Pluto's atmosphere from the 29 June 2015 ground-based stellar occultation at the time of the New Horizons flyby¹

B. Sicardy¹, J. Talbot², E. Meza¹, J. I. B. Camargo^{3,4}, J. Desmars⁵, D. Gault^{6,7}, D.

Herald^{2,7,8}, S. Kerr^{2,9}, H. Pavlov⁷, F. Braga-Ribas^{10,3,4}, M. Assafin¹¹, G. Benedetti-Rossi³,

A. Dias-Oliveira³, A. R. Gomes-Júnior¹¹, R. Vieira-Martins³, D. Bérard¹, P. Kervella^{1,12}, J.

Lecacheux¹, E. Lellouch¹, W. Beisker¹³, D. Dunham⁷, M. Jelínek^{14,15}, R. Duffard¹⁵, J. L.

Ortiz¹⁵, A. J. Castro-Tirado^{15,16}, R. Cunniffe¹⁵, R. Querel¹⁷, P. C. Yock¹⁸, A. A. Cole¹⁹,

A. B. Giles¹⁹, K. M. Hill¹⁹, J. P. Beaulieu²⁰, M. Harnisch^{2,21}, R. Jansen^{2,21}, A. Pennell^{2,21},

S. Todd^{2,21}, W. H. Allen², P. B. Graham^{2,22}, B. Loader^{7,2}, G. McKay², J. Milner², S.

Parker²³, M. A. Barry^{2,24}, J. Bradshaw^{7,25}, J. Broughton², L. Davis⁶, H. Devillepoix²⁶, J.

Drummond²⁷, L. Field², M. Forbes^{2,22}, D. Giles^{6,28}, R. Glassey²⁹, R. Groom³⁰, D. Hooper²,

R. Horvat⁶, G. Hudson², R. Idaczyk², D. Jenke³¹, B. Lade³¹, J. Newman⁸, P. Nosworthy⁶,

P. Purcell⁸, P. F. Skilton^{2,32}, M. Streamer⁸, M. Unwin², H. Watanabe³³, G. L. White⁶,

and

D. $Watson^2$

bruno.sicardy@obspm.fr

¹LESIA/Observatoire de Paris, PSL, CNRS UMR 8109, University Pierre et Marie Curie, University Paris-Diderot, 5 place Jules Janssen, F-92195 Meudon Cédex, France

²Occultation Section of the Royal Astronomical Society of New Zealand (RASNZ)

³Observatório Nacional/MCTI, R. General José Cristino 77, Rio de Janeiro - RJ, 20.921-400, Brazil

⁴Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil

 $^5\mathrm{IMCCE}/\mathrm{Observatoire}$ de Paris, 77 Avenue Denfert Rochereau, Paris, F-75014, France

⁶Western Sydney Amateur Astronomy Group (WSAAG), Sydney, NSW, Australia

⁷International Occultation Timing Association (IOTA)

⁸Canberra Astronomical Society, Canberra, ACT, Australia

⁹Astronomical Association of Queensland, QLD, Australia

¹⁰Federal University of Technology - Paraná (UTFPR/DAFIS), Rua Sete de Setembro, 3165, CEP 80230-901, Curitiba, PR, Brazil

¹¹Universidade Federal do Rio de Janeiro, Observatório do Valongo, Ladeira do Pedro Antônio 43, CEP 20080-090, Rio de Janeiro, Brazil

¹²Unidad Mixta Internacional Franco-Chilena de Astronomía (UMI 3386), CNRS/INSU,

France & Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515,

Las Condes, Santiago, Chile

¹³IOTA/ES, Bartold-Knaust-Strasse 8, D-30459 Hannover, Germany

¹⁴Astronomical Institute of the Czech Academy of Sciences, Fričova 298, CZ-25165 Ondřejov, Czech Republic

¹⁵Instituto de Astrofísica de Andalucía-CSIC, Apt
d 3004, E-18080, Granada, Spain

¹⁶Departamento de Ingeniería de Sistemas y Automática, E.T.S. de Ingenieros Industriales,

Universidad de Málaga, Unidad Asociada al CSIC, Málaga, Spain

¹⁷National Institute of Water and Atmospheric Research (NIWA), Lauder, New Zealand

Received _____; accepted _____

Submitted to ApJ Letters

¹⁸Department of Physics, University of Auckland, Private Bag 92019, Auckland, New Zealand

¹⁹School of Physical Sciences, University of Tasmania, Private Bag 37, Hobart, TAS 7001, Australia

²⁰Sorbonne Universités, Université Pierre et Marie Curie et CNRS, UMR 7095, Institut

d'Astrophysique de Paris, 98 bis b
d Arago, 75014 Paris, France

²¹Dunedin Astronomical Society, Dunedin, New Zealand

²²Wellington Astronomical Society (WAS), Wellington, New Zealand

²³Backyard Observatory Supernova Search (BOSS), Australia and New Zealand

²⁴ Univ. of Sydney, Elect. and Info. Engineering Dpt, Camperdown, 2006 NSW, Australia
²⁵Samford Valley Observatory, QLD, Australia

²⁶International Centre for Radio Astronomy Research (ICRAR), and the Department of

Applied Geology, Curtin University, Bentley, WA 6102, Australia

²⁷Possum Observatory, Patutahi, New Zealand

²⁸Penrith Observatory, Western Sydney University, Sydney, NSW, Australia

²⁹Canterbury Astronomical Society, Christchurch, New Zealand

 $^{30}\mathrm{Astronomical}$ Society of Western Australia, P.O. Box 421, Subiaco, Perth, WA 6904, Australia

³¹Stockport Observatory, Astronomical Society of South Australia, Stockport, SA, Australia

- ³²Mornington Peninsula Astronomical Society, Mount Martha, VIC, Australia
- ³³Japan Occultation Information Network (JOIN), Japan

ABSTRACT

We present results from a multi-chord Pluto stellar occultation observed on 29 June 2015 from New Zealand and Australia. This occurred only two weeks before the NASA New Horizons flyby of the Pluto system and serves as a useful comparison between ground-based and space results. We find that Pluto's atmosphere is still expanding, with a significant pressure increase of $5\pm 2\%$ since 2013 and a factor of almost three since 1988. This trend rules out, as of today, an atmospheric collapse associated with Pluto's recession from the Sun. A central flash, a rare occurrence, was observed from several sites in New Zealand. The flash shape and amplitude are compatible with a spherical and transparent atmospheric layer of roughly 3 km in thickness whose base lies at about 4 km above Pluto's surface, and where an average thermal gradient of about 5 K km⁻¹ prevails. We discuss the possibility that small departures between the observed and modeled flash are caused by local topographic features (mountains) along Pluto's limb that block the stellar light. Finally, using two possible temperature profiles, and extrapolating our pressure profile from our deepest accessible level down to the surface, we obtain a possible range of 11.9-13.7 μ bar for the surface pressure.

