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ABSTRACT

We present results from a multi-chord Pluto stellar occultation observed on

29 June 2015 from New Zealand and Australia. This occurred only two weeks

before the NASA New Horizons flyby of the Pluto system and serves as a useful

comparison between ground-based and space results. We find that Pluto’s at-

mosphere is still expanding, with a significant pressure increase of 5±2% since

2013 and a factor of almost three since 1988. This trend rules out, as of today,

an atmospheric collapse associated with Pluto’s recession from the Sun. A cen-

tral flash, a rare occurrence, was observed from several sites in New Zealand.

The flash shape and amplitude are compatible with a spherical and transparent

atmospheric layer of roughly 3 km in thickness whose base lies at about 4 km

above Pluto’s surface, and where an average thermal gradient of about 5 K km−1

prevails. We discuss the possibility that small departures between the observed

and modeled flash are caused by local topographic features (mountains) along

Pluto’s limb that block the stellar light. Finally, using two possible temperature

profiles, and extrapolating our pressure profile from our deepest accessible level

down to the surface, we obtain a possible range of 11.9-13.7 µbar for the surface

pressure.

Subject headings: occultations — Kuiper belt objects: individual (Pluto) — planets

and satellites: atmospheres — techniques: photometric
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1. Introduction

Ground-based stellar occultations probe Pluto’s atmosphere at radii ranging from

r ∼ 1190 km from the planet center (pressure p ∼ 10 µbar) up to r ∼ 1450 km

(p ∼ 0.1 µbar). In a previous work (Dias-Oliveira et al. 2015, DO15 hereafter), we analyzed

high signal-to-noise-ratio occultations observed in 2012 and 2013, and derived stringent

constraints on Pluto’s atmospheric profiles (density, pressure and temperature profiles).

and on Pluto’s radius (RP = 1190 ± 5 km, assuming no troposphere). We also found a

pressure increase of 6± 1% between 2012 and 2013.

Here we analyze a stellar occultation, observed on 29 June 2015 from Australia and

New Zealand, which occurred two weeks before the NASA New Horizons (NH hereafter)

flyby of the Pluto system. Our goals are: (1) assess further pressure changes between

2013 and 2015 (eventually providing useful constraints on Pluto’s seasonal models); (2)

analyze the central flash that was detected for the first time ever from multiple stations. It

constrains the thermal structure of a layer immediately above Pluto’s surface, its possible

departure from sphericity and/or presence of hazes; and (3) constrain the pressure at

Pluto’s surface. Besides serving as a useful comparison with the NH results, our work is one

more benchmark in the long-term survey of Pluto’s atmosphere over the forthcoming years.

1Partly based on observations made with the ESO WFI camera at the 2.2 m Telescope

(La Silla), under program ID 079.A-9202(A) within the agreement between the ON/MCTI

and the Max Planck Society, with the ESO camera NACO at the Very Large Telescope

(Paranal), under program ID 089.C-0314(C), and at the Pico dos Dias Observatory/LNA,

Brazil.
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2. The 29 June 2015 occultation

The prediction procedures are described in DO15, Assafin et al. (2010) and Benedetti-

Rossi et al. (2014). The event was monitored from Australia and New Zealand (Table 1),

from which we obtained eight occultation detections. The reconstructed occultation

geometry is displayed in Fig. 1, see also Table 2. The light-curves were obtained from

classical aperture photometry, after correction of low frequency variations (caused by

changing sky conditions) by means of nearby reference stars, when available. The resulting

light-curves φ(t) give the total flux from the star and Pluto’s system, normalized to unity

outside the occultation, as a function of time t (Fig. 2). The observed flux φ can be written:

φ = (1− φP ) · F? + φP , (1)

where F? is the (useful) stellar flux alone, normalized between zero and unity. Thus, φP

and 1 − φP are the contributions of Pluto’s system and the unocculted stellar flux to φ,

respectively.

