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In this paper, we study symmetry property for positive solutions of mixed integro-
differential equations

{
(−Δ)α1

x u + (−Δ)α2
y u = f(u) in BN

1 (0) ×BM
1 (0),

u = 0 in (RN × R
M ) \ (BN

1 (0) ×BM
1 (0)),

(0.1)

where N , M ≥ 1, x ∈ BN
1 (0) = {x ∈ R

N : |x| < 1}, y ∈ BM
1 (0) = {y ∈ R

M :
|y| < 1}, the operator (−Δ)α1

x denotes the fractional Laplacian of exponent α1 ∈
(0, 1) with respect to x, (−Δ)α2

y denotes the fractional Laplacian of exponent
α2 ∈ (0, 1) with respect to y. We make use of the Maximum Principle for small 
domain to start the moving planes to obtain the symmetry results for positive 
solutions.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The study of radial symmetry of positive solutions to semilinear elliptic equations in bounded domains 
has been the concern of numerous authors along the last several decades. It was the seminal work by Gidas, 
Ni and Nirenberg [10] that settled this property of positive C2-solutions for elliptic equation{

−Δu = f(u) in B1,

u = 0 on ∂B1.
(1.1)

They proved that any positive C2-solution of (1.1) is radially symmetric and decreasing by the method of 
moving planes as in [20]. More later, Berestycki and Nirenberg in [3] gave a more simple proof of this result 
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using a very powerful nonlinear strategy, the method of moving planes based on the Maximum Principle for 
small domain which is derived by the Aleksandrov–Bakelman–Pucci (ABP) estimate. More generally, if the 
domain is symmetric and convex with respect to a hyperplane then the solutions have the same symmetry. 
Related results in the whole space and exterior domains were obtained by Li [12], Reichel [15] and Sirakov 
[23], under the supplementary hypothesis that f is nonincreasing in a right neighborhood of zero.

During the last years there has been a renewed and increasing interest in the study of linear and nonlinear 
integral operators, especially, the fractional Laplacian, motivated by great applications and by important ad-
vances on the theory of nonlinear partial differential equations, see [4,6,9,14,16,21,22,24] for details. In some 
recent works, Guillen and Schwab in [11] proved an ABP estimate for integro-differential equations, Ros-
Oton et al. obtained the Pohozaev identities in [19] and the regularities in [17,18], for more see [13]. Felmer 
et al. [8] provided the Maximum Principle for small domain to equations involving the fractional Laplacian 
and then obtained the radial symmetry of positive classical solutions for fractional elliptic equations{

(−Δ)αu = f(u) in B1,

u = 0 in R
N \B1,

(1.2)

using the method of moving planes as in [3,10]. The method of moving planes is applied to deal with the 
overdetermined fractional problems, see [7,25].

The elliptic equations with mixed integro-differential operators (−Δ)α1
x +(−Δ)α2

y , which is the fractional 
Laplacian of exponent α1 ∈ (0, 1) with respect to x and the fractional Laplacian of exponent α2 ∈ (0, 1)
with respect to y, modeling diffusion sensible to the direction, are associated to Brownian and Levy–Itô 
processes. Barles, Chasseigne, Ciomaga and Imbert in [1,2] and Ciomaga in [5] considered the existence and 
the regularity of solutions of equations involving mixed integro-differential operators. Later on, Felmer and 
Wang studied the decay and the symmetry properties of positive solutions to the mixed integro-differential 
equations in the whole space. In the present paper, we are interested in the symmetry results of positive 
solutions for mixed integro-differential equation in a bounded domain, that is,{

(−Δ)α1
x u + (−Δ)α2

y u = f(u) in BN
1 (0) ×BM

1 (0),

u = 0 in (RN × R
M ) \ (BN

1 (0) ×BM
1 (0)),

(1.3)

where N , M ≥ 1, x ∈ BN
1 (0) = {x ∈ R

N : |x| < 1}, y ∈ BM
1 (0) = {y ∈ R

M : |y| < 1}, the operators (−Δ)α1
x

and (−Δ)α2
y are given by

(−Δ)α1
x u(x, y) = P.V.

