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The efficient combined use of water and energy in long distance slurry pipelines is analyzed in light of the total
cost function resulting from an energy andmass balance. Given a system throughput and a set of common slurry
and flow properties associated with long distance cross country pipelines such as Krieger-type rheology and
smooth wall turbulent flow with small yield-to-wall stress, the minimum cost condition is obtained at the min-
imum feasible transport mean velocity. This condition has been found irrespective of the particular value of the
dissipation-to-pump station location difference, provided the required pumping power is positive.
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1. Introduction

Long distance pipelines are often a cost-effective means of
transporting a wide variety of ores and tailings between remote loca-
tions (Jacobs, 1991; Abulnaga, 2002). Considering that long distance
slurry transport requires massive amounts of energy, the concept of
energy efficiency in this kind of infrastructure (Wilson et al., 2006) is
highly relevant. Motivated by the additional and recurrent constraint re-
latingmining operationswithwater scarcity, thewell-known problem of
energy efficiency has been recast into a problem of minimum cost (Ihle,
2013; Ihle et al., 2013), which includes the cost of water. This new ap-
proach opens the question onwhether the conditions for energy efficien-
cy (Nguyen andBoger, 1998; Sofrá andBoger, 2002; Ihle andTamburrino,
2012) are the same of those minimizing the sum of energy and water
cost. The finding from the solution of a large-scale optimization problem
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mailto:cihle@ing.uchile.cl
http://dx.doi.org/10.1016/j.minpro.2016.01.011
www.elsevier.com/locate/ijminpro


60 C.F. Ihle / International Journal of Mineral Processing 148 (2016) 59–64
that theminimum transport costs are apparently related to theminimum
velocity (Ihle, 2013, Table 1), suggests to analyze inmore detail the role of
such condition. Although it has been previously suggested that the opti-
mum concentration of solids increases with the throughput (Nguyen
and Boger, 1998; Sofrá and Boger, 2002), and decreases with the velocity
(Nguyen and Boger, 1998; Sofrá and Boger, 2002;Wu et al., 2010; Edelin
et al., 2015), such experimental observations do not give a weight to the
use of water. However, if water is considered, it has been shown that the
optimal concentration is indeed an increasing function of the throughput
(Ihle et al., 2014a). In this paper, a dimensionless formulation of the cost
function is used to analyze the various possibilities of the cost and flow
characteristics. Considering flow conditions and characteristics typical
of fine-graded slurries such as bauxite, copper and iron concentrates, it
is shown that it is precisely the minimum feasible velocity that which
minimizes the combined water and energy cost. The result has been ex-
tended to cross country pipelines featuring an energy dissipation point
or an elevated discharge.

2. Problem description

Consider an operating slurry transport system of length L with
known internal diameter (D) where the throughput (G), defined as
the dry solid rate, along with route and slurry properties are known.
The total energy and water cost per unit time may be expressed as:

Ω ¼ ceP þ cwQw; ð1Þ

where ce and cw represent the unit costs of energy and water, respec-
tively. The variables P and Qw are the pumping power and the water
flow required to allow for the dispatch of the solids, respectively.

Assuming a final atmospheric discharge and neglecting minor
singular pressure losses (except those intended to avoid column
separation, consisting of the appearance of a gas phase in the slur-
ry column, as explained below), the required pumping power is
Fig. 1. Schematic of the hydraulic head, E, denoted by lines, in terms of the tubelength distance, x
influence on the optimal condition. (c) Topography with influence on the optimal energy line.
calculated using the energy conservation and the Darcy–Weisbach
equation as:

P ¼ Hd–z0 þ
8
π2

fLQ2

gD5

 !
ρgQ
e

; ð2Þ

where f is the Darcy friction factor, f=π2D4τwall/2ρQ2, with Q and
ρ the volume flow and density of the solid–liquid mixture. Here,
D is the pipe internal diameter, g is the magnitude of the gravity
acceleration vector, τwall the pipe wall shear stress and e is the
overall efficiency of the pumping system. Here, z0 is the altitude
of the pump station (referred to a datum) and Hd is total singular
energy consumption head required to ensure that at every point of
the route the line pressure would exceed the vapor value to avoid
column separation and the potentially harmful consequences of related
flow transients (Bergant et al., 2006). The head loss Hd may be alterna-

tively expressed in terms of a dimensionless coefficient (kd) as Hd ¼
8kdQ

2

gπ2D4 . A schematic of the importance of Hd is shown in Fig. 1, where

the lines represent the hydraulic head, E=p/ρg+zt+v2/2g. Here, zt, p
and v are the topographic altitude, line pressure andmeanflowvelocity,
respectively. In long distance pipeline systems, commonly v2/2g is neg-
ligible in front of p/ρg.

