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a b s t r a c t

The estimation of differences in the value of in-vehicle time sitting and standing is usually made with
stated choice (SC) data, partly due to the lack of revealed preference data. In this paper, we use the
observed behaviour of a subset of metro users in Singapore, who are willing to travel a longer time (into
the opposite direction or backwards) to secure a seat for the actual trip in the direction towards their
destination. We use smart card transactions to estimate the share of users who are willing to travel in the
opposite direction during the first part of their trip and the average train occupancy per section to es-
timate differences in the valuation of travel time sitting and standing – translated into a standing
multiplier or standing premium, which is analogous to the crowding multiplier that is usually found in
the crowding valuation literature. We find that the standing multiplier is between 1.18 and 1.24 with the
current crowding levels in the morning peak and can be as much as 1.55 with a density of 3 standing
passengers per square metre. The results are compared to previous SC studies from other countries. The
values found here are an indication of a standing premium that can be used to assess the social benefit of
increasing the seat capacity of a public transport system and of applying peak spreading strategies.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Mode and route choice decisions in transport have traditionally
been modelled and evaluated according to cost and various ele-
ments related to travel time. Going beyond monetary cost and
time, additional factors associated with the riding comfort and
service reliability of public transport systems have shown to be
relevant for mode, route and activity scheduling choices in various
studies (e.g., Bates et al., 2001; Kim et al., 2009; Li and Hensher,
2011; Raveau et al., 2011; Wardman and Whelan, 2011; Börjesson
et al., 2012; Theler and Axhausen, 2013; Tirachini et al., 2013;
Batarce et al., 2015). Among the factors capturing riding comfort,
seat availability and perceptions of crowding levels are regarded to
have significant behavioural impacts. As such factors are decisive
mostly in urban contexts, for which continuous growth is expected
globally (United Nations Department of Economic and Social Af-
fairs 2010), it is fair to assume that those behavioural aspects will
become even more relevant for transport policy in the future.
Additionally, increasing income levels in both developing and
(A. Tirachini),
Erath),
developed countries also suggest that more weight will be as-
signed to the quality and comfort features of public transport trips.

For users, standing is usually less comfortable than sitting,
especially for long trips; therefore, we would expect users to be
willing to pay more to reduce travel time when standing rather
than sitting. Such an outcome has been shown in the literature on
users' valuation of sitting, standing and crowding.1 Numerous
studies, such as Douglas and Karpouzis (2005), Whelan and
Crockett (2009), Kim et al. (2009), Hensher et al. (2011), Fröhlich
et al. (2012), Tirachini et al. (2013) and Batarce et al. (2015), show
the crowding disutility that arises when the occupancy levels of
vehicles and stations increase over a particular threshold. The
most common procedure to estimate this crowding disutility is the
use of discrete choice models with for stated choice (SC) data.

In this paper, we estimate the differences in the valuation of
sitting and standing during public transport trips using revealed
preferences (RP) of a subset of metro users in Singapore, who are
willing to take a train in the opposite direction of their destination
(backwards) to secure a seat during their travel towards their
destination (forwards) after the train changes directions at the
1 In general, some passengers might prefer to travel standing rather than sit-
ting, particularly for short trips; nonetheless, the literature shows that, on average,
there is a travel time disutility associated with crowding and standing.
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terminal stop of the line. This is a novel choice situation for ana-
lysing standing and crowding disutilities based on observed be-
haviours. In other words, some passengers are willing to spend
more time in transit for a more comfortable ride, which differs
from previous RP studies that analysed the substitution between
waiting time and in-vehicle time when studying crowding ex-
ternalities (LT Marketing, 1988; Kroes et al., 2014). In particular, we
use these RP data to estimate the impact of crowding and the
valuation of seat availability for mass rapid transit (MRT) route
choice decisions, and we find a standing multiplier or standing
premium that depend on the load factor and density of standees
per time period and section – similar to the crowding multiplier
usually found in the crowding valuation literature based on SP
experiments. Multinomial logit (MNL) route choice models are
estimated based on peak hours observations, where a share of
commuters prefer to travel a short distance in the opposite di-
rection to ensure a more comfortable, seated ride to the final
destination. Individual choices are not modelled; instead, they are
used to estimate the share of passengers who decide to travel
backwards depending on the origin, destination and length of the
trip.

Second, we present a methodology to infer the routes actually
taken and the vehicle loads expected in situations in which smart
card transaction cannot be directly traced back to the individual
vehicles and are only observed at the level of public transport
stops, as is usually the case of MRT systems. This methodology
allows us to take advantage of the smart card transactions data-
base, which contains all the records of entries (tap-ins) and exits
(tap-outs) to and from stations in Singapore's MRT system. Reli-
able high-resolution RP data are very valuable as a way to obtain
the economic values of service quality attributes, such as the value
of avoiding crowded travel time, as it is based on estimations of
actual behaviours rather than reported behaviours.

The remainder of the article is organised as follows. Section 2
presents a literature review on crowding and standing valuations.
In Section 3, we describe our smart card dataset and the metho-
dology to estimate travel times, trainloads and the proportion of
passengers who initially travel backwards (away from their final
destination to secure a more comfortable ride). Section 4 presents
and discusses the choice models that are used for the estimation of
the disutilities of time sitting and time standing. The results are
compared with previous outcomes from studies in the United
Kingdom and France. Regarding policy implications, Section 5
analyses the influence of observed standing and crowding ex-
ternalities on supply levels of public transport services. Finally,
Section 6 provides a summary and the main conclusions of the
study.
(footnote continued)
suffered by passengers, which can be more accurately captured by estimating the
density of standees per square metre. For example, a load factor of 200%, relative to
the seating capacity, indicates that one of two passengers is standing, but it is not
clear how uncomfortable the situation is for those standing. However, a standing
density of five passengers per square metre is a very likely indicator of crowding
discomfort, regardless of the size of the vehicle or the number of seats. On the other
hand, crowding disutility may also be present before all seats are occupied; see
Wardman and Whelan (2011) and Tirachini et al. (2013).