∫
RN

u(x, y) − u(z, y)
|x− z|N+2α1

dz (1.4)

and

(−Δ)α2
y u(x, y) = P.V.

∫
RM

u(x, y) − u(x, z̃)
|y − z̃|M+2α2

dz̃, (1.5)

for all (x, y) ∈ BN
1 (0) × BM

1 (0). Here P.V. denotes the principal value of the integral, that for notational 
simplicity we omit in what follows.

Before stating our main result we make precise the notion of solution that we use in this paper. We 
say that a continuous function u : RN × R

M → R is a classical solution of equation (1.3) if (−Δ)α1
x u and 

(−Δ)α2
y u are defined at any point of BN

1 (0) ×BM
1 (0), according to the definitions given in (1.4) and (1.5), 

and if u satisfies the equation and the external condition in a pointwise sense.
Now we are ready for our main theorem on symmetry results of positive solutions of equation (1.3). It 

states as follows:
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Theorem 1.1. Assume that the function f : [0, ∞) → R is locally Lipschitz. If u is a positive classical solution 
of equation (1.3), then

u(x, y) = u(|x|, |y|).

We prove this result using the method of moving planes based on the Maximum Principle for small 
domain, which is derived by Aleksandrov–Bakelman–Pucci (ABP) estimate. While for the equations with 
mixed integro-differential operators, ABP estimate is not available, we introduce a new way to obtain the 
Maximum Principle for small domain. Then we start the moving planes as in [3,8] to prove the symmetry 
results of positive solutions of (1.3).

The rest of the paper is organized as follows. In Section 2, we prove the Maximum Principle for small 
domain for equations involving mixed integro-differential operators. In Section 3, we prove Theorem 1.1 by 
the moving planes method based on the Maximum Principle for small domain.

2. Preliminaries

In this section, we introduce a type of Maximum Principle for small domain for our mixed type operators, 
which is a key tool in the proceeding of moving planes. For an open domain Ω ⊂ R

N+M , we denote by Ωn

the projection of Ω in the direction x and by Ωm the projection of Ω in the direction y, that is,

Ωn = {x ∈ R
N : ∃y ∈ R

M s.t. (x, y) ∈ Ω} (2.1)

and

Ωm = {y ∈ R
M : ∃x ∈ R

N s.t. (x, y) ∈ Ω}. (2.2)

It is obvious that Ωn and Ωm are open sets in RN and RM respectively and

Ω ⊂ Ωn × Ωm.

We start with the following lemma:

Lemma 2.1. Let Ω be a bounded open set. Suppose that h : Ω → R is in L∞(Ω) and w ∈ L∞(RN × R
M ) is 

a classical solution of {
−(−Δ)α1

x w(x, y) − (−Δ)α2
y w(x, y) ≤ h(x, y), (x, y) ∈ Ω,

w(x, y) ≥ 0, (x, y) ∈ (RN × R
M ) \ Ω.

(2.3)

Then there exists C > 0 such that

− inf
Ω

w ≤ C‖h‖L∞(Ω)(|Ωn|−
2α1
N + |Ωm|−

2α2
M )−1, (2.4)

where Ωn and Ωm are defined in (2.1) and (2.2) respectively.