Fig. 1a and b shows a schematic of the hydraulic head line that min-
imizes the energy and water cost for the cases of flat or very low topog-
raphy. In both cases the energy line remains unchanged. However, if the
topography is high enough the former energy linemight cross it. As the
absolute pressuremust be greater than the vapor value, the pipeline ex-
tension that crosses the topography under this operational scenario
must then be at the vapor pressure. This is denoted by the dashed line
in Fig. 1c. To ensure that the whole energy line will not cross the topog-
raphy in a fixed diameter pipeline, there are two possible mechanisms.
One is to increase the volume flow, which effectively increases the
. The shaded area represents the topography. (a) Flat topography. (b) Topographywith no
(d) A correction to the optimal condition in (c), incorporating a singular head loss, Hd.
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energy line slope, equal to 8 f Q2

gπ2D5, given thatmodels for the friction factor f

in laminar and fully developed turbulent flow verify that ∂( fQ2)/∂QN0
(Darby, 2001; Abulnaga, 2002). A schematic of the resulting hydraulic
head is shown in the dashed-dotted line of Fig. 1d. The second mecha-
nism to raise the energy line is to keep the slope (i.e. the volume flow
and the solid volume fraction) and introduce a singular pressure loss,
either using energy dissipation devices or an inline turbine, to shift the
energy line upwards. This situation, depicted in the solid line of Fig. 1d
may be associated with a lower pump energy consumption, compared
to the increased flow option, as seen from the crossing point of the
x = 0 line. The graphical construction of Fig. 1 suggests that, under
some conditions, the best energy gradient linemay be determined inde-
pendently of the topography or, equivalently, the particular value of
Hd−z0, as confirmed under some assumptions below. It is also noted
that when energy dissipation is necessary, z0 can be lesser or greater
than Hd. Pumping, in lieu of a purely gravitational transport, is required
only when P≥0.

The density ρ depends on the concentration as ρ(ϕ)=ρwσ, with
σ=ϕ(S−1)+1. From the mass balance in the flow,

G ¼ SρwϕQ ; ð3Þ

where G is the (dry) solid throughput, S is the specific gravity of solids,
ρw the liquid phase density and ϕ the solid volume fraction in the flow.
On the other hand, the process objective of the concentrate line is to de-
liver a fixed amount of solids per unit time. That is, the throughputG is a
process parameter that effectively acts as a restriction, via Eq. (3), for
both the flow and the solid concentration. Themass balance also implies
that

Qw ¼ 1−ϕð ÞQ : ð4Þ

Besides the turbulent flow regime requirement, concentrate pipe-
lines are commonly designed to operate above the deposit velocity, cor-
responding to the lower threshold below which there is sediment
formation in the pipe section (Durand and Condolios, 1952; Abulnaga,
2002). This requisite configures a common restriction in long distance
ore pipelines, in terms of the minimum attainable slurry volume flow,
as:

QNQmf ; ð5Þ

with Qmf=max{Qdv,Qlt}, where Qdv and Qlt are the volume flows
corresponding to the deposit formation threshold and the minimum
value to ensure turbulent transport, respectively. The inequality corre-
sponding to expression (5) is an operational restriction of the optimiza-
tion problem given by Eq. (1). The deposit velocity may be expressed as
a function of the solid volume fraction via the bulk density ρ and the
mixture viscosity (Gillies et al., 2000; Poloski et al., 2010), and is
commonly a decreasing function of the volume fraction (Ihle and
Tamburrino, 2012). Conversely, the laminar-turbulent transition de-
pends on a critical Reynolds number. At constant critical Reynolds num-
ber, an increase in concentration causes a greater increase in viscosity
than in density—this will be evident in the next section—,and thus will
tend to increase the mean flow velocity corresponding to the laminar-
turbulent transition. If the flow has not significant cross-sectional varia-
tions of the solid fraction, for small enough concentrations the deposit
mechanism tends to dominate over the laminar-turbulent one, whereas
for mid- to high concentrations, associated with a high water cost re-
gime, the laminar-turbulent transition controls the minimum flow
(Ihle and Tamburrino, 2012; Ihle et al., 2014b).