Subject headings: occultations — Kuiper belt objects: individual (Pluto) — planets and satellites: atmospheres — techniques: photometric

1. Introduction

Ground-based stellar occultations probe Pluto's atmosphere at radii ranging from $r \sim 1190$ km from the planet center (pressure $p \sim 10 \ \mu \text{bar}$) up to $r \sim 1450$ km $(p \sim 0.1 \ \mu \text{bar})$. In a previous work (Dias-Oliveira et al. 2015, DO15 hereafter), we analyzed high signal-to-noise-ratio occultations observed in 2012 and 2013, and derived stringent constraints on Pluto's atmospheric profiles (density, pressure and temperature profiles). and on Pluto's radius ($R_P = 1190 \pm 5$ km, assuming no troposphere). We also found a pressure increase of $6 \pm 1\%$ between 2012 and 2013.

Here we analyze a stellar occultation, observed on 29 June 2015 from Australia and New Zealand, which occurred two weeks before the NASA New Horizons (NH hereafter) flyby of the Pluto system. Our goals are: (1) assess further pressure changes between 2013 and 2015 (eventually providing useful constraints on Pluto's seasonal models); (2) analyze the central flash that was detected for the first time ever from multiple stations. It constrains the thermal structure of a layer immediately above Pluto's surface, its possible departure from sphericity and/or presence of hazes; and (3) constrain the pressure at Pluto's surface. Besides serving as a useful comparison with the NH results, our work is one more benchmark in the long-term survey of Pluto's atmosphere over the forthcoming years.

¹Partly based on observations made with the ESO WFI camera at the 2.2 m Telescope (La Silla), under program ID 079.A-9202(A) within the agreement between the ON/MCTI and the Max Planck Society, with the ESO camera NACO at the Very Large Telescope (Paranal), under program ID 089.C-0314(C), and at the Pico dos Dias Observatory/LNA, Brazil.

2. The 29 June 2015 occultation

The prediction procedures are described in DO15, Assafin et al. (2010) and Benedetti-Rossi et al. (2014). The event was monitored from Australia and New Zealand (Table 1), from which we obtained eight occultation detections. The reconstructed occultation geometry is displayed in Fig. 1, see also Table 2. The light-curves were obtained from classical aperture photometry, after correction of low frequency variations (caused by changing sky conditions) by means of nearby reference stars, when available. The resulting light-curves $\phi(t)$ give the total flux from the star and Pluto's system, normalized to unity outside the occultation, as a function of time t (Fig. 2). The observed flux ϕ can be written:

$$\phi = (1 - \phi_P) \cdot F_\star + \phi_P,\tag{1}$$

where F_{\star} is the (useful) stellar flux alone, normalized between zero and unity. Thus, ϕ_P and $1 - \phi_P$ are the contributions of Pluto's system and the unocculted stellar flux to ϕ , respectively.

The quantity ϕ_P is in principle measured independently when Pluto and the occulted star are angularly resolved, providing F_{\star} . It is difficult in practice and requires high photometric accuracy on the star, Pluto and nearby reference stars hours or days away from the event. During that time, sky and instrument conditions may vary. Moreover, for data taken without a filter (broadband), chromatic dependence of the extinction adds further systematic biases, especially if calibrations are not made at the same airmass.

One station that went deep into Pluto's shadow (BOOTES-3, broadband, Castro-Tirado et al. 2012) obtained calibration images hours before the event, as the star and Pluto were marginally resolved. However, the overlap of the star and Pluto images prevents the useful determination of the Pluto/star ratio at the required accuracy (1% or better). Moreover the airmass variation (1.1 during calibration vs. 1.6 during the occultation) introduces unmodeled chromatic effects due to color differences between the star and Pluto. More images taken the following night at very high airmass (3.6) do not provide further constraints on ϕ_P .

One light-curve (Dunedin) was affected by non-linearity caused by a so-called " γ factor" (Poynton 1997) that modified the pixel values to increase the image dynamical range. The (supposedly) reverse transformation provides an event that is globally not deep enough considering its duration, indicating residual non-linearities. Thus, for this station, we only used the bottom part of the light-curve (Fig. 2), assuming that in this range, the retrieved flux ϕ is an affine function of the stellar flux, $\phi = a \cdot F_{\star} + b$.

In spite of the lack of accurate measurements for ϕ_P , the amplifying effect of the central flash still constrains the thermal structure of Pluto's deepest atmospheric layers (see Section 4).

3. Pressure evolution

The DO15 model uses the simplest possible hypotheses, i.e. Pluto's atmosphere (1) is pure nitrogen (N₂), (2) is spherically symmetric, (3) has a time-independent thermal structure, derived itself from the light-curves, and (4) is transparent (haze-free). The validity of hypotheses (1)-(3) is discussed in DO15. Hypothesis (4) is discussed later in view of the NH results. Adjusting the pressure p_0 at a reference radius r_0 (for a given event) uniquely defines the molecular density profile n(r), from which synthetic light-curves are generated and compared to the data. Note that p_0 monitors the evolution of Pluto's atmospheric pressure as a whole. In practice, most of the contribution to the fits comes from the half-light level ($F_{\star} \sim 0.5$, $r \sim 1295$ km, $p \sim 1.7 \mu$ bar), with a tapering off above $r \sim 1450$ km ($F_{\star} \sim 0.9$, $p \sim 0.1 \mu$ bar) and below $r \sim 1205$ km ($F_{\star} \sim 0.1$, $p \sim 8 \mu$ bar).

The parameters of our model are listed in Table 2 and our simultaneous fits are displayed in Fig. 2. They have χ^2 per degree of freedom close to unity, indicating satisfactory fits. Two minor modifications were introduced, relative to the DO15 model. First, we updated for consistency Pluto's mass factor to $GM = 8.696 \times 10^{11} \text{ m}^3 \text{ s}^{-2}$ (Stern et al. 2015), instead of $8.703 \times 10^{11} \text{ m}^3 \text{ s}^{-2}$, causing negligible changes at our accuracy level. Second, we use the NH-derived Pluto radius ($R_P = 1187 \text{ km}$) as a boundary condition for the DO15 model. This new value modifies (at a few percent level) the retrieved pressure at a given radius compared to DO15. Moreover, changing R_P translates vertically all the profiles near the surface by an equivalent amount. In other words, all the quantities of interest (pressure, density, temperature) are well defined in terms of altitude above the surface, if not in absolute radius.

The pressures p_0 at $r_0 = 1215$ km and 1275 km are given in Table 2. They are useful benchmarks, respectively corresponding to the stratopause (maximum temperature of 110 K), and the half-light level layer. Fig. 3 displays the pressure evolution over 2012-2015. The formal error bars assume an invariant temperature profile, but this assumption should not affect the *relative* pressure changes in 2012-2015. Relaxing that constraint, we can retrieve p_0 by inverting individual light-curves and testing the effects of the inversion parameters. This yields possible biases estimated to $\pm 0.2, \pm 0.8$ and $\pm 0.5 \mu$ bar in 2012, 2013 and 2015, respectively. We have added for comparison occultation results from 1988 (Yelle & Elliot 1997) and 2002 (Sicardy et al. 2003). They stem from different analyses and may also be affected by biases. However, Fig. 3 should capture the main trend of Pluto's atmosphere, i.e. a monotonic increase of pressure since 1988.