Proof. The result is obvious if infΩ w ≥ 0. Now we assume that infΩ w < 0, then there exists (x0, y0) ∈ Ω
such that w(x0, y0) = infΩ w < 0. Combining with (2.3), we have that

‖h‖L∞(Ω) ≥ h(x0, y0) ≥ −(−Δ)α1
x w(x0, y0) − (−Δ)α2

y w(x0, y0). (2.5)

By direct computation, we obtain that
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−(−Δ)α1
x w(x0, y0) =

∫
RN

w(z, y0) − w(x0, y0)
|z − x0|N+2α1

dz

=
∫
Ωn

w(z, y0) − w(x0, y0)
|z − x0|N+2α1

dz +
∫

RN\Ωn

w(z, y0) − w(x0, y0)
|z − x0|N+2α1

dz

≥ −
∫

RN\Ωn

w(x0, y0)
|z − x0|N+2α1

dz,

let r = c1|Ωn|
1
N with c1 > 0 such that |Ωn| = |BN

r (x0)|, so, since 1
|z−x0|N+2α1 is radially symmetric and 

positive, we have that

−
∫

RN\Ωn

w(x0, y0)
|z − x0|N+2α1

dz ≥ −
∫

RN\BN
r (x0)

w(x0, y0)
|z − x0|N+2α1

dz. (2.6)

This inequality comes of simple calculations, but as it is a key point of the proof we will carry it out for the 
sake of the readers. Note first, that

|Ωn \BN
r (x0)| = |BN

r (x0) \ Ωn|,

and i ≥ s for

i := inf
BN

r (x0)\Ωn

1
|z − x0|N+2α1

and s := sup
Ωn\BN

r (x0)

1
|z − x0|N+2α1

,

then ∫
BN

r (x0)\Ωn

1
|z − x0|N+2α1

dz ≥ |BN
r (x0) \ Ωn|.i

= |Ωn \BN
r (x0)|.i

≥ |Ωn \BN
r (x0)|.s

≥
∫

Ωn\BN
r (x0)

1
|z − x0|N+2α1

dz

and therefore, the inequality (2.6) follows by direct calculations taking into account that

R
N \ Ωn = (BN

r (x0) \ Ωn)∪̇((RN \BN
r (x0)) \ Ωn).

Thus we can conclude that

−(−Δ)α1
x w(x0, y0) ≥ −

∫
RN\Ωn

w(x0, y0)
|z − x0|N+2α1

dz

≥ −
∫

RN\BN
r (x0)

w(x0, y0)
|z − x0|N+2α1

dz

= −c2w(x0, y0)|Ωn|−
2α1
N ,



D. dos Prazeres, Y. Wang / J. Math. Anal. Appl. 438 (2016) 909–919 913
for some c2 > 0. Similarly, there exists c3 > 0 such that

−(−Δ)α2
y w(x0, y0) ≥ −

∫
RM\Ωm

w(x0, y0)
|z̃ − y0|M+2α2

dz̃ = −c3w(x0, y0)|Ωm|−
2α2
M .

Then we have that

−(−Δ)α1
x w(x0, y0) − (−Δ)α2

y w(x0, y0) ≥ −c4w(x0, y0)(|Ωn|−
2α1
N + |Ωm|−

2α2
M ),

where c4 = min{c2, c3}. Combining with (2.5), we obtain that

‖h‖L∞(Ω) ≥ −c4w(x0, y0)(|Ωn|−
2α1
N + |Ωm|−

2α2
M ).

Therefore,

− inf
Ω

w = −w(x0, y0) ≤ c5‖h‖L∞(Ω)(|Ωn|−
2α1
N + |Ωm|−

2α2
M )−1,

for some c5 > 0. �
We remark that the estimate (2.4) allows us to apply the Maximum Principle for special small domains 

that should be narrow in x direction or in y direction, but does not allow to obtain the Maximum Principle 
for any small domain, since the projections |Ωn| and |Ωm| could be large although |Ω| is small.

As a consequence, we have the Maximum Principle for small domain, which is stated as follows:

Proposition 2.1. Let Ω be a bounded open set and Ωn and Ωm be defined in (2.1) and (2.2) respectively. 
Suppose that ϕ : Ω → R is in L∞(Ω) and w ∈ L∞(RN × R

M ) is a classical solution of{
−(−Δ)α1

x w(x, y) − (−Δ)α2
y w(x, y) ≤ ϕ(x, y)w(x, y), (x, y) ∈ Ω,

w(x, y) ≥ 0, (x, y) ∈ (RN × R
M ) \ Ω.