3 In busy metro systems in Latin America and Asia, the passenger density in-
side trains can reach beyond 6 pax/m2. Basu and Hunt (2012) provide images of 4,
7 and 12 men standing inside a square metre, which were used in a stated pre-
ference study to estimate the value of time savings on increasing crowding con-
2. Literature review

A common objective of crowding valuation studies is the esti-
mation of a crowding multiplier, that is, the ratio between travel
time parameters under crowded and uncrowded conditions. In
crowding valuation studies, the standard procedure is to define a
crowding attribute that interacts with travel time in linear or non-
linear functional forms to capture the effect of increased crowding
discomfort during longer trips. As the crowding phenomenon re-
lates to station and vehicle occupancy, constructs that assess oc-
cupancy levels are used, such as the load factor (i.e., the total
number of passengers over the number of seats) and the density of
standees per square metre.2 An example of utility function that
2 The load factor is more commonly used due to the easiness of its computa-
tion. However, it does not provide a clear indication of the degree of crowding
can be used to assess the crowding discomfort in public transport
vehicles is the following:

α β β β β ε= + ∙ + ∙ ∙ + ∙ ∙ + ∙ ∙ ∙ + ( )U t t S t Cr t Cr S 10 1 2 3 4

where α0 is an alternative specific constant; t is in-vehicle time; S
is a dummy variable that equals 1 if the passenger has to stand and
0 if the passenger is able to sit; Cr is a variable that describes the
occupancy level of passengers; βi are the passenger taste para-
meters; and ε is a random error. If choice follows a multinomial
logit (MNL) model, with expression (1), the crowding multiplier is
defined as follows:

β β β β
β

=
+ ∙ + ∙ + ∙ ∙

( )
CM

S Cr Cr S

2
1 2 3 4

1

The crowding multiplier increases in value as crowding wor-
sens. Some studies aim to estimate average crowding multipliers
that increase with occupancy levels, regardless of whether the
concerned passenger is sitting or standing (e.g., Hensher et al.,
2011; Basu and Hunt, 2012; Tirachini et al., 2013). Other studies –

such as Douglas and Karpouzis (2006) on trains in Sydney, Aus-
tralia, Kroes et al. (2014) on trains and buses in the Paris region,
and several papers and reports on the rail industry in Britain (for a
review and meta-analysis, see Wardman and Whelan, 2011) –

estimate different in-vehicle time parameters for passengers who
are sitting and standing, as a function of a measure of vehicle
occupancy levels. For example, Whelan and Crockett (2009) esti-
mated crowding multipliers for rail services in Great Britain, fo-
cusing on London and the Southeast; for seated passengers, the
crowding multiplier increases from 1.0 to 1.54 as the density of
standing passengers increases from 0 to 6 passengers per square
metre (pax/m2), whereas the crowding multiplier is between 1.43
and 2.21 for standing passengers. Therefore, standing passengers
in uncrowded conditions value travel time savings 43% more than
seated passengers.3 Lower crowding multipliers have recently
been found by Kroes et al. (2014) in the Paris region (Île-de-
France), with maximum values of 1.4 for sitting and 1.6 for
standing combining data from all public transport modes (metro,
train and bus).

Beyond these articles and reports, crowding penalties have also
been included by a handful of countries in their official guidelines
for transport project assessment, as reviewed by OECD/ITF (2014).
For example, in Australia, the crowding multiplier is up to 1.3 for
sitting and up to 2.0 for standing at maximum occupancy. In
France, crowding multipliers increase linearly as a function of the
passenger density per square metre, with values of 1.3 for sitting
and 1.6 for standing with 4 passengers per square metre (pax/m2).
In Sweden, the crowding multiplier is up to 3.0, whilst in the
United Kingdom it is up to 2.1 for sitting and 2.8 for standing, with
3 pax/m2.
ditions in Mumbai, India. In reality, maximum passenger densities in public
transport services are constrained by the fact that some passengers carry bags,
suitcases, rucksacks, etc., which increase the projected floor area that a passenger
occupies (TRB, 2003).
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In the existing literature, the vast majority of evidence re-
garding how crowding influences mode and route choice decisions
is based on stated choice (SC) experiments, which are performed
to estimate discrete choice models. Reliable preference data on
people's choices of the mode and time of day for travelling, as a
function of the occupancy levels of public transport alternatives,
are difficult to obtain. Modelling the behavioural impact of
crowding based on revealed preference data requires both
knowledge of the dynamic state of the transport system and users'
decisions. Alternatively, if count data are unavailable, additional
variables that describe the equilibrium behaviour endogenously
can be included in choice modelling, as demonstrated by Timmins
and Murdock (2007) regarding location choice problems; however,
the application of their model in the context of route choice would
require some adjustments because of the additional complexity of
overlapping route alternatives. While the first data requirement
can be fulfilled with automated passenger count systems, such
systems are very rarely installed in all vehicles that provide full
coverage of a study region. At the same time, the observed public
transport trips will need to be described in adequate detail to
identify the individual vehicle that actually has been taken. For
conventional travel surveys, such detail is usually not possible,
given the limitations of the respondents reporting trips' start
times and exact routes; however, more innovative approaches
employing GPS tracing could improve the situation. However, with
the advent and pervasive use of smart cards for fare collection in
public transport systems, both dynamic vehicle loads and route
choice decisions can be obtained from the same data source.

In spite of data limitations, we found three previous studies that
have reported the use of revealed choices to analyse the influence of
crowding on travel decisions. LT Marketing (1988), as cited by
Wardman and Whelan (2011), observed situations in which pas-
sengers did not board a crowded train and waited for a less crowded
or empty train in the London Underground; they reported standing
multipliers between 1.4 and 2.7, and seated multipliers between
1.0 and 1.6, i.e., values that are not significantly different from the
other 16 stated preference British studies summarised by Wardman
and Whelan (2011). Kroes et al. (2014) also analyse the number of
passengers who wait for a second train to avoid boarding a crowded
train in Paris. Although Kroes et al. (2014) do not estimate a RP choice
model, they do observe that the actual shares of passengers who are
willing to wait for the next train to avoid crowded conditions are
lower than the shares implied by the SP values, which points to a
possible overestimation of the SP crowding disutility values in this
context. Finally, a model reported by Batarce et al. (2015) combines
stated preferences with revealed preference data (from route choice
observations) in Santiago, Chile, and finds a crowding multiplier of
approximately 2.0 when the passenger density is between 5 and
6 pax/m2 in buses and metro trains, regardless of whether the tra-
veller is sitting or standing.
4 For more information on the stations of the East–West MRT line, please see
Chakirov and Erath (2011) and the network map at www.mrt.cl.
3. Data description

Individual data from smart card transactions are described and
analysed in Sections 3.1 and 3.2, which are used to estimate the
shares of passengers travelling backwards and forwards per origin-
destination pair (Section 3.3) and the train loads per section
(Section 3.4), to estimate MNL models (Section 4), from which one
can obtain standing multipliers that are sensitive to the occupancy
levels of trains.