4. Central flash

Nearly diametric occultation light-curves (but still avoiding the central flash) have flat bottoms (Fig. 2). Our ray tracing code shows that near the shadow center, the stellar rays come from a "flash layer" about 3 km in thickness just above r = 1191 km, thus sitting 4 km on top of the assumed surface ($R_P = 1187$ km, Fig. 3).

Let us denote by F a model for the stellar flux (distinguishing it from the observed flux F_{\star}). Deep inside Pluto's shadow, F is roughly proportional to the local density scale-height, $H_n = -n/(dn/dr) = T/[\mu g/k + (dT/dr)]$, where μ is the molecular weight, g is the acceleration of gravity and k is Boltzmann's constant (DO15). For a spherical atmosphere, we have also $F \propto 1/z$, where z is the distance to the shadow center. Writing $z = \sqrt{\rho^2 + l^2}$, where ρ is the closest approach distance to the shadow center and l is the distance traveled from that point, we obtain:

$$F \propto \frac{H_n}{z} = \frac{T}{\mu g/k + dT/dr} \cdot \left(\frac{1}{\sqrt{\rho^2 + l^2}}\right).$$
(2)

For an approximatively pure N₂ atmosphere ($\mu = 4.652 \times 10^{-26}$ kg), we obtain $\mu g/k \sim 2$ K km⁻¹. As the thermal gradient dT/dr is several degrees per kilometer at the flash layer (see below), the flash amplitude is significantly controlled by dT/dr.

Our best model minimizes $\chi^2 = \sum_i \{\phi_i - [(1 - \phi_P) F_i + \phi_P]\}^2 / \sigma_i^2$, where σ_i^2 is the variance of ϕ_i associated with the noise for the *i*th data point. As we do not measure ϕ_P , we considered it as a free, adjustable parameter. Among the data sets analyzed by DO15, only one had sufficient quality - from the 18 July 2012 ESO Very Large Telescope - to permit a measurement of ϕ_P and thus constrain dT/dr in the deepest accessible layer. It showed that the residual stellar flux, $F_{\rm res}$, at the bottom part of the light-curve lay in the range 0.010-0.031, thus imposing a thermal gradient near the surface (and imposing ϕ_P for the other light-curves). Since $F_{\rm res}$ was determined to within a factor of three, a large

error bar on dT/dr deep in Pluto's atmosphere was obtained, causing difficulties when extrapolating the pressure down to the surface. In doing so, we obtained a possible range $p_{surf} = 10{-}12 \ \mu$ bar for the surface pressure in 2012, estimated at $r = 1190 \pm 5$ km.

As F is roughly constant at the bottom of occultation light-curves (far from the flash), there is a degeneracy between F and ϕ_P : higher values of ϕ_P can be accommodated by smaller values of F, i.e. smaller H_n . This is *not* true anymore within the flash, as F suffers significant variations. The χ^2 -minimization provides both ϕ_P and H_n through $\partial \chi^2 / \partial \phi_P = 0$ and $\partial \chi^2 / \partial H_n = 0$. Although our ray tracing code generates exact values of F for a given model, it is convenient here (for sake of illustration) to note that F is essentially proportional to H_n (Eq. 2), so that $\partial F / \partial H_n \sim F / H_n$. Detailed calculations show that at minimum χ^2 , we have $\partial^2 \chi^2 / \partial H_n^2 = (2N/H_n^2)(\sigma_F^2/\sigma^2)$ for $F \ll 1$, where $\sigma_F^2 = \overline{F^2} - \overline{F}^2$ is the variance of F (the bars denoting average values) and N is the number of data points. Thus, the relative error bar on the scale-height is $\delta H_n / H_n \sim (\sigma/\sigma_F) / \sqrt{N}$, which is small if the flash (and then σ_F) is large.

Since F increases as H_n increases or ρ decreases, H_n and ρ are correlated. However, the full width at half maximum (FWHM) of the flash is proportional to ρ , while H_n controls homogeneously the flash amplitude, keeping its FWHM constant. This disentangles the effects of H_n and ρ . More importantly, the BOOTES-3 and Dunedin stations exhibit flashes with similar amplitudes (Fig. 2). This robustly forces the two stations to be symmetrically placed with respect to the shadow center (Fig. 1), thus imposing $\rho \approx 45 \pm 2$ km for both stations, independently of H_n (Table 2).

The χ^2 -value is minimized for $dT/dr = 8.5 \pm 0.25$ K km⁻¹ at 1191 km in our model. This particular value must be considered with caution, as it is not representative of the entire flash layer. Due to the functional dependence of T(r) (a branch of hyperbola, DO15), the gradient dT/dr varies rapidly around 1191 km. The average thermal gradient in the flash layer is in fact ~5 K km⁻¹, consistent with a previous flash analysis (Olkin et al. 2014). Besides, it is typical of what is expected from the heating by methane (D. Strobel 2015, private communication). Other functional forms of T(r) could be tested, but this remains outside the scope of this paper. We note in passing that our best 2015 fit implies a residual stellar flux $F_{\rm res} = 0.028$ (Fig. 2) that is compatible with the possible range (0.010-0.031) mentioned earlier for 2012.

Our spherical, transparent atmospheric model essentially captures the correct shape and height of the central flash (Fig. 2). A closer examination of that figure reveals a small flux deficit (relative to the model) at the left side of the BOOTES-3 flash. It remains marginal, however, considering the general noise level. This said, it could be caused by an unmodeled departure of the flash layer from sphericity, but this is not anticipated. An atmosphere of radius r rotating at angular velocity ω has an expected oblateness $\epsilon \sim r^3 \omega^2/2GM \sim 10^{-4}$ for a rotation period of 6.4 days, $r \sim 1190$ km and Pluto's GM. Such oblateness causes a diamond-shaped caustic (Elliot et al. 1977) with a span of $4\epsilon r <\sim 1$ km in the shadow plane. This is negligible considering the closest approach distances involved here (\sim 45 km). Moreover, expected zonal winds of less than a few meters per second near 1191 km (Vangvichith 2013; Zalucha & Michaels 2013) would have even smaller effects. More complex distortions may arise, as varying thermal conditions along Pluto's limb may slightly tilt the local iso-density layer, but its modeling remains outside the scope of this paper.

A possible explanation of the small discrepancy is that the primary and/or secondary stellar images hit topographic features while moving around Pluto's limb. Curvature effects strongly stretch the images parallel to the limb during the central flash, by a ratio equal to the flash layer radius (1191 km) divided by the closest approach distance, about 45 km. From the star magnitudes (Table 2 and Kervella et al. 2004), we estimate its diameter as 33 μ as, or 0.76 km projected at Pluto. The length of the stellar image is then $0.76 \times (1191/45) \sim 20$ km. It moves at about 4 km above the surface, which is comparable to the local topographic features reported from NH (Stern et al. 2015). It is thus possible that part of the stellar flux was partially blocked by mountains, causing small observed drop. This can be tested by studying the topography derived from NH, noting that the primary and secondary stellar images at BOOTES-3 probed regions near longitude 190°E and latitude 20°S, and 10°E and 20°N, respectively, during the flash.