(2.7)

Then there is δ > 0 such that whenever |Ωn| ≤ δ or |Ωm| ≤ δ, w has to be non-negative in Ω.

Proof. Let Ω− = {(x, y) ∈ Ω | w(x, y) < 0}. By (2.7), we observe that{
−(−Δ)α1

x w(x, y) − (−Δ)α2
y w(x, y) ≤ ϕ(x, y)w(x, y), (x, y) ∈ Ω−,

w(x, y) ≥ 0, (x, y) ∈ (RN × R
M ) \ Ω−.

Then, using Lemma 2.1 with h(x, y) = ϕ(x, y)w(x, y), there exists C > 0 such that

‖w‖L∞(Ω−) = − inf
Ω−

w ≤ C‖ϕ‖L∞(Ω)‖w‖L∞(Ω−)(|Ωn|−
2α1
N + |Ωm|−

2α2
M )−1.

Let δ > 0 satisfying

C‖ϕ‖L∞(Ω)(δ−
2α1
N + |Ωm|−

2α2
M )−1 < 1

and

C‖ϕ‖L∞(Ω)(|Ωn|−
2α1
N + δ−

2α2
M )−1 < 1,
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then if we take |Ωn| ≤ δ or |Ωm| ≤ δ we have that

‖w‖L∞(Ω−) = 0.

This implies that |Ω−| = 0 and since Ω− is open, we have that Ω− = ∅, completing the proof. �
3. Proof of Theorem 1.1

Theorem 3.1. Assume that the function f : [0, ∞) → R is locally Lipschitz. If u is a positive classical solution 
of equation (1.3), then

u(x, y) = u(|x|, y).

Proof. For λ ∈ (0, 1), we denote x1 ∈ R, x′ ∈ R
N−1,

Σλ = {(x1, x
′, y) ∈ BN

1 (0) ×BM
1 (0) | x1 > λ, (x1, x

′) ∈ BN
1 (0)},

Tλ = {(x1, x
′, y) ∈ R× R

N−1 × R
M | x1 = λ},

uλ(x1, x
′, y) = u(2λ− x1, x

′, y),

wλ(x1, x
′, y) = uλ(x1, x

′, y) − u(x1, x
′, y).

Step 1: We prove that if λ ∈ (0, 1) is close to 1, then wλ > 0 in Σλ. For this purpose, we start proving that 
if λ ∈ (0, 1) is close to 1, then wλ ≥ 0 in Σλ. If we define Σ−

λ = {(x, y) ∈ Σλ | wλ(x, y) < 0}, then we just 
need to prove that if λ ∈ (0, 1) is close to 1, then

Σ−
λ = ∅. (3.1)

By contradiction, we assume that (3.1) is not true, that is, Σ−
λ �= ∅. We denote

w+
λ (x, y) =

{
wλ(x, y), (x, y) ∈ Σ−

λ ,

0, (x, y) ∈ (RN × R
M ) \ Σ−

λ ,
(3.2)

w−
λ (x, y) =

{
0, (x, y) ∈ Σ−

λ ,

wλ(x, y), (x, y) ∈ (RN × R
M ) \ Σ−

λ

(3.3)

and we observe that w+
λ (x, y) = wλ(x, y) − w−

λ (x, y) for all (x, y) ∈ R
N × R

M . We reason in a similar way 
as in the proof of Theorem 1.1 in [8] to obtain that for all 0 < λ < 1,

(−Δ)α1
x w−

λ (x, y) ≤ 0, ∀(x, y) ∈ Σ−
λ (3.4)

and

(−Δ)α2
y w−

λ (x, y) ≤ 0, ∀(x, y) ∈ Σ−
λ . (3.5)