The quantity φP is in principle measured independently when Pluto and the occulted

star are angularly resolved, providing F?. It is difficult in practice and requires high

photometric accuracy on the star, Pluto and nearby reference stars hours or days away from

the event. During that time, sky and instrument conditions may vary. Moreover, for data

taken without a filter (broadband), chromatic dependence of the extinction adds further

systematic biases, especially if calibrations are not made at the same airmass.

One station that went deep into Pluto’s shadow (BOOTES-3, broadband, Castro-

Tirado et al. 2012) obtained calibration images hours before the event, as the star and

Pluto were marginally resolved. However, the overlap of the star and Pluto images prevents

the useful determination of the Pluto/star ratio at the required accuracy (1% or better).

Moreover the airmass variation (1.1 during calibration vs. 1.6 during the occultation)
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introduces unmodeled chromatic effects due to color differences between the star and Pluto.

More images taken the following night at very high airmass (3.6) do not provide further

constraints on φP .

One light-curve (Dunedin) was affected by non-linearity caused by a so-called “γ

factor” (Poynton 1997) that modified the pixel values to increase the image dynamical

range . The (supposedly) reverse transformation provides an event that is globally not deep

enough considering its duration, indicating residual non-linearities. Thus, for this station,

we only used the bottom part of the light-curve (Fig. 2), assuming that in this range, the

retrieved flux φ is an affine function of the stellar flux, φ = a · F? + b.

In spite of the lack of accurate measurements for φP , the amplifying effect of the

central flash still constrains the thermal structure of Pluto’s deepest atmospheric layers (see

Section 4).

3. Pressure evolution

The DO15 model uses the simplest possible hypotheses, i.e. Pluto’s atmosphere (1)

is pure nitrogen (N2), (2) is spherically symmetric, (3) has a time-independent thermal

structure, derived itself from the light-curves, and (4) is transparent (haze-free). The

validity of hypotheses (1)-(3) is discussed in DO15. Hypothesis (4) is discussed later in

view of the NH results. Adjusting the pressure p0 at a reference radius r0 (for a given

event) uniquely defines the molecular density profile n(r), from which synthetic light-curves

are generated and compared to the data. Note that p0 monitors the evolution of Pluto’s

atmospheric pressure as a whole. In practice, most of the contribution to the fits comes

from the half-light level (F? ∼ 0.5, r ∼ 1295 km, p ∼ 1.7 µbar), with a tapering off above

r ∼ 1450 km (F? ∼ 0.9, p ∼ 0.1 µbar) and below r ∼ 1205 km (F? ∼ 0.1, p ∼ 8 µbar).
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The parameters of our model are listed in Table 2 and our simultaneous fits are

displayed in Fig. 2. They have χ2 per degree of freedom close to unity, indicating

satisfactory fits. Two minor modifications were introduced, relative to the DO15 model.

First, we updated for consistency Pluto’s mass factor to GM = 8.696× 1011 m3 s−2 (Stern

et al. 2015), instead of 8.703× 1011 m3 s−2, causing negligible changes at our accuracy level.

Second, we use the NH-derived Pluto radius (RP = 1187 km) as a boundary condition for

the DO15 model. This new value modifies (at a few percent level) the retrieved pressure

at a given radius compared to DO15. Moreover, changing RP translates vertically all the

profiles near the surface by an equivalent amount. In other words, all the quantities of

interest (pressure, density, temperature) are well defined in terms of altitude above the

surface, if not in absolute radius.

The pressures p0 at r0 = 1215 km and 1275 km are given in Table 2. They are useful

benchmarks, respectively corresponding to the stratopause (maximum temperature of

110 K), and the half-light level layer. Fig. 3 displays the pressure evolution over 2012-2015.

The formal error bars assume an invariant temperature profile, but this assumption should

not affect the relative pressure changes in 2012-2015. Relaxing that constraint, we can

retrieve p0 by inverting individual light-curves and testing the effects of the inversion

parameters. This yields possible biases estimated to ±0.2,±0.8 and ±0.5 µbar in 2012,

2013 and 2015, respectively. We have added for comparison occultation results from 1988

(Yelle & Elliot 1997) and 2002 (Sicardy et al. 2003). They stem from different analyses and

may also be affected by biases. However, Fig. 3 should capture the main trend of Pluto’s

atmosphere, i.e. a monotonic increase of pressure since 1988.
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4. Central flash

Nearly diametric occultation light-curves (but still avoiding the central flash) have flat

bottoms (Fig. 2). Our ray tracing code shows that near the shadow center, the stellar rays

come from a “flash layer” about 3 km in thickness just above r = 1191 km, thus sitting

4 km on top of the assumed surface (RP = 1187 km, Fig. 3).