Finally, NH images reveal tenuous hazes with normal optical depth $\tau_N \sim 0.004$ and scale-height H = 50 km (Stern et al. 2015). This implies an optical depth along the line of sight of $\tau \sim \sqrt{2\pi r/H} \cdot \tau_N \sim 0.05$, which is indistinguishable from the noise level (Fig. 2), supporting our transparent-atmosphere hypothesis.

5. Surface pressure

Fig. 3 displays our best pressure profile, with $p_{1191} = 11.0 \pm 0.2 \ \mu$ bar at the deepest accessible level. To estimate the surface pressure, we need to extrapolate p(r) into the blind zone. Two possible temperature profiles are considered, beside the DO15 model (Fig. 3). One has a temperature gradient in the blind zone that tends to zero at the surface, where $p_{surf} = 13.0 \ \mu$ bar and $T_{surf} = 36 \ K$. This describes a shallow troposphere that is in vapor pressure equilibrium with the surface, an example of a locally sublimating N₂ frost layer. The other profile has a constant gradient of 8.5 K km⁻¹, with $p_{surf} = 12.6 \ \mu$ bar and $T_{surf} = 49 \ K$. Such warmer regions are indeed observed on Pluto (Lellouch et al. 2000), and they do not sublimate due to the absence of free N₂ frost. Considering the formal error bar $\pm 0.2 \ \mu$ bar on p_{1191} , we obtain a range of 12.4-13.2 μ bar for the surface pressure under hypotheses (1)-(4) of Section 3, and 11.9-13.7 μ bar accounting for the already dicussed possible bias of ~ $\pm 0.5 \ \mu$ bar. Other thermal profiles should be considered at this point, but they would not change significantly our result due to the proximity (~4 km) of our deepest accessible level to the surface, leaving little freedom for p_{surf} .

6. Conclusions

The 29 June 2015 stellar occultation provided a snapshot of Pluto's atmosphere, after years of similar observations. Moreover, this was the first event with multi-chord cuts into the central flash. Assuming a spherical and transparent atmosphere as in DO15, we satisfactorily fit all the light-curves, including the central flash part (Fig. 2).

We find that Pluto's atmospheric pressure has been increasing monotonically since 1988, with an augmentation of $5 \pm 2\%$ between 2013 and 2015, and an overall factor of almost three between 1988 and 2015 (Fig. 3). This trend between 1988 and 2013 was confirmed by independent works by Elliot et al. (2003); Pasachoff et al. (2005); Person et al. (2013); Young (2013); Bosh et al. (2015). It is now extended to 2015 and rules out an ongoing atmospheric collapse associated with Pluto's recession from the Sun. This is consistent with high thermal inertia models with a permanent N₂ ice cap over Pluto's north pole, that preclude such collapse (Olkin et al. 2015). Other possible models where N₂ condenses on an unlit cap might announce a pressure decrease in the forthcoming years (Hansen et al. 2015). Further monitoring with occultations and a detailed analysis of the NH data will allow discrimination between those scenarios.

The central flash comes from a \sim 3-km-thick layer whose base is 4 km on top of Pluto's surface. The amplitude of the flash is consistent with an average thermal gradient of \sim 5 K km⁻¹ in that layer. Small departures from the model might be caused by topographic features along Pluto's limb that block the stellar images.

Extrapolating possible temperature profiles down to the surface, we find a possible

range of 11.9-13.7 μ bar for the surface pressure. This is larger than, but compatible with the entry value $11 \pm 1 \mu$ bar derived from the NH radio occultation experiment (Hinson et al. 2015; Gladstone et al. 2016). At this stage, more detailed investigations of both techniques should be undertaken to see if this difference is significant, or the result of unaccounted effects. In any case, the two techniques validate each other, an excellent prospect for future monitoring of Pluto's atmosphere from ground-based occultations.

We acknowledge support from the French grant "Beyond Neptune II" ANR-11-IS56-0002, and Labex ESEP. The research leading to these results has received funding from the European Research Council under the European Community's H2020 (2014-2020/ERC Grant Agreement 669416 "LUCKY STAR"). EM acknowledges support from the contrato de subvención 205-2014-Fondecyt, Peru. JIBC acknowledges the CNPq/PQ2 fellowship 308489/2013-6. MA acknowledges the FAPERJ grant 111.488/2013, CNPq/PQ2 fellowship 312394/2014-4, and grants 482080/2009-4 and 473002/2013-2. JLO acknowledges funding from Proyecto de Excelencia de la Junta de Andalucía J.A.2012-FQM1776, Spanish grant AYA-2014-56637-C2-1-P, and FEDER funds. AJCT acknowledges support from the Junta de Andalucía (Project P07-TIC-03094) and Univ. of Auckland and NIWA for installing of the Spanish BOOTES-3 station in New Zealand, and support from the Spanish Ministry Projects AYA2012-39727-C03-01 and 2015-71718R Development of the Greenhill Observatory was supported under the Australian Research Council's LIEF funding scheme (project LE110100055). We thank C. Harlingten for the use of the H127 Telescope, and D. and M. Warren for long term support. We thank L. Beauvalet for running the ODIN Pluto's system model, M. W. Buie, S. Gwyn and L. A. Young for providing pre-event Pluto's ephemeris and astrometry, D. P. Hinson and D. F. Strobel for most useful discussions, and the reviewer for useful comments

REFERENCES

- Assafin, M., Camargo, J. I. B., Vieira Martins, R., et al. 2010, Astron. Astrophys., 515, A32
- Benedetti-Rossi, G., Vieira Martins, R., Camargo, J. I. B., Assafin, M., & Braga-Ribas, F. 2014, Astron. Astrophys., 570, A86
- Bosh, A. S., Person, M. J., Levine, S. E., et al. 2015, Icarus, 246, 237
- Castro-Tirado, A. J., Jelínek, M., Gorosabel, J., et al. 2012, in Astronomical Society of India Conference Series, Vol. 7, Astronomical Society of India Conference Series, 313–320
- Cutri, R. M. 2012, VizieR Online Data Catalog, 2311
- Cutri, R. M., Skrutskie, M. F., van Dyk, S., et al. 2003, VizieR Online Data Catalog, 2246
- Dias-Oliveira, A., Sicardy, B., Lellouch, E., et al. 2015, ApJ, 811, 53
- Elliot, J. L., French, R. G., Dunham, E., et al. 1977, ApJ, 217, 661
- Elliot, J. L., Ates, A., Babcock, B. A., et al. 2003, Nature, 424, 165
- Gladstone, G. R., Stern, S. A., Ennico, K., et al. 2016, Science, in press
- Hansen, C. J., Paige, D. A., & Young, L. A. 2015, Icarus, 246, 183
- Hinson, D. P., Linscott, I., Tyler, L., et al. 2015, in AAS/Division for Planetary Sciences Meeting Abstracts, Vol. 47, AAS/Division for Planetary Sciences Meeting Abstracts, #105.01
- Kervella, P., Thévenin, F., Di Folco, E., & Ségransan, D. 2004, Astron. Astrophys., 426, 297
- Lellouch, E., Laureijs, R., Schmitt, B., et al. 2000, Icarus, 147, 220