Then combining (3.4) with (3.5) and using the linearity of the fractional Laplacian, we have that for 
(x, y) ∈ Σ−

λ ,

(−Δ)α1
x w+

λ (x, y) + (−Δ)α2
y w+

λ (x, y) ≥ (−Δ)α1
x wλ(x, y) + (−Δ)α2

y wλ(x, y)

= (−Δ)α1
x uλ(x, y) − (−Δ)α1

x u(x, y) + (−Δ)α2
y uλ(x, y) − (−Δ)α2

y u(x, y)
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= f(uλ(x, y)) − f(u(x, y))

= f(uλ(x, y)) − f(u(x, y))
uλ(x, y) − u(x, y)

w+
λ (x, y).

Let us define ϕ(x, y) = −(f(uλ(x, y)) − f(u(x, y)))/(uλ(x, y) − u(x, y)) for (x, y) ∈ Σ−
λ . Since f is locally 

Lipschitz, we have that ϕ ∈ L∞(Σ−
λ ). Then we have that

−(−Δ)α1
x w+

λ (x, y) − (−Δ)α2
y w+

λ (x, y) ≤ ϕ(x, y)w+
λ (x, y), (x, y) ∈ Σ−

λ (3.6)

and since w+
λ = 0 in (RN ×R

M ) \Σ−
λ , w+

λ is a continuous bounded function, by the fact that u is continuous 
and bounded, we may apply Proposition 2.1. Choosing λ ∈ (0, 1) close enough to 1 we observe that there 
exist ΣN

λ ⊂ BN
1 (0) ⊂ R

N and ΣM
λ ⊂ BM

1 (0) ⊂ R
M such that Σ−

λ ⊂ ΣN
λ × ΣM

λ and |ΣN
λ | is small, then

wλ = w+
λ ≥ 0 in Σ−

λ .

But this is a contradiction with our assumption so we have that

wλ ≥ 0 in Σλ.

In order to complete Step 1, we claim that for 0 < λ < 1, if wλ ≥ 0 and wλ �≡ 0 in Σλ, then wλ > 0 in Σλ. 
Assuming that the claim is true, we complete the proof, since the function u is positive in BN

1 (0) ×BM
1 (0)

and u = 0 on ∂(BN
1 (0) ×BM

1 (0)), so that wλ is positive in ∂(BN
1 (0) ×BM

1 (0)) ∩∂Σλ and then, by continuity 
wλ �≡ 0 in Σλ.

Now we prove the claim. Assume that there exists (x0, y0) ∈ Σλ such that wλ(x0, y0) = 0, that is, 
uλ(x0, y0) = u(x0, y0). Then we have that

(−Δ)α1
x wλ(x0, y0) + (−Δ)α2

y wλ(x0, y0)

= (−Δ)α1
x (uλ − u)(x0, y0) + (−Δ)α2

y (uλ − u)(x0, y0)

= f(uλ(x0, y0)) − f(u(x0, y0)) = 0. (3.7)

On the other hand, defining Aλ = {(x1, x′) ∈ R × R
N | x1 > λ}, since wλ(zλ, y) = −wλ(z, y) for any 

(z, y) ∈ R
N × R

M and wλ(x0, y0) = 0, we find

(−Δ)α1
x wλ(x0, y0) =

∫
Aλ

−wλ(z, y0)
|x0 − z|N+2α1

dz +
∫

RN\Aλ

−wλ(z, y0)
|x0 − z|N+2α1

dz

=
∫
Aλ

−wλ(z, y0)
|x0 − z|N+2α1

dz +
∫
Aλ

−wλ(zλ, y0)
|x0 − zλ|N+2α1

dz

=
∫
Aλ

wλ(z, y0)
(

1
|x0 − zλ|N+2α1

− 1
|x0 − z|N+2α1

)
dz. (3.8)