Let us denote by F a model for the stellar flux (distinguishing it from the observed

flux F?). Deep inside Pluto’s shadow, F is roughly proportional to the local density

scale-height, Hn = −n/(dn/dr) = T/[µg/k + (dT/dr)], where µ is the molecular weight,

g is the acceleration of gravity and k is Boltzmann’s constant (DO15). For a spherical

atmosphere, we have also F ∝ 1/z, where z is the distance to the shadow center. Writing

z =
√
ρ2 + l2, where ρ is the closest approach distance to the shadow center and l is the

distance traveled from that point, we obtain:

F ∝ Hn

z
= T

µg/k + dT/dr
·
(

1√
ρ2 + l2

)
. (2)

For an approximatively pure N2 atmosphere (µ = 4.652 × 10−26 kg), we obtain

µg/k ∼ 2 K km−1. As the thermal gradient dT/dr is several degrees per kilometer at the

flash layer (see below), the flash amplitude is significantly controlled by dT/dr.

Our best model minimizes χ2 = ∑
i {φi − [(1− φP )Fi + φP ]}2 /σ2

i , where σ2
i is the

variance of φi associated with the noise for the ith data point. As we do not measure φP ,

we considered it as a free, adjustable parameter. Among the data sets analyzed by DO15,

only one had sufficient quality - from the 18 July 2012 ESO Very Large Telescope - to

permit a measurement of φP and thus constrain dT/dr in the deepest accessible layer. It

showed that the residual stellar flux, Fres, at the bottom part of the light-curve lay in the

range 0.010-0.031, thus imposing a thermal gradient near the surface (and imposing φP

for the other light-curves). Since Fres was determined to within a factor of three, a large
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error bar on dT/dr deep in Pluto’s atmosphere was obtained, causing difficulties when

extrapolating the pressure down to the surface. In doing so, we obtained a possible range

psurf = 10-12 µbar for the surface pressure in 2012, estimated at r = 1190± 5 km.

As F is roughly constant at the bottom of occultation light-curves (far from the

flash), there is a degeneracy between F and φP : higher values of φP can be accommodated

by smaller values of F , i.e. smaller Hn. This is not true anymore within the flash, as

F suffers significant variations. The χ2-minimization provides both φP and Hn through

∂χ2/∂φP = 0 and ∂χ2/∂Hn = 0. Although our ray tracing code generates exact values of F

for a given model, it is convenient here (for sake of illustration) to note that F is essentially

proportional to Hn (Eq. 2), so that ∂F/∂Hn ∼ F/Hn. Detailed calculations show that at

minimum χ2, we have ∂2χ2/∂H2
n = (2N/H2

n)(σ2
F/σ

2) for F � 1, where σ2
F = F 2 − F 2 is

the variance of F (the bars denoting average values) and N is the number of data points.

Thus, the relative error bar on the scale-height is δHn/Hn ∼ (σ/σF )/
√
N , which is small if

the flash (and then σF ) is large.

Since F increases as Hn increases or ρ decreases, Hn and ρ are correlated. However, the

full width at half maximum (FWHM) of the flash is proportional to ρ, while Hn controls

homogeneously the flash amplitude, keeping its FWHM constant. This disentangles the

effects of Hn and ρ. More importantly, the BOOTES-3 and Dunedin stations exhibit flashes

with similar amplitudes (Fig. 2). This robustly forces the two stations to be symmetrically

placed with respect to the shadow center (Fig. 1), thus imposing ρ ≈ 45 ± 2 km for both

stations, independently of Hn (Table 2).