3. Hypotheses

A smooth wall, fully developed turbulent flow regime with a mean
flow velocity deposit limit is considered. This assumption gives a good
description of a number of pipeline concentrate flows and, in par-
ticular, those copper and iron concentrates that exhibit low yield
stresses, given their typical Reynolds number ranges, between
104 and 105 (see Abulnaga, 2002, for a comprehensive list of relat-
ed slurries). In these cases, the very high wall shear stresses occur-
ring during turbulent concentrate pipeline flows (τw) imply that
ξ=τy/τwallb b1 (Ihle and Tamburrino, 2012; Ihle et al., 2014b),
and therefore the pressure losses are weakly dependent on the
yield stress. This observation is not to be confused with what happens
in strongly heterogeneous or bed forming high concentration coarse
particle flows (Doron and Barnea, 1993; Matoušek, 2002; Pullum
et al., 2006), where the manifest segregation in the vertical makes the
present hypothesis inapplicable.

According to the smooth wall turbulent friction model by Chilton
and Stainsby (1998), f= fN/(1−ξ)≈ fN, where fN is the corresponding
Darcy friction factor for a viscous Newtonian fluid, in this case the
Blasius empirical model. It is possible to obtain a similar conclusion
out of the model proposed by Thomas and Wilson (1987) (also,
Wilson and Thomas, 1985), based on the logarithmic velocity profile.

In the present problem, the solid–liquid mixtures are assumed as
non-cohesive, and thus the viscosity of such suspensions (μ) may be
reasonably described following a Krieger-type model μ/μw=η, with
μw the viscosity of the liquid phase, and the dimensionless function η
given by:

η ¼ 1−
ϕ
ϕm

� �−βη

; ð6Þ

with βηN0 and ϕm the maximum attainable concentration of the
flowing mixture (Krieger and Dougherty, 1959). This expression
predicts a solid-like behavior in the limit ϕ→ϕm, i.e., η→∞ in
this case. This type of viscosity model thus yields a growth rate
higher than that of an exponential function of η. The exponent
βη=2 is valid for either spheres or elongated particles (Maron
and Pierce, 1956; Quemada, 1977; Ovarlez et al., 2006; Mueller
et al., 2010). The existence of particle size distributions is
accounted for via the maximum packing fraction ϕm (Stickel and
Powell, 2005). This has been confirmedwith viscositymeasurements
of fine comminution slurries at moderate volume fractions (a data
compilation is given in the Appendix of Ihle, 2013). The latter param-
eter has also been related by Mueller et al. (2010) to the particle
shape with the empirical relation for the particle size ratio (rp),
ϕm=2/(0.321rp+3.02). Comprehensive reviews for the viscosity
determination in the infinite Péclét number limit, where hydrody-
namic forces are dominant over Brownian ones as in the present case,
are given in Quemada (1977), Stickel and Powell (2005) and, more re-
cently, Mueller et al. (2010).

4. A minimum cost condition

4.1. Dimensionless cost formulation

The cost function, given by Eq. (1), may be rendered dimensionless
using the scaleΩ ¼ ðπ=4ÞDμwcw=ρw. On the other hand, the expression
for the energy consumption (Eq. (2)), which depends on the slurry vol-
umeflow (Q), may be expressed in terms of the (fixed) system through-
put, G, the solid volume fraction, ϕ, and the solid density (Sρw) using
Eq. (3) as Q=G/Sρwϕ. Additionally, the water volume flow (Qw) may
be expressed in terms of ϕ and Q—and hence G/Sρwϕ—using the water
mass balance relation (Eq. (4)). As a result, the following dimensionless
expression is obtained:

ω
ω0R0

3 ¼ σ
ϕ3 f þ 1−ϕþ σω0ℋ

ϕω0R0
2 ; ð7Þ



Fig. 2. Numerical values of F(ϕmf)=supϕβη, with F(ϕ) given by Eq. (12). (a) βf=0.193
(Darby, 2001) (additional comments in Ihle et al. (2014b)). (b) βf=0.25 (Chilton and
Stainsby, 1998). In (b), the inset shows a detail of F for ϕmf between 0.25 and 0.45.
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where:

ω0 ¼ 1
2

μw
2Lce

ρwD
3ecw

; R0 ¼ 4
π

G
SDμw

; and ℋ ¼ 2g Hd−z0ð Þρw
2D3

μw
2L

: ð8Þ

In hydraulically smooth pipes the friction factor f is typically
expressed as a sole function of the slurry Reynolds number,
which may be expressed as Re=(4/π)(σ/ϕη)(ρwQ/μwD) or, equiva-
lently, Re=(σ/ϕη)R0. The latter relation also holds as an equation
for ϕ when Re=Rec, with Rec the laminar-turbulent transitional
Reynolds number (see Appendix A for an analytical derivation of
a particular solution corresponding to the case when βη=2 in
Eq. (6). So far, it is noted that the cost formulation remains inde-
pendent of the particular form of η, except for the term bearing
the friction factor.

From Eq. (3), the slurry flow is inversely proportional to the solid
volume fraction and, in particular, it becomes singular in the no-solid
condition, with ω→∞ as ϕ→0. On the opposite side, noting that if
f≈αf/Reβf in hydraulically smooth turbulent flow, with αfN0 and
0bβfb1 (Chilton and Stainsby, 1998; Darby, 2001; Ihle et al., 2014b),

then ω=ω0Nα f ðη=σÞβ f R0
3−β f þℋR0 . Using Eq. (6), recalling that η

grows unboundedly and σ→ϕm(S−1)+1 as ϕ→ϕm, then ω→∞ as
ϕ→ϕm. The cost function is continuous everywhere except at ϕ=0
and ϕm and thus, if f and η admit the definitions given here, there is a
non-trivial optimal concentration that minimize the cost, for fixed
values of the fluid and solid properties, the energy and water unit
costs. The same conclusion also holds if η is bounded for 0≤ϕ≤1 and,
in general, for any frictional law such as ∂ f/∂ϕN0.

For a relatively broad set of system parameters associated with the
transport of concentrates obtained from comminution processes, the
minimum flow condition described in Eq. (5) also sets a minimum
cost condition. The mass conservation statement corresponding to
Eq. (3) implies that given the throughput, valid transport concentra-
tions must verify ϕbϕmf, where ϕmf=ϕ(Q=Qmf), i.e., the volume frac-
tion corresponding to the minimum flow condition. Thus, if dω/dϕ≤0
for 0bϕ≤ϕmf then minϕΩ=Ω(ϕmf) or, equivalently, minQΩ=Ω(Qmf).
From Eq. (7) it is seen that this result depends on the problem input pa-
rametersω0, R0 andℋ, where the three of them are independent of the
volume fraction.

The optimal cost depends also on the friction factor, a function of R0,
σ and η, and on the particular choice of the relation to obtain the friction
factor and η.

4.2. Base case: z0=Hd=0

Before analyzing the role ofℋ, the simpler case of a flat topography
with no energy dissipation is considered. Differentiating Eq. (7)with re-
spect to ϕ reads:

1

ω0R0
3

dω
dϕ

¼ f

ϕ4 −1−2σ þ ϕσ
f

d f
dϕ

� �
−

1

ϕ2ω0R0
2 : ð9Þ

The dimensionless cost function becomes a decreasing function of
the solid volume fraction and the concavity if its derivative with respect
to ϕ is negative or zero. This is equivalent to the following condition for
the friction factor f:

1
f
d f
dϕ

≤
1þ 2σ
ϕσ

: ð10Þ

If so, it is straightforward to obtain that d2ω/dϕ2≥0 and to conclude
that, in this case,ϕ=ϕmfminimizes the cost function (1) if R0 andω0 are
positive.

The fitness of the condition given by the inequality (10) to real long
distance concentrate pipelines is yet to be verified. In particular, assum-
ing here the Blasius-like friction law referred to above, and η as given in
Eq. (6), then the upper bound condition given by the inequality (10)
becomes:

βη ≤ F ϕjS;ϕm;β f
� �

; ð11Þ

with

F ϕjS;ϕm;β f
� � ¼ 3−β f þ 2ϕ S−1ð Þ

β f ϕ S−1ð Þ þ 1½ �
ϕm

ϕ
−1

� �
: ð12Þ

The function F is a monotonically decreasing function of the solid
fraction and is undefined inϕ=0.On the other hand, its lowest possible
value is given by the least upper bound, supϕβη=F(ϕmf). Somenumeric
examples are given in Fig. 2, where each group of curves corresponds to
a specific value of ϕm. It is seen that for a wide variety of values of S and
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ϕm, the exponent βη=2 (Ovarlez et al., 2006; Ihle, 2013) is reached
with very high solid fractions. This means that for these cases a reason-
able viscosity model is compatible with optimal energy and water utili-
zation rates.