3.1. Travelling backwards and forwards

Because of the high spatial-temporal resolution, smart card
data have been widely used to study the travel behaviour and
patterns of individual users (e.g., Chakirov and Erath, 2011; Pel-
letier et al., 2011; Hasan et al., 2012; Munizaga and Palma, 2012;
Sun et al., 2013). In this study, we use a smart card record of all
MRT journeys in Singapore, collected over one week (from 11 April
2011 to 17 April 2011), for a total of 1,994,714 distinct MRT users.
As train passengers have to tap the same smart card each time
they enter or leave any MRT station, the dataset contains records
of the time and location for every single trip's tap-in and tap-out.
Previously, Chakirov and Erath (2011) provided a detailed analysis
of the same dataset, focusing on characterizing the public trans-
port system and travel behaviours in Singapore. Chakirov and
Erath (2011) depicted the distribution of passengers' waiting times
by identifying the passenger with the shortest travel time as a
reference point and assuming that he/she boarded a train im-
mediately without waiting on the platform (zero waiting time).
Therefore, the difference in travel time between other passengers
and the reference passenger is assumed to be waiting time. One of
the interesting findings of Chakirov and Erath (2011) was a double-
peaked distribution of waiting times at certain MRT stations. These
MRT stations are surrounded by high-density residential estates
with more than 100,000 people living in the catchment area of the
MRT stop and are the second or third stop at the beginning or end
of an MRT line. The ‘waiting times’ were extracted by Chakirov and
Erath (2011) using the shortest recorded travel time between two
stations of the same line as a benchmark. This double-peaked
distribution can be prominently observed at the second station
(STN2) of eastbound services of the island-crossing East–West
line,4 as depicted in figure.

Due to the high density residential development around the
MRT stations, trains tend to fill up quickly with commuters
heading towards the city centre, which features a high job density,
during the morning peak hour. As introduced in Chakirov and
Erath (2011), the double-peaked shape of the ‘waiting time’ dis-
tribution, as shown in Fig. 1, results from the following two
choices:

) Travelling directly (forwards) to one's destination, which
corresponds with the larger peak between 1 and 6 min in Fig. 1.

) Initially travelling in opposite direction of one's desired desti-
nation (backwards) to secure a seat at the first station (STN1) of
the line and then travelling forwards to one's final destination.
This behaviour is detected as the second peak in the waiting
time distribution, approximately 10–15 min in Fig. 1. A simple
representation of this behaviour is shown in Fig. 2.

Therefore, the observed ‘waiting time’ consists of two parts:
(1) real waiting time on the platform for passengers travelling
forwards and (2) waiting time on the opposite platform plus ad-
ditional travelling costs for passengers travelling backwards. As a
result, the distribution shown in Fig. 1 is a consequence of choices
(1) and (2) combined. The difference of the mean between dis-
tributions (1) and (2) is due to the additional travel time from
STN2 (Station 2) to STN1 (the terminal station), slack/recovery
time at STN1 and the return travel time to STN2 on the eastbound
service. The variance of distribution (1) depends on the variation
in the frequency of westbound service and the variation in the
travel times between stations. The variance of distribution (2) de-
pends, similar to distribution (1), on the service frequency of
eastbound service, the travel times between stations and the op-
erational variations in slack/recovery time at the terminal station
(STN1). Therefore, the variance of distribution (2) can be expected
to be slightly higher, as Fig. 1 shows.

http://www.mrt.cl


Fig. 1. Histogram of waiting times at STN2 for trips between 7 am and 9 am;
source: Chakirov and Erath (2011).

Sta�on 4 Sta�on 3 Sta�on 2 Sta�on 1

forwards

backwards

Fig. 2. Illustration of the studied metro service and the ‘travelling backwards’
phenomenon.

Table 1
Fields and descriptions of smart card data.

Field Description

Trip ID A unique number for each MRT trip
Card ID A unique number for each smart card (anonymous)
Passenger Type The attribute of cardholder (adult, senior citizen and child)
Boarding Station Boarding station
Alighting Station Alighting station
Ride Date Trip date (e.g., ‘2011-04-11’)
Ride Start Time Tap-in time (e.g., ‘08:00:00’)
Ride End Time Tap-out time (e.g., ‘08:00:00’)
Ride Distance Trip distance (e.g., ‘12.0 km’)
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The same behaviour can also be observed among passengers who
board at a few other stations, though such behaviour is less pro-
nounced. Furthermore, it is worth mentioning that the station design
and direction change procedure favours such behaviour, as passen-
gers are not required to exit the train at the terminal station. Pas-
senger surveys would have helped confirm this dual behaviour
among users; however, in this study, we must rely on smartcard data,
as we do not count with surveys. However, all these findings can be
easily observed by travelling on the Singapore's eastbound MRT ser-
vice between STN2 and STN1 on any given regular workday during
the morning rush hour. To understand users' preferences regarding
these two choices, we model travel times to analyse an individual's
choice from his/her smart card transactions to obtain aggregated
shares of the passengers who travel backwards and forwards.

3.2. Modelling metro travel time

Essentially, in smart card transactions, a metro journey starts
with a tap-in at a fare gate in the origin station. Once a user fin-
ishes his/her journey by tapping-out with the same smart card, a
record with full spatial-temporal resolution is created, registering
the detailed time and location information of the corresponding
Fig. 3. Modelling travel time of metro trips.
journey. Because Singapore employs a distance-based fare scheme
for public transport systems, the actual travel distance for each
stage is also registered. Table 1 presents the fields and their con-
tents of the smart card data used in this study. To simplify the
modelling estimations, we only consider trips that have origin and
destination stations in the East-West line, i.e., the subway route
choice is not modelled.