The χ2-value is minimized for dT/dr = 8.5 ± 0.25 K km−1 at 1191 km in our model.

This particular value must be considered with caution, as it is not representative of the

entire flash layer. Due to the functional dependence of T (r) (a branch of hyperbola, DO15),

the gradient dT/dr varies rapidly around 1191 km. The average thermal gradient in the
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flash layer is in fact ∼5 K km−1, consistent with a previous flash analysis (Olkin et al. 2014).

Besides, it is typical of what is expected from the heating by methane (D. Strobel 2015,

private communication). Other functional forms of T (r) could be tested, but this remains

outside the scope of this paper. We note in passing that our best 2015 fit implies a residual

stellar flux Fres = 0.028 (Fig. 2) that is compatible with the possible range (0.010-0.031)

mentioned earlier for 2012.

Our spherical, transparent atmospheric model essentially captures the correct shape

and height of the central flash (Fig. 2). A closer examination of that figure reveals a small

flux deficit (relative to the model) at the left side of the BOOTES-3 flash. It remains

marginal, however, considering the general noise level. This said, it could be caused by

an unmodeled departure of the flash layer from sphericity, but this is not anticipated.

An atmosphere of radius r rotating at angular velocity ω has an expected oblateness

ε ∼ r3ω2/2GM ∼ 10−4 for a rotation period of 6.4 days, r ∼ 1190 km and Pluto’s GM . Such

oblateness causes a diamond-shaped caustic (Elliot et al. 1977) with a span of 4εr <∼ 1 km

in the shadow plane. This is negligible considering the closest approach distances involved

here (∼45 km). Moreover, expected zonal winds of less than a few meters per second near

1191 km (Vangvichith 2013; Zalucha & Michaels 2013) would have even smaller effects.

More complex distortions may arise, as varying thermal conditions along Pluto’s limb may

slightly tilt the local iso-density layer, but its modeling remains outside the scope of this

paper.

A possible explanation of the small discrepancy is that the primary and/or secondary

stellar images hit topographic features while moving around Pluto’s limb. Curvature

effects strongly stretch the images parallel to the limb during the central flash, by a ratio

equal to the flash layer radius (1191 km) divided by the closest approach distance, about

45 km. From the star magnitudes (Table 2 and Kervella et al. 2004), we estimate its
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diameter as 33 µas, or 0.76 km projected at Pluto. The length of the stellar image is then

0.76× (1191/45) ∼ 20 km. It moves at about 4 km above the surface, which is comparable

to the local topographic features reported from NH (Stern et al. 2015). It is thus possible

that part of the stellar flux was partially blocked by mountains, causing small observed

drop. This can be tested by studying the topography derived from NH, noting that the

primary and secondary stellar images at BOOTES-3 probed regions near longitude 190◦E

and latitude 20◦S, and 10◦E and 20◦N, respectively, during the flash.

Finally, NH images reveal tenuous hazes with normal optical depth τN ∼ 0.004 and

scale-height H = 50 km (Stern et al. 2015). This implies an optical depth along the line of

sight of τ ∼
√

2πr/H · τN ∼ 0.05, which is indistinguishable from the noise level (Fig. 2),

supporting our transparent-atmosphere hypothesis.

5. Surface pressure

Fig. 3 displays our best pressure profile, with p1191 = 11.0 ± 0.2 µbar at the deepest

accessible level. To estimate the surface pressure, we need to extrapolate p(r) into the

blind zone. Two possible temperature profiles are considered, beside the DO15 model

(Fig. 3). One has a temperature gradient in the blind zone that tends to zero at the surface,

where psurf = 13.0 µbar and Tsurf = 36 K. This describes a shallow troposphere that is in

vapor pressure equilibrium with the surface, an example of a locally sublimating N2 frost

layer. The other profile has a constant gradient of 8.5 K km−1, with psurf = 12.6 µbar and

Tsurf = 49 K. Such warmer regions are indeed observed on Pluto (Lellouch et al. 2000), and

they do not sublimate due to the absence of free N2 frost. Considering the formal error

bar ±0.2 µbar on p1191, we obtain a range of 12.4-13.2 µbar for the surface pressure under

hypotheses (1)-(4) of Section 3, and 11.9-13.7 µbar accounting for the already dicussed

possible bias of ∼ ±0.5 µbar. Other thermal profiles should be considered at this point, but
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they would not change significantly our result due to the proximity (∼4 km) of our deepest

accessible level to the surface, leaving little freedom for psurf .