A similar analysis may be done assuming a friction law based on the
logarithmic velocity profile which, in smooth pipelines reads (Wilson
and Thomas, 1985; Thomas and Wilson, 1987; Mansour and Rajie,
1988): f−1/2=−α1log10(α2/Ref 1/2). This equation is implicit on the
friction factor but for Newtonian fluids several expressions have been
proposed to avoid the iterative process (Clamond, 2009, and refer-
ences therein). Following a similar procedure to that leading to the
inequality (11), a similar upper bound condition for βη is found as
βη≤(1/ϕ−1)(1−1/2σ)(1+k/f1/2)(ϕm−ϕ), with k= ln10/α1, eval-
uated at ϕ=ϕmf. Although the results are similar to those depicted in
Fig. 2, to proceed it is necessary to identify the flow Reynolds number
to assess the value of f in the upper bound.

The inequality (10) may be understood as a base condition for this
analysis. Given that it is the minimum velocity that which minimizes
this base problem, it is left to introduce the parameter ℋ and see
whether the optimal condition changes with it.

4.3. Case 1: ω0ℋ+1≥0

The parameterℋ is assumed to take a constant value such as when
the pressure exceeds the vapor value everywhere. Graphically, this pa-
rameter does not modify the slope of the energy line, but only offsets
it vertically, as depicted in Fig. 1d (solid line). Differentiating Eq. (7)
with respect to ϕ, the following expression is obtained:

1

ω0R0
3

dω
dϕ

¼ f

ϕ4 −1−2σ þ ϕσ
f

d f
dϕ

� �
−

1

ϕ2R0
2

1
ω0

þℋ
� �

: ð13Þ

Given that ω0ℋ+1≥0 the second term of the right hand side of
Eq. (13) is negative, then again Eq. (13) is negative if the inequality
(10) holds, regardless of the value of R0.

In real long distance pipeline systems it is common that z0NHd,
which means that the geographic altitude of the pump station is
above the total point energy dissipation head. From Eq. (13), it is
noted that if −1/ω0 ≤ℋ ≤ 0, then dω/dϕ ≥ 0. The case ℋb−1/
ω0 b 0 is treated on Section 4.4.

4.4. Case 2: ω0ℋ+1b0

Although ℋ may take negative values (i.e. the dissipation energy
level is below the altitude of the pump station), ℋ must be such that
the pumping power is positive. If otherwise, the available potential en-
ergy would suffice to satisfy the throughput requirement with pure
gravitational transport. Any excess favorable value of z0 may be com-
pensated with additional energy consumption, either through energy
dissipation or energy generation. In other words, from the expression
(2), it is required that P≥0 or, in terms of the present dimensionless
variables,

ℋ ≥−
f R0

2

ϕ2 : ð14Þ

If P=0, the cost function (1) takes the simpler formω=R0(1−ϕ)/ϕ,
whose minimum corresponds to the maximum attainable concentration,
i.e., the minimum flow condition.

Replacing the condition (14) in Eq. (13) yields

1

ω0R0
3

dω
dϕ

≤
f

ϕ4 −2σ þ ϕσ
f

d f
dϕ

� �
−

1

ϕ2ω0R0
2 : ð15Þ
Combining the condition ℋb−1/ω0 with the inequality (14)
yields:

f N
ϕ2

ω0R0
2 : ð16Þ

On the other hand, from the inequality (15), dω/dϕ ≤ 0 if −2σ þ
ðϕσ= f Þd f =dϕ ≤ϕ2= fω0R0

2 or, equivalently, dω/dϕ ≤ 0 if

1
f
d f
dϕ

≤
1þ 2σ
ϕσ

þ 1
ϕσ

ϕ2

fω0R0
2 −1

 !
b
1þ 2σ
ϕσ

; ð17Þ

where the rightmost bound is obtained noting that the term between
brackets is negative due to Eq. (16). This condition corresponds to the
inequality (10), which leads to expressions (11) and (12). Therefore,
in this case, under the present hypotheses, again the minimum feasible
velocity minimizes the transport cost.