The comprehensive trip records allow us to reconstruct each
metro trip in its spatial and temporal dimensions. To quantify the
metro service level and to understand the demand patterns of the
East-West service, Sun et al. (2012) proposed a regression model to
estimate the spatial-temporal density of metro users based on a
simplified travel time model, with the train speed ν, the dwell
time Dw (including acceleration and deceleration) and the average
access (egress) time as parameters. In this paper, we adapt this
model to better estimate the desired (shortest) travel time. Es-
sentially, a metro trip is divided into four stages, as shown in Fig. 3.

Let Tij be the total journey time from station i to station j (the
inter-event time between tapping-in at i and tapping-out at j),
which is divided in the following components:

(1) access time ai from fare gate to platform;
(2) waiting time at platform Tw;
(3) in-vehicle time = ∑ = ∑ ( + )=

− +
=
− +t t Dwij

k i
j k k

k i
j L

v
1 , 1 1 k k, 1 , where

+Lk k, 1 is the distance between two consecutive stations k and
+k 1 , Dw is the average dwell time at each station and v is the

train's cruising speed; and
(4) egress time ej from platform to fare gate at destination station

j.

Taken together, the total journey time can be formulated as
follows:

= + + ( − ) × + +
( )

⎛
⎝⎜

⎞
⎠⎟T a T j i Dw

L
v

e ,
3

ij i w
i j

j
,

where = ∑ =
−

+L Li j k i
j

k k,
1

, 1.
The parameters in Eq. (3) have to be estimated using our smart

card database. We apply the same strategy to regress the model, as
in Sun et al. (2012), by selecting the top-10 fastest passengers with
shortest travel times for each origin-destination (OD) pair as
sample observations for the regression and assuming that =T 0w

for these users. On the other hand, the time cost for access ai and
egress ei are comparable to each other for stations with one en-
trance (exit). However, if a station is equipped with multiple en-
trances (exits), the time cost for access and egress might be dif-
ferent because of the variation in walking time to different gates.
For the sake of simplicity, we assume that the access time and
egress time are equal for any station i:

= ∀ ( )a e i, 4i i

Therefore, we apply a general linear regression to obtain the



Fig. 4. Access and egress time for each station along the East–West line.
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estimated values for the two universal parameters
= ±Dw s71.19 0.80 (estimation at a 95% confidence interval (CI),

with =R 0.99972 ; ^ =v 22.19m/s with a 95% CI as [ ]21.88, 22.51 ).
Note that the reported operation speed of metro trains in Singapore
is approximately ≈85km/h 23.6m/s, which suggests that the new
model provides good estimations. In fact, more variation, such as
longer dwell times, could result from excessive crowding during rush
hours (Lin andWilson, 1992), such that trains are not always on time.
In Singapore's case, metro services are automatically or semi-auto-
matically operated, making them more resilient to disturbances by
adjusting the speed and dwell time in real-time. Thus, we still use
this model to analyse passenger travel time. The estimated access
(egress) times for each station are shown in Fig. 4.

3.3. Estimating the share of passengers travelling backwards

Passengers are divided in two groups:

� G1: those who travel forwards to their destination.
� G2: those who travel backwards to the first station, wait and

then travel forwards to their destination.

Using the passengers with the shortest travel times as reference
points (with ≈T 0w ), we estimated the waiting time distributions

( )P Tij w for all the users travelling on the OD pair ( )i j, . Note that, for
users travelling backwards (G2), Tw is no longer the waiting time; Tw

is the total extra cost, including all the time involved in travelling
backwards (i.e., waiting time for the train going backwards, in-ve-
hicle time in this train, waiting time at STN1, and in-vehicle time
travelling forwards from STN1 to the final destination).

To illustrate the influence of trip length on users' behaviours
regarding travelling forwards (G1) or backwards and then for-
wards (G2), Fig. 5 shows the waiting time distribution at STN2,
STN3 and STN4 obtained from the smart card data (with desti-
nations at STN5, STN7, STN15 and STN17). A significant double-
peaked waiting time distribution is found for long travel distances
for users departing from STN2 and STN3, which points to an in-
crease in the share of passengers travelling backwards as the
(standing) trip distance increases (Fig. 5a,b). The second peak
vanishes for users who depart from STN4 (Fig. 5c), which indicates
the existence of a distance threshold related to the decision of
travelling backwards: from STN4 onwards, the number of users
who travel backwards is negligible or zero.

Given the behaviour revealed in Fig. 5, the next problem in-
volves estimating the proportion of passengers who choose each
alternative (travelling forwards versus travelling backwards and
then forwards) for a given OD pair. In other words, we need to
estimate the parameters for a mix of two distributions with the
proportions of passengers given by αF (G1, the proportion of
passengers travelling forwards) and αB (G2, the proportion of
passengers travelling backwards), such that α α+ = 1F B :

( ) ( ) ( )α α= + ( )f T f T f T , 5ij w F ij
F

w B ij
B

w

where ( )f Tij w is the observed waiting time distribution (as in Fig. 5),

( )f Tij
F

w characterizes the waiting time distribution of passengers

travelling forwards and ( )f Tij
B

w presents the probability density
function of the ‘waiting time’when passengers travel backwards first.
For the purpose of choice modelling, we are interested in only the
proportion parameters αF and αB. However, in this case, the ‘waiting
time’ distributions ( )f Tij

F
w and ( )f Tij

B
w are also known to us. If the

distributions ( )f Tij
F

w and ( )f Tij
B

w can be characterized by deterministic
forms (such as normal or log-normal), the estimation can be con-
sidered a mixture distribution problem that can be solved by ap-
plying the expectation maximisation (EM) algorithm (Dempster
et al., 1977). However, in practice, it is difficult to determine a uni-
versal probability density function form with a limited number of
parameters to characterize component distributions ( )f Tw1 and

( )f Tw2 for all OD pairs, even though we can sketch the shape of ( )f Tij w

from smart card data. Therefore, we do not directly apply a con-
ventional likelihood-based parametric estimation approach to esti-
mate the proportions. Alternatively, by taking a closer look at the
travel time composition of the forwards and backwards and then
forwards alternatives, we note that the travel time difference (addi-
tional cost ΔTi at station i) is characterized by the following:

Δ = + ( )T t t2 , 6i
i

h
1

where ( > )t t 0h h is the train slack or recovery time at terminal STN1.
Therefore, we have the following approximated probability density
function:

( ) ( ) ( ) ( )
( ) ( ) ( )