- Olkin, C. B., Young, L. A., French, R. G., et al. 2014, Icarus, 239, 15
- Olkin, C. B., Young, L. A., Borncamp, D., et al. 2015, Icarus, 246, 220
- Pasachoff, J. M., Souza, S. P., Babcock, B. A., et al. 2005, Astron. J., 129, 1718
- Person, M. J., Dunham, E. W., Bosh, A. S., et al. 2013, Astron. J., 146, 83
- Poynton, C. 1997, Chapter 6: Gamma, ed. J. Wiley & Sons, 91
- Sicardy, B., Widemann, T., Lellouch, E., et al. 2003, Nature, 424, 168
- Stern, S. A., Bagenal, F., Ennico, K., et al. 2015, Science, 350, 292
- Tholen, D. J., Buie, M. W., Grundy, W. M., & Elliott, G. T. 2008, Astron. J., 135, 777
- Vangvichith, M. 2013, Thèse de Doctorat, Ecole Polytechnique, France
- Yelle, R. V., & Elliot, J. L. 1997, Atmospheric Structure and Composition: Pluto and Charon, ed. S. A. Stern & D. J. Tholen, 347
- Young, L. A. 2013, Astrophys. J., Lett., 766, L22
- Zacharias, N., Finch, C. T., Girard, T. M., et al. 2013, Astron. J., 145, 44
- Zalucha, A. M., & Michaels, T. I. 2013, Icarus, 223, 819

This manuscript was prepared with the AAS ${\rm IAT}_{\rm E}{\rm X}$ macros v5.2.