Since |x0 − zλ| > |x0 − z| for z ∈ Aλ and wλ ≥ 0 in Σλ, then we get

(−Δ)α1
x wλ(x0, y0) ≤ 0. (3.9)

We observe that {x0} ×BM
1 (0) ⊂ Σλ and by wλ ≥ 0 in Σλ and wλ(x0, y0) = 0, then we have that
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(−Δ)α2
y wλ(x0, y0) = −

∫
RN

wλ(x0, z̃)
|y0 − z̃|M+2α2

dz̃

= −
∫

BM
1 (0)

wλ(x0, z̃)
|y0 − z̃|M+2α2

dz̃ ≤ 0. (3.10)

Combining (3.7), (3.9) and (3.10), we have that

(−Δ)α1
x wλ(x0, y0) = 0, (−Δ)α2

y wλ(x0, y0) = 0,

and by (3.8), we have that wλ(z, y0) = 0 for z ∈ Aλ, then wλ(z, y0) = 0 for z ∈ R
N by the first equality 

in (3.8). Using similar way, we obtain that

wλ(x0, z̃) = 0, ∀z̃ ∈ R
M and wλ(z, y0) = 0, ∀z ∈ R

N . (3.11)

Since wλ �≡ 0 and wλ ≥ 0 in Σλ, then there exists (x̃, ỹ) ∈ Σλ such that wλ(x̃, ỹ) > 0. Let

A = {(z, ỹ) ∈ R
N × R

M s.t. z ∈ R
N and (z, ỹ) ∈ Σλ}

and

B = {(x̃, z̃) ∈ R
N × R

M s.t. z̃ ∈ R
M and (x̃, z̃) ∈ Σλ}.

We note that A and B are the extensions in Σλ of the point (x̃, ỹ) in the x-direction and y-direction 
respectively. Now we show that wλ > 0 in A ∪B. In fact, if there is (x̃0, ỹ0) ∈ A ∪B satisfying wλ(x̃0, ỹ0) = 0, 
by the above argument, we have that

wλ(z, ỹ0) = 0, ∀z ∈ R
N and wλ(x̃0, z̃) = 0, ∀z̃ ∈ R

M ,

that is,

wλ = 0 in (RN × {ỹ0}) ∪ ({x̃0} × R
M ). (3.12)

But we observe that (x̃, ỹ) ∈ (RN × {ỹ0}) ∪ ({x̃0} ×R
M ) and wλ(x̃, ỹ) > 0, which contradicts (3.12). Thus,

wλ > 0 in A ∪B. (3.13)

We observe that (A ∪B) ∩ ((RN ×{y0}) ∪ ({x0} ×R
M )) �= ∅, then (3.13) is in contradiction with (3.11). As 

a consequence, we have that wλ > 0 in Σλ.

Step 2: We define λ0 = inf{λ ∈ (0, 1) | wλ > 0 in Σλ} and we prove that λ0 = 0. Proceeding by 
contradiction, we assume that λ0 > 0, then wλ0 ≥ 0 in Σλ0 and wλ0 �≡ 0 in Σλ0 . Thus, by the claim just 
proved above, we have wλ0 > 0 in Σλ0 .

Next we claim that if wλ > 0 in Σλ for λ ∈ (0, 1), then there exists ε ∈ (0, λ) such that wλε
> 0 in Σλε

, 
where λε = λ − ε. This claim directly implies that λ0 = 0, completing Step 2.