6. Conclusions

The 29 June 2015 stellar occultation provided a snapshot of Pluto’s atmosphere, after

years of similar observations. Moreover, this was the first event with multi-chord cuts

into the central flash. Assuming a spherical and transparent atmosphere as in DO15, we

satisfactorily fit all the light-curves, including the central flash part (Fig. 2).

We find that Pluto’s atmospheric pressure has been increasing monotonically since

1988, with an augmentation of 5 ± 2% between 2013 and 2015, and an overall factor of

almost three between 1988 and 2015 (Fig. 3). This trend between 1988 and 2013 was

confirmed by independent works by Elliot et al. (2003); Pasachoff et al. (2005); Person

et al. (2013); Young (2013); Bosh et al. (2015). It is now extended to 2015 and rules out

an ongoing atmospheric collapse associated with Pluto’s recession from the Sun. This is

consistent with high thermal inertia models with a permanent N2 ice cap over Pluto’s

north pole, that preclude such collapse (Olkin et al. 2015). Other possible models where

N2 condenses on an unlit cap might announce a pressure decrease in the forthcoming years

(Hansen et al. 2015). Further monitoring with occultations and a detailed analysis of the

NH data will allow discrimination between those scenarios.

The central flash comes from a ∼3-km-thick layer whose base is 4 km on top of Pluto’s

surface. The amplitude of the flash is consistent with an average thermal gradient of

∼5 K km−1 in that layer. Small departures from the model might be caused by topographic

features along Pluto’s limb that block the stellar images.

Extrapolating possible temperature profiles down to the surface, we find a possible
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range of 11.9-13.7 µbar for the surface pressure. This is larger than, but compatible with

the entry value 11±1 µbar derived from the NH radio occultation experiment (Hinson et al.

2015; Gladstone et al. 2016). At this stage, more detailed investigations of both techniques

should be undertaken to see if this difference is significant, or the result of unaccounted

effects. In any case, the two techniques validate each other, an excellent prospect for future

monitoring of Pluto’s atmosphere from ground-based occultations.
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Vangvichith, M. 2013, Thèse de Doctorat, Ecole Polytechnique, France

Yelle, R. V., & Elliot, J. L. 1997, Atmospheric Structure and Composition: Pluto and

Charon, ed. S. A. Stern & D. J. Tholen, 347

Young, L. A. 2013, Astrophys. J., Lett., 766, L22

Zacharias, N., Finch, C. T., Girard, T. M., et al. 2013, Astron. J., 145, 44

Zalucha, A. M., & Michaels, T. I. 2013, Icarus, 223, 819

This manuscript was prepared with the AAS LATEX macros v5.2.



– 17 –

Table 1: Circumstances of observations.
Site Lat. (d:m:s) Telescope Exp. Time/ Observers

Lon. (d:m:s) Instrument Cycle (s) remarks
altitude (m) Filter

Melbourne 37 50 38.50 S 0.20 m 0.32 J. Milner
Australia 145 14 24.40 E CCD/clear 0.32 occultation detected

110
Spring Hill 42 25 51.55 S Harlingten/1.27 m 0.1 A. A. Cole, A. B. Giles
Greenhill Obs. 147 17 15.49 E EMCCD/B 0.1 K. M. Hill
Australia 650 occultation detected
Blenheim1 41 32 08.59 S 0.28 m 0.64 G. McKay
New Zealand 173 57 25.09 E CCD/clear 0.64 occultation detected