5. Conclusions

Cases 1 and 2 show that if the minimum feasible velocity minimizes
the cost, then any arbitrary vertical offset of it—either through modify-
ing the pump altitude or introducing a dissipation—will yield the mini-
mum cost with the minimum velocity as well.

The minimum flow condition thus represents the key to minimize
the cost associated with the energy and water required to hydraulically
transport solids as a pseudo-homogeneous mixture, especially over
long distances, where the energy cost becomes relevant. It is notewor-
thy that the present result, stating that the most economic mode of
transport corresponding to the minimum safe transport velocity, has
not been linked to any particular model for deposit velocity or laminar
turbulent transition. Supporting the present results, previous experi-
mental measurements have concluded that higher concentrations and
lower velocities are bonded to lower transport costs per unit mass of
solids. Thus, the present study somewhat extends the previous knowl-
edge on the optimality of the minimum velocity in energy efficiency
to the concept of cost, associated simultaneouslywithwater and energy.
In particular, given a fixed throughput, the higher the concentration and
the lesser the velocity, the lower the transport cost is. The present anal-
ysis does not take into account the computation of the actualminimum,
which has been discussed elsewhere for a variety of examples (Ihle,
2013; Ihle et al., 2013; Ihle et al., 2014a) and depends, in particular, on
the design criteria to set the minimum velocity condition. However,
this result opens the door to narrowing down future optimization
schemes, especially to identify economic infrastructure, by analogy
with the concept of economic pipeline diameter in water networks.
List of symbols

a constant
ce energy unit cost
cw water unit cost
D pipeline internal diameter
e overall pump efficiency
E hydraulic head
F Eq. (12)
f Darcy friction factor
fN Darcy friction factor for a Newtonian fluid
g magnitude of gravity acceleration vector
Hd dissipation head
ℋ dimensionless number (Eq. (8))
L pipeline length
G dry solid flow (throughput)
p pressure
Q flow rate
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R0 dimensionless number (Eq. (8))
Re Reynolds number
Rec critical Reynolds number
p pressure
P pumping power (Eq. (2))
Q slurry volume flow
Qdv slurry volume flow (deposit velocity)
Q lt slurry volume flow (laminar-turbulent transition)
Qmf minimum slurry volume flow
Qw water volume flow (Eq. (4))
R0 dimensionless number (Eq. (8))
S specific gravity of solids
z0 altitude of the pump station
zt altitude

Greek letters

α f parameter for the relation f=αf/Reβf

βf parameter for the relation f=αf/Reβf

βη parameter for Eq. (6)
μw water dynamic viscosity
η viscosity concentration function (Eq. (6))
ϕ solid volume fraction
ϕm maximum solid volume fraction
ρ density
ρw water density
σ ϕ(S−1)+1
τwall shear stress at the pipe wall
τy yield stress
ξ yield to wall stress ratio
Ω dimensional cost function
Ω cost scale
ω dimensionless cost function
ω0 dimensionless number (Eq. (8))
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Appendix A. An analytical solution of the solid volume fraction,
corresponding to a specific critical Reynolds number

If βη=2 in expression (6), then the relation Rec=(σ/ϕη)R0, where
Rec is the critical Reynolds number that marks the laminar-turbulent
flow transition, is a 3rd degree polynomial equation in ϕ:

ϕ3 þ a2ϕ2 þ a1ϕþ a0 ¼ 0; ðA:1Þ

where:

a2 ¼ 1−2ϕm S−1ð Þ
S−1

ðA:2Þ

a1 ¼ ϕm
2 S−1ð Þ−2ϕm−θ

S−1
ðA:3Þ

a0 ¼ ϕm
2

S−1
; ðA:4Þ

with θ ¼ ϕm
2Rec=R0. This equation has three real roots (Abramowitz

and Stegun, 1965), whose only physically meaningful one is:

ϕ ¼ q1=2 cos
ψ
3

� �
−

ffiffiffi
3

p
sin

ψ
3

� �� �
−

ϕm

3
1

σm−1
−2

� �
; ðA:5Þ
where

q ¼ ϕm ϕmσ2
m þ 3θ σm−1ð Þ	 


9 σm−1ð Þ2
ðA:6Þ

ψ ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q3

r2
−1

s
ðA:7Þ

r ¼ ϕm
2 9θ 2σm−3ð Þ σm−1ð Þ−2σ3

mϕm

	 

54 σm−1ð Þ3

; ðA:8Þ

with σm=ϕm(S−1)+1.
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