Now we prove the claim. Let Dμ = {(x, y) ∈ Σλ | dist((x, y), ∂Σλ) ≥ μ} for μ > 0 small. Since wλ > 0
in Σλ and Dμ is compact, then there exists μ0 > 0 such that wλ ≥ μ0 in Dμ. By the continuity of wλ(x, y)
with respect to λ, for ε > 0 small enough and denoting λε = λ − ε, we have that

wλε
(x, y) ≥ 0 in Dμ.
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As a consequence,

Σ−
λε

⊂ Σλε
\Dμ

and |Σ−
λε
| is small if ε and μ are small. Using (3.4) and proceeding as in Step 1, we have for all (x, y) ∈ Σ−

λε

that

(−Δ)α1
x w+

λε
(x, y) + (−Δ)α2

y w+
λε

(x, y)

≥ (−Δ)α1
x wλε

(x, y) + (−Δ)α2
y wλε

(x, y)

= (−Δ)α1
x uλε

(x, y) − (−Δ)α1
x u(x, y) + (−Δ)α2

y uλε
(x, y) − (−Δ)α2

y u(x, y)

= f(uλε
(x, y)) − f(u(x, y)),

then

−(−Δ)αxw+
λε

(x, y) − (−Δ)yw+
λε

(x, y) ≤ ϕ(x, y)w+
λε

(x, y),

where ϕ(x, y) = − f(uλε (x,y))−f(u(x,y))
uλε (x,y)−u(x,y) is bounded, since f is locally Lipschitz.

Since w+
λε

= 0 in (RN ×R
M ) \Σ−

λε
, w+

λε
is a continuous bounded function, by the fact that u is continuous 

and bounded, |Σ−
λε
| is small, for ε and μ small, Proposition 2.1 implies that wλε

≥ 0 in Σλε
. Thus, since 

λε > 0 and wλε
�≡ 0 in Σλε

, as before we have wλε
> 0 in Σλε

, completing the proof of the claim.

Step 3: By Step 2, we have that λ0 = 0, which implies that u(−x1, x′, y) ≥ u(x1, x′, y) for x1 ≥ 0. Using 
the same argument from the other side, we conclude that u(−x1, x′, y) ≤ u(x1, x′, y) for x1 ≥ 0 and then 
u(−x1, x′, y) = u(x1, x′, y) for x1 ≥ 0. Repeating this procedure in any x-direction, we conclude that

u(x, y) = u(|x|, y).

Finally, we prove that for any given y ∈ BM
1 (0), u(r, y) is strictly decreasing in r ∈ (0, 1). Let us consider 

0 < x1 < x̃1 < 1 and let λ = x1+x̃1
2 . Then, as proved above we have that

wλ(x, y) > 0 for (x, y) ∈ Σλ.

Then for any given y ∈ BM
1 (0), we obtain that

0 < wλ(x̃1, 0, · · · , 0, y) = uλ(x̃1, 0, · · · , 0, y) − u(x̃1, 0, · · · , 0, y)

= u(x1, 0, · · · , 0, y) − u(x̃1, 0, · · · , 0, y),

that is, u(x1, 0, · · · , 0, y) > u(x̃1, 0, · · · , 0, y). Using the symmetry result of u with respect to x, we conclude 
that u(r, y) is strictly decreasing in r ∈ (0, 1). �

Using the same argument, we also can obtain the symmetry result on y-direction.

Theorem 3.2. Assume that the function f : [0, ∞) → R is locally Lipschitz. If u is a positive classical solution 
of equation (1.3), then

u(x, y) = u(x, |y|).
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Proof of Theorem 1.1. From Theorem 3.1, we obtain that the solution u is symmetric in x, that is,

u(x, y) = u(|x|, y).

Together with Theorem 3.2, we have that

u(x, y) = u(|x|, |y|).

The proof ends. �
Remark 3.1. We note that our method could be extended into the semilinear elliptic problem involving the 
fractional Laplacians in multiple directions, such as

(−Δ)α1
x + (−Δ)α2

y + (−Δ)α3
z .

However, when we treat with a sum of the Laplacian and a fractional Laplacian,

(−Δ)x + (−Δ)αy ,

it is not clear for us if it is possible to obtain a result similar to the Lemma 2.1 to this case. However, we 
believe be possible to prove a maximum principle for small domains for this case and thus the method of 
the moving planes used here drives us to a symmetry result. We hope treat this in future works.
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