18
Blenheim2 41 29 36.27 S 0.40 m 0.32 W. H. Allen
New Zealand 173 50 20.72 E CCD/clear 0.32 occultation detected

38
Martinborough 41 14 17.04 S 0.25 m 0.16 P. B. Graham
New Zealand 175 29 01.18 E CCD/B 0.16 occultation detected

73
Oxford 43 18 36 S 0.35 m 1.28 S. Parker
New Zealand 172 13 08 E CCD/clear 1.28 occultation detected, partially

66 m cloudy, not yet analyzed
Darfield 43 28 52.90 S 0.25 m 0.32 B. Loader
New Zealand 172 06 24.04 E CCD/clear 0.32 occultation detected, flash

210
Christchurch 43 31 41 S 0.15 m 0.25 R. Glassey
New Zealand 172 34 54 E CCD/clear 0.25 occultation detected

16 not yet analyzed
BOOTES-3 station 45 02 17.39 S Yock-Allen/0.6m 0.34368 M. Jeĺınek
Lauder 169 41 00.88 E EMCCD/clear 0.34463 occultation detected, flash
New Zealand 370
Dunedin 45 54 31. S 0.35 m 5.12 A. Pennell, S. Todd
New Zealand 170 28 46. E CCD/clear 5.12 M. Harnisch, R. Jansen

118 occultation detected, flash
Glenlee 23:16:09.6 S 0.30 m 0.32 S. Kerr
Australia 150:30:00.8 E CCD/clear 0.32 no occultation detected

50
Reedy Creek 28 06 29.9 S 0.25 m 0.64 J. Broughton
Australia 153 23 52.0 E CCD/clear 0.64 no occultation detected

65
Linden 33 42 30.0 S 0.76 m, 0.2 m 0.133, 1.28 D. Gault, R. Horvat
Australia 150 29 43.5 E CCD/clear 0.133, 1.28 L. Davis

583 no occultation detected
Leura 33 43 09.0 S 0.20 m n.a. P. Nosworthy
Australia 150 20 53.9 E visual n.a. no occultation detected

903m
Penrith 33 45 43.31 S 0.62 m 0.533 D. Giles
Australia 150 44 30.30 E CCD/Clear 0.533 M. A. Barry

96 no occultation detected
St Clair, 33 48 37 S 0.35 m 0.04 H. Pavlov
Australia 150 46 37 E CCD/Clear 0.04 no occultation detected

41
Murrumbateman 34 57 31.50 S 0.40 m & 0.35 m 0.16 & 2 D. Herald, M. Streamer
Australia 148 59 54.80 E CCD/clear 0.16 & 2 no occultation detected

594
Nagambie 36 47 05.71 S 0.20 m 0.64 D. Hooper
Australia 145 07 59.14 E CCD/clear 0.64 no occultation detected

129
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Table 2: Input parameters and results
Input parameters

Star
Coordinates at epoch (J2000)1 α= 19h 00m 49.4801s ± 11 mas, δ= -20d 41’ 40.801”±17 mas
B, V, R, K magnitudes2 12.8, 12.2, 12.8, 10.6

Pluto parameters
Pluto’s geocentric distance, shadow velocity3 4.77070× 109 km, 24.1 km s−1 (at 16:53 UT)
Pluto’s mass and radius4 (Stern et al. 2015) GM = 8.696× 1011 m3 s−2, RP = 1187 km
Sub-observer and sub-solar latitudes4 B= +51.66 deg, B’= +51.46 deg
Pluto’s north pole position angle4 P= +228.48 deg

Results
Thermal profile (input values for the DO15 model)

r1, T1, dT/dr(r1), r2, T2 1191.1 km, 81.7 K, 8.5 K km−1, 1217.3 km, 109.7 K
r3, T3, r4, T4 1302.4 km, 95.5 K, 1392.0 km, 80.6 K
c1, c2, c3 1.42143317× 10−3, 2.52794288× 10−3, −2.12108557× 10−6