	Site	Lat. (d:m:s)	Telescope	Exp. Time/	Observers
		Lon. (d:m:s)	Instrument	Cycle (s)	remarks
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		altitude (m)	Filter		
$\begin{array}{cccc} \text{Metric} & \text{Order} & $	Molbourno	37 50 38 50 S	0.20 m	0.32	I Milnor
$ \begin{array}{c} \mbox{Australia} & 149 14 12.40 E & CCD/Clear & 0.32 & 0.000 detected \\ 10 & 117 15.49 E & CCD/Clear & 0.4 & A. A. Cole, A. B. Giles \\ Greenhill Obs. 147 17 15.49 E & EMCCD/B & 0.1 & K. M. Hill \\ occultation detected \\ 173 57 25.09 E & CCD/clear & 0.64 & O. McKay \\ New Zealand & 173 57 25.09 E & CCD/clear & 0.64 & O. McKay \\ New Zealand & 173 50 20.72 E & CCD/clear & 0.32 & Occultation detected \\ 18 & 0.11 14 17.04 S & 0.25 m & 0.64 & O. McKay \\ Martinborough & 41 14 17.04 S & 0.25 m & 0.16 & occultation detected \\ 175 20 0.18 E & CCD/clear & 0.32 & Occultation detected \\ 175 20 0.18 E & CCD/clear & 0.32 & Occultation detected \\ 0.66 m & Occultation detected \\ 172 13 08 E & CCD/clear & 0.32 & Occultation detected, partially \\ 0.66 m & Occultation detected, partially \\ 0.66 m & Occultation detected, flash \\ 0.87 & Occultation detected, flash \\ 0.98 & Caland & 172 13 08 E & CCD/clear & 0.32 & Occultation detected, flash \\ 0.16 & Occultation detected, flash \\ 0.17 & 02 46. E & CCD/clear & 0.3468 & M. Jelinek \\ 0.03468 & M. Jelinek \\ 0.030 & Occultation detected, flash \\ 0.00 & 0.00 & S & CCD/clear & 0.32 & Occultation detected \\ 0.01 & 0.33 42 30.0 & S & 0.25 m & 0.64 & J. Broughton \\ 0.02 & 0.33 42 30.0 & S & 0.20 m & n.a. \\ 0.00 & 0.00 & S & CCD/clear & 0.64 & oo occultation detected \\ 0.03 m & 0.32 & S. Ker \\ 0.01 & H. Pavlov & Occultation detected \\ 0.03 m & 0.32 & S. Ker \\ 0.01 & 0.18 & 0.33 43 30 & S & 0.20 m & n.a. \\ 0.01 & 0.02 & 0.133, 1.28 & D. Gault, R. Horvat \\ 0.02 & 0.33 4 33 0 & S & $	Australia	145 14 94 40 F	CCD/alcor	0.32	5. Willier
	Australia	140 14 24.40 E	CCD/clear	0.32	occurration detected
	C	110 40.05 51 55 C	II	0.1	
$ \begin{array}{c} \mbox{Creentin} \mbox{OS}. & 147 (17.13-9) E \ \mbox{EMCCD}/B & 0.1 & N. M. Hill on the order of the second secon$	Spring Hill	42 20 01.00 S	Harlingten/ 1.27 m	0.1	A. A. Cole, A. B. Glies
Australia boto occultation occultation Blenheim1 41 32 08:59 S 0.28 m 0.64 G. McKay New Zealand 173 57 25:09 E CCD/clear 0.64 occultation detected Blenheim2 41 29 36:27 S 0.40 m 0.32 occultation detected New Zealand 173 50 20:72 E CCD/clear 0.32 occultation detected Martinborough 41 14 17.04 S 0.25 m 0.16 p. B. Graham New Zealand 172 13 08 E CCD/clear 1.28 occultation detected Oxford 43 18 36 S 0.35 m 0.32 B. Loader occultation detected New Zealand 172 13 08 E CCD/clear 0.32 B. Loader occultation detected New Zealand 173 24 54 E CCD/clear 0.32 occultation detected 100 170 28 46. E CCD/clear 0.34368 M. Jelinek occultation detected 118 0.000 RE 5.12 A	Greennill Obs.	14/1/15.49 E	EMCCD/B	0.1	K. M. Hill
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Australia	650	0.00	0.01	occultation detected
New Zealand 173 57 25.09 E CCD/clear 0.64 occultation detected Blenheim2 41 29 36.27 S 0.40 m 0.32 occultation detected New Zealand 173 50 20.72 E CCD/clear 0.32 occultation detected 38	BlenheimI	41 32 08.59 S	0.28 m	0.64	G. McKay
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	New Zealand	173 57 25.09 E	CCD/clear	0.64	occultation detected
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		18			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Blenheim2	41 29 36.27 S	0.40 m	0.32	W. H. Allen
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	New Zealand	173 50 20.72 E	$\rm CCD/clear$	0.32	occultation detected
$\begin{array}{llllllllllllllllllllllllllllllllllll$		38			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Martinborough	41 14 17.04 S	0.25 m	0.16	P. B. Graham
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	New Zealand	$175 \ 29 \ 01.18 \ E$	CCD/B	0.16	occultation detected
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		73	,		
New Zealand 172 13 08 E CCD/clear 1.28 occultation detected, partially cloudy, not yet analyzed Darfield 43 28 52.09 S 0.25 m 0.32 B. Loader New Zealand 172 06 24.04 E CCD/clear 0.32 occultation detected, flash 210 Christchurch 43 31 41 S 0.15 m 0.25 R. Glassey New Zealand 172 34 54 E CCD/clear 0.25 occultation detected 16 not yet analyzed 0.16 m/st 45 02 17.39 S Yock-Allen/0.6m 0.34368 M. Jelfnek Lauder 169 41 00.88 E EMCCD/clear 0.34463 occultation detected, flash New Zealand 370 Dunedin 45 54 31. S 0.35 m 5.12 A. Pennell, S. Todd New Zealand 170 28 46. E CCD/clear 5.12 M. Harnisch, R. Jansen occultation detected 118 0.30 m 0.32 S. Kerr no occultation detected Australia 150:30:00.8 E CCD/clear 0.64 no occultation detected 65 0.29 9 S 0.25 m	Oxford	43 18 36 S	0.35 m	1.28	S. Parker
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	New Zealand	$172 \ 13 \ 08 \ E$	CCD/clear	1.28	occultation detected, partially
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$66 \mathrm{m}$	7		cloudy, not vet analyzed
$\begin{array}{c cccc} {\rm New \ Zealand} & 172 \ 06 \ 24.04 \ E & {\rm CCD}/{\rm clear} & 0.32 & {\rm occultation \ detected, \ flash} \\ \hline \\ {\rm Christchurch} & 43 \ 31 \ 41 \ {\rm S} & 0.15 \ {\rm m} & 0.25 & {\rm R. \ Glassey} \\ {\rm New \ Zealand} & 172 \ 45 \ 45 \ {\rm E \ CCD}/{\rm clear} & 0.25 & {\rm occultation \ detected} \\ {\rm not \ yet \ analyzed} \\ \hline \\ {\rm BOOTES-3 \ station} & 45 \ 02 \ 17.39 \ {\rm S} & {\rm Yock-Allen}/0.6m & 0.34368 & {\rm M. \ Jelinek} \\ {\rm Lauder} & 169 \ 41 \ 00.88 \ {\rm E \ EMCCD}/{\rm clear} & 0.34463 & {\rm occultation \ detected, \ flash} \\ \hline \\ {\rm New \ Zealand} & 370 & {\rm New \ Zealand} & 170 \ 28 \ 46. \ {\rm E \ CCD}/{\rm clear} & 5.12 & {\rm M. \ Harnisch, \ R. \ Jansen} \\ {\rm occultation \ detected, \ flash} & {\rm occultation \ detected, \ flash} & {\rm occultation \ detected, \ flash} & {\rm New \ Zealand} & 170 \ 28 \ 46. \ {\rm E \ CCD}/{\rm clear} & 5.12 & {\rm M. \ Harnisch, \ R. \ Jansen} \\ {\rm occultation \ detected, \ flash} & {\rm occultation \ detected, \ flash} & {\rm occultation \ detected} & {\rm flash} & {\rm occultation \ detected, \ flash} & {\rm occultation \ detected, \ flash} & {\rm occultation \ detected, \ flash} & {\rm occultation \ detected} & {\rm flash} & {\rm flash} & {\rm flash} & {\rm occultation \ detected} & {\rm flash} $	Darfield	43 28 52.90 S	0.25 m	0.32	B. Loader
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	New Zealand	172 06 24 04 E	CCD/clear	0.32	occultation detected flash
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	riow Bounding	210		0.02	occurration detected, nam
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Christchurch	43 31 41 S	0.15 m	0.25	B Glassev
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	New Zealand	172 34 54 E	CCD/clear	0.25	occultation detected
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	New Zealand	16	CCD/cicai	0.20	not yet analyzed
	POOTES 2 station	10 45 02 17 20 S	Voels Allon /0.6m	0.24269	M Jolínalr
Latter109 41 00.88 EENCCD/clear0.34453occutation detected, nashNew Zealand370370Dunedin45 54 31. S0.35 m5.12A. Pennell, S. ToddNew Zealand170 28 46. ECCD/clear5.12M. Harnisch, R. Jansen occultation detected, flashGlenlee23:16:09.6 S0.30 m0.32S. KerrAustralia150:30:00.8 ECCD/clear0.32no occultation detected60500.25 m0.64no occultation detectedReedy Creek28 06 29.9 S0.25 m0.64no occultation detected65650.30 m0.64J. BroughtonAustralia153 23 52.0 ECCD/clear0.133, 1.28D. Gault, R. HorvatAustralia150 29 43.5 ECCD/clear0.133, 1.28L. Davis no occultation detectedLura33 43 09.0 S0.20 mn.a.p. NosworthyAustralia150 20 53.9 Evisualn.a.no occultation detected903m903m0.62 m0.533D. GilesPenrith33 45 43.31 S0.62 m0.533M. A. Barry no occultation detected960.04 m & 0.35 m0.04 H. PavlovAustralia150 46 37 ECCD/Clear0.16 & 2no occultation detected4110045 53 1.50 S0.40 m & 0.35 m0.16 & 2no occultation detected960.04no occultation detected101010960.04no occultation detected1010 <td>Louden</td> <td>40 02 17.09 5 160 41 00 99 E</td> <td>FMCCD /oloom</td> <td>0.34300</td> <td>M. Jennek</td>	Louden	40 02 17.09 5 160 41 00 99 E	FMCCD /oloom	0.34300	M. Jennek