α α

α α

= − + − Δ

= − + − Δ ( )

f T f T f T T

f T f T T

1

1 , 7

ij w B ij
F

w B ij
F

w i

B
F

w B ij
F

w i1

where ( )f Tj
F

w1 is probability density function (p.d.f.) of the waiting
time of passengers travelling from terminal STN1 to station j. Ad-
ditionally, the cumulative distribution function (c.d.f.) can be esti-
mated as a function of αB:

( ) ( ) ( ) ( )α α α= − + − Δ ( )F T F T F T T; 1 , 8w B B j
F

w B j
F

w i1 1

where ( )F Tj
F

w1 is the empirical cumulative distribution function of the
waiting time. In doing so, we can replace the unknown waiting time
distribution with its empirical c.d.f obtained from the smart card
transactions. Therefore, the estimation problem takes the waiting
time distributions as known facts and only the proportions as para-
meters to be estimated. To obtain the proportion parameter αB, we
define the best estimation as α̂B, which minimises the Kolmogorov–
Smirnov (KS) statistic:

( )α α^ = − ( )
( )α

⎛
⎝⎜

⎞
⎠⎟F t G targ min sup ;

9
B

t
ij ij

where ( )G tij is the empirical c.d.f of the waiting time from station i to
station j. Given any αB, we can obtain the corresponding KS value as
that in Eq. (9). Therefore, in a pre-defined range (for example, from
0 to 1, with an interval of 0.001), we can calculate the KS values for
all αB, and the best estimation α̂B can be determined by finding the αB

with the minimum KS value. In Fig. 6, we show the observed c.d.f
and p.d.f of Tw from STN2 to STN14, against the corresponding esti-
mation by using the proposed inferential model. Fig. 6b shows that
28.9% of passengers are predicted to travel backwards from STN2 to
STN1 when the final destination is STN14.

By dividing the travel time observations into slices, we can also



Fig. 5. Waiting time distribution from STN2 (top panel), STN3 (middle panel) and
STN4 (bottom panel) to different destinations.
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obtain αB for different time periods over the course of a day (the
average value over five days from the dataset) by using the in-
ferential model. For example, Fig. 7 shows αB from STN2 to all the
stations along the metro line for different time periods. Travelling
backwards is more common in the morning (between 6 am and
9 am).

To finish preparing the variables necessary to estimate travel
time disutility, we need to quantify train occupancy levels
per section and time period, as performed in Section 3.4.

3.4. Estimation of train loads

After obtaining the parameters of the proposed travel time
model, the temporal location of each passenger who has not
transferred to another MRT line can be estimated as follows (Sun
et al., 2012):
( )( ) = − − − ( − )* *ν ( )Lc t max t a e j i Dw0, 10i j

where i is the boarding station, j is the alighting station and
0o=to=Tij is the time point between tapping-in and tapping-ou
To estimate the real train load, we route users with transfers and
identify their transfer stations using the path with the shorter
travel time from their origin (destination). Then, for users who
travel from the studied line to other lines, their tap-in times are
used to estimate their transfer times; however, for users who
travel from other lines to the studied line, their tap-out times are
used. Fig. 8 shows the load factor (the number of passengers over
the number of seats) and the density of standees for different time
periods along the East-West line. For example, a load factor of
3 means that all seats are occupied and that for each seated pas-
senger, there are two standing passengers. An alternative way of
representing occupancy or crowding conditions is through the
density of standees, as depicted in Fig. 9 (for a discussion on al-
ternative crowding measures, see footnote 2 and Wardman and
Whelan (2011)). Trains have 276 seats and an area of 428 m2. To
calculate the area available for standing, a seated passenger is
assumed to occupy 0.4 m2, as is recommended for longitudinal
seats by TRB (2003).

Once we have estimated the proportion of passengers travel-
ling backwards, depending on the origin and destination of each
trip, the parameters associated with the utility of travel time can
be estimated using discrete choice models, as shown in the next
section.
4. Estimation of discrete choice models

In this section, we estimate discrete choice models for the choice
between route alternatives (forwards or backwards) as a way of
obtaining variations in the perception of time between users who
prefer shorter travel times and users who are willing to trade travel
time for comfort (seat availability). Logit models have usually been
estimated in analyses of sitting, standing and crowding disutilities in
public transport to obtainwillingness-to-pay estimates for reductions
in train occupancy levels. The simplest method involves the esti-
mation of single coefficients that attempt to capture individuals'
average behaviour with multinomial logit (MNL) models, as per-
formed by Whelan and Crockett (2009), Wardman and Whelan
(2011) and Tirachini et al. (2013). MNL models are simple yet pow-
erful tools that are designed to find the average crowding and
standing multipliers that attempt to represent aggregated observed
behaviours, even in meta-analyses that combine several sets of
parameters that are estimated with MNL models (Wardman and
Whelan, 2011). An advantage of MNL models is that they can be
readily introduced in public transport design problems to analyse the
impact of crowding disutilities on the optimal level of variables, such
as service headway, capacity and fares for buses and trains (Tirachini
et al., 2014). Beyond MNL models, Tirachini et al. (2013) estimate
error component (EC) logit models using crowding valuation data
from Sydney, Australia, and find differences in the parameter esti-
mates relative to MNL models; however, with EC and MNL models,
the impact of crowding on the estimation of public transport demand
was similar.

Let tij
1 and tij

2 be the total travel time from origin i to destination
j for groups G1 (passengers travelling forwards) and G2 (passen-
gers travelling backwards first and then forwards), respectively,
such that < ∀t t i j,ij ij

1 2 , +tk k, 1 is the travel time between consecutive
stations k and +k 1 (including the dwell time at station +k 1) and
th is the waiting time at STN1.



Fig. 6. Observed and estimated distribution and probability density function of the waiting time (from STN2 to STN14).

Fig. 7. Spatial-temporal variation of αB from STN2 to other stations.
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4.1. Model without crowding variables

In this section, we estimate MNL models for different time
periods, without the explicit consideration of crowding variables.
Origin stations are restricted to STN2, STN3 and STN4 (from STN5
and beyond, no passenger travels backwards to STN1 to switch
directions). Let Uij

1 and Uij
2 be the utility functions of passengers

from groups G1 and G2, that travel between origin i and desti-
nation j.

α β= + ( )U t , 10ij ij
1 1 1 1
β= ( )U t , 11ij ij
2 2 2

where = ∑ =
− +t tij

k i
j k k

1
1 , 1 and = ∑ + ∑ +=

− +
=
− +t t t t2ij

k i
j k k

k
i k k

h2
1 , 1

1
1 , 1 .

Given the differences in demand composition and the load
factors observed in the studied line, the models are estimated per
time period, as shown in Table 2. The choices are generated per OD
pair, following the proportions of passengers travelling backwards
and forwards, as estimated in the previous procedure. Without the
loss of generalisability, the sample size is chosen to keep the ratio
of passengers between periods constant, as the 7 am–8 am and 8
am–9 am periods have around three times more passengers than
the 6 am–7 am and 9 am–10 am periods.

For all time periods, we observe that the disutility of travel time
is higher for passengers who travel forwards (mostly standing)
than for those that travel backwards first (mostly seated), i.e.,
β β>1 2 Given the internal movements inside trains and the de-
mand randomness during the one-hour periods selected for model
segmentation, it is not possible to know if passengers in G1 are
always standing nor if passengers in G2 are always sitting. How-
ever, the difference between β1 and β2 can be regarded as a good
proxy to assess differences in the perceptions of travel time when
sitting and standing. The bottom line is that a gain in comfort due
to the expectation of occupying a seat when travelling encourages
some users to choose longer travel times.

We define the standing multiplier as β β≡SM /1 2, as presented in
Table 2 for all time periods. We find that the disutility of time for
passengers who travel forwards is between 18 and 24% greater
than that of passengers who travel backwards, which indicates the
disutility of standing relative to sitting, as estimated with



Table 2
MNL models per time period, with no crowding variables.

Parameter 6 am–7 am 7 am–8 am 8 am–9 am 9 am–10 am

α1 �0.08 0.07 0.76 1.61
(�0.45) (0.57) (4.60***) (4.47***)

β1 �0.21 �0.27 �0.27 �0.23
(�12.55***) (�24.28***) (�21.41***) (�7.87***)

β2 �0.18 �0.23 �0.22 �0.19
(�10.77***) (�20.88***) (�17.36***) (�6.18***)

β β/1 2 1.18 1.20 1.23 1.24

Sample size and spe-
cification tests

Observations 2729 8077 8725 2795
LL (ASC) �1754.7 �4676.0 �4050.8 �898.7
LL ( β) �1587.8 �4125.3 �3613.4 �825.9
Rho-sq 0.095 0.118 0.108 0.081

Notes: Models estimated with NLogit5; z-test in brackets.
*** Significance at the 1% level.

Table 3
MNL models per time period, with crowding variables.

Parameter 7 am–8 am D 7 am–8 am L 8 am–9 am D 8 am–9 am L

α1 0.38 0.30 1.44 1.39
(2.82***) (�2.24*) (7.42***) (7.26***)

β1 �0.22 �0.18 �0.23 �0.20
(�18.59***) (�13.43***) (�17.86***) (�14.38***)

β2 �0.24 �0.24 �0.24 �0.23
(�21.83***) (�21.87***) (�18.54***) (�18.47***)

βD1 �0.049 �0.046
(�11.44***) (�11.54***)

βL1 �0.041 �0.037
(�11.31***) (�11.38***)

Observations 8077 8077 8725 8725
LL (ASC) �4676.0 �4676.0 �4050.9 �4050.9
LL ( β) �4056.4 �4057.9 �3538.0 �3540.1
Rho-sq 0.133 0.132 0.127 0.126

Notes: Models estimated with NLogit5; z-test in brackets.
*** Significance at the 1% level.
* Significance at the 5% level.

A. Tirachini et al. / Transport Policy 47 (2016) 94–104 101
“observed” data. The 18–24% premium for travelling forwards
seems reasonable given that, in the conditions modelled, it is
possible that not everyone stands going forwards, some stand on
the backward route and idle time exists on the backward journey,
which might be more highly valued than normal in-vehicle time.

When compared with the previous literature, we find that the
SM in Table 2 is lower than the values obtained in stated choice
studies in Britain but larger than the values obtained in France. A
standing multiplier of 1.4 for London can be calculated with the
results of Whelan and Crockett (2009), whereas a standing mul-
tiplier between 1.54 and 1.58 for commuting and leisure can be
derived from the meta-analysis of British studies of Wardman and
Whelan (2011). On the other hand, the ratio between standing and
sitting values of time was found to be approximately 1.1 on the
metro, buses, trams, and trains in the Paris region (Kroes et al.,
2014). Thus, the accumulated evidence suggests that the disutility
of standing over sitting can be estimated with either stated pre-
ference or revealed preference data; however, its value depends on
local conditions and possibly on the modelling approach, some-
thing that requires further research.

Beyond the average values of SM per time period, the models
reported in Table 2 cannot relate the SM to occupancy levels or
crowding conditions because the load factors or density of
standing passengers are not attributes in utility functions (10) and
(11). The relationship between occupancy levels and the disutility
of standing is analysed next.

4.2. Model including crowding variables

We present estimation results for MNL models in which travel
time interacts with crowding variables, defined as either the load
factor, L, or the density of standing passengers, D. In principle, we
would expect both groups G1 (likely standing) and G2 (likely sit-
ting) to be affected by crowding levels. However, when estimating
models with interaction terms of the time*crowding type for both
G1 and G2, the crowding parameter for both sitting and standing
are not statistically significant, possibly due to the correlation
between time variables tij

1 and tij
2 . Therefore, we include crowding

variables only for G1 (likely standing), whereas the time disutility
of G2 (likely sitting) is left constant, regardless of the crowding
levels. The implication of this assumption is evident in the results
presented in Table 3.

In our modelling framework, we explicitly account for the
different occupancy levels section by section along the journey,
which is more realistic than the usual assumption of stated choice
experiments that present a constant crowding level throughout
the journey. We estimate alternative models, taking into account
the density of standing passengers and the load factor as crowding
attributes, as shown in Figs. 8 and 9. Let +Dk k, 1 and +Lk k, 1 be the
density of standing passengers and the load factor between sta-
tions k and kþ1, respectively. We have two alternative choice
models:

α β β β− = + + = ( )U t t U tD model , 12ij ij
D D

ij ij ij
1 1 1 1 1 2 2 2

α β β β− = + + = ( )U t t U tL model , 13ij ij
L L

ij ij ij
1 1 1 1 1 2 2 2

where = ∑ ⋅=
− + +t t DD

ij
k i
j k k k k

1
1 , 1 , 1 and = ∑ ⋅=

− + +t t LL
ij

k i
j k k k k

1
1 , 1 , 1, tij

1 and tij
2

defined as described above. Models (12) and (13) could not be
estimated for the 6 am–7 am and 9 am–10 am periods, possibly
because of the lower spatial variation in these periods' crowding
levels compared with the 7 am–8 am and 8 am–9 am periods, as
shown in Fig. 8. The estimation results are presented in Table 3.

Parameters βD1 and βL1 are statistically significant at the 1%
level, suggesting that train occupancy, specified either as the load
factor or as the density of standing passengers per section, is
significant in explaining users' choices regarding travelling for-
wards or backwards to secure a seat. Negative values for βD1 and
βL1 indicate that the disutility of standing relative to sitting in-
creases as trains become more crowded.

With this model, we are able to obtain standing multipliers
(SMs) as a function of the load factor, L, or the density of standing
passengers, D:

β β
β

β β
β

=
+

=
+

( )
SM

L
SM

D
,

14
L

L
D

D1 1

2

1 1

2

These standing multipliers are defined in the same way as the
crowding multipliers in the crowding valuation literature. Figs. 10
and 11 show SMD and SML for the studied MRT line during the
7 am–8 am and 8 am–9 am periods. In Fig. 10, SMD is shown to-
gether with the London and South England curves elaborated with
the results from Whelan and Crockett (2009), which is the only
previous study in the literature that specifies crowding multipliers
for sitting and standing as a function of the density of standing
passengers.

In Singapore's case, the standing multiplier SMD is remarkably
similar for both time periods and grows to 1.55 when the density
of standing passengers is 3 passengers per square metre, the
maximum (average) density estimated (Fig. 9). That is, with
3 passengers standing per square metre, the disutility of travel



Fig. 10. Singapore standing multiplier as a function of density of standees, and a
comparison with the London results of Whelan and Crockett (2009).

Fig. 11. Singapore standing multiplier as a function of the load factor and a com-
parison with the Great Britain results of Wardman and Whelan (2011).

A. Tirachini et al. / Transport Policy 47 (2016) 94–104102
time standing is estimated to be 55% greater than the disutility of
travel time sitting, assuming that users in G1 stand and users in G2
sit all the time. Singapore's curves are fully obtained with ob-
served preferences rather than with stated choice data. On the
other hand, the model of Whelan and Crockett (2009) allows the
estimation of separate crowding multipliers for sitting M2 and
standing M1; therefore, the standing multiplier is calculated as
M M/1 2(curve “London stand/sit” in Fig. 10). Interestingly, even
though both M1 and M2 grow with D, the ratio between them is
almost constant, which means that the disutility of standing re-
lative to that of sitting remains constant, irrespective of crowding
levels – something that cannot hold in Singapore's model because,
by construction of the model, SM increases if trains are more
crowded.

Fig. 11 shows SML and compares it to the results of the meta-
analysis of British studies on crowding multipliers as a function of
the load factor by Wardman and Whelan (2011).5 Using MNL
5 Wardman and Whelan (2011) estimate multipliers for commuting and leisure
trips. Only commuting is shown in Fig. 11.
models, they find that standing M1 and sitting M2 multipliers are
higher for leisure than for commuting (MNL); however, the ratios
M M/1 2 (standing multiplier) are similar for both purposes, between
1.54 and 1.58 for commuting and leisure when the load factor is
between 1 and 2. That is, on average, standing is valued a little bit
over 50% more than sitting, which is similar to the Singapore re-
sults only in terms of the highest occupancy rates obtained (3
standing passengers per square metre, equivalent to a load factor
of 4.5 in Figs. 8 and 9). However, with load factor models, com-
paring our Singapore results with those of other studies is less
straightforward because behind the load factor, there are different
configurations of sitting and standing that are specific to trains in
Singapore and Britain. The higher disutilities obtained from the
meta-analysis of British crowding valuation studies are likely in-
fluenced by having more seats in the average British carriage
compared with the average carriage in Singapore´s metro; there-
fore, a load factor of 2 is already crush capacity, whereas a load
factor of 2 is reached, on average, with approximately 0.8 standing
passengers per square metre in Singapore. Therefore, even though
for sitting passengers the load factor is a relevant measure of oc-
cupancy, when there are standing passengers, the density of
standees should be used for the analysis of crowding externalities,
as it easies the comparability across different studies.
5. Policy implications

Because the present results on the perception of crowding are
based on observed trips in public transport smart card records, it is
only natural to use the same data to quantify the relevance of
including perception of crowding in policy analysis. In particular,
we assess the underestimation of the travel time disutility when
the density of standing passengers is ignored as a crowding ex-
ternality. With our framework, this assessment is performed with
parameters obtained by modelling observed choices and actual
train occupancy levels section by section. In the absence of an
adequate estimate of the value of travel time savings in the given
context, we restrict such quantification by applying the para-
meters resulting from Model A (sitting vs. standing without an
interaction with the standing density) and Model B (with a
standing density interaction) to the estimated trainload, as de-
scribed in Section 3.4. For each time interval and station-to-station
segment, we compute the travel time-related disutility depending
on seat availability and the density of standing passengers as
follows:

If the train load between station k and kþ1 is lower than the
seating capacity (276 seats per train), then

β= ⋅+ + +u t pModel A and B: k k k k k k, 1
1 1

, 1
seat

, 1

If the train load between station k and kþ1 is larger than the
seating capacity, then

( )β β= ⋅ + ⋅+ + + +u p p tModel A: k k k k
st
k k k k, 1

1 seat
, 1

2
, 1 , 1

( )( )β β β= ⋅ + + ⋅+ + + + +u p D p tModel B: k k
B

k k
D

k k
st
k k k k, 1

1, seat
, 1

2
, 1 , 1 , 1

where +pk k
seat

, 1 accounts for the number of seated passengers,
+pst

k k, 1 refers to the number of standing passengers and +Dk k, 1 refers
to the density of standing passengers [pax/m2]. Based on this
calculation, we can then define the relative difference when ac-
counting for crowding, measured in terms of standing passenger
density, using an approach that only distinguishes between seat-
ing and standing when travelling as follows:



Fig. 12. Relative difference in perceived travel time disutility when accounting for
the crowding of standing passengers.
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Because Model B could only be successfully estimated for the
time periods between 7 am and 8 am and between 8 am and 9 am,
the relative difference in the perceived travel time disutility when
accounting for the crowding of standees as obtained when ap-
plying Model A and B, is restricted to the 7 am–9 am period, as
depicted in Fig. 12.