c4, c5, c6 −4.88273258× 10−7, −7.04714651× 10−8, −3.3716945× 104

c7, c8, c9 7.7271133× 101, −5.86944930× 10−2, 1.48175559× 10−5

Longitudes and latitudes of half-light sub-occultation points5

ingress
Greenhill (154◦E, 06◦N, MT), Blenheim (120◦E, 28◦N, MT), Martinborough (119◦E, 28◦N, MT)
Darfield (115◦E, 30◦N, MT), Bootes-3 (113◦E, 31◦N, MT), Dunedin (108◦E, 32◦N, MT)

egress
Greenhill (232◦E, 37◦S, MT), Blenheim (280◦E, 35◦S, ET), Martinborough (282◦E, 34◦S, ET)
Darfield (286◦E, 33◦S, ET), Bootes-3 (288◦E, 33◦S, ET), Dunedin (293◦E, 31◦S, ET)

Pressure (quoted errors at 1σ level6)
18 July 2012 04 May 2013 29 June 2015

Pressure at 1215 km, p1215 6.07± 0.04 µbar 6.61± 0.03 µbar 6.94± 0.08 µbar
Pressure at 1275 km, p1275 2.09± 0.015 µbar 2.27± 0.01 µbar 2.39± 0.03 µbar
Surface pressure (Fig. 3) 11.9− 13.7 µbar

Astrometry
Time of closest approach to shadow center (UT) Closest approach to shadow center
BOOTES-3: 16h 52m 54.8± 0.1s 45.9± 2 km N of shadow center
Dunedin: 16h 52m 56.0± 0.1s 44.6∓ 2 km S of shadow center
Geocenter: 16h 55m 04.9± 0.1s 3911.5± 2 km N of shadow center

1See title’s footnote for information.
2Zacharias et al. (2013); Cutri et al. (2003); Cutri (2012).
3PLU043/DE433 ephemeris.
4Using Pluto’s north pole J2000 position: αp= 08h 52m 12.94s, δp= -06d 10’ 04.8” (Tholen
et al. 2008).
5MT= morning terminator, ET= evening terminator.
6Formal errors. Possible systematic biases are ±0.2,±0.8 and ±0.5 µbar in 2012, 2013 and
2015, respectively (Section 3).
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Fig. 1.— Geometry of the 29 June 2015 Pluto stellar occultation. The stellar motion

relative to Pluto (black arrow) is shown for seven stations, Me: Melbourne, Gr: Greenhill,

Bl: Blenheim, Ma: Martinborough, Da: Darfield, Bo: BOOTES-3, Du: Dunedin. The

J2000 celestial north and east are indicated by N and E, respectively. Pluto’s radius is fixed

at 1187 km. The equator and prime meridian are drawn as thicker lines, and direction of

rotation is along the gray arrow. The shaded region at center indicates the central flash

zone.
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Fig. 2.— Simultaneous fits to our 29 June 2015 occultation light-curves. The intervals under

each name correspond to the time-span 16h 52m-16h 43m UT. The model is overplotted in

blue, and the residuals are in gray. In the lower panels, the blue horizontal lines are the

fitted values of Pluto’s contribution to the flux (φP , Eq. 1). The star symbol under the

BOOTES-3 curve indicates a small flux deficit relative to the model. In the Dunedin panel,

the smooth curve is the central flash at high resolution, before convolution by the exposure

time (5.12 s), vertically shifted for better viewing.
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Fig. 3.— Left: Pluto’s atmospheric pressure at r = 1215 km vs. time in 2012, 2013 and 2015

(our work), and from previous works (Yelle & Elliot 1997; Sicardy et al. 2003), with 1σ error

bars. The New Horizons Pluto flyby date (NH) is essentially coincident with our most recent

dot. Right: our best pressure profile p(r) for 29 June 2015, with formal 1σ-error domain.

The central flash layer roughly lies between the two horizontal dashed lines, above the blind

zone below 1191 km. Two possible extrapolations (beside the DO15 model) of temperature

profiles T (r) into the blind zone are shown: one with a thermal gradient that reaches zero at

the surface (shallow troposphere, blue), and one with a constant gradient 8.5 K km−1 (red).


	1 Introduction
	2 The 29 June 2015 occultation
	3 Pressure evolution
	4 Central flash
	5 Surface pressure
	6 Conclusions