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Lauder Name Zaalaa d	109 41 00.00 E	EMCCD/clear	0.34403	occurtation detected, hash
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	New Zealand	370	0.95	F 10	
New Zealand170 28 46. ECCD/clear5.12M. Harmsch, R. Jansen occultation detected, flashGlenlee23:16:09.6 S0.30 m0.32S. KerrAustralia150:30:00.8 ECCD/clear0.32no occultation detected50500.32no occultation detectedReedy Creek28 06 29.9 S0.25 m0.64J. BroughtonAustralia153 23 52.0 ECCD/clear0.64no occultation detected65650.25 m0.64no occultation detectedLinden33 42 30.0 S0.76 m, 0.2 m0.133, 1.28L. DavisAustralia150 29 43.5 ECCD/clear0.133, 1.28L. Davisno occultation detected0.32no occultation detectedLeura33 43 09.0 S0.20 mn.a.P. NosworthyAustralia150 20 53.9 Evisualn.a.no occultation detected903m903m0.62 m0.533D. GilesPenrith33 45 43.31 S0.62 m0.533M. A. Barry960.04mo occultation detected10St Clair,33 48 37 S0.35 m0.04mo occultation detected41Murrumbateman148 59 54.80 ECCD/clear0.16 & 2no occultation detected90909090909090Nagambie36 47 05.71 S0.20 m0.64D. HooperAustralia145 07 59.14 ECCD/clear0.64no occultation detected	Dunedin	45 54 31. S	0.35 m	5.12	A. Pennell, S. Iodd
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	New Zealand	170 28 46. E	CCD/clear	5.12	M. Harnisch, R. Jansen
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		118			occultation detected, flash
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Glenlee	23:16:09.6 S	0.30 m	0.32	S. Kerr
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Australia	150:30:00.8 E	CCD/clear	0.32	no occultation detected
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		50			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reedy Creek	28 06 29.9 S	0.25 m	0.64	J. Broughton
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Australia	$153 \ 23 \ 52.0 \ {\rm E}$	CCD/clear	0.64	no occultation detected
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		65	,		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Linden	33 42 30.0 S	0.76 m, 0.2 m	0.133, 1.28	D. Gault, R. Horvat
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Australia	150 29 43.5 E	CCD/clear	0.133, 1.28	L. Davis
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		583		, -	no occultation detected
Australia150 20 53.9 E 903mvisualn.a.no occultation detectedPenrith33 45 43.31 S0.62 m0.533D. GilesAustralia150 44 30.30 E 96CCD/Clear0.533M. A. Barry no occultation detectedSt Clair,33 48 37 S0.35 m0.04H. PavlovAustralia150 46 37 E 41CCD/Clear0.04H. PavlovMurrumbateman34 57 31.50 S0.40 m & 0.35 m0.16 & 2 	Leura	<u>33 43 09.0 S</u>	0.20 m	n.a.	P. Nosworthy
Nustralia160 20 60.0 DVisualn.a.n.o occultation detected $903m$ 903m0.50 Job 43.31 S0.62 m0.533D. GilesAustralia150 44 30.30 ECCD/Clear0.533M. A. Barry no occultation detected96960.04H. PavlovAustralia150 46 37 ECCD/Clear0.04no occultation detected41150 46 37 ECCD/Clear0.04no occultation detected41410.040.04no occultation detectedMurrumbateman34 57 31.50 S0.40 m & 0.35 m0.16 & 2D. Herald, M. StreamerAustralia148 59 54.80 ECCD/clear0.16 & 2no occultation detected5940.20 m0.64D. HooperNagambie36 47 05.71 S0.20 m0.64no occultation detected120145 07 59.14 ECCD/clear0.64no occultation detected	Australia	150 20 53 9 E	visual	na	no occultation detected
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	110010110	903m	Vibuai	11.0.	
Australia $150\ 44\ 30.30\ E$ $0.02\ m$ $0.032\ m$ $0.035\ M$ D. OnesAustralia $150\ 44\ 30.30\ E$ $CCD/Clear$ $0.533\ M$ M. A. Barry no occultation detectedSt Clair, $33\ 48\ 37\ S$ $0.35\ m$ $0.04\ M$ H. PavlovAustralia $150\ 46\ 37\ E$ $CCD/Clear$ $0.04\ M$ H. PavlovAustralia $150\ 46\ 37\ E$ $CCD/Clear$ $0.04\ M$ no occultation detected41Murrumbateman $34\ 57\ 31.50\ S$ $0.40\ m\ \&\ 0.35\ m$ $0.16\ \&\ 2$ D. Herald, M. StreamerAustralia $148\ 59\ 54.80\ E$ $CCD/clear$ $0.16\ \&\ 2$ no occultation detected 594 $145\ 07\ 59.14\ E$ $CCD/clear$ $0.64\ M$ D. HooperAustralia $145\ 07\ 59.14\ E$ $CCD/clear$ $0.64\ M$ no occultation detected	Ponrith	<u>33 45 43 31 S</u>	0.62 m	0.533	D. Ciles
Nustralia150 44 50.50 E $CCD/Clear$ 0.555 $M. H. Barry96no occultation detectedSt Clair,33 48 37 S0.35 m0.04H. PavlovAustralia150 46 37 ECCD/Clear0.04no occultation detected41150 46 37 ECCD/Clear0.04no occultation detectedMurrumbateman34 57 31.50 S0.40 m \& 0.35 m0.16 \& 2D. Herald, M. StreamerAustralia148 59 54.80 ECCD/clear0.16 \& 2no occultation detectedSystem5940.64D. HooperAustralia145 07 59.14 ECCD/clear0.64D. HooperAustralia145 07 59.14 ECCD/clear0.64no occultation detected$	Australia	150 44 30 30 E	CCD/Clear	0.533	M A Barry
In O occultation detectedSt Clair, $33 48 37 S$ $0.35 m$ 0.04 H. PavlovAustralia150 46 37 ECCD/Clear 0.04 no occultation detected414100.16 & 2D. Herald, M. StreamerMurrumbateman34 57 31.50 S $0.40 m \& 0.35 m$ $0.16 \& 2$ D. Herald, M. StreamerAustralia148 59 54.80 ECCD/clear $0.16 \& 2$ no occultation detected5940.16 & 20.16 & 2no occultation detectedNagambie36 47 05.71 S $0.20 m$ 0.64 D. HooperAustralia145 07 59.14 ECCD/clear 0.64 no occultation detected	Australia	100 44 00.00 E	OOD/Olean	0.000	no occultation detocted
St Clair, $33\ 48\ 37\ 5$ $0.35\ m$ 0.04 II. FavlovAustralia150 46 37 ECCD/Clear 0.04 no occultation detected 41 Murrumbateman $34\ 57\ 31.50\ S$ $0.40\ m\ \&\ 0.35\ m$ $0.16\ \&\ 2$ D. Herald, M. StreamerAustralia148\ 59\ 54.80\ ECCD/clear $0.16\ \&\ 2$ no occultation detected 594 Nagambie $36\ 47\ 05.71\ S$ $0.20\ m$ 0.64 D. HooperAustralia145\ 07\ 59.14\ ECCD/clear 0.64 no occultation detected	St Claim	<u>- 90</u> - 99 40 97 C	0.25 m	0.04	H Davlor
Australia150 40 57 ECCD/Clear 0.04 no occultation detected41Murrumbateman $34 57 31.50 \text{ S}$ $0.40 \text{ m} \& 0.35 \text{ m}$ $0.16 \& 2$ D. Herald, M. StreamerAustralia $148 59 54.80 \text{ E}$ CCD/clear $0.16 \& 2$ no occultation detected594940.64D. HooperAustralia $145 07 59.14 \text{ E}$ CCD/clear 0.64 D. Hooper1201200.64no occultation detected	Australia	33 40 37 S 150 46 27 F	0.35 III	0.04	II. Favior
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Australia	100 40 07 E	CCD/Clear	0.04	no occurtation detected
Murrumbateman $34\ 57\ 51.50\ S$ $0.40\ m\ \&\ 0.35\ m$ $0.16\ \&\ 2$ D. Heraid, M. StreamerAustralia $148\ 59\ 54.80\ E$ $CCD/clear$ $0.16\ \&\ 2$ no occultation detected 594 $36\ 47\ 05.71\ S$ $0.20\ m$ 0.64 D. HooperAustralia $145\ 07\ 59.14\ E$ $CCD/clear$ 0.64 D. Hooper 120 120 0.64 0.64 0.64 0.64	Mumurah - +	41 24 57 21 50 C	0.40 mg lr 0.25	0.16 8- 9	D Hanald M Streemen
Australia148 59 54.80 E $CCD/clear$ $0.16 \& 2$ no occultation detected594 594 0.64 0.64 0.64 0.64 Nagambie $36 47 05.71 S$ $0.20 m$ 0.64 0.64 0.64 Australia $145 07 59.14 E$ $CCD/clear$ 0.64 0.64 0.64	Austrolic	34 37 31.30 S	0.40 m & 0.35 m	0.10 & 2	D. neraid, M. Streamer
394 Nagambie $36\ 47\ 05.71\ S$ $0.20\ m$ 0.64 D. HooperAustralia $145\ 07\ 59.14\ E$ CCD/clear 0.64 no occultation detected	Australia	148 59 54.80 E	CCD/clear	0.10 & 2	no occultation detected
Nagamble36 47 05.71 S0.20 m0.64D. HooperAustralia145 07 59.14 ECCD/clear0.64no occultation detected	I :	094	0.00	0.04	DII
Australia 145 07 59.14 E CCD/clear 0.64 no occultation detected	Nagambie	30 47 U5.71 S	0.20 m	0.64	D. Hooper
	Austrana	145 U/ 59.14 E 190	CCD/clear	0.04	no occultation detected

Table 1: Circumstances of observations.

_

Table 2: Input parameters and results

Input	parameters				
	Star				
Coordinates at epoch $(J2000)^1$ $\alpha = 19^h 00^m 4$	$49.4801^{\rm s} \pm 11 \text{ mas}, \ \delta = -20^{\rm d} \ 41' \ 40.801'' \pm 17 \text{ mas}$				
B, V, R, K magnitudes ² 12.8, 12.2, 12	.8, 10.6				
Pluto parameters					
Pluto's geocentric distance, shadow velocity ³	4.77070×10^9 km, 24.1 km s ⁻¹ (at 16:53 UT)				
Pluto's mass and radius ⁴ (Stern et al. 2015)	$GM = 8.696 \times 10^{11} \text{ m}^3 \text{ s}^{-2}, R_P = 1187 \text{ km}$				
Sub-observer and sub-solar latitudes ⁴	B = +51.66 deg, B' = +51.46 deg				
Pluto's north pole position angle ⁴	P = +228.48 deg				
Results					
Thermal profile (input values for the DO15 model)					
$r_1, T_1, dT/dr(r_1), r_2, T_2$ 1191.1 km, 81.7 K, 8.5 K km ⁻¹ , 1217.3 km, 109.7 K					
r_3, T_3, r_4, T_4 1302.4 km, 95.5 K, 1392.0 km, 80.6 K					
$\hline{c1, c2, c3} \\ 1.42143317 \times 10^{-3}, 2.52794288 \times 10^{-3}, -2.12108557 \times 10^{-6}$					
c4, c5, c6 -4.88273258	$\times 10^{-7}, -7.04714651 \times 10^{-8}, -3.3716945 \times 10^{4}$				
$c7, c8, c9$ $7.7271133 \times 10^{-10}$	$10^1, -5.86944930 \times 10^{-2}, 1.48175559 \times 10^{-5}$				
Longitudes and latitudes of half-light sub-occultation points ⁵					
ingress					
Greenhill (154°E, 06°N, MT), Blenheim (120°E, 28°N, MT), Martinborough (119°E, 28°N, MT)					
Darfield (115°E, 30°N, MT), Bootes-3 (113°E,	31°N, MT), Dunedin (108°E, 32°N, MT)				
egress					
Greenhill (232°E, 37°S, MT), Blenheim (280°E, 35°S, ET), Martinborough (282°E, 34°S, ET)					
Darfield (286°E, 33°S, ET), Bootes-3 (288°E, 33°S, ET), Dunedin (293°E, 31°S, ET)					
Pressure (quoted errors at 1σ level ⁶)					
18 July 2012	04 May 2013 29 June 2015				
Pressure at 1215 km, p_{1215} 6.07 ± 0.04 μ	bar $6.61 \pm 0.03 \ \mu \text{bar}$ $6.94 \pm 0.08 \ \mu \text{bar}$				
Pressure at 1275 km, p_{1275} 2.09 ± 0.015	$\mu \text{bar} 2.27 \pm 0.01 \ \mu \text{bar} 2.39 \pm 0.03 \ \mu \text{bar}$				
Surface pressure (Fig. 3)	$11.9 - 13.7 \ \mu \mathrm{bar}$				
Astrometry					
Time of closest approach to shadow center (U	T) Closest approach to shadow center				
BOOTES-3: $16^{h} 52^{m} 54.8 \pm 0.1^{s}$	45.9 ± 2 km N of shadow center				
Dunedin: $16^{h} 52^{m} 56.0 \pm 0.1^{s}$	44.6 ∓ 2 km S of shadow center				
Geocenter: $16^{\rm h} 55^{\rm m} 04.9 \pm 0.1^{\rm s}$	3911.5 ± 2 km N of shadow center				

¹See title's footnote for information.

²Zacharias et al. (2013); Cutri et al. (2003); Cutri (2012).

 3 PLU043/DE433 ephemeris.

⁴Using Pluto's north pole J2000 position: $\alpha_p = 08^h 52^m 12.94^s$, $\delta_p = -06^d 10' 04.8''$ (Tholen et al. 2008).

 5 MT = morning terminator, ET = evening terminator.

⁶Formal errors. Possible systematic biases are $\pm 0.2, \pm 0.8$ and $\pm 0.5 \mu$ bar in 2012, 2013 and 2015, respectively (Section 3).

Fig. 1.— Geometry of the 29 June 2015 Pluto stellar occultation. The stellar motion relative to Pluto (black arrow) is shown for seven stations, **Me**: Melbourne, **Gr**: Greenhill, **Bl**: Blenheim, **Ma**: Martinborough, **Da**: Darfield, **Bo**: BOOTES-3, **Du**: Dunedin. The J2000 celestial north and east are indicated by N and E, respectively. Pluto's radius is fixed at 1187 km. The equator and prime meridian are drawn as thicker lines, and direction of rotation is along the gray arrow. The shaded region at center indicates the central flash zone.

Fig. 2.— Simultaneous fits to our 29 June 2015 occultation light-curves. The intervals under each name correspond to the time-span 16h 52m-16h 43m UT. The model is overplotted in blue, and the residuals are in gray. In the lower panels, the blue horizontal lines are the fitted values of Pluto's contribution to the flux (ϕ_P , Eq. 1). The star symbol under the BOOTES-3 curve indicates a small flux deficit relative to the model. In the Dunedin panel, the smooth curve is the central flash at high resolution, before convolution by the exposure time (5.12 s), vertically shifted for better viewing.

Fig. 3.— Left: Pluto's atmospheric pressure at r = 1215 km vs. time in 2012, 2013 and 2015 (our work), and from previous works (Yelle & Elliot 1997; Sicardy et al. 2003), with 1σ error bars. The New Horizons Pluto flyby date (NH) is essentially coincident with our most recent dot. Right: our best pressure profile p(r) for 29 June 2015, with formal 1σ -error domain. The central flash layer roughly lies between the two horizontal dashed lines, above the blind zone below 1191 km. Two possible extrapolations (beside the DO15 model) of temperature profiles T(r) into the blind zone are shown: one with a thermal gradient that reaches zero at the surface (shallow troposphere, blue), and one with a constant gradient 8.5 K km⁻¹ (red).