Not accounting for the crowding of standing passengers will
underestimate travel time disutility, particularly for segments with
high demand (between STN1 and STN15). While the bias amounts
to 45% for the most frequently travelled segments between 7 am
and 8 am, the passenger-weighted average for both time periods is
28%. The values are generally higher during the earlier time period
because parameter β1, which multiplies travel time while seated, is
considerably lower during the earlier time period in Model A than
in Model B. The bias of ignoring crowding in our framework can be
substantial, even if the standing multiplier found in Singapore's
East-West line is relatively low compared with the values obtained
in other contexts, for instance, in the United Kingdom.

The main conclusion of Fig. 12 is that neglecting passenger
crowding effects in policy evaluations will lead to systematic un-
derinvestment in public transport capacity upgrades to serve peak
demand; by ignoring crowding, users' costs are underestimated by
a non-negligible margin. Depending on the situation and type of
transport system, the capacity can be enlarged by providing higher
capacity vehicles or more frequent services. For a metro system,
the former case is rarely an option, as train and platform lengths
are usually aligned. On the other hand, increasing train frequency
not only reduces crowding but also leads to shorter average
waiting times – in turn, improving the perceived service quality
(Mohring, 1972; Jara-Díaz and Gschwender, 2003). However, in-
creasing capacity usually results in additional working hours for
drivers, the need for additional vehicles, and higher energy and
maintenance costs; it might even require an upgrade of the sig-
nalling system. Tirachini et al. (2014) have analysed the trade-off
between users' benefits and operators' costs, which determines
optimal public transport capacity levels when crowding is re-
levant, for urban buses.

Furthermore, ignoring the disutility of crowding will lead to an
underestimation of the benefits resulting from peak-spreading
strategies, such as time-differentiated pricing or the provision of
(real-time) information about the crowding levels of trains. The
relationship between crowding externalities and peak-spreading is
particularly relevant as more and more cities are embracing such
strategies: Melbourne (Currie, 2010) and Singapore (Chow, 2013)
have introduced free travel for early morning trips, while the
Washington Metropolitan Area Transit Authority introduced
higher fares during peak hours in 2007 (Gwee and Currie, 2013).
At the same time, providing information about expected crowding
levels on individual services is becoming standard in places that
have already introduced systems that automate vehicle positions
and passenger counting.
6. Conclusions

In this paper, by analysing the observed behaviour of commu-
ters on a metro line in Singapore, we estimate taste parameters in
an attempt to model the election between a longer travel time
sitting versus a shorter travel time standing. travel time sitting and
standing. Although the study of sitting, standing and crowding
valuations has gained momentum in the literature on stated
choice models (Douglas and Karpouzis, 2005; Whelan and Crock-
ett, 2009; Hensher et al., 2011; Wardman and Whelan, 2011;
Fröhlich et al., 2012; Tirachini et al., 2013; Batarce et al., 2015),
inferring the relative impact of standing and crowding levels on
travel behaviour has been difficult because of the lack of tools
capable of monitoring individuals' actual choices. We take ad-
vantage of the emerging public transport smart card data as a
proxy to estimate the differences in travel time valuations be-
tween passengers who are willing to experience longer travel
times if seated and passengers who prefer shorter travel times,
even if they have to stand for at least part of their trip. In other
words, unlike the previous literature, our study is based on mod-
elling the observed choices of a set of travellers who prefer to first
travel backwards (in the opposite direction of their destinations)
in an attempt to secure a seat in the forward direction during the
morning rush.

We estimate the disutility of travel time standing to be, on
average, between 18% and 24% greater than the disutility of travel
time sitting for morning long-distance passengers on the East-
West metro line in Singapore. By including crowding measures,
i.e., the trainload factor or the density of standing passengers, we
find that the standing multiplier (the ratio of the parameter of
time standing to the parameter of time sitting) increases from 1,
when there are no standing passengers, to 1.55, when there are
3 standing passengers per square metre. These values are com-
pared with those of previous studies from Great Britain and
France. One limitation of our study is that, because of the internal
movement inside trains and demand randomness, it is impossible
to know with certainty whether the passengers who decide to
travel backwards first and then forwards are seated and whether
the passengers who decide to travel forwards only stand. However,
the difference between the estimated travel time parameters of
both groups is regarded as a good proxy for assessing differences
in the perceptions of travel time when sitting and standing, given
that a gain in comfort (the expectation of securing a seat) is what
drives some passengers to choose longer travel times.

Applying our model to the current load profile of the East-West
line quantifies the underestimation of users' travel costs that arises
when passenger crowding is ignored in analysing users' public
transport choices. Such an exercise can be used to inform policy-
makers about the optimal level of transport supply with regard to
vehicle size and frequency and the value of peak-spreading stra-
tegies that reduce crowding in peak periods.

Further research is needed to understand the differences re-
ported in the crowding valuation literature, specifically to what
extent the differences observed in the literature can be explained
by local circumstances or by the peculiarities of each modelling
approach that analysts use. Therefore, particular emphasis should
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be placed on quantifying the impact of various factors that de-
scribe such circumstances on the valuation of crowding in public
transport. Such factors can range from socio-demographic attri-
butes, the trip purpose, the trip distance, the passenger's inclina-
tion and ability to perform activities when travelling (e.g., reading
and using portable devices), personal attitudes, the vehicle's lay-
out and design and cultural values and context. For example,
people who really dislike standing, as well as commuting time in
general, will likely choose locations that are closer to work if they
have the chance, or they will choose jobs that allow them flexible
arrival and departure times (or to work at home), thus avoiding
peak commuting times. This sorting behaviour, if it exists, is em-
bedded in our results, introducing a bias that has not been mod-
elled due to the lack of information on this and other types of
personal preferences. A wide range of attributes influences peo-
ple's valuations of sitting, standing and crowding; therefore, many
more research efforts are necessary to achieve a more compre-
hensive understanding of the effects of crowding externalities on
user behaviours, wellbeing and choices.
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