{zL =zR } = + 1

�x

(h R − hL )3

4h
�

�x→0
0,

except if hL = h R . Therefore a compromise has to be achieved and this is the
purpose of the following discussion. Let C be a L∞ bound of the derivative ∂x h
which can be numerically implemented using a finite difference approximation:

C > max
j

|h j+1 − h j−1|
2�x

. (13)

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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Note that we took here a centered approximation for the sake of precision, but a
forward approximation would have suited as well. Now, let us define

δh =
{

h R − hL if |h R − hL | ≤ C�x
sgn(h R − hL)C�x otherwise

(14)

and propose the following approximation for the source term

�x s(UL, UR) = −hLh R

h
(zR − zL ) + (δh)3

4h
. (15)

We note that for smooth solutions,we obtain the same approximation than before
at least for sufficiently small �x (the scheme then remains fully well-balanced),
while when zL = zR , we now clearly have s(UL, UR)|{zL =zR } = O(�x 2) −→

�x→0
0.

We thus took this definition of the source term in practice. Let us now conclude
this section with the positivity property of the proposed approximate Riemann
solver, which proves that the Godunov-type scheme keeps h positive (see [4]).

Lemma. There exists −λL > 0 and λR > 0 large enough such that h∗
L and

h∗
R are positive.

Proof. Let us first assume that −λL and λR large enough to enforce hH L L to
be positive. Next, we first assume zR − zL > 0 so that h∗

L is obviously positive.
Concerning h∗

R we have

h∗
R =

(
1 + ∣∣ λL

λR

∣∣) (
g + u2

L
2hL

)
hH L L + g

∣∣ λL
λR

∣∣(zL − zR)(
g + u2

L
2hL

)
+ ∣∣λL

λR

∣∣ (
g + u2

R
2h R

) .

By considering |λL/λR| small enough, which is always possible, we obtain
h∗

R > 0. Similarly, if zR − zL < 0, we have h∗
R > 0 and we get h∗

L > 0 as
soon as |λR/λL | is fixed small enough.

3 Numerical results

We consider three different cases: the propagation of perturbations around an
equilibrium state for which we compare the results with those obtained with
the hydrostatic reconstruction scheme [1], and two cases where the ability of the
scheme to converge to moving water equilibria when the final time goes to infinity
is tested. Let us emphasize that trivial test cases starting from a moving water
equilibrium as initial data are not presented since by construction the proposed
scheme does preserve them and is thus exact.

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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3.1 Propagation of perturbations

In this test case, we perturbed a steady state solution by a pulse that splits into
two opposite waves over a continuous bed. The parameters are described here-
after: the space domain is reduced to the interval [0, 2]. We work with out-
flow boundary conditions, and the bottom topography is defined by z(x) =
2 + 0.25(cos(10π(x − 0.5))+ 1) if 1.4 < x < 1.6, and 2 otherwise. The initial
data are u(0, x) = 0 and h(0, x) = 3 − z(x) + �h if 1.1 < x < 1.2, and
3 − z(x) otherwise, where �h = 0.001 is the height of the perturbation. The
CFL parameter is set to 0.9. The final time is fixed at T = 0.2, and the space
step at �x = 1/40.

A reference solution is obtained by hydrostatic reconstruction applied to the
HLL flux with a mesh of 20000 cells. We compare the results provided by our
fully well-balanced scheme and the hydrostatic reconstruction, in the conditions
described above. We obtain good results but the numerical diffusion turns out to
be more important with the fully well-balanced scheme.

3.2 Steady flow over a bump.

The aim of this test case is to test the ability of the scheme to converge to some
moving water equilibrium. Let us remind that the steady states are governed by
the equations hu = K1 and u2

2 + g(h + z) = K2. To ensure that these equalities
are satisfied when t → ∞, we define

ε = (max
x

(hu) − min
x

(hu)) + (max
x

(u2/2 + g(h + z)) − min
x

(u2/2 + g(h + z))

and use ε as a stopping criterion. The time history of ε is shown for both test
cases on Figure 2.

Fluvial regime. In this test case, we set K1 = 1 and K2 = 25, we denote
heq(x), ueq(x) the values of h and u at this equilibrium. The domain is [−2, 2]
and the bottom topography is defined by z(x) = (cos(10π(x + 1)) + 1)/4 if
−0.1 ≤ x ≤ 0.1 and 0 elsewhere. The CFL parameter is equal to 0.5. Initial
condition is chosen out of equilibrium and given by h = heq and u = 0. The
boundary conditions are set to be{

∂x h(x = −2) = 0,

(hu)(x = −2) = K1,
and

{
h(x = 2) = heq(x = 2),

∂x(hu)(x = 2) = 0.

We let the system evolve and actually observed that the solution reaches the
equilibrium previously defined within the machine precision when t → ∞.

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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Figure 1: Propagation of perturbations: Comparison of free surfaces h + z (top)
and discharge q (bottom) for different schemes.

Transcritical regime without shock. In this test case, we set K1 = 3, 2K2 =
3(K1g)2/3+g. We used the same boundary conditions and started from the same
initial condition. Here again, the moving water equilibrium were reached to the
machine precision, which is a benefit from the fully well-balanced property.

Bull Braz Math Soc, Vol. 47, N. 1, 2016
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Figure 2: Time history of log10(ε) for the fluvial regime (top) and transcritical
regime (bottom